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We present an original computational method for the identification of prime implicants (PIs) in non-
coherent structure functions of dynamic systems. This is a relevant problem for dynamic reliability anal-
ysis, when dynamic effects render inadequate the traditional methods of minimal cut-set identification.
PIs identification is here transformed into an optimization problem, where we look for the minimum
combination of implicants that guarantees the best coverage of all the minterms. For testing the method,
an artificial case study has been implemented, regarding a system composed by five components that fail
at random times with random magnitudes. The system undergoes a failure if during an accidental sce-
nario a safety-relevant monitored signal raises above an upper threshold or decreases below a lower
threshold. Truth tables of the two system end-states are used to identify all the minterms. Then, the
PIs that best cover all minterms are found by Modified Binary Differential Evolution. Results and perfor-
mances of the proposed method have been compared with those of a traditional analytical approach
known as Quine-McCluskey algorithm and other evolutionary algorithms, such as Genetic Algorithm
and Binary Differential Evolution. The capability of the method is confirmed with respect to a dynamic
Steam Generator of a Nuclear Power Plant.

� 2016 Elsevier Ltd. All rights reserved.
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1. Introduction

The reliability analysis of systems with significant hardware/-
software/human interactions is difficult, because the response of
the system under accidental scenarios depends on the time of
occurrence and on the magnitude of the events (Zio and Di Maio,
2009; Aldemir et al., 2010). Further, it turns out that the logic of
these systems can give rise to non-coherent structure functions,
where both failed and working states of the same components
can lead the system to failure (Di Maio et al., 2015); for example,
if in a systemmade up of three components J, K, L it fails with com-
ponents states (J, �L, K), with the negation sign indicating that the
component is failed, whereas it is working when the components
states are (�J, �L, K), then the system is non-coherent. The traditional
Probabilistic Risk Assessment (PRA) modeling tools, e.g. Fault Tree
and Event Tree Analysis, have difficulties in including the specific
timing and magnitude of the events. On the other hand, so-called
dynamic reliability methods can complement the traditional meth-
ods to accounts for the interactions among the physical parameters
of the processes (temperature, pressure, speed, etc.), the human
operators actions and the failures of the components (Aldemir
et al., 2010; Siu, 1994; Devooght, 1997; Marseguerra et al., 1998)
and to identify the system prime implicants (PIs), i.e., the event
product terms that render true the structure function and that can-
not be covered by more reduced implicants (Quine, 1952), even if
the structure functions are non-coherent.1 PIs have been introduced
as dynamic equivalent of Minimal Cut Sets (MCSs) for conveying the
information on the minimum combinations of failures that lead
(non-coherent and/or dynamic) the system to failure and that cannot
be covered any other implicant (Garrett and Apostolakis, 1999).

Traditionally, non-coherent structure functions have been
interpreted as indication of poor system design. However, in Bee-
son (Beeson, 2002) it is shown that PIs identification can help
developing an effective maintenance schedule for non-coherent
ts not all
e system
or more)
interms
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Table 1
Equations used to simulate the signals evolutions in time for each failed component.

Failed component Signal 1 Signal 2 Signal 3 Signal 4

A Eq. (1) Eq. (1) Eq. (3) Eq. (1)
B Eq. (1) Eq. (2) Eq. (3) Eq. (1)
C Eq. (2) Eq. (3) Eq. (1) Eq. (1)
D Eq. (2) Eq. (3) Eq. (2) Eq. (1)
E Eq. (3) Eq. (3) Eq. (3) Eq. (1)

Table 2
Parameters distribution.

Parameter Distribution Mean value Standard deviation

a Gaussian 0.4 0.017
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systems. For example, suppose that �J; �K; L (components J and K
failed and component L working) is a PI that causes a catastrophic
system failure. This shows that, if components J, K and L have
failed, L should be the last component to be repaired in order to
avoid system failure. Furthermore, PIs identification allows taking
additional counteracting measures to prevent system failure, for
example by forcing failure of component L when component J
and K have already failed (Sharvia, 2008).

Fault tree analysis is undoubtedly an useful and efficient tool for
minimal cut set identification, but not for PIs identification, since it
can only deal with coherent structure functions (Morreale, 1967).
The problem of extending the analysis to non-coherent fault trees
has, then, been tackled in different ways: the simplification of non-
coherent structure functions expressed in canonical forms has
been raised by Quine (Quine, 1952) and solved by McCluskey
(McCluskey, 1956), allowing a preliminary identification of PIs;
the problem has also been tackled by means of graphical methods
such as Karnaugh maps (Karnaugh, 1953). However, the actual
implementation of these methods becomes very time-consuming
when the number of variables involved in the given structure func-
tion increases. The computational efficiency has been improved
resorting to various Partitioned List algorithms (Morreale, 1970)
and fast Binary Decision Diagram (BDD) algorithms Jung et al.,
2004: in Worrell et al. Worrell et al. (1981), a modification of a
minimal cut sets algorithm known as Simple Prime Implicant Set
Algorithm is proposed, although it does not always produce com-
plete PI sets, whereas in Rauzy and Dutuit (Rauzy and Dutuit,
1997) a method is proposed to convert the fault tree of a non-
coherent structure function into a BDD for PIs identification, where
each of the basic events of the tree is represented as a node with
two branches (branch 1 and 0, corresponding to the component
failure and working states respectively). This latter approach has
been adapted in Bjorkman (Bjorkman, 2013) for PI identification
based on Dynamic Flowgraph Methodology (DFM).

The difficulty in developing efficient computational methods for
PIs identification lays in the fact that this can be seen as an NP-hard
problem of covering a set (the minterms) with elements from given
subsets (the PIs) Sen, 1993: each given subset has an associated
cost proportional to its dimension and the objective of the problem
is to choose the smallest group of subsets whose union contains
the whole set with minimal cost, as we shall see in what follows.

In this paper, we develop a new method for identifying all PIs of
a non-coherent structure function resorting to the powerful evolu-
tionary algorithm of Differential Evolution (DE) Storn and Price,
1996. The PIs are found by solving by DE a properly defined opti-
mization problem, for determining the exact (not approximated)
solution of the Set Covering Problem (SCP) Christofides and
Paixão, 1993; Beasley and Chu, 1996: in this way, none of the
prime (minimal) failure scenarios (i.e., the PIs) can be neglected
by the identification method.

The paper is organized as follows. In Section 2, the artificial case
study used to generate the scenarios for the dynamic reliability
analysis is presented. In Section 3, the model of a Steam Generator
(SG) of a Nuclear Power Plant (NPP) is presented Aubry et al., 2012.
In Section 4, PIs identification is formulated as an optimization
problem and tackled by resorting to the DE-based approach. In Sec-
tion 5, the results of the application of the approach to the scenar-
ios of the artificial case and of the SG are presented. Conclusions
and remarks are given in Section 6.
b Gaussian 0.4 0.017
c Gaussian 1.3 0.033
d Gaussian 1.3 0.017
a1 Gaussian 1 0.083
a2 Gaussian 1.05 0.033
a3 Gaussian 1 0.033
l Gaussian 2.45 0.083
x Gaussian 0 1
2. The artificial case study

For ease of illustration of the method proposed, we build an
artificial case study by simulating the accidental scenarios for a
system made of 5 components (denoted as A, B, C, D and E), that
can fail at random times with random magnitudes, giving rise to
different scenarios whose evolutions are represented by 4 moni-
tored signals. Multiple component failures can occur during the
system life, set to T = 7 [h]. For the simulation, a Monte Carlo sam-
pling procedure for injecting faults of random magnitudes at ran-
dom times is implemented. In particular, times and magnitudes
of faults are obtained by a stratified sampling with respect to the
possible accident scenarios (Di Maio et al., 2011). The number of
components that fail is sampled from a binomial distribution with
parameters n = 5 (equal to the number of components) and p = 0.8
(so that even rare multiple fault events are included in the set of
accident scenarios). The first failure time is sampled from a uni-
form distribution [0, 1] [h], and the successive failure times are
sampled by a stick-breaking strategy from the conditional distribu-
tions, uniform from the last sampled time up to 7 [h]. This sam-
pling strategy models a wearing system, with average failure rate
increasing in time.The equations deliberately used to simulate
the signal evolutions in time during the accidental scenarios are
(Table 1):

yðtÞ ¼ 2a1a 1þ erf
t � lffiffiffi

2
p

� �� �
þ 10�3x ð1Þ
yðtÞ ¼ a2 cd
t � c

� �
þ 10�3x ð2Þ
yðtÞ ¼ a3bt þ 10�3x ð3Þ

where a, b, c, d, l, x, a1, a2 and a3 are randomly sampled from the
distributions listed in Table 2. Parameters a1, a2 and a3 represent
the magnitudes of the faults of the accidental scenarios. All param-
eters and variables have arbitrary units.

We take signal 1 as the safety-relevant parameter to be moni-
tored against pre-defined safety thresholds: if it exceeds the upper
threshold value of 2.5, the system fails in the ‘‘High” end state; if it
decreases below the lower threshold value of �1.5, the system end
state is ‘‘Low” (Baraldi et al., 2013). In Fig. 1, the evolution of the 4
signals for 10 randomly sampled accidental scenarios are shown.
Signals measurements are plotted in continuous lines; the upper
and lower thresholds are in dotted and dashed lines, respectively.

Fig. 1 shows that under different scenarios, the signals can
increase or decrease. This can occur in reality where, for example,
if a valve of the coolant injection system of a Nuclear Power Plant



Fig. 1. Examples of the behavior of the 4 monitored signals during simulated accidental scenarios.

Table 3
Truth-table for the 32 system configurations and the ‘‘Low”, ‘‘Safe” and ‘‘High” end states. Legend: - = safe component, x = faulty component.

System Component Component Component Component Component End state

configuration A B C D E Low Safe High

1 - - - - - No Yes No
2 x - - - – No Yes No
3 - x - - - No Yes No
4 - - x - - Yes No No
5 - - - x - Yes No No
6 - - - - x No No Yes
7 x x - - - No No Yes
8 x - x - - Yes No No
9 x - - x - Yes No No
10 x - - - x No No Yes
11 - x x - - Yes No No
12 - x - x - Yes No No
13 - x - - x No No Yes
14 - - x x - Yes No No
15 - - x - x No Yes No
16 - - - x x No Yes No
17 x x x - - No Yes No
18 x x - x - No Yes No
19 x x - - x No No Yes
20 x - x x - Yes No No
21 x - x - x No Yes No
22 x - - x x No Yes No
23 - x x x - Yes No No
24 - x x - x No Yes No
25 - x - x x No Yes No
26 - - x x x Yes No No
27 x x x x - Yes No No
28 x x x - x No No Yes
29 x x - x x No No Yes
30 x - x x x Yes No No
31 - x x x x Yes No No
32 x x x x x No No Yes

F. Di Maio et al. / Annals of Nuclear Energy 102 (2017) 91–105 93



Fig. 2. Example of non-coherence for the ‘‘Low” end state.

Fig. 3. Example of non-coherence for the ‘‘High” end state.

Fig. 4. Histograms of the frequency of end states for each of the 32 system configurations listed in Table. 3.
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Fig. 5. Schematic of the UTSG (Kothare et al., 2000).
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(NPP) fails to open during a loss of coolant accident (LOCA), an in-
vessel temperature growth is measured, which could arrive at
exceeding the upper threshold (Di Maio et al., 2014); if the pressur-
izer safety relief valve fails to close, the water level drops below the
low-level safety threshold, leading the system into the undesirable
state of uncovered electric heaters (Di Maio et al., 2015).

Yet, it is important to underline that the procedure imple-
mented in this work for sampling the fault events is not intended
to reproduce the actual stochastic failure behavior of the compo-
nents of a real system; rather, the choices and hypotheses for mod-
eling the faults (e.g. system life, number of faults and distributions
of failure times and magnitudes) have been arbitrarily made with
the aim of favoring multiple failures in the sequences and captur-
ing the dynamic influence of their order, timing and magnitude
Fig. 6. Block diagram representing t
including possible compensatory effects for which a failure later
in time compensates for the impact of another earlier failure, thus
highlighting non-coherent system behavior.

2.1. Non-coherence

Considering the binary (safe or faulty) states of the five compo-
nents of the system, the number of possible system configurations
is equal to 32. One simulation has been run for each system config-
uration with the hypothesis that faults are assumed to occur at the
beginning of the scenarios and their magnitudes are taken equal to
their mean values of Table 2. Tab. Table 3 shows the truth-table of
the system, i.e., all possible system configurations, with the end
state ‘‘Low” or ‘‘High” they lead to.

The analysis of the truth-table points out that the system failure
logic is represented by a non-coherent structure function. In fact,
as it can be shown in Figs. 2 and 3, both failed and working states
of the components can contribute to the failure of the system. In
particular, in Fig. 2(left) the safety-relevant signal 1 for the system
configuration 11 of Tab. Table 3 (components B and C failed, and
components A, D and E working) is shown; on the other hand, in
Fig. 2(right) the same signal for system configuration 17 of Tab.
Table 3 (components A, B and C failed, and components D and E
working) is plotted: from 11 to 17, adding the failure of component
A brings the system from a ‘‘Low” end state to a ‘‘Safe” end state,
violating coherence requirements.

In Fig. 3(left), the safety-relevant signal 1 for the system config-
uration 6 of Tab. Table 3 (component E failed, and components A, B,
C and D working) is shown; on the other hand, in Fig. 3(right) the
same signal for system configuration 15 of Tab. Table 3 (compo-
nents C and E failed, and components A, B and D working) is plot-
ted: from 6 to 15, adding the failure of component C brings the
system from a ‘‘High” end state to a ‘‘Safe” end state, violating
coherence requirements.

Furthermore, when we take into account uncertainties on tim-
ing and magnitudes of components failures, the dynamic aspects
render non-coherence even more evident. Fig. 4 shows the fre-
quency of the three system end states (‘‘High”, Safe and ‘‘Low”)
for the 32 system configurations reported in Tab. Table 3, esti-
mated from the simulation of 10,000 accidental scenarios for each
system configuration with random components failure times and
magnitudes. Most of the configurations do not lead unequivocally
to one end state: on one side, this means that even though the con-
he SIMULINK model of the SG.



Table 4
Truth-table for the 16 system configurations and the ‘‘Low”, ‘‘Safe” and ‘‘High” end states. Legend: - = safe component, x = faulty component.

System Failure of the
outlet steam valve

Failure of the
safety relief valve

Level sensor- PID controller
communication interruption

Failure of the
PID controller

End state

configuration Low Safe High

1 - - - - No Yes No
2 X - - - No No Yes
3 - X - - No Yes No
4 - - X - No Yes No
5 - - - X No No Yes
6 X X - - No Yes No
7 X - X - No No Yes
8 X - - X No No Yes
9 - X X - Yes No No
10 - X - X No Yes No
11 - - X X No No Yes
12 X X X - No No Yes
13 X X - X No No Yes
14 X - X X No No Yes
15 - X X X No Yes No
16 X X X X No No Yes
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figuration is the same, when the failures of the components occur
at different times or with different magnitudes, the end state can
be different. For example, if a failure occurs towards the end of
the mission time (as opposed to the start of the period), it may
not lead to system failure (Di Maio et al., 2011). On the other side,
Fig. 4 shows that as a new failure occurs, the faulty end states fre-
quencies can become smaller or, vice versa, as a faulty component
is repaired, the safe end state frequencies can become smaller. For
example, adding one failure from system configuration 14 (compo-
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Fig. 8. Example of non-coheren
nents C and D failed and components A, B and Eworking) to system
configuration 26 (components C, D and E failed and components A
and B working), or from system configuration 23 (components B, C
and D failed and components A and E working) to system configu-
ration 31 (components B, C, D and E failed and component A work-
ing), the safe end state frequencies increase, and correspondingly
the ‘‘Low” and ‘‘High” end state frequencies decrease.

These examples show the need in dynamic reliability analysis to
focus on the PIs of the system, rather than on the identification of
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its minimal cut sets, due to the evident non-coherence of the struc-
ture function.

3. The steam generator of a nuclear power plant

The U-Tube Steam Generator (UTSG) under consideration is
sketched in Fig. 5. The reactor coolant enters the UTSG at the bot-
tom, moves upward and then downward in the inverted U-tubes,
transferring heat to the secondary fluid before exiting at the bot-
tom. The secondary fluid, the feedwater (Qe), enters the UTSG at
the top of the downcomer, through the space between the tube
bundle wrapper and the SG shell. The value of Qe is regulated by
a system of valves: a low flow rate valve, used when the operating
power (Po) is smaller than 15% of nominal power (Pn) and a high
flow rate valve when Po > 0.15 Pn Aubry et al., 2012.

In the secondary side of the tube bundle, water heats up,
reaches saturation, starts boiling and turns into a two-phase mix-
ture. The two-phase fluid moves up through the separator/riser
section, where steam is separated from liquid water, and through
the dryers, which ensure that the exiting steam (Qv ) is essentially
dry. The separated water is recirculated back to the downcomer.
The balance between the exiting Qv and the incoming Qe governs
the change in the water level in the SG. Because of the two-
phase nature, two types of water level measurements are consid-
ered, as shown in Fig. 5, each reflecting a different level concept:
the Narrow Range Level (Nrl) is calculated by pressure difference
between two points close to the water level and indicates the mix-
ture level, whereas, the Wide Range Level (Wrl) is calculated by
pressure difference between the two extremities of the SG (steam
dome and bottom of the downcomer) and indicates the collapsed
liquid level that is related with the mass of water in the SG.
J

K
L 

Fig. 9. Reliability block diagram of the system.

Table 5
List of the faulty minterms mj of the system of Fig. 9 (1 = failed component, 0 = safe
component).

J K L

m1 0 0 1
m2 0 1 1
m3 1 0 1
m4 1 1 0
m5 1 1 1

Table 6
List of the implicants xi of the system of Fig. 9 (1 = failed component, 0 = safe
component, - = component state does not influence the system failure).

J K L Cost (w)

x1 0 0 1 3
x2 0 1 1 3
x3 1 0 1 3
x4 1 1 0 3
x5 1 1 1 3
x6 0 - 1 2
x7 - 0 1 2
x8 1 - 1 2
x9 - 1 1 2
x10 1 1 - 2
x11 - - 1 1
At low Po, ‘‘swell and shrink” phenomena are also modeled to
reproduce the dynamic behavior of the SG: when Qv increases,
the steam pressure in the steam dome decreases and the two-
phase fluid in the tube bundle expands causing Nrlto initially swell
(i.e., rise), instead of decreasing as would have been expected by
the mass balance; contrarily, if Qv decreases or Qe increases, a
shrink effect occurs (Kothare et al., 2000). A similar model has been
presented in Aubry et al. Aubry et al. (2012).

The goal of the system is to maintain the SG water level at a ref-
erence position (Nref ): the SG fails if the Nrl rises (falls) above
(below) the threshold, Nhigh (Nlow), in which case automatic reactor
or turbine trips are triggered. Indeed, if the Nrl exceeds Nhigh, the
steam separator and dryer lose their functionality and excessive
moisture is carried in Qv , degrading the turbine blades profile
and the turbine efficiency; if Nrl decreases below Nlow, insufficient
cooling capability of the primary fluid occurs. Similarly, the Wrl,
is relevant for the cooling capability of the primary circuit
(Kothare et al., 2000).

A dedicated, simulation model has been implemented in SIMU-
LINK to simulate the dynamic response of the UTSG at different Po

values. Both feedforward and feedback digital control schemes
have been adopted. The feedback controller is a PID that provides
a flow rate Qpid resulting from the residuals between Nrl and Nref ,
whereas the feedforward controller consists in a safety relief valve
that is opened if and only if Nrl exceeds the Nhl, and removes a con-
stant flow safety flow rate (Qsf ). The block diagram representing
the SIMULINK model of the SG is shown in Fig. 6: the controlled
variable is Nrl, whereas the control variable is Qe.

3.1. The set of possible failures

We assume component failures to occur at the beginning of the
scenario (with Tmiss equal to 4000 (s)) Zio and Di Maio, 2009. We
here analyze the system in constant Po ¼ 80% Pn scenarios with
respect to high level failure mode. Choices and hypotheses for
modeling the failures have been arbitrarily made with the aim of
generating multiple failures and the choice of a mission time
(TmissÞ equal to 4000 (s) has been made because it is a long enough
interval of time to allow the complete development also of slow
dynamic accident scenarios. The set of multiple component failures
that can occur are:

1. The outlet steam valve (component T) can fail stuck at 85% of
the nominal Qv that should be provided at Po.

2. The communication between the sensor that monitors Nrl and
the PID controller (component U) can fail so that the PID is pro-
vided with the same input value of the previous time step.

3. The safety relief valve (component V) can fail stuck at a value
Qsf ¼ 50:5 (kg/s).
Table 7
Implicant chart A for the system of Fig. 9 (aij = 1, minterm is covered, aij = 0, minterm
is uncovered).

m1 m2 m3 m4 m5

x1 1 0 0 0 0
x2 0 1 0 0 0
x3 0 0 1 0 0
x4 0 0 0 1 0
x5 0 0 0 0 1
x6 1 1 0 0 0
x7 1 0 1 0 0
x8 0 0 1 0 1
x9 0 1 0 0 1
x10 0 0 0 1 1
x11 1 1 1 0 1



Table 8
List of the faulty minterms mi of the system.

A B C D E

m1 0 0 1 0 0
m2 0 0 0 1 0
m3 1 0 1 0 0
m4 1 0 0 1 0
m5 0 1 1 0 0
m6 0 1 0 1 0
m7 0 0 1 1 0
m8 1 0 1 1 0
m9 0 1 1 1 0
m10 0 0 1 1 1
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4. The PID controller (component Z) can fail stuck providing a flow
rate Qpid ¼ 12:35% of the nominal Qe that should be provided at
Po.

Considering the binary (safe or faulty) states of the five compo-
nents of the system, the number of possible system configurations
(for which a simulation has been run) is equal to 16. Tab. Table 4
shows the truth-table of the system, i.e., all possible system config-
urations, with the end state ‘‘Low” or ‘‘High” they lead to.

The analysis of the truth-table points out that the system failure
logic is represented by a non-coherent structure function. In fact,
as it can be shown in Figs. 7 and 8, both failed and working states
of the components can contribute to the failure of the system. In
particular, in Fig. 7(left) the Nrl level for system configuration 2
(steam valve failure) is shown; on the other hand, in Fig. 7(right)
the Nrl level for system configuration 6 (steam and safety valves
failures) is plotted: adding the failure of the safety valve brings
the system from a ‘‘High” end state to a ‘‘Safe” end state, violating
coherence requirements.

In Fig. 8(left) the Nrl level for system configuration 9 (safety
valve and communication failures) is shown; on the other hand,
in Fig. 8(right) the Nrl level for system configuration 15 (safety
valve, communication and PID failures) is plotted: adding the fail-
ure of the PID brings the system from a ‘‘Low” end state to a ‘‘Safe”
end state, violating coherence requirements.
m11 1 1 1 1 0
m12 1 0 1 1 1
m13 1 1 1 1 1

Table 9
List of the implicants xi of the system.

A B C D E

x1 0 0 1 0 0
x2 0 0 0 1 0
x3 1 0 1 0 0
x4 1 0 0 1 0
x5 0 1 1 0 0
x6 0 1 0 1 0
x7 0 0 1 1 0
x8 1 0 1 1 0
x9 0 1 1 1 0
x10 0 0 1 1 1
x11 1 1 1 1 0
x12 1 0 1 1 1
x13 1 1 1 1 1
x14 - 0 1 0 0
x15 0 - 1 0 0
x16 0 0 1 - 0
x17 - 0 0 1 0
x18 0 - 0 1 0
x19 0 0 - 1 0
x20 1 0 1 - 0
x21 1 0 - 1 0
x22 0 1 1 - 0
x23 0 1 - 1 0
x24 - 0 1 1 0
x25 0 - 1 1 0
x26 0 0 1 1 -
x27 1 - 1 1 0
x28 1 0 1 1 -
x29 - 1 1 1 0
x30 0 1 1 1 -
x31 - 0 1 1 1
x32 0 - 1 1 1
x33 - 0 1 - 0
x34 0 - 1 - 0
x35 - 0 - 1 0
x36 0 - - 1 0
x37 - - 1 1 0
x38 - 0 1 1 -
x39 0 - 1 1 -
4. A novel method for PIs identification

In this paper, the problem of PIs identification is innovatively
handled resorting to the DE algorithm for solving a set covering
problem (SCP) Beasley and Chu, 1996; Di Maio et al., 2014. Differ-
ently from Di Maio et al. Di Maio et al. (2014), here we develop a
DE search strategy to identify PIs and not the classical MCSs. The
SCP is the problem of covering at minimal cost (that is defined
depending on the context of the application) the columns of a
zero-one matrix A = [aij], where i = 1, 2,. . ., R and j = 1,2,. . .,C, by a
subset of the rows. Defining xi = 1 if row i is in the solution, and
xi = 0 otherwise, the SCP aims at identifying the set of xi with the
lower cost (Eq. (4)) that guarantee the coverage of each column j
by at least one row (i.e., for each i-th row corresponding to the
implicant chosen, there is at least one entry equal to 1 in one of
the C columns) (Eq. (5)), viz:

minimize
XR
i¼1

wixi ð4Þ

subject to
XR
i¼1

aijxi P 1 ð5Þ

where wi is the positive cost weight associated to the i-th row
(which, again, depends on the specific problem). In the PIs identifi-
cation, let A = [aij] be an implicant chart (i.e., a matrix representing
the minterms covered by each implicant, where aij = 1 if the i-th
implicant covers the j-th minterm, aij = 0 otherwise), mj denote
the j-th minterm (i.e., the product of all the Boolean variables asso-
ciated with a system component, representing its failed (1) or safe
state (0), that leads the system to failure), xi denote the i-th impli-
cant of the structure function.

A cost vector �w ¼ ðw1;w2; . . . ;wRÞ assigns a positive cost wi to
each implicant i, e.g. cost of components in manufacturing industry
(Sen, 1993), number of trips that can be performed by a single crew
in transportation company (Belas, 1982). For generality, here we
define the cost wi as the number of Boolean variables (either true
or complemented) associated to the system components included
in the i-th implicant. For this problem, the solution space is the
set of all possible combinations of 1,2,. . .,R implicants (hence the
size of the solution space is 2R � 1, excluding the possibility where
no implicant is chosen). Each solution �̂xopt is represented by a
specific combination of independent variables, or, mathematically
speaking, by a R-dimensional vector �x ¼ ðx1; x2; . . . ; xRÞ (hereafter
called chromosome within the Differential Evolution (DE) opti-
mization method that will be adopted) that is a hypothetical solu-
tion of the optimization problem (4) and (5). A value of 1 in the i-th
vector position xi implies that the implicant i is chosen to be in the
cover; a value of 0, otherwise (Sen, 1993).



Table 11
Values of the parameters F and CR used in the MBDE.

Modified binary differential
evolution

Fitness function Penalty One complement

Parameters F 0.4 0.5
CR 0.6 0.6

Table 12
Performance indicators for the MBDE performed with NP = 30.

Modified binary differential evolution

Fitness function Penalty One complement

NP 30 30
Cpu [s] 9.07 4.69
Success rate 100% 100%
Accuracy 11 11

Table 13
Performance indicators for the MBDE performed with NP = 100.

Modified binary differential evolution

Fitness function Penalty One complement

NP 100 100
Cpu [s] 30.43 16.15
Success rate 100% 100%
Accuracy 11 11

Table 14
Performance indicators for the MBDE performed with NP = 300.

Modified binary differential evolution

Fitness function Penalty One complement

NP 300 300
Cpu [s] 99.66 53.95
Success rate 100% 100%
Accuracy 11 11

Table 15
Performance indicators for the MBDE performed with NP = 500.

Modified binary differential evolution

Fitness function Penalty One complement

NP 500 500
Cpu [s] 155.32 85.21
Success rate 100% 100%
Accuracy 11 11
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For clarification, let us consider the system made up by three
components (J, K and L) whose reliability block diagram is shown
in Fig. 9. The C = 5 minterms mj that lead this system to failure
are reported in Tab. Table 5.

The R = 11 implicants (xi in Eqs. (4) and (5)) of the system of
Fig. 9, and their costs (wi in Eq. (4)), are reported in Tab. Table 6.
Intuitively, the PIs of the system of Fig. 9 are x10 and x11.In Tab.
Table 7, the implicant chart A, whose rows are aij in Eq. (5), for
the system is finally shown.

Within the evolutionary algorithm context, the optimal cover
�xopt is the chromosome �x ¼ ð0;0;0;0;0; 0;0;0;0;1;1Þ which means
that only x10 and x11 are chosen to be in the solution, i.e., are PIs.

For solving the above-defined SCP, we resort to Differential Evo-
lution (DE), which belongs to the class of Evolutionary Algorithms
(EAs) Holland, 1975. A main advantage of DE with respect to other
EAs is the fact that the evolutionary operations used in DE are
specifically built for optimization over continuous spaces and
based on a floating-point representation (Deng et al., 2009; Wang
et al., 2010; Baraldi et al., 2011).

DE entails three phases called mutation, crossover and selec-
tion. This is the original scheme proposed in Storn and Price
(Storn and Price, 1996): at the G + 1-th generation, for each gene
xi in the chromosome vector �xG ¼ ðx1; x2; . . . ; xRÞG of the population
of NP different chromosomes at the G-th generation, a noisy gene vi
of the noisy vector �vGþ1 ¼ ðv1;v2; . . . ;vRÞGþ1, is generated by ran-
domly adding to the i-th gene of the l-th chromosome the
weighted difference between two other randomly selected k-th
and m-th chromosomes from the population.

v i ¼ xiðlÞ þ FðxiðkÞ � xiðmÞ Þ ð6Þ

where the weighting factor F 2 ½0;2� is a user-defined parameter,
kept constant during the optimization and xiðlÞ ; xiðkÞandxiðmÞ are the
i-th gene values of the three randomly chosen individuals, with
l; k;m 2 f1;2; . . . ;NPg.

To maintain the diversity inside the perturbed population, and
shuffle old and new information, after mutation, �vGþ1 is not
directly compared with �xG, but it is further modified by the cross-
over process, in which �vGþ1 and �xG are mixed according to some
rule to create the trial vector �uGþ1, which inherits from them differ-
ent pieces of chromosome. The most common crossover type
adopted is the binomial: �uGþ1 is built by a modified Bernoulli trial
rule, gauged by the control parameter CR 2 ½0;1�; which influences
the probability for �vGþ1 to be selected for the mutation process.
Each gene ui of the trial vector is equal to

ui ¼
v i if Uð0;1� 6 CR or i ¼ irandðRÞ
xi otherwise

	
ð7Þ

where U(0,1] denotes the uniform continuous random value in ð0;1�
and irand(R) is a uniform discrete random number from the set
f1;2; . . . ;Rg, where R is the length of the chromosome.

The trial vector obtained �uGþ1, then, enters the selection process
where it is compared with (and eventually substitutes) the target
vector �xG that is partially its parent according to the crossover rule.
Table 10
Prime implicants set obtained analytically by Quine-McCluskey algorithm (comp

State of component A State of component B State of

PI1 - B �C
PI2 A - �C
PI3 - B -
PI4 A - -
PI5 - - �C
PI6 - B �C
PI7 A - �C
Referring to minimization, if the fitness, i.e., the cost, of �uGþ1 is less
than the fitness of �xG, the first will be a member of the next gener-
ation G + 1, replacing the target vector, and the trial vector is
discarded
onent is failed ð�XÞ, working ðXÞ or it is irrelevant (-) as contributor to the PI).

component C State of component D State of component E

- E
- E
�D E
�D E
�D E
�D -
�D -



Table 16
Values of the parameters F and CR used in the BDE.

Binary differential evolution
(BDE)

Fitness function Penalty One complement

Parameters F 0.7 0.7
CR 0.1 0.1

Table 17
Relevant parameters set for the GA.

Genetic algorithm

Fitness function Penalty One complement

Parameters CR 0.01 0.01
MAXGEN 500 500
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�xGþ1 ¼ �uGþ1 if fitnessð�uGþ1Þ < fitnessð�xGÞ
�xG otherwise

	
ð8Þ

In this work, we aim at comparing the performance of two dif-
ferent DEs, that differ in the mutation step and are called ‘‘Binary
Differential Evolution” (BDE) Deng et al., 2009 and ‘‘Modified Bin-
ary Differential Evolution” (MBDE) Wang et al., 2010.

4.1. Binary Differential Evolution

BDE is based on a mapping operator, defined as Eq. (9), that is
constructed to map the gene xi in a discrete domain (in our case
it is a binary domain) into a continuous domain by partitioning
the interval [0, 1] into two equal subintervals [0,0.5) and [0.5,1],
(i.e., if xi = 0 and rand is a random number in [0,1), then, its image
belongs to the first subinterval, whereas if xi = 1 its image belongs
to the second interval).

xi ¼
0:5 � rand if xi ¼ 0
0:5þ rand � rand if xi ¼ 1

	
ð9Þ

After variable xi is mapped in the new domain, the mutation
operator of Eq. (6) is applied. To ensure that the resulting gene gen-
erated by the mutation operator in the original DE falls into the
interval [0,1], a sigmoid function is applied to obtain vi:

v i ¼ 1
1þ e�v i

ð10Þ

Before the crossover phase, an inverse mapping operator is used:

v i ¼
0 if v i 2 ½0;0:5Þ
1 if v i 2 ½0:5;1�

	
ð11Þ

Then, the procedure follows traditional DE steps of crossover and
selection.

4.2. Modified Binary Differential Evolution

MBDE is based on the mutation phase of the standard DE: it
entails embedding Eq. (6) into a probability estimation operator
(Eq. (12)) that helps generating the mutated individuals, account-
ing for the information of the parent population:

PðxiÞ ¼ 1

1þ e�
2b xiðlÞ þF xiðkÞ �xiðmÞ

� �
�0:5

h i
1þ2F

ð12Þ

where b is a positive real constant, usually set to the value of 6; F is
the weighting factor and xiðlÞ ; xiðkÞ and xiðmÞ are the i-th genes of three
randomly chosen individuals, as in Eq. (6) for the standard DE.

According to the probability estimation vector
Pð�xÞ ¼ ½Pðx1Þ; Pðx2Þ; . . . ; PðxRÞ�, created by Eq. (12), the correspond-
ing genes of the noisy vector �vGþ1 of the current target individual
�xG are generated:

v i ¼
1 if rand 6 PðxiÞ
0 otherwise

	
ð13Þ

The genes of the trial individual �uGþ1 can be obtained by the cross-
over operator through Eq. (14):

ui ¼
v i if rand 6 CR or i ¼ irandðRÞ
xi otherwise

	
ð14Þ

Therefore, at least one bit of the trial individual is inherited
from the mutant individual so that MBDE is able to avoid duplica-
tion individuals and effectively search within the neighborhood
(Wang et al., 2010). Then, the procedure follows the traditional
selection step.
5. Results

5.1. The artificial case study

Without loss of generality, we present our analysis on the ‘‘Low”
end state. From the truth-table of Tab. Table 3, we can identify all
the C = 13 minterms that make the system fail, listed in Tab.
Table 8. These are the 13 columns mj,j = 1, 2, . . ., 13, of the impli-
cants chart A that have to be covered by the PIs we aim at identi-
fying. The rows xi, i.e., the complete set of implicants of the system
structure function, of the implicant chart A are listed in Tab.
Table 9.

The optimal cover �xopt is the one for which the cost function Eq.
(4) is minimized. Different approaches can be tailored for penaliz-
ing incomplete solutions (solutions that do not cover all faulty
minterms), taking into account that assigning them a very high
cost (for example the cost of all implicants) do not differentiate
between extremely bad solutions (those who cover only a few
minterms) and almost optimal ones (those that cover almost all
minterms at a very low cost) (Sen, 1993).

In this work, we adopted two different cost functions for this,
namely ‘‘Penalty” (Sen, 1993) and ‘‘One complement”
(Shackleford et al., 2001). The ‘‘Penalty” fitness function is the
sum of the costs of the chosen implicants plus, in case the chosen
implicants do not cover all the faulty minterms, an extra cost of
awi, with a = 1.25, for each i-th implicant that should be added
for a complete cover. So, when the chosen implicants do not cover
all the faulty minterms, the function resorts to a sequential search
starting at the first implicant and including all implicants needed
to cover all the minterms. With the ‘‘One complement” fitness
function, the cost of the trial solution is mapped into a binary fit-
ness function made up by two parts: the most important digits
are determined as the complement to one of the uncovered faulty
minterms, while the least important digits are determined as the
complement to one of the sum of the costs of the implicants
included in the trial solution. In this way, we obtain that a com-
plete subset of PIs that covers all faulty minterms has for sure a lar-
ger fitness than any other incomplete subset. It is important to
underline that with the ‘‘Penalty” fitness function we aim at min-
imizing the cost of Eq. (4), whereas with the ‘‘One complement” fit-
ness function we aim at the maximization of the cost.

In this case study, the fitness value corresponding to the true
optimal solution �xopt is equal to 21 when using the ‘‘Penalty” fitness
function and to 4074 when using the ‘‘One Complement” fitness
function.

The true solution �xopt is found using the Quine-McCluskey algo-
rithm that gives a deterministic way to check that the minimal
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form of a Boolean function has been reached (McCluskey, 1956).
This is a tabular method that compares each minterm with all
the other minterms: if two of them differ in only one variable, that
variable is removed and a reduced (merged) implicant is formed;
the merging process is repeated for all the minterms until the cycle
yields no further elimination of variables; the remaining impli-
cants are thus selected as the PIs (Quine, 1952; McCluskey,
1956). Although more practical than Karnaugh maps when dealing
with more than four variables, the Quine–McCluskey algorithm
also has a limited range of use since the problem it solves is NP-
Table 18
Performance indicators for the BDE and GA performed with NP = 30.

Binary differential evolution

Fitness function Penalty One comple

NP 30 30
Cpu [s] 12.91 4.76
Success rate 25% 15%
Accuracy 3.71 4.64

Table 19
Performance indicators for the BDE and GA performed with NP = 100.

Binary differential evolution

Fitness function Penalty One comple

NP 100 100
Cpu [s] 37.06 16.11
Success rate 50% 45%
Accuracy 6.16 6.93

Table 20
Performance indicators for the BDE and GA performed with NP = 300.

Binary differential evolution

Fitness function Penalty One comple

NP 300 300
Cpu [s] 108.05 53.54
Success rate 95% 65%
Accuracy 10.51 8.4135

Table 21
Performance indicators for the BDE and GA performed with NP = 500.

Binary differential evolution

Fitness function Penalty One compl

NP 500 500
Cpu [s] 170.9818 93.7270
Success rate 100% 95%
Accuracy 11 10.6305
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Fig. 10. Pmfs of the �̂xopt fitness values obtained with BDE, using the ‘‘Penalty”
hard: the runtime of the Quine–McCluskey algorithm grows expo-
nentially with the number of variables. However, in this artificial
case study, it is able to provide the optimal PIs �xopt as listed in
Tab. Table 10, where each row represents one of the 7 PIs of this
problem.

It is worth mentioning that, if we would have been searching for
traditional MCSs rather than PIs (like in Di Maio et al. Di Maio et al.
(2014)), the actual behavior of the system would not have been
straightforwardly identified and the system could have been be
exposed to (avoidable) risk states. For example, let us consider
Genetic algorithm

ment Penalty One complement

30 30
20.10 12.33
0% 0%
0.99 3.23

Genetic algorithm

ment Penalty One complement

100 100
47.11 27.52
35% 35%
4.59 3.23

Genetic algorithm

ment Penalty One complement

300 300
116.45 66.65
100% 85%
11 9.89

Genetic algorithm

ement Penalty One complement

500 500
230.58 99.60
100% 100%
11 11
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fitness function (left) and the ‘‘One complement” fitness function (right).
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the PI1 of Table 10 (where component C is failed, components B and
E are working, and the states of components A and D do not influ-
ence the system end state). If component B (or E) is failed the sys-
tem end state should remain ‘‘Failed”, if we assume coherence of
the system. On the contrary, due to the non-coherence of the ana-
lyzed system, if component E fails and the state of component B
does not change, the end state of the system is ‘‘Safe” (as shown
by system configuration 15 in Table 3) rather than ‘‘Failed”. There-
fore, the analysis of the identified PIs would suggest that, in order
to avoid system failure, component E could be forced to fail as a
counteracting measure to component C failure; this conclusion
could not be reached with a MCS analysis.

The results by MBDE and BDE with the different fitness func-
tions ‘‘Penalty” and ‘‘One Complement”, �̂xopt , are compared with
respect to three performance indicators that aim at quantifying
the goodness of the results, on a set of 20 trials of optimizations
to account for the inherent stochasticity of the search, viz:

- Cpu: cpu time (expressed in seconds) necessary to converge to
the solution �̂xopt .

- Success rate: percentage of trials for which the true optimum
�xopt is found.

- Accuracy (k): the larger k, the larger the accuracy of the solution
(Tvrdìk, 2006).

if �xopt–0k ¼

0 if j�̂xopt��xopt j
j�xopt j P 1

11 if j�̂xopt��xopt j
j�xopt j < 10�11

�log10
j�̂xopt��xopt j

j�xopt j

� �
otherwise

8>>>>><
>>>>>:

if �xopt ¼ 0 k ¼
0 ifj�̂xoptj P 1

11 ifj�̂xoptj < 10�11

�log10 j�̂xoptj
� �

otherwise

8>>><
>>>:

ð15Þ
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Fig. 11. Pmfs of the �̂xopt fitness values obtained with GA, using the ‘‘Penalty”

Table 22
List of the faulty minterms mi of the system.

Minterm Failure of the
outlet steam valve

Failure of the
safety relief valve

m1 1 0
m2 0 0
m3 1 0
m4 1 0
m5 0 0
m6 1 1
m7 1 1
m8 1 0
m9 1 1
5.1.1. MBDE results
We solve the set covering problem (SCP) defined in Section 4 on

the problem of Section 2 using an MBDE software developed by
LASAR (Laboratorio di Analisi di Segnale e Analisi di Rischio) at
the Politecnico di Milano (www.lasar.cesnef.polimi.it). Parameters
F (see Eq. (6)) and CR (see Eq. (7)) are optimized through a trial and
error procedure and to the values reported in Tab. Table 11, for the
MBDE with ‘‘Penalty” and ‘‘One complement” fitness functions.

We perform the simulation for different population sizes (NP)
(NP = 30, 100, 300 and 500). Results are reported in Tab. Tables
12–15, respectively. The only stopping criterion is the generation
number, MAXGEN, equal to 500.

MBDE shows a success rate of 100% with both fitness functions,
with very large accuracy (the solution found �̂xopt is always equal to
the true optimum solution �xopt and the relative error is always null)
even when the population is composed by only 30 chromosomes.
In general, the Cpu indicator shows that with the ‘‘Penalty” fitness
function the algorithm is faster than with the ‘‘One complement”
fitness function, mainly because of its more straightforward com-
putation. Obviously, the Cpu indicator performance worsens when
the number of chromosomes in the population becomes larger.

5.1.2. BDE and GA results
For comparison, we solve the same set covering problem (SCP)

using a BDE toolbox and a Genetic Algorithm (GA) toolbox taken
from Mathwork’s MATLAB� computational software. For both
techniques, we implement the same fitness functions as in MBDE,
use the same stopping criterion, repeat the simulations for the
same population sizes as in MBDE and calculate the same perfor-
mance indicators.

Parameters F and CR with ‘‘Penalty” and ‘‘One complement” fit-
ness function for BDE were set equal to the values reported in Tab.
Table 16, by trial and error.

For the GA toolbox, the settings of those parameters whose
meaning is the same as for DE are reported in Tab. Table 17, opti-
mized by a trial and error procedure; details on other parameters
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fitness function (left) and the ‘‘One complement” fitness function (right).

Level sensor- PID controller
communication interruption

Failure of the
PID controller

0 0
0 1
1 0
0 1
1 1
1 0
0 1
1 1
1 1

http://www.lasar.cesnef.polimi.it


Table 23
List of the implicants xi of the system.

Implicant Failure of the outlet
steam valve

Failure of the
safety relief valve

Level sensor- PID controller
communication interruption

Failure of the
PID controller

x1 1 0 0 0
x2 0 0 0 1
x3 1 0 1 0
x4 1 0 0 1
x5 0 0 1 1
x6 1 1 1 0
x7 1 1 0 1
x8 1 0 1 1
x9 1 1 1 1
x10 1 0 - 0
x11 1 0 0 -
x12 - 0 0 1
x13 0 0 - 1
x14 1 - 1 0
x15 1 0 1 -
x16 1 - 0 1
x17 1 0 - 1
x18 - 0 1 1
x19 1 1 1 -
x20 1 1 - 1
x21 1 - 1 1
x22 1 0 - -
x23 - 0 - 1
x24 1 - 1 -
x25 1 - - 1
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to be set for the use of GA is out of the scope of the comparison: the
interested reader may consult (Beasley and Chu, 1996) for further
details.

The results obtained are showed in Tab. Tables 18–21.
With respect to MBDE, BDE and GA need a large population to

obtain a good success rate (i.e., success rateP 85% if NP = 300 for
BDE and GA (Table 20), whereas NP = 30 for MBDE (Table 12));
indeed, the probability estimation operator embedded into the
MBDE (Eq. (12)) can provide superior global searching ability and
avoid the optimization getting trapped into a local optimum,
because the BDE mutation mechanism has a higher probability of
producing a bit of value 1 in the evolution process that restricts
the search diversity of the optimum solution (Wu and Tseng,
2010). On the other hand, in MBDE at least one bit of the trial indi-
vidual is inherited from the mutant individual, so that it is able to
avoid duplication individuals and effectively search within the
neighborhood (Wang et al., 2010).
Table 24
Values of the parameters F and CR used and performance indicators.

Fitness function Penalty One complement

NP 30 30
MAXGEN 500 500
F 0.8 0.8
CR 0.3 0.3
CPU [s] 1.11 22.61
Success rate 100% 100%
Accuracy 11 11

Table 25
Prime implicants set (component is failed ð�XÞ, working ðXÞ or it is

Prime Implicant Failure of the
outlet steam valve

Failure of the
safety relief val

PI1 �T U
PI2 - U
PI3 �T -
PI4 �V -
The success rate is better for BDE compared to GA when the
population considered is small (see Tables 18 and 19,
NP = 30,100, respectively), whereas GA becomes better as the pop-
ulation increases (see Tables 20 and 21, NP = 300,500, respec-
tively); Success rate for BDE and GA is comparable to that of
MBDE only with a population of NP = 500 (see Tables 20 and 12,
respectively). Concerning the Cpu performance, BDE is better than
GA (see 3rd row of Tables 18–21), whereas it is slightly worse
when compared to MBDE (see 3rd row of Tables 18–21, left, in
comparison with 3rd row Tables 12–15). Also in these cases, the
Cpu shows a superior performance with the ‘‘Penalty” fitness func-
tion compared with the ‘‘One complement”, and worsens when the
number of chromosomes in the population becomes larger (see 3rd
row, 2nd and 3rd column of Tables 18–21). These simulations
underline the fact that for a smaller population BDE has a higher
accuracy in terms of success rate and computational time, whereas
when the population is increased GA outperforms BDE in terms of
accuracy of the results. These differences are driven by the ability
of DE to explore efficiently the search space, even with a small pop-
ulation thanks to its particular mutation phase (Deng et al., 2009;
Wang et al., 2010).

5.1.3. Confidence on the results
Compared to MBDE results, BDE and GA do not converge to the

true solution �xopt for all the 20 trials (i.e., in Tables 12–15, even
with NP = 30, success rate for MBDE is equal to 100%, whereas
Tables 18–21 highlight that BDE and GA need NPP 300 for achiev-
ing success rate equal to 100%). In Fig. 10, the empirical probability
irrelevant (-) as contributor to the PI).

ve
Level sensor- PID controller
communication interruption

Failure of the
PID controller

- -
- �Z
�V -
- �Z
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mass functions (pmfs) of the �̂xopt fitness values obtained by BDE
(with population of 30, 100, 300 and 500 chromosomes) are plot-
ted; in Fig. 11 those of the GA results are shown. These Figures
allows comparing the confidence of the results provided by MBDE,
BDE and GA: since MBDE allow for success rate equal to 100% for
any NP, i.e., large confidence, its results correspond to a Dirac dis-
tribution with mass in �xopt (21 for ‘‘One complement” and 4074 for
‘‘Penalty”), whereas, due to their lower values of success rate, pmfs
of the �̂xopt obtained by BDE and GA are spread around �xopt , i.e., smal-
ler confidence.

In particular, Figs. 10(left) and 11(left) show the probability
mass functions of the �̂xopt fitness values when the algorithm is
implemented with the ‘‘Penalty” fitness function; the right proba-
bility mass functions correspond to when the algorithm is imple-
mented with the ‘‘One complement” fitness function. Moreover,
it can be seen the sensitivity of the results provided by BDE and
GA on the population size NP can be seen: the increase of the num-
ber of individuals in the population moves the mean fitness value
of the population towards the fitness value of �xopt , and the increase
of the number of individuals in the population and the use of the
‘‘Penalty” function gives rise to distributions that are shrinked on
the best fitness value, which makes the result more reliable.

In all cases (MBDE, BDE and GA), the optimization algorithm
may be challenged by the timing and order of the sequences of
component failure events, and the number of system components.
In the analytical case study, for example, the behavior of the sys-
tem must be accurately modeled in order to be able to handle
the set covering problem and, thus, to capture the influence of
the timing and order of the sequences of component failure events
on the determination of the PIs set, without reducing the DE
searching capability. On the other hand, as the number of system
components increases, the MBDE, BDE and GA methods can be
challenged: in this case, an efficient and accurate PIs set determi-
nation can be achieved by a hierarchical method of a multi-steps
DE optimization, as shown in Di Maio et al. Di Maio et al. (2014).
Finally, if the system shows a large number of implicants (i.e., acci-
dent sequences), it might become necessary to prioritize the PIs
search towards those accident sequences that are more meaningful
with respect to the system end state of interest, instead of focusing
on the whole implicants set, as done in Di Maio et al. Di Maio et al.
(2015), where authors present a visual interactive method for PI
identification rather than resorting to the solution of a SCP.

5.2. The UTSG case study

From the truth-table of Tab. Table 4, we can identify all the C = 9
minterms that make the system fail, listed in Tab. Table 22. These
are the 9 columns mj, j = 1, 2, . . ., 9, of the implicants chart A, that
have to be covered by the PIs. The rows xi, i.e. the complete set of
implicants of our system structure function, of the implicant chart
A are listed in Tab. Table 23.

We solve the SCP defined in Section 4 on the problem of Sec-
tion 3 using an MBDE software whose parameters F (see Eq. (6))
and CR (see Eq. (7)) are optimized through a trial and error proce-
dure and set to the values reported in Tab. Table 24, for the MBDE
with ‘‘Penalty” and ‘‘One complement” fitness functions. In both
cases, the application of the MBDE provides the list of PIs for the
UTSG, as listed in Table 25. Results are confirmed by Quine–
McCluskey algorithm.

Again, it is worth noting that the non-coherence of the system,
and the difference between MCSs and PIs can be pointed out by
analyzing the PIs in Table 25. Indeed, for example, PI1 of Table 25
shows that the outlet steam valve is failed (�T), the safety relief
valve is working (U) and the states of Level sensor-PID controller
communication and of the PID controller components are irrele-
vant to the end state of the steam generator. However, due to
the non-coherence of the system, as soon as the steam valve fails,
the safety relief valve could be forced to fail in order to have a safe
end state of the steam generator (as shown by system configura-
tion 16 in Table 4).
6. Conclusions

The reliability analysis of dynamic systems calls for the comple-
mentation of traditional PRA methods by dynamic reliability meth-
ods. For such systems, the sequence and timing of the events in a
scenario is relevant and can give rise to non-coherent structure
functions, in which failed and working states of the same compo-
nents can lead the system to failure. Then, traditional minimal
cut set analysis cannot be applied and prime implicants identifica-
tion becomes the only way.

In this paper, the problem of prime implicants identification has
been treated as an optimization problem aimed at finding the min-
imum combination of implicants that can guarantee the best cov-
erage of all the minterms which fail the system. For this, we have
developed a new technique to find PIs of a non-coherent structure
function resorting to MBDE. The results have been compared with
those obtained by BDE and GA.

It has been shown that MBDE has superior performances in
terms of computational time and accuracy of the results (i.e., suc-
cess rate for the convergence to the true solution) compared to BDE
and GA, and performs very well even with a small population.
Thanks to its more straightforward implementation, the ‘‘One com-
plement” fitness function requires less time compared to the
‘‘Penalty” fitness function and gives a more robust PI identification,
as verified by the success rate of the search results provided by BDE
and GA. The ability of the method in PI identification has been con-
firmed with respect to a dynamic Steam Generator (SG) of a
Nuclear Power Plant (NPP).
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