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A B S T R A C T

Fault diagnostic methods are challenged by their applications to industrial components
operating in evolving environments of their working conditions. To overcome this problem,
we propose a Systematic Semi-Supervised Self-adaptable Fault Diagnostics approach (4SFD),
which allows dynamically selecting the features to be used for performing the diagnosis,
detecting the necessity of updating the diagnostic model and automatically updating it. Within
the proposed approach, the main novelty is the semi-supervised feature selection method
developed to dynamically select the set of features in response to the evolving environment. An
artificial Gaussian and a real world bearing dataset are considered for the verification of the
proposed approach.

1. Introduction

In industry, components and equipment operate in evolving environments characterized by working conditions that change often
in an unpredictable way. A possible approach to fault diagnostics in variable operating conditions consists in training a dedicated
diagnostic model for each possible set of operating conditions. Then, the model trained using the operating conditions most similar
to that of the test pattern is used for the diagnosis [1,2]. In the case in which the information on the operating condition experienced
by components and equipment is not available, the use of ensemble of diagnostic models has been proposed [3–6]. In practice,
different diagnostic models are trained, considering diagnostic data collected at different operating conditions, the test pattern is
classified by all the developed models and the individual model classifications are properly aggregated by using a majority voting
approach in order to provide the final classification of the test pattern.

In case of evolving environment, one of the major challenges is that the training data available to build the diagnostic model
typically do not include all possible operating and environmental conditions that the component will experience during its life. As a
result, if the diagnostic model is used in working conditions different from those considered during the model training, its
performance may be unsatisfactory [7,8]. Furthermore, in many industrial applications, collecting data for training a diagnostic
model is a difficult, time consuming and very expensive task, which requires the collection and analysis of sensor data for many years
of operation. In other industrial sectors characterized by high value and safety related components, the only data available to train a
diagnostic model are acquired by performing laboratory tests in operating conditions very different from those that will be
experienced by the components during their lives.

Some preliminary related works of this research has been done in [9], in which we pointed out the basic approach of semi-
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supervised feature selection. “This paper completes the work in [9] by developing a systematic framework which includes an
algorithm for concept drift detection and the use of COMPOSE method for an efficient classifier updating. Furthermore, with respect
to the problem of feature selection in evolving environments, the method proposed in [9] is extended by 1) adding a new indicator to
the two already considered in [9] to obtain the distinguishability of the data in the new environment and 2) introducing the sparse
Borda Count method for improving the calculation efficiency. With respect to the case studies, this paper considers two datasets
which are not used in [9]: 1) a new designed synthetic dataset and 2) an open accessed real world dataset (Case Western Reserve
University bearing dataset).”

In this paper, the objective is to develop a systematic framework for performing fault diagnostics in evolving environments, given
that the training set is not representative for all the operating and environmental conditions that the component will experience
during its life. The diagnostic approach, which will be referred to as “Systematic Semi-Supervised Self-adaptable Fault Diagnostic
(4SFD)”, is able to deal with the evolving environments in all phases of development of the diagnostic model:

1) selection of the feature set to be used by the diagnostic model;
2) development of the diagnostic model;
3) detection of the occurrence of a concept drift, i.e. an unforeseen modification of the statistical properties of the data which

indicates the occurrence of evolving environments [10];
4) update of the diagnostic model, in case of concept drift detection; it can include a modification of the feature set (step 1) above)

and/or a modification of the diagnostic model (step 2) above).

With respect to step 1), feature extraction methods are typically applied to raw signal measurements [11]. For example, statistical
indicators, such as mean, kurtosis and skewness [12–14], wavelet transforms [15,16] and entropy [17] are commonly extracted from
vibrational signals.

Although the number of features that can be potentially extracted from a raw signal using the above methods is very large, a lot of
them are not useful in fault diagnostics and can degrade the performance of the classification model [18–26]. This is due to the fact
that i) irrelevant, non-informative features result in a classification model which is not robust, ii) when the classification model
handles many features, a large number of observation data is required to properly span the high-dimensional feature space for
accurate multivariable interpolation iii) many input features unnecessarily increase the complexity of the classification model.
Furthermore, studies have shown that removing highly correlated features allows increasing the classification performance [25].
Thus, a feature selection algorithm is typically used to select the most representative features, which allows improving the
performance of diagnostic model [14], and, at the same time, remarkably reducing its computational burden [16].

The objective of feature selection methods is to identify a subset of the available features such that the diagnostic model provides
the most satisfactory performance. A feature selection algorithm is based on the definition of a procedure for searching a feature set
in the space of all possible combinations of features. Then, the expected diagnostic performance of the proposed feature set is
evaluated. In filter approaches, the evaluation considers statistical properties of the features and is independent from the diagnostic
algorithm. The wrapper approach, on the other hand, uses the diagnostic algorithm as a part of the evaluation: the feature set
performance is the classification accuracy obtained by training the classifier with the selected features [27,28]. Filter approaches are
computationally simpler, faster, and easier to implement in high-dimensional feature sets, but they neglect the dependencies
between feature sets and classifier. In many cases, this causes worse performance than wrapper approaches, which, on the contrary,
use the classification accuracy as selection criterion. Notice, however, that the optimal feature set selected by a wrapper approach
strongly depends on the classification algorithm, i.e. the selected feature set may not be optimal for another classification algorithm.
In addition, the computational burden of wrapper approaches is significantly higher when dealing with a large number of features
[29,30].

Both filter and wrapper feature selection approaches are typically applied off-line (before the development of the final diagnostic
system), using labelled patterns describing the system behaviour in a static environment. Furthermore, once selected, the feature set
is never changed. However, the capability of a feature to provide useful diagnostic information may depend on the working and
environmental conditions experienced by the component. For example, with reference to a problem of fault diagnostics in bearings,
the amplitude of the vibration is sensible to the bearing degradation and allows distinguishing between normal and faulty conditions
when the torque applied to the bearing is large, whereas the same feature is not useful in case of low torque. Contrarily, the frequency
of the vibration is more effective than the vibration amplitude, for fault diagnostics in the case of low torque. For this reason, the
solution that we investigate in this work is to dynamically modify the feature set in order to consider the presence of an evolving
environment. In this context, the information available for feature selection includes two different sources:

a) labelled data containing signal values and corresponding fault classes. They can be historical data or data collected in laboratory
tests. They typically do not cover all the possible working conditions that can be experienced by the component during operation;

b) unlabelled data containing only the signal values. They are typically collected from an evolving environment and they possibly
refer to working conditions different from those of the labelled data. The unavailability of the labels in fault diagnostic problems
is due to the fact that the identification of the fault causing the malfunctioning (label) is typically very expensive and time
consuming.

Given the available information, the main novelty of the proposed method is the development of a semi-supervised feature
selection method. Its main idea is to evaluate the candidate feature set by considering three indicators: 1) the classification accuracy
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and precision on the available labelled data of a Support Vector Machine (SVM) classifier; 2) the confidence of a SVM classifier
trained using the available labelled data and tested on unlabelled data collected in an evolving environment; 3) the silhouette index
of the unlabelled data classes provided by the SVM. Finally, a sparse Borda Count method (a modified version of the original Borda
Count method [31]) is used to perform a multi-objective ranking of all the feature sets and, thus, to identify the one with the
expected most satisfactory trade-off among the three indicators.

With respect to the development of the initial diagnostic model, we consider the available labelled data to train a SVM classifier.
SVM has been chosen since it is a mature empirical method for developing a classifier and its satisfactory classification performance
in fault diagnostic applications has been verified [32–34].

The detection of the occurrence of a concept drift which causes a degradation of the diagnostic model accuracy is performed by
using an α shape reconstruction technique [35] already introduced by the authors in [36]. Here the technique is modified in order to
allow distinguishing gradual modifications of the working conditions only requiring an updating of the classifier from abrupt
modifications, such as sudden large changes of operational or environmental conditions, requiring performing a new feature
selection. In the former case, the classifier is updated using an algorithm inspired by the COMPacted Object Sample Extraction
(COMPOSE) algorithm [37].

Two case studies are considered to verify the effectiveness of the proposed 4SFD method: 1) an artificial Gaussian dataset with
simulated concept drifts and 2) a laboratory bearing dataset taken from the Case Western Reserve University characterized by nine
different fault types and four different working loads.

Since the technical details of the α shape based drift detection and COMPOSE algorithm have been introduced in [38], this paper
will focus on the overall scheme of the 4SFD method (Section 2), and the semi-supervised feature selection (Section 3). Section 4
shows the results of applying 4SFD to the two different case studies and Section 5 gives the conclusion of the whole paper.

2. 4SFD Framework

The 4SFD method starts with an initial off-line feature selection and the development of a classifier, f. Both the feature selection
and the development of the classification model use the available labelled data (T X L={ , }T T ). The classification model considered in
this work is a SVM, based on the pairwise coupling [39], which provides in output the probabilities, pjk , that the j-th test pattern
belongs to class k, k=1,…,Ncl. The initial feature selection is performed by a wrapper supervised approach for the maximization of the
classification accuracy.

In operation, when the signal measurements arrive, the selected features are extracted and sent to the SVM for classification and
to the concept drift detector. This latter module operates online is to detect a concept drift, and, interpret if it is a gradual or abrupt.
In the case of no drift detection, the classes provided by the SVM are accepted; on the contrary, if a drift is detected, the classification
model is updated. For the drift detected as gradual, the COMPOSE algorithm [37] is applied to identify a proper set of data to train
the new SVM classifier; if the drift is abrupt, a new selection of the features must be performed. The flowchart of the 4SFD is shown
in Fig. 1.

Sections 3.1 and 3.2 will illustrate the concept drift detector and the algorithm used to update the classifier training set. which are
modifications of already presented methods in [37,38]. In Section 4, the novel feature selection method is illustrated.

2.1. The concept drift detector

The detection of a concept drift is based on the use of the α shape surface reconstruction method [35], which allows computing
the volume of a surface enveloping a set of data. The basic idea behind the concept drift detection is that test data collected after the
occurrence of a concept drift are expected to be outside the α shape surface enveloping the training set [38]. Thus, the volume, V ́, of
the α shape surface enveloping the union of the training and test patterns is larger than the volume, V , enveloping only the training
patterns. The detection is based on the definition of two thresholds Thn and Thg, for the ratio R between the volumes V′ and V :

R V
V

= ′
(1)

If R is lower than Thn, no drift is detected since the test patterns are close to the training patterns; if R is between Thn and Thg, a
gradual drift is detected, being the test patterns close to the train patterns, but outside the volume enveloping the training patterns,
whereas, if R is greater than Thg, the occurrence of an abrupt concept drift causing major modifications of the feature values is
detected. The threshold parameters, Thn and Thg, are set considering the characteristics of the specific case study (in our case, the
values are 1.05 and 1.2, respectively). More details on the α shape surface reconstruction method and its use for concept drift
detection can be found in [37,38].

2.2. Updating of the classifier training set

According to the scheme of Fig. 1, once a gradual concept drift has been detected, the classification model is updated to take into
account the effects of the evolving environment on the signal measurements. The classifier updating requires the construction of a
new training set containing information extracted from the new working conditions. In this work, the construction of the new
training set is performed with a modification of the original COMPOSE algorithm proposed in [37]. The basic assumption behind the
algorithm is that the core region of the training data overlaps, at least partially, with a part of the drifted data. The key idea of the
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method is to aggregate the labelled training data with the unlabelled new data and to perform a shrinkage of the obtained dataset in
order to identify a core region representing the trend of the concept drift. More details on the method can be found in Appendix B
and [38].

3. Semi-supervised feature selection method

In this Section, we address the problem of selecting the feature set to be used for fault diagnostics in an evolving environment.
The algorithm is applied each time an abrupt drift is detected. The set of all the NFS features extracted from the raw signal
measurements is indicated by TFS F F F={ , ,…, }N1 2 FS , and the candidate feature sets, FSi, FS ⊂TFSi , are the 2 −1NFS possible
combinations of the features. The reader interested in more advanced techniques for exploring all the possible feature sets, without
considering exhaustive searches, may refer to [40,41].

In general, the inputs of diagnostic model are features values, X , extracted from the measured signals, and the output is the class
label of the fault, L. The information available to develop the diagnostic model is:

• a set of labelled data, T X L={ , }T T , which contains both the feature values, XT and the corresponding fault labels, LT . XT is a N N*T FS
dimensional matrix, with NT indicating the total number of patterns in XT and NFS the number of features, whereas the pattern
labels are indicated by the N N*T cl dimensional matrix LT :

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

⎧⎨⎩L

h h
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h j k j N k N=

…
⋮

⋮
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, = 1, 2, ... , , = 1, 2, ... ,T

N
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N N N

jk T cl

11 1

1

1

cl

T T cl

cl

with Ncl indicating the total number of classes in the training set.

• a set of unlabelled data, C X={ }C , which is a N N*C FS dimensional matrix containing only the feature values, XC; with NC indicating
the total number of patterns in XC . These data are collected in batches and describe the component behaviour in evolving
environments.

Usually, the labelled training data T is given in the known working condition, and the unlabelled data C are collected during the

Fig. 1. Flowchart of the 4SFD.
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online phase, after the detection of the concept drift. The problem is addressed by developing a novel feature selection approach
where a SVM classifier, f, is built based on T and the proposed feature set. Then, its expected performance in an evolving
environment is evaluated. To this aim, since the classification accuracy in the new environment cannot be computed due to the
unavailability of labelled data, we have considered three metrics (Section 4.1) and we have aggregated them into one performance
indicator by using a Sparse Borda Count algorithm (Section 4.2).

3.1. Indicator of the expected performance of a feature set in a new environment

In order to assess the performance of a feature set in a new environment, a classifier whose inputs are the selected features is
trained using a part of the available labelled data. Then, the following three metrics are computed:

• Indicator A: accuracy in the classification of labelled data collected previously to the concept drift occurrence and not used to build
the classification model;

• Indicator B: confidence in the classification of the unlabelled data collected in the new environment (after the concept drift
occurrence);

• Indicator C: compactness and separation of the classes assigned to the unlabelled data collected in the new environment (after the
concept drift occurrence).

Indicator A is the performance indicator traditionally used in wrapper approaches to quantify the capability of the feature set of
correctly classifying test data in stationary working conditions. It is considered since, within the COMPOSE scheme, the classifier is
used to label data collected from the evolving environment, and, thus, errors in the classification of the labelled data would
dramatically propagate and result in the retraining of classifiers with wrongly labelled data. Notice, however, that a satisfactory value
of indicator A does not automatically guarantee a high accuracy of the diagnostic model in an evolving environment, i.e. in the
classification of unlabelled data, XC, collected after the occurrence of a concept drift. For this reason, indicators B and C are
introduced to quantify the performance of the feature set in a new environment. Given the unavailability of the true labels of the
patterns in XC , indicators B and C focus on the classifications provided by the SVM classifier, being indicator B based on the idea that
a good feature set should provide confident classifications of the data and indicator C on the idea that the classes identified in
XCshould from compact and well separated clusters.

3.1.1. Indicator A: accuracy on the labelled data
The idea is to quantify the accuracy of the classification model built using as input the feature set of interest and taking into

account only the labelled data, T X L={ , }T T , collected before the occurrence of a concept drift. A classification model is accurate if it
correctly assigns the true class to test patterns not used for model training. Being the outcome of the SVM classifier the probabilities,
pjk that the j-th test pattern belongs to the k-th class, a measure of the accuracy in the classification of the test set is provided by:

IA
h p

N N
= 1−

∑ ∑ −

⋅
j
N

k
N

jk jk

cl te

=1 =1
te cl

(2)

with Nte indicating the number of test patterns.
In order to obtain a robust evaluation of the accuracy, even in the case in which few labelled data are available, a Cross Validation

(CV) procedure is applied. In practice, we repeat 10 times the random partition of the labelled dataset T X L={ , }T T into two subsets
formed by the same number of patterns, and we use the first one to train the SVM classifier and the second one to compute its
accuracy. Eventually, the feature set accuracy is the average of the accuracy values obtained in the 10 runs:

IA
IA

=
∑

10
i i=1
10

(3)

The value of IA is between 0 (all patterns misclassified) and 1 (all patterns correctly classified).

3.1.2. Indicator B: confidence of unlabelled coming set
This metric measures how much the classifier built using the labelled data T collected before the concept drift occurrence is able

to provide confident classifications of the unlabelled data C in the new environment. According to [42,43], the confidence of the
classifier can be evaluated by considering the entropy:

∑ ∑E p p= − ⋅ log
j

N

k

N

jk jk
=1 =1

C cl

(4)

Entropy is a measure of the information content in the matrix pjk: the smaller the entropy, the more confident the classification.
However, since in fault diagnostic applications the major concern of the decision maker is to have a class clearly preferable from the
others, the use of the entropy measure can have limitations. Let us consider, for example, a case of two classifiers which assign the
same test patterns to classes 1,2 and 3 with the following probabilities: O =[0. 6, 0. 2, 0. 2]1 and O =[0. 6, 0. 39, 0. 01]2 .
According to the entropy measure, the classification O2 would be evaluated as more confident than O1, being entropy
E E=0. 72< =0.952 1 . However, from the point of view of the decision maker, even if in both cases the probability of class 1 is 0.6,
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he/she is more confident that the test pattern belongs to class 1 considering the classification O1. This is due to fact that the second
most probable class has a lower probability value in O1 than that in O2. In order to overtake this limitation of the entropy metric, in
this work we propose a new confidence metric based on the evaluation of the difference between the probabilities of the class with the
maximum probability and that with the second maximum probability. In particular, indicator B is defined by:

∑IB λ μ= −
j

N

j j
=1

C

(5)

where λ p= max ( )j
k N

jk
=1: C

, and μj is the second largest value among the pjk values in row j. The larger IB, more confident is the classifier.

3.1.3. Indicator C: Silhouette index of the unlabelled data
Similarly to indicator B, indicator C considers the classification of the unlabelled data provided by the SVM classifier. Its objective

is to evaluate whether the fault classes are easy to distinguish in the new environment. The conjecture is that if the classes assigned
by the SVM classifier to the unlabelled test patterns are compact and well separated, then the classification accuracy is expected to be
satisfactory. According to [44], compactness and separability of the obtained classification is evaluated considering the average
silhouette index over all the test patterns:

∑IC
N

b a
a b

= 1 ( − )
max( , )C j

N
j j

j j=1

C

(6)

where aj is the average Euclidean distance between the j-th pattern and the other patterns of the same class, and bj is the distance
between the j-th test pattern and the nearest pattern of another class, averaged over all the classes. The IC value ranges from −1 to 1:
the larger the IC, the more separated and compact are the classes.

3.2. Aggregation of the three indicators

Once the three indicators have been computed for all the feature sets of interest, it is necessary to decide which is the feature set
to be used for fault diagnostics in the new environment. This is a group decision-making process which involves aggregating the
information from three multiple sources [45,46]. The problem is here addressed using a modified version of the Borda count
method, which has been successfully applied in very different application fields [47,48]. Borda count is a single-winner vote method
which ranks candidates according to the sum of ballots from all the voters. A drawback of the algorithm is that the final rank depends
on irrelevant candidates, i.e. removing a candidate can potentially modify the ranking of the other candidates [31]. In order to
overtake this limitation of the traditional Borda count method, we apply its modification proposed in [31], which focuses on the best
and worst candidates. In practice, the modification consists in assigning ballots only to the feature sets in the first and last quartiles
of the rankings originated by the three indicators. The modified Borda count procedure is based on the following steps:

1) Individual ranking: rank all the candidate feature sets with respect to each indicator;
2) Filtering: filter the candidate feature sets by considering for each indicator only the feature sets in the upper and lower

quartiles;
3) Voting: a score Fupper

i is assigned to each candidate feature set in the upper quartile of the distribution of the i-th indicator,
i=1,2,3. Assuming that there are x candidate feature sets in the upper (lower )quartile, the mark 1 is assigned to the feature set in
the upper quartile with the smallest indicator value, the mark 2 to the second-smallest, … the mark x to the feature set with the
largest indicator value. Similarly, a score Flower

i is assigned to all the feature sets in the lower quartile of the distribution of the i-th
indicator: x to the feature set with the smallest indicator value, x-1 to the second smallest, 1 to the feature set with the largest
indicator value in the lower quartile. The final Fupper (Flower) value associated to a feature set is the sum of all the scores Fupper

i

(Flower
i ) on all the indicators IA, IB and IC.

4) Choosing: Calculate the final score Ffinal of each candidate feature set based on Eq. (7), and select the candidate feature set with
largest Ffinal:

F F F= −final upper lower (7)

Once the best performing feature set is identified by the modified Borda count algorithm, the COMPOSE algorithm is applied to
identify dataset for training the new SVM classifier based on the selected features; this will be used for fault diagnostics in the new
environment, until a new concept drift is detected (Fig. 2).

4. Case studies

In this Section, we test the performance of the 4SFD method considering one case study based on synthetic data and one
diagnostic application concerning the classification of bearing defects in an evolving environment. The classification accuracy
achieved by the 4SFD method is compared with that provided by:
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Method 1): a SVM classifier built considering the labelled data and never changed during the tests; the input features are selected
by applying a wrapper feature selection algorithm to the labelled data.
Method 2): the COMPOSE-based method described in [38]; the input features are selected by applying a wrapper feature selection
algorithm to the labelled data and never changed during the tests.
Method 3): a SVM built using all the available features.
In all the three cases, the SVM classifiers are built using the “LIBSVM” source code [49].

4.1. Case study based on synthetic data

This case study mimics the occurrence of failures in an evolving environment characterized by periodic modifications of the
operating conditions which are typically encountered by several components and industrial systems, such as the variation of the
electricity production in an energy production plant [50], the variation of load experienced by automotive bearings [51] and, the
variation of the external conditions experienced by a structure due to seasonal effects. The case study is built on that proposed in [37]
taking into account the fact that the sensibility of the signals to the faults may change depending to the experienced operational
conditions (e.g. vibration frequency is more useful for bearing fault diagnostics at low torque than at large torque).

In this case study, a 9-dimensional, 3-classes labelled dataset, T X L={ , }T T , is artificially generated. We assume to have this
dataset available at time t=0. Features 1–6 values are sampled from a different 6-dimensional Gaussian distribution for each class
(Table 1), whereas Features 7–9 values are sampled from a Gaussian distribution with zero mean and unitary standard deviation
independently from the pattern class. These labelled data are used for the initial feature selection and the SVM classifier training.
Then, the presence of an evolving environment is simulated by assuming that batches of data become progressively available. In
particular, every step of arbitrary time unit a batch formed by 30 patterns of each class is collected. Similar to the patterns in dataset
T, Features 1–6 values are sampled from 6-dimensional Gaussian distributions, whose mean μ are changing with time according to
the laws reported in Table 2, being the intensity of the concept drift controlled by parameters s s s, ,1 2 3 and z z z, ,1 2 3. Features 7-9 are
always sampled from the same distributions used for T and are independent from the pattern classes. All the patterns provided to the
diagnostic models are unlabelled except those of T. The overall dataset simulation is based on the repetition of 5 cycles, with each

Fig. 2. Sketch of the modified Borda count procedure.

Table 1
Mean and standard deviation values used for the generation of the initial dataset T .

Training dataset

F1 F2 F3 F4 F5 F6

Class 1 N μ( 1 ,1)0 N μ( 1 ,1)0 N μ( 1 ,1)0 N μ( 2 ,1)0 N μ( 2 ,1)0 N μ( 2 ,1)0

Class 2 N μ( 3 ,1)0 N μ( 3 ,1)0 N μ( 3 ,1)0 N μ( 4 ,1)0 N μ( 4 ,1)0 N μ( 4 ,1)0

Class 3 N μ( 5 ,1)0 N μ( 5 ,1)0 N μ( 5 ,1)0 N μ( 6 ,1)0 N μ( 6 ,1)0 N μ( 6 ,1)0

Control parameters

parameter μ10 μ20 μ30 μ40 μ50 μ60
value 1 5 5 5 9 5
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cycle formed by the sampling of 20 batches of data.
Fig. 3 shows the distributions of the three-class data in the batches sampled at time 1, 5, 9, 15. Notice that features 7–9, being

random noises, do not provide useful information for the data classification. At time t=1, the three classes are well separated and
compact when observed in the subspace generated by features 1,2 and 3, whereas they are mixed and confused when observed in the
subspace generated by features 4, 5 and 6. Then, the separation of the classes in the subspace of features 1, 2 and 3 gradually
decreases until time t=9, whereas it increases in the subspace of features 4, 5 and 6. Contrarily, from time t=11 to time t=20 the
Gaussian distributions gradually become more separated when observed in the subspace of features 1, 2 and 3 and less separated in
the subspace of features 4, 5 and 6. Finally, at time t=20 the classes are sampled from the same initial distribution and the sampling
cycle is repeated.

An initial supervised wrapper feature selection is performed using the labelled data available at time t=0. The objective is to
identify the feature set which provides the best classification accuracy, and, in order to reduce the computational burden of the
feature selection task, we have considered only feature sets formed by three features. In particular, as expected, an exhaustive search
among all the 84 possible three-dimensional feature sets has selected the feature set formed by features 1, 2, and 3 as the one with
the associated most satisfactory accuracy. This feature set has been used as initial feature set for the 4SFD method and as fixed
feature set for the SVM of method 1) and the COMPOSE algorithm of method 2). In order to verify the effectiveness of the proposed
feature selection approach, we also compare the classification accuracy by using all the 9 features (without the feature selection) as
the input of SVM. Fig. 4 shows the classification accuracy provided by the three methods. Notice that:

a) the SVM classifier of method 1) provides satisfactory classification performances only when the distributions used to sample the
data are similar to those used to train the classifier at time t=0, i.e. around times 1, 20, 40, 60, 80, 100. On the contrary, as
expected, the performance is quite unsatisfactory at time 10, 30, 50, 70, 90, when the classes are very confused in the subspace of
features 1, 2 and 3.

b) the SVM classifier built using all the 9 features performs slightly better than that obtained using only features 1, 2 and 3, but it
still underperforms at times t=10, 30, 50, 70 and 90. The main reason is that the patterns of the different classes are partially
overlapped with respect to features 4, 5 and 6 in the initial training set. Thus, the SVM classifier cannot provide a satisfactory
classification performance when the patterns of the different classes become well separated with respect to features 4, 5 and 6.

Table 2
Parameters used for the simulation of the presence of an evolving environment.

Testing dataset

tϵ[1, 10]

Class F1 F2 F3 F4 F5 F6

C1 N μ s t( 1 + , 1)t−1 1 N μ s t( 1 + , 1)t−1 1 N μ s t( 1 + , 1)t−1 1 N μ z t( 2 + , 1)t−1 1 N μ z t( 2 + , 1)t−1 1 N μ z t( 2 + , 1)t−1 1

C2 N μ s t( 3 + , 1)t−1 2 N μ s t( 3 + , 1)t−1 2 N μ s t( 3 + , 1)t−1 2 N μ z t( 4 + , 1)t−1 2 N μ z t( 4 + , 1)t−1 2 N μ z t( 4 + , 1)t−1 2

C3 N μ s t( 5 + , 1)t−1 3 N μ s t( 5 + , 1)t−1 3 N μ s t( 5 + , 1)t−1 3 N μ z t( 6 + , 1)t−1 3 N μ z t(( 6 + , 1)t−1 3 N μ z t(( 6 + , 1)t−1 3

tϵ[11, 20]

C1 N μ s t( 1 − , 1)t−1 1 N μ s t( 1 − , 1)t−1 1 N μ s t( 1 − , 1)t−1 1 N μ z t( 2 − , 1)t−1 1 N μ z t( 2 − , 1)t−1 1 N μ z t( 2 − , 1)t−1 1

C2 N μ s t( 3 − , 1)t−1 2 N μ s t( 3 − , 1)t−1 2 N μ s t( 3 − , 1)t−1 2 N μ z t( 4 − , 1)t−1 2 N μ z t( 4 − , 1)t−1 2 N μ z t( 4 − , 1)t−1 2

C3 N μ s t( 5 − , 1)t−1 3 N μ s t( 5 − , 1)t−1 3 N μ s t( 5 − , 1)t−1 3 N μ z t( 6 − , 1)t−1 3 N μ z t( 6 − , 1)t−1 3 N μ z t( 6 − , 1)t−1 3

tϵ[21, 30]

C1 N μ s t( 1 + , 1)t−1 1 N μ s t( 1 + , 1)t−1 1 N μ s t( 1 + , 1)t−1 1 N μ z t( 2 + , 1)t−1 1 N μ z t( 2 + , 1)t−1 1 N μ z t( 2 + , 1)t−1 1

C2 N μ s t( 3 + , 1)t−1 2 N μ s t( 3 + , 1)t−1 2 N μ s t( 3 + , 1)t−1 2 N μ z t( 4 + , 1)t−1 2 N μ z t( 4 + , 1)t−1 2 N μ z t( 4 + , 1)t−1 2

C3 N μ s t( 5 + , 1)t−1 3 N μ s t( 5 + , 1)t−1 3 N μ s t( 5 + , 1)t−1 3 N μ z t( 6 + , 1)t−1 3 N μ z t(( 6 + , 1)t−1 3 N μ z t(( 6 + , 1)t−1 3

tϵ[31, 40]

C1 N μ s t( 1 − , 1)t−1 1 N μ s t( 1 − , 1)t−1 1 N μ z t( 2 − , 1)t−1 1 N μ z t( 2 − , 1)t−1 1 N μ z t( 2 − , 1)t−1 1 N μ z t( 2 − , 1)t−1 1

C2 N μ s t( 3 − , 1)t−1 2 N μ s t( 3 − , 1)t−1 2 N μ z t( 4 − , 1)t−1 2 N μ z t( 4 − , 1)t−1 2 N μ z t( 4 − , 1)t−1 2 N μ z t( 4 − , 1)t−1 2

C3 N μ s t( 5 − , 1)t−1 3 N μ s t( 5 − , 1)t−1 3 N μ z t( 6 − , 1)t−1 3 N μ z t( 6 − , 1)t−1 3 N μ z t( 6 − , 1)t−1 3 N μ z t( 6 − , 1)t−1 3
… repeat until t=100

parameter s1 s2 s3 z1 z2 z3
value 0.26 0.25 0.28 0.31 0.33 0.32
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c) the COMPOSE algorithm of method 2) is slightly better performing than the SVM classifier when data drift, given its ability of
learning data modifications. On the other hand, the COMPOSE performance is not able to fully recover, as the SVM does, at time
t=20, 40, 60, 80 and 100 when data are sampled from the same distributions used at time t=0. This is due to the error
accumulation caused by the addition of training patterns collected from the evolving environment, whose true class is not known.
Furthermore, given the inadequacy of features 1, 2 and 3 of distinguishing the classes at times around t=10, 30, 50, 70 and 90, its
overall performance is unsatisfactory.

d) the accuracy of the 4SFD method is more satisfactory than that provided by methods 1, 2 and 3. The main reason is that the 4SFD

Fig. 3. Three dimensional projections of the data batches in different feature subspaces.

Fig. 4. Percentage of patterns correctly classified by the three different methods. The circles indicate the time at which an abrupt concept drift is identified and the
new feature set, formed by the features reported on the right side, is selected and used.
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method spends an additional effort with respect to the pure SVM algorithm to update the input feature set when the data become
not enough separated and distinguishable in the old feature set. This occurs for the first time at time t=6 when the concept drift
detector identifies an abrupt concept drift. Thus, a new feature set formed by features 4, 5 and 6 is selected using the three
performance indicators and the Borda count procedure of Section 4.2 (Table 4). Notice that the selected feature set is
characterized by the largest values of all the three performance indicators and, thus, is selected by the Borda count method. The
column “ground truth accuracy” in Table 6 provides the percentage of patterns which would be correctly classified by a classifier
trained with labelled patterns sampled from the same distribution originating the test patterns. The purpose here is to confirm
that the selected feature set is able to provide the most satisfactory performance among all the possible three-dimensional feature
sets.

e) Table 3 shows the overall computational efforts associated to the use of these four methods. We can conclude that the price to be
paid for improving the accuracy by using the 4SFD method is the computational cost necessary for the application of the feature
selection procedure based on an exhaustive search. These additional computation efforts are justified when the evolving
environment causes a modification of the characteristics of the feature sets, which remarkably decreases the performances of the
other methods. Notice, however, that in the case in which the evolving environment is causing only small modification of the
data, the 4SFD approach will not apply the feature selection algorithm and, thus, its computational efforts would be similar to
those of the COMPOSE method (Table 4).

Fig. 4 shows that a concept drift is detected two times in each cycle: when features 4, 5, and 6 become more efficient than features
1, 2, 3 (times t=6, 27, 47, 67, 89) and when features 1, 2 and 3 return to be the most efficient (times t=15, 35, 56, 75, 96). The
selected feature sets always contain at least two of the three most efficient features and are able to guarantee very high performances.

4.2. Bearing dataset: case Western Reserve University bearing dataset

This case study is designed based on the data reported in the Case Western Reserve University bearing dataset [52]. The
experimental dataset contains 720 patterns referring to 9 different faults and 4 different working loads, as shown in Table 5.

For each fault, 80 patterns are available, 20 for each working load. Each pattern is formed by the vibrational raw measurement
collected by three accelerometers in a time window of 1.4 s at a frequency of 12,000 Hz. Among all the possible features that can be
extracted from the raw measurements, we have preselected the 15 features reported in Appendix A, by applying an unsupervised
spectral feature selection method [53]. The obtained dataset, formed by 720 labelled 15-dimensional patterns, has been used to
design 4 different experiments in order to test the performance of 4SFD and of the two reference methods. In all the experiments, the
presence of an evolving environment is simulated by assuming that data become progressively available in batches and each batch
contains patterns collected at a different load from the previous one. In all the experiments, a labelled dataset formed by 180
patterns at a given load is initially available (dataset T), whereas 6 batches formed by 90 unlabelled patterns become progressively
available. The four experiments differ in the sequence with which the loads become available (Table 6).

Table 3
Computation efforts associated to the different tested methods.

Method Computation time

4SFD 18.62 s
Using all the 9 features with SVM 0.96 s
Using feature set[1 2 3] with SVM 0.91 s
Using feature set[1 2 3] with COMPOSE 5.17 s

Computation platform: Laptop with CPU i7-4600M, RAM 8 GB, MATLAB version 2016a.

Table 4
Borda count Table at time step 6.

feature set IA IB IC IA rank IB rank IC rank Ffinal ground truth accuracy ground truth accuracy rank

4 5 6 0.928 135.617 0.714 1 1 1 252 98.000 1
1 4 5 0.908 131.432 0.671 15 12 10 184 98.000 1
3 5 6 0.910 130.986 0.682 12 13 7 194 98.000 1
1 4 6 0.917 131.438 0.694 8 11 4 212 97.333 4
2 5 6 0.913 134.342 0.702 11 3 3 224 97.333 4
1 3 6 0.920 132.769 0.652 4 9 13 206 96.667 6
2 3 6 0.900 126.485 0.641 21 26 18 128 96.667 6
2 4 5 0.917 130.218 0.669 9 15 11 188 96.667 6
2 4 6 0.919 133.972 0.691 6 5 5 226 96.667 6
3 4 5 0.926 134.256 0.682 2 4 8 230 96.667 6

……

7 8 9 0.552 5.961 0.174 84 84 84 −252 26.667 84
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Similarly to the case study with the synthetic dataset, we consider only feature sets formed by 3 features in order to reduce the
computational effort. The feature set formed by features {2, 26, 49} has been selected as initial feature set using the supervised
feature selection method in [38,54]. Fig. 5 shows the classification accuracy obtained by the 3 methods in these 4 experiments.

Similarly to the previous case study, the 4SFD method provides an overall more satisfactory performance than methods 1 and 2,
thanks to its ability of changing the feature set. Method 2, based on COMPOSE, is able to learn the concept drift in case of gradual
drift, e.g. in experiment 4 when the second batch becomes available, but is not able to handle abrupt drifts, e.g. batch 3 in experiment
3. Fig. 6 shows that the feature set {43, 60, 26} selected by the 4SFD method in experiment 3, batch 3, allows obtaining more
separated and compact classes than the initial feature set {2, 26, 49} used by the COMPOSE method.

Table 7 reports the values of the three indicators used for the feature selection task by the 4SFD, when batch 3 in experiment 3
becomes available. Notice that, as expected, the selected feature set {43, 60, 26} is characterized by larger (more satisfactory)
indicator values than the initial feature set {2, 26, 49}. Furthermore, the obtained accuracy is close to that of the feature set with the
largest ground truth accuracy, {26, 49, 80}, which would be obtained using the true label information.

5. Conclusion

In this work, we have developed a novel framework for performing fault diagnostics in evolving environments. The proposed
Systematic Semi-Supervised Self-adaptable Fault Diagnostics approach (4SFD), allows detecting the need for updating the
diagnostic model, dynamically selecting the features to be used for the diagnosis, and automatically updating the diagnostic model.
Its main novelty is that it exploits the information provided by both labelled and unlabelled data and it can automatically adapt itself
to the evolving environment by updating the features set used for the diagnosis.

The method is capable of handling the occurrence of concept drifts of different intensities and of automatically deciding whether
it is necessary to update the classification model, in order to adapt it to the new environment, or it is required to select new features
for the classification. Two case studies show its superiority with respect to traditional fault diagnostics methods in terms of
diagnostic accuracy.

It is expected that the developed 4SFD will contribute to improve maintenance practice of engineering equipment which are
subject to varying operating conditions and for which it is not possible to collect training data representative of all the possible
working conditions experienced by the equipment during its lifetime. These conditions are typically encountered by electric
components, bearings, gears, alternators, shafts and pumps in different industrial sectors such as aeronautics, automotive and
electricity production plants.

The major limitation of the 4SFD method lies in its scalability to high-dimensional feature selection problems. In particular, the
computational efforts required to perform the time consuming exhaustive search among all the possible feature combinations tends
to increase exponentially with the number of available features. Furthermore, the accuracy of classification algorithms, such as the
SVM here employed, can dramatically decrease in case of high dimensional input feature spaces due to the effect of the curse of
dimensionality, or their application can require the use of non-Euclidean distance measures which are difficult to automatically

Table 5
Attribute of bearing dataset 1.

Fault label Fault location Fault intensity working load

1 Inner race 7 mils 0,1,2,3 horsepower
2 Inner race 14 mils 0,1,2,3 horsepower
3 Inner race 21 mils 0,1,2,3 horsepower
4 Balls 7 mils 0,1,2,3 horsepower
5 Balls 14 mils 0,1,2,3 horsepower
6 Balls 21 mils 0,1,2,3 horsepower
7 Outer race 7 mils 0,1,2,3 horsepower
8 Outer race 14 mils 0,1,2,3 horsepower
9 Outer race 21 mils 0,1,2,3 horsepower

Table 6
Sequence of the loads in the four experiments. Loads 1, 2, 3, 4 refer to horsepower 0, 1, 2, 3 respectively.

Labelled Dataset
(T)

Batch 1 Batch 2 Batch 3 Batch 4 Batch 5 Batch 6

Experiment 1 load 1 (180
patterns)

load 2 (90
patterns)

load 4 (90
patterns)

load 2 (90
patterns)

load 3 (90
patterns)

load 4 (90
patterns)

load 3 (90
patterns)

Experiment 2 load 2 (180
patterns)

load 3 (90
patterns)

load 1 (90
patterns)

load 4 (90
patterns)

load 3 (90
patterns)

load 4 (90
patterns)

load 1 (90
patterns)

Experiment 3 load 3 (180
patterns)

load 2 (90
patterns)

load 4 (90
patterns)

load 1 (90
patterns)

load 2 (90
patterns)

load 1 (90
patterns)

load 4 (90
patterns)

Experiment 4 load 4 (180
patterns)

load 3 (90
patterns)

load 1 (90
patterns)

load 3 (90
patterns)

load 2 (90
patterns)

load 1 (90
patterns)

load 2 (90
patterns)
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adapt. Considering the results of the two case studies illustrated in this work, we can conclude that the 4SDF method can be applied
successfully with reasonable computation cost in case of input feature space dimension lower than 15.

Given the limitations mentioned above, future research works should consider:

1) The use of filter approaches for the elimination of redundant or correlated features which complicate the classification task
without adding relevant information; to this purpose, the representative learning techniques mentioned in [55], which have been
successfully applied in the field of image/speech recognition should be considered;

2) The use of heuristic optimization algorithms instead of the exhaustive search for the feature set selection task; to this purpose,
methods such as Genetic Algorithms, Differential Evolution, Ant Colony Algorithm and Particle Swarm Optimization, already

Fig. 5. Classification accuracy percentage of the three different methods applied to the bearing case study.
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Fig. 6. Projection of the initial dataset (circles) and of the data in batch 3 in experiment 3 on the initial feature set {2, 26, 49} used by the COMPOSE method (left)
and on the feature set {43, 60, 26} used by the 4SFD method (right). Different colours indicate different classes of the data.
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applied with success to problems of feature selection in high dimensional input spaces, should be considered.
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Appendix A. List of features

Feature number Feature name

2 Mean value
3 Kurtosis
25 Crest indicator
26 Clearance indicator
29 Peak value
34 Minimum Haar Wavelet coefficient
40 Maximum Haar Wavelet coefficient
43 Norm level D1 Daubechies Wavelet Transform
44 Norm Node 1 Symlet6 Wavelet
48 Norm Node 5 Symlet6 Wavelet
49 Norm Node 6 Symlet6 Wavelet
60 Norm Node 3 Symlet6 Wavelet
80 Norm Node 2 Symlet6 Wavelet
84 Norm Node 13 Symlet6 Wavelet
86 Norm Node 15 Symlet6 Wavelet

Appendix B. The COMPOSE algorithm

The sketch of COMPOSE is shown in Fig. 7.
Assuming that a fault classifier has been already trained using the labelled data and that a concept drift has been identified in the

test set, the COMPOSE allows building a new training set, which will be used for updating the diagnostic model. The COMPOSE
procedure is based on the following steps:

a) At t=0, a classifier is trained by using (possibly very few) labelled data, depicted in Fig. 7 by the (red) squares and (blue) circles;
b) A few unlabelled data, represented in Fig. 7 by (black) diamonds are received;
c) The unlabelled data (black diamonds) are classified using the classifier built in step a);
d) the α shape surface reconstruction is applied to find the surface boundary of each class;
e) the core regions of each class are identified by applying a proper shrinkage to the obtained class surface boundaries; the

Table 7
Borda count Table of feature sets {2, 26, 49}, {43, 60, 26} and {26, 49, 80}.

feature set IA IB IC IA rank IB rank IC rank Ffinal ground truth accuracy ground truth accuracy rank

26 46 80 0.788 60.211 0.071 70 39 244 801 97.333 1

…

43 60 26 0.784 64.543 0.059 83 13 267 814 96.677 10

…

2 26 49 0.645 38.783 0.034 199 256 271 0 62.222 294

…
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shrinkage is achieved by removing the patterns which are on the surface of the α shape, the degree of shrinkage is controlled by a
parameter (the details of the shrinkage procedures can be found in [37]);.

f) the new training set is formed by all the labelled patterns in the core regions identified in e).

Once the new training set has been obtained, it is used to train a new classifier which substitutes the old one. The procedure is
entirely repeated each time a new concept drift is detected in a new batch of unlabelled patterns. If new patterns are coming, go back
to step 2), otherwise stop the algorithm. More details on the algorithm can be found in [37,38].
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