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) above; the tools considered are derived from both classical probability theory as well as alternative, non-fully probabilistic uncertainty representation frameworks (e.g., possibility theory). The recommendations drawn are supported by the results obtained in illustrative applications of literature.

INTRODUCTION

The aim of this work is to critically address some conceptual and technical issues related to the treatment of uncertainty in risk assessment for engineering practice, with a particular focus on nonprobabilistic approaches. The motivation is the acknowledgement that the subject of risk nowadays plays a relevant role in the design, development, operation and management of components, systems and structures in many types of industry [START_REF] Aven | Risk assessment and risk management: Review of recent advances on their foundation[END_REF][START_REF]Glossary of the specialty group on Foundations of Risk Analysis[END_REF] . This is particularly true for civil, nuclear, aerospace and chemical systems that are safety-critical and must thus be designed and operated within a quantitative risk-informed approach aimed at systematically integrating deterministic and probabilistic analyses to obtain a rational decision on the utilization of resources for safety. In such rationalization, explicit consideration is given to the likelihood of accidents (scenarios) and to their potential consequences [START_REF] Apostolakis | The concept of probability in safety assessment of technological systems[END_REF][START_REF]Risk-Informed Decision Making Handbook[END_REF][START_REF] Usnrc | Reactor Safety Study, an Assessment of Accident Risks[END_REF][START_REF] Usnrc | An approach for using probabilistic risk assessment in risk-informed decisions on plant-specific changes to the licensing basis[END_REF][START_REF] Usnrc | Guidance on the Treatment of Uncertainties Associated with PRAs in Risk-Informed Decision Making[END_REF][START_REF] Nrc | Severe Accident Risks: An Assessment for Five U.S. Nuclear Power Plants[END_REF][START_REF] Breeding | Summary Description of the Methods Used in the Probabilistic Risk Assessments for NUREG-1150[END_REF][START_REF] Helton | Calculation of Reactor Accident Safety Goals[END_REF][START_REF] Helton | Special Issue: Performance Assessment for the Proposed High-Level Radioactive Waste Repository at Yucca Mountain, Nevada[END_REF][START_REF]Evaluation of Quantification of Margins and Uncertainties for Assessing and Certifying the Reliability of the Nuclear Stockpile[END_REF] .

In order to describe the physical phenomena that may lead to system failure, mathematical (risk) models are built that provide a representation of the real system dependent on a number of hypotheses and parameters. The risk model provides numerical outputs (e.g., relevant safety parameters) possibly to be compared with predefined numerical safety criteria for further guidance to risk-informed decision making processes [START_REF]Risk-Informed Decision Making Handbook[END_REF][START_REF] Usnrc | Guidance on the Treatment of Uncertainties Associated with PRAs in Risk-Informed Decision Making[END_REF][START_REF] Helton | Calculation of Reactor Accident Safety Goals[END_REF][START_REF]Guidance on the Development, Evaluation, and Application of Environmental Models[END_REF][START_REF] Helton | Conceptual Structure and Computational Organization of the 2008 Performance Assessment for the Proposed High-Level Radioactive Waste Repository at Yucca Mountain, Nevada[END_REF] . However, in practice, not all the characteristics of the system under analysis can be fully captured in the risk model, which leads to uncertainty on both the values of the (input) parameters and on the hypotheses supporting the model structure [START_REF] Apostolakis | The concept of probability in safety assessment of technological systems[END_REF][START_REF] Usnrc | Reactor Safety Study, an Assessment of Accident Risks[END_REF][START_REF] Usnrc | An approach for using probabilistic risk assessment in risk-informed decisions on plant-specific changes to the licensing basis[END_REF][START_REF] Usnrc | Guidance on the Treatment of Uncertainties Associated with PRAs in Risk-Informed Decision Making[END_REF] : such input uncertainty causes uncertainty in the model outputs and, thus, in the corresponding risk estimates. This output uncertainty must be estimated for a realistic quantification of the system behavior and associated risk, for use in decision making [START_REF] Apostolakis | The concept of probability in safety assessment of technological systems[END_REF][START_REF] Helton | Alternative representations of epistemic uncertainties[END_REF][START_REF] Helton | Survey of sampling-based methods for uncertainty and sensitivity analysis[END_REF][START_REF] Helton | Latin Hypercube Sampling and the Propagation of Uncertainty in Analyses of Complex Systems[END_REF] .

In this paper, we focus on four relevant, conceptual and practical, issues on the treatment of uncertainty in the risk assessment of safety-critical engineering systems:

1. The uncertainties in the model (input) parameters and hypotheses have to be first systematically identified and classified; then, they have to be quantitatively modeled and described by rigorous mathematical approaches coherently with the information available on the system. The key point is to guarantee that uncertainties are taken into account in a way that the knowledge relevant for the risk assessment process is represented in the most faithful manner [START_REF] Helton | Conceptual Structure and Computational Organization of the 2008 Performance Assessment for the Proposed High-Level Radioactive Waste Repository at Yucca Mountain, Nevada[END_REF][START_REF] Aven | On the Need for Restricting the Probabilistic Analysis in Risk Assessments to Variability[END_REF][START_REF] Aven | Interpretations of alternative uncertainty representations in a reliability and risk analysis context[END_REF][START_REF] Aven | The concept of ignorance in a risk assessment and risk management context[END_REF][START_REF] Aven | Some considerations on the treatment of uncertainties in risk assessment for practical decision making[END_REF][START_REF] Helton | Uncertainty and Sensitivity Analysis: From Regulatory Requirements to Conceptual Structure and Computational Implementation[END_REF] . For sake of simplicity, we will not deal here explicitly with uncertainties tainting the system's model itself. Whether this point is the object of many research and engineering works in the computer experiments community, e.g. Refs. 23-26, in engineering practice it is more common to separate the phases of assessing model's accuracy and propagating uncertainties from input to output variables [START_REF] Pasanisi | An Industrial Viewpoint on Uncertainty Quantification in Simulation: Stakes, Methods, Tools, Examples[END_REF] . See also the interesting and pragmatic viewpoint on this issue in Ref. 28.

2. The uncertainties in the input(s) have to be propagated onto the output(s) of the risk model (i.e., onto the risk measures), to provide the decision makers with a clearly risk-informed picture of the problem upon which they can confidently reason and deliberate [START_REF] Helton | Conceptual Structure and Computational Organization of the 2008 Performance Assessment for the Proposed High-Level Radioactive Waste Repository at Yucca Mountain, Nevada[END_REF][START_REF] Aven | Some considerations on the treatment of uncertainties in risk assessment for practical decision making[END_REF][START_REF] Helton | Uncertainty and Sensitivity Analysis: From Regulatory Requirements to Conceptual Structure and Computational Implementation[END_REF][START_REF] Dubois | Risk-Informed Decision Making in the Presence of Epistemic Uncertainty[END_REF] .

3. The quantitative representation of uncertainty needs to be updated, in a Bayesian framework, when new information/evidence (e.g., data) becomes available [START_REF] Bernardo | Bayesian Theory[END_REF][START_REF] Bedford | Probabilistic Risk Analysis. Foundations and Methods[END_REF][START_REF] Kelly | Bayesian Inference for Probabilistic Risk Assessment: A Practitioner's Guidebook[END_REF] . 4. Possible dependences existing among the input parameters and variables of the system risk model need to be properly accounted for [START_REF] Ferson | Dependence in probabilistic modeling, Dempster-Shafer theory, and probability bounds analysis[END_REF] . Actually, it is widely acknowledged that neglecting such dependences could lead to dramatic underestimations of the risk associated to the functioning of complex, safety-critical engineering systems [START_REF] Apostolakis | Pitfalls in risk calculations[END_REF][START_REF] Ferson | What Monte Carlo methods cannot do[END_REF][START_REF] Ferson | Correlation, dependency bounds and extinction risks[END_REF][START_REF] Ferson | Different methods are needed to propagate ignorance and variability[END_REF] (e.g., underestimation of the magnitude of the consequences of an accident scenario).

For more than 30 years, a probabilistic framework has been embraced to address the process of risk assessment and the treatment of the associated uncertainties. The common term used is Probabilistic Risk Assessment (PRA, also referred to as Quantitative Risk Assessment-QRA) [START_REF]Risk-Informed Decision Making Handbook[END_REF][START_REF] Usnrc | Reactor Safety Study, an Assessment of Accident Risks[END_REF][START_REF] Usnrc | An approach for using probabilistic risk assessment in risk-informed decisions on plant-specific changes to the licensing basis[END_REF][START_REF] Usnrc | Guidance on the Treatment of Uncertainties Associated with PRAs in Risk-Informed Decision Making[END_REF] . However, the purely probability-based approaches to risk and uncertainty analysis could be challenged under the common conditions of limited or poor knowledge, when the information available does not provide a strong basis for a specific probability assignment [START_REF] Dubois | Risk-Informed Decision Making in the Presence of Epistemic Uncertainty[END_REF] . In this view, a broader risk description is sought where all the uncertainties are laid out 'plain and flat' with no additional information inserted in the analysis in the form of assumptions and hypotheses which cannot be proven right or wrong. This concern has sparked a number of investigations in the field of uncertainty representation and analysis, which has led to the developments of alternative (non-fully probabilistic) frameworks for describing uncertainties in risk assessments (18-21, 28, 38, 39) , e.g., fuzzy set theory [START_REF] Klir | Fuzzy Sets and Fuzzy Logic: Theory and Applications[END_REF] , fuzzy probabilities [START_REF] Beer | Fuzzy probability theory[END_REF] , random set theory [START_REF] Molchanov | Theory of Random Sets[END_REF] , evidence theory [START_REF] Ferson | Dependence in probabilistic modeling, Dempster-Shafer theory, and probability bounds analysis[END_REF][START_REF] Ferson | Constructing probability boxes and Dempster-Shafer structures[END_REF][START_REF] Helton | A sampling-based computational strategy for the representation of epistemic uncertainty in model predictions with evidence theory[END_REF][START_REF] Duy | An alternative comprehensive framework using belief functions for parameter and model uncertainty analysis in nuclear probabilistic risk assessment applications[END_REF][START_REF] Sentz | Combination of Evidence in Dempster-Shafer Theory[END_REF] , possibility theory [START_REF] Baudrit | Practical Representations of Incomplete Probabilistic Knowledge[END_REF][START_REF] Baudrit | Joint Propagation and Exploitation of Probabilistic and Possibilistic Information in Risk Assessment[END_REF][START_REF] Baudrit | Representing parametric probabilistic models tainted with imprecision[END_REF][START_REF] Dubois | Possibility Theory and Statistical Reasoning[END_REF] , probability bound analysis using probability-boxes (p-boxes) [START_REF] Ferson | Different methods are needed to propagate ignorance and variability[END_REF][START_REF] Crespo | Reliability analysis of polynomial systems subject to p-box uncertainties[END_REF] , interval analysis [START_REF] Ferson | Arithmetic with uncertain numbers: rigorous and (often) best possible answers[END_REF][START_REF] Ferson | Experimental Uncertainty Estimation and Statistics for Data Having Interval Uncertainty[END_REF] and interval probabilities [START_REF] Weichselberger | The theory of interval-probability as a unifying concept for uncertainty[END_REF] ; notice that most of these theories can be included within the general common framework of imprecise probabilities [START_REF] Beer | Special issue "Imprecise probabilities -What can they add to engineering analyses?[END_REF][START_REF] Beer | Imprecise probabilities in engineering analyses[END_REF][START_REF] Blockley | Analysing uncertainties: Towards comparing Bayesian and interval probabilities[END_REF] .

In this context, the main objective of the present paper is to show in a systematic and comprehensive framework how some conceptual and technical issues on the treatment of uncertainty in risk assessment (items 1.-4. above) can be effectively tackled outside the probabilistic setting: practically speaking, different approaches and methods will be recommended for efficiently addressing each of the issues 1.-4. listed above; classical probability theory tools as well as alternative, non-probabilistic ones (in particular, possibility theory) are considered. The recommendations are 'informed' by (i) a critical review of the literature approaches to solving the specific issues and (ii) the research work of the authors on addressing these issues: with respect to the latter item (ii), some of the considerations are based on results contained in articles previously published by the authors [START_REF] Pedroni | Empirical comparison of methods for the hierarchical propagation of hybrid uncertainty in risk assessment, in presence of dependences[END_REF][START_REF] Pedroni | Uncertainty analysis in fault tree models with dependent basic events. Risk Analysis[END_REF][START_REF] Pedroni | Hierarchical propagation of probabilistic and non-probabilistic uncertainty in the parameters of a risk model[END_REF][START_REF] Pedroni | Empirical Comparison of Two Methods for the Bayesian Update of the Parameters of Probability Distributions in a Two-Level Hybrid Probabilistic-Possibilistic Uncertainty Framework for Risk Assessment[END_REF] ; other conclusions are instead drawn from analyses originally presented in this paper (e.g., part of the work related to the issue of Bayesian updating).

The remainder of the paper is organized as follows. In Section 2, risk assessment and uncertainty analysis are introduced. In Section 3, the four conceptual and technical issues related to uncertainty treatment in risk analysis mentioned above are presented and critically analyzed, and the relevant literature reviewed. In Section 4, techniques are recommended to effectively tackle such issues; results of the application of the proposed techniques to some case studies of literature are also shown. Finally, guidelines and recommendations are summarized in the concluding Section.

UNCERTAINTY IN RISK ASSESSMENT

The quantitative analyses of the phenomena occurring in many engineering systems and applications are based on mathematical models, which are translated into numerical computer codes for quantification [START_REF]Risk-Informed Decision Making Handbook[END_REF][START_REF] Usnrc | Guidance on the Treatment of Uncertainties Associated with PRAs in Risk-Informed Decision Making[END_REF][START_REF]Guidance on the Development, Evaluation, and Application of Environmental Models[END_REF] . In engineering practice, the mathematical models are not capable of capturing all the characteristics of the system under analysis [START_REF] Apostolakis | The concept of probability in safety assessment of technological systems[END_REF][START_REF] Helton | Alternative representations of epistemic uncertainties[END_REF] . This leads to uncertainty on both the values of the model input parameters/variables and on the hypotheses supporting the model structure. Such uncertainty propagates within the model and causes uncertainty in its outputs [START_REF] Helton | Survey of sampling-based methods for uncertainty and sensitivity analysis[END_REF] .

Formally, we consider a mathematical model fZ(Y), which depends on the input quantities Y = {Y1, Y2, …, Yj, …, YN} and on the (possibly implicit) function fZ(•). The model is used to evaluate one or more output quantities Z = {Z1, Z2, …, Zl, …, ZO} of the system under analysis:

Z = {Z1, Z2, …, Zl, …, ZO} = fZ(Y) = fZ(Y1, Y2, …, Yj, …, YN).
(1)

By way of example, in the risk-based design of a flood protection dike the output quantity of interest may be represented by the water level of the river in proximity of a residential area [START_REF] Limbourg | Uncertainty analysis using evidence theory -confronting level-1 and level-2 approaches with data availability and computational constraints[END_REF] . In what follows, for the sake of simplicity of illustration and without loss of generality we consider only one (scalar) output Z, i.e., Z = {Z1, Z2, …, Zl, …, ZO} ≡ Z = fZ(Y).

The uncertainty analysis of Z requires an assessment of the uncertainties about Y and their propagation through the model fZ(•) to produce an assessment of the uncertainties about Z.

In the context of risk assessment, uncertainty is conveniently distinguished into two different types:

'aleatory' (also known as 'objective', 'stochastic' or 'irreducible') and 'epistemic' (also known as 'subjective', 'state-of-knowledge' or 'reducible') (1-3, 7, 15, 16, 63-65) . Aleatory uncertainty is related to random variations, i.e., to the intrinsically random nature of several of the phenomena occurring during system operation. It concerns, for instance, the occurrence of the (stochastic) events that define various possible accident scenarios for a safety-critical system (e.g., a nuclear power plant) (6- 10, 66, 67) , physical quantities like the maximal water flow of a river during a year, extreme events like earthquakes or natural processes like erosion and sedimentation [START_REF] Limbourg | Uncertainty analysis using evidence theory -confronting level-1 and level-2 approaches with data availability and computational constraints[END_REF][START_REF]EPRI/NRC-RES Fire PRA methodology for nuclear power facilities[END_REF] . Epistemic uncertainty is instead associated to the lack of knowledge about some properties and conditions of the phenomena underlying the behavior of the systems. This uncertainty manifests itself in the representation of the system behavior, in terms of both uncertainty in the model structure fZ(•) and hypotheses assumed and parameter uncertainty in the (fixed but poorly known) values of the internal parameters Y of the model [START_REF] Helton | Conceptual Structure and Computational Organization of the 2008 Performance Assessment for the Proposed High-Level Radioactive Waste Repository at Yucca Mountain, Nevada[END_REF][START_REF] Helton | Survey of sampling-based methods for uncertainty and sensitivity analysis[END_REF][START_REF] Helton | Characterization of Subjective Uncertainty in the 1996 Performance Assessment for the Waste Isolation Pilot Plant[END_REF] . While the first source of uncertainty has been widely investigated and more or less sophisticated methods have been developed to deal with it, research is still ongoing to obtain effective and agreed methods to handle the uncertainty related to the model structure [START_REF] Ferson | Constructing probability boxes and Dempster-Shafer structures[END_REF][START_REF] Duy | An alternative comprehensive framework using belief functions for parameter and model uncertainty analysis in nuclear probabilistic risk assessment applications[END_REF] . See also Ref. 28 who distinguishes between model inaccuracies (the differences between Z and fZ(Y)), and model uncertainties due to alternative plausible hypotheses on the phenomena involved a . In this paper, we are concerned only with the uncertainty in the model parameters Y = {Y1, Y2, …, Yj, …, YN}: an example is represented by the (imprecise) basic event probabilities in a fault tree [START_REF] Usnrc | An approach for using probabilistic risk assessment in risk-informed decisions on plant-specific changes to the licensing basis[END_REF][START_REF] Usnrc | Guidance on the Treatment of Uncertainties Associated with PRAs in Risk-Informed Decision Making[END_REF][START_REF] Apostolakis | Pitfalls in risk calculations[END_REF][START_REF] Huang | A fuzzy set approach for event tree analysis[END_REF] .

SOME ISSUES ON THE PRACTICAL TREATMENT OF UNCERTAINTIES IN ENGINEERING RISK ASSESSMENT: A

CRITICAL LITERATURE SURVEY

a Notice that model uncertainty also includes the fact that the model could be too simplified and therefore would neglect some important phenomena affecting the final result. This latter type of uncertainty is sometimes identified independently from model uncertainty and is known as completeness uncertainty [START_REF] Usnrc | An approach for using probabilistic risk assessment in risk-informed decisions on plant-specific changes to the licensing basis[END_REF][START_REF] Usnrc | Guidance on the Treatment of Uncertainties Associated with PRAs in Risk-Informed Decision Making[END_REF] .

In Sections 3.1-3.4, four issues relevant to the treatment of uncertainty in engineering risk assessment are critically discussed, on the basis of the available literature on the subject.

Quantitative modeling and representation of uncertainty coherently with the information available on the system

Probability models are typically introduced to represent aleatory uncertainty: see, for example, the Poisson/exponential model for events randomly occurring in time (e.g., random variations of the operating state of a valve) [START_REF] Helton | Expected Dose for the Seismic Scenario Classes in the 2008 Performance Assessment for the Proposed High-Level Radioactive Waste Repository at Yucca Mountain, Nevada[END_REF][START_REF]EPRI/NRC-RES Fire PRA methodology for nuclear power facilities[END_REF] , the binomial model for describing the "failures on demand" of mechanical safety systems [START_REF] Usnrc | Guidance on the Treatment of Uncertainties Associated with PRAs in Risk-Informed Decision Making[END_REF][START_REF] Krzykacz-Hausmann | An approximate sensitivity analysis of results from complex computer models in the presence of epistemic and aleatory uncertainties[END_REF] and the Gumbel model for the maximal water level of a river in a particular year [START_REF] Limbourg | Uncertainty analysis using evidence theory -confronting level-1 and level-2 approaches with data availability and computational constraints[END_REF] . Probability models constitute the basis for the statistical analysis of the data and information available on a system, and are considered essential for assessing the aleatory uncertainties and drawing useful insights on its random behavior [START_REF] Helton | Uncertainty and Sensitivity Analysis: From Regulatory Requirements to Conceptual Structure and Computational Implementation[END_REF] . They are also capable of updating the probability values, as new data and information on the system become available.

A probability model presumes some sort of model stability, by the construct of populations of similar units (in the Bayesian context, formally an infinite set of exchangeable random variables) [START_REF] Bernardo | Bayesian Theory[END_REF][START_REF] Finetti | Theory of Probability[END_REF] . In this framework, the standard procedure for constructing probability models of random events and variables is as follows: (i) observe the process of interest over a finite period of time, (ii) collect data about the phenomenon, (iii) perform statistical analyses to identify the probability model (i.e., distribution) that best captures the variability in the available data and (iv) estimate the internal parameters of the selected probability model b [START_REF] Apostolakis | The concept of probability in safety assessment of technological systems[END_REF][START_REF]Risk-Informed Decision Making Handbook[END_REF][START_REF] Usnrc | An approach for using probabilistic risk assessment in risk-informed decisions on plant-specific changes to the licensing basis[END_REF][START_REF] Usnrc | Guidance on the Treatment of Uncertainties Associated with PRAs in Risk-Informed Decision Making[END_REF][START_REF] Bernardo | Bayesian Theory[END_REF][START_REF] Apostolakis | Pitfalls in risk calculations[END_REF][START_REF] Atwood | Handbook of Parameter Estimation for Probabilistic Risk Assessment[END_REF][START_REF] Frey | Methods for Characterizing Variability and Uncertainty: Comparison of Bootstrap Simulation and Likelihood-Based Approaches[END_REF] . However, such 'presumed' model stability is often not fulfilled and the procedure (i)-(iv) above cannot be properly carried out [START_REF] Bergman | Conceptualistic pragmatism: a framework for Bayesian analysis[END_REF] .

In the engineering risk assessment practical context, the situations are often unique, because the structures systems and components are, in the end, uniquely manufactured, operated and b In a frequentist view, the available data are interpreted as observable random realizations of an underlying, repeatable probabilistic model (e.g., a probability distribution) representing the aleatory phenomenon of interest, which can be approximated with increasing precision by the analyst as the size of the available data set increases [START_REF] Apostolakis | The concept of probability in safety assessment of technological systems[END_REF] .

maintained, so that their life realizations is not identical to any others. Then, the collection of repeated random realizations of the related random phenomena of interest (e.g., failure occurrences) means in reality the construction of fictional populations of non-existing similar situations. Then, probability models in general cannot be easily defined; in some cases, they cannot be meaningfully defined at all. For example, it makes no sense to define the (frequentist) probability of a terrorist attack [START_REF] Aven | Reliability and validity of risk analysis[END_REF] . In other cases, the conclusion may not be so obvious. For example, the (frequentist)

probability of an explosion scenario in a process plant may be introduced in a risk assessment, although the underlying population of infinite similar situations is somewhat difficult to describe [START_REF] Aven | Some considerations on the treatment of uncertainties in risk assessment for practical decision making[END_REF] .

In addition, even when probability models with parameters can be established (justified) reflecting aleatory uncertainty, in many cases the amount of data available is insufficient for performing a meaningful statistical analysis on the random phenomenon of interest (e.g., because collecting this data is too difficult or costly); in other casas, the pieces of data themselves may be highly imprecise:

in such situations, the internal parameters of the selected probability model cannot be estimated with sufficient accuracy and epistemic (state-of-knowledge) uncertainty is associated with them [START_REF] Baudrit | Representing parametric probabilistic models tainted with imprecision[END_REF][START_REF] Dubois | Representation, propagation and decision issues in risk analysis under incomplete probabilistic information[END_REF] . A full risk description needs to assess the (epistemic) uncertainties about these quantities. This framework of two hierarchical levels of uncertainty is referred to as "two-level" setting [START_REF] Helton | Conceptual Structure and Computational Organization of the 2008 Performance Assessment for the Proposed High-Level Radioactive Waste Repository at Yucca Mountain, Nevada[END_REF][START_REF] Helton | Uncertainty and Sensitivity Analysis: From Regulatory Requirements to Conceptual Structure and Computational Implementation[END_REF][START_REF] Limbourg | Uncertainty analysis using evidence theory -confronting level-1 and level-2 approaches with data availability and computational constraints[END_REF][START_REF] Helton | Probability of Loss of Assured Safety in Systems with Multiple Time-Dependent Failure Modes: Representations with Aleatory and Epistemic Uncertainty[END_REF] .

In the current risk assessment practice, the epistemic uncertainty in the parameters entering the (probability) models of random events is typically represented by (subjective) probability distributions within a Bayesian framework: subjective probability distributions capture the degree of belief of the analyst with respect to the values of the parameters entering the aleatory models, conditional on his/her background knowledge (1-3, 6, 7, 18, 28, 34, 68, 70, 79-84 ). However, the probabilitybased approach to epistemic uncertainty representation can be challenged by several practical and conceptual arguments. First of all, representing epistemic uncertainty by probability distributions (albeit subjective) amounts in practice to representing partial ignorance (imprecision) in the same way as randomness (variability) [START_REF] Baudrit | Representing parametric probabilistic models tainted with imprecision[END_REF][START_REF] Dubois | Representation, propagation and decision issues in risk analysis under incomplete probabilistic information[END_REF] : then, the resulting distribution of the output can hardly be properly interpreted: "the part of the resulting variance due to epistemic uncertainty (that could be reduced) is unclear" [START_REF] Dubois | Representation, propagation and decision issues in risk analysis under incomplete probabilistic information[END_REF] . Also, the fully probabilistic framework for assessing risk and uncertainties may be too narrow, as the subjective expert knowledge that the probability distributions are based on could be poor and/or even based on wrong assumptions, thus leading to conclusions that can mislead decision making. Actually, in the unique situations of risk assessment, the information available may not represent a sufficiently strong knowledge-basis for a specific probability assignment c . Furthermore, in practical risk assessment and decision making contexts, "there are often many stakeholders and they may not be satisfied with a probability-based assessment based on subjective judgments made by one analysis group" [START_REF] Aven | Some considerations on the treatment of uncertainties in risk assessment for practical decision making[END_REF] : again, a broader risk description is sought.

"It is true that adopting the subjective probability approach, probabilities can always be assigned, but the information basis supporting the assignments may not be reflected by the numbers produced. One may for example assess two situations both resulting in subjective probabilities equal to, e.g., 0.7, but in one case the assignment may be supported by substantial amount of relevant data, the other by no data at all" [START_REF] Aven | Some considerations on the treatment of uncertainties in risk assessment for practical decision making[END_REF] .

To overcome the above shortcomings of the fully probabilistic representation of uncertainty in risk assessment, alternative (non-fully probabilistic) approaches for representing and describing epistemic uncertainties in risk assessment have been suggested [START_REF] Aven | On the Need for Restricting the Probabilistic Analysis in Risk Assessments to Variability[END_REF][START_REF] Aven | Interpretations of alternative uncertainty representations in a reliability and risk analysis context[END_REF][START_REF] Aven | The concept of ignorance in a risk assessment and risk management context[END_REF][START_REF] Aven | Some considerations on the treatment of uncertainties in risk assessment for practical decision making[END_REF][START_REF] Ferson | Different methods are needed to propagate ignorance and variability[END_REF] , e.g., fuzzy set theory [START_REF] Klir | Fuzzy Sets and Fuzzy Logic: Theory and Applications[END_REF] , fuzzy probabilities [START_REF] Beer | Fuzzy probability theory[END_REF] , random set theory [START_REF] Molchanov | Theory of Random Sets[END_REF] , Dempster-Shafer theory of evidence [START_REF] Ferson | Dependence in probabilistic modeling, Dempster-Shafer theory, and probability bounds analysis[END_REF][START_REF] Ferson | Constructing probability boxes and Dempster-Shafer structures[END_REF][START_REF] Helton | A sampling-based computational strategy for the representation of epistemic uncertainty in model predictions with evidence theory[END_REF][START_REF] Sentz | Combination of Evidence in Dempster-Shafer Theory[END_REF][START_REF] Shafer | Perspectives on the theory and practice of belief functions[END_REF] , possibility theory [START_REF] Baudrit | Practical Representations of Incomplete Probabilistic Knowledge[END_REF][START_REF] Baudrit | Joint Propagation and Exploitation of Probabilistic and Possibilistic Information in Risk Assessment[END_REF][START_REF] Baudrit | Representing parametric probabilistic models tainted with imprecision[END_REF][START_REF] Dubois | Possibility Theory and Statistical Reasoning[END_REF] , interval analysis [START_REF] Ferson | Arithmetic with uncertain numbers: rigorous and (often) best possible answers[END_REF][START_REF] Ferson | Experimental Uncertainty Estimation and Statistics for Data Having Interval Uncertainty[END_REF] , interval probabilities [START_REF] Weichselberger | The theory of interval-probability as a unifying concept for uncertainty[END_REF] and probability bound analyses using p-boxes [START_REF] Ferson | Different methods are needed to propagate ignorance and variability[END_REF][START_REF] Crespo | Reliability analysis of polynomial systems subject to p-box uncertainties[END_REF] .

In probability bound analysis, intervals are used for those parameters for which, due to ignorance, the analyst is not able or willing to assign a precise probability: rather, he/she prefers to describe such parameters only 'imprecisely' by means of a range of values, all of which coherent with the c Evidently, in those situations where the information is not of a type of "degree of belief" (in the sense of a subjective probability), one does not have the information needed to assign a specific probability: in those cases, the analyst may accept that and he/she is lead to interval probabilities or to develop such knowledge.

information available and reflecting his/her (scarce) background knowledge on the problem; for the other components, traditional probabilistic analysis is carried out. This procedure results in a couple of extreme limiting Cumulative Distribution Functions (CDFs) (namely, a probability box or p-box)

that bound above and below the "true" CDF of the quantity of interest. However, this way of proceeding results often in very wide intervals and the approach has been criticised for not providing the decision-maker with specific analyst and expert judgments about epistemic uncertainties [START_REF] Aven | On the Need for Restricting the Probabilistic Analysis in Risk Assessments to Variability[END_REF] . The other frameworks mentioned above allow for the incorporation and representation of incomplete information. Their motivation is to be able to treat situations where there is more information than that supporting just an interval assignment on an uncertain parameter, but less than that required to assign a single specific probability distribution.

All these theories produce epistemic-based uncertainty descriptions and in particular probability intervals. In fuzzy set theory membership functions are employed to express the degree of compatibility of a given numerical value to a fuzzy (i.e., vague, imprecisely defined) set (or interval). In possibility theory, uncertainty is represented by using a possibility distribution function that quantifies the degree of possibility of the values of a given uncertain parameter, say, Y.

Formally, an application of possibility theory involves the specification of a pair ( )

Y U π
, (called possibility space), where: (i) U is a set that contains everything that could occur in the particular universe under consideration (e.g., it contains all the values that parameter Y can assume); (ii) π Y is the possibility distribution function, defined on U and such that 0 ≤ π Y (y) ≤ 1 for y ∈ U and sup{π Y (y): y ∈ U} = 1 [START_REF] Baudrit | Practical Representations of Incomplete Probabilistic Knowledge[END_REF][START_REF] Baudrit | Joint Propagation and Exploitation of Probabilistic and Possibilistic Information in Risk Assessment[END_REF][START_REF] Baudrit | Representing parametric probabilistic models tainted with imprecision[END_REF][START_REF] Dubois | Possibility Theory and Statistical Reasoning[END_REF] . Whereas in probability theory a single probability distribution function is introduced to define the probability of any interval (or event) A, in possibility theory one possibility function gives rise to a couple of probability bounds (i.e., upper and lower probabilities)

for interval A, referred to as possibility and necessity measures and defined as

( ) ( ) { } y A Π Y A y Y π ∈ = sup and N Y (A) = 1 - ( ) { } y Y A y π ∉ sup = 1 - ( ) c Y A Π
, respectively [START_REF] Baudrit | Practical Representations of Incomplete Probabilistic Knowledge[END_REF][START_REF] Baudrit | Joint Propagation and Exploitation of Probabilistic and Possibilistic Information in Risk Assessment[END_REF][START_REF] Baudrit | Representing parametric probabilistic models tainted with imprecision[END_REF][START_REF] Dubois | Possibility Theory and Statistical Reasoning[END_REF] . Finally, in evidence theory uncertainty is described by a so-called body of evidence, i.e., a list of focal sets/elements (e.g., intervals) each of which is assigned a probability (or belief) mass (so-called Basic Probability Assignment-BPA). Formally, an application of evidence theory involves the specification of a triple (U, S, m) (called evidence space), where: (i) U is a set that contains everything that could occur in the particular universe under consideration (namely, the sample space or universal set); (ii) S is a countable collection of subsets of U (i.e., the set of the so-called focal elements); (iii) m is a function (i.e., the BPA) defined on subsets of U, such that:

(i) m(A) > 0, if A ∈ S; (ii) m(A) = 0, if A
⊂ U and A ∉ S, and (iii)

( ) ∑ ∈ = S A A m
1. For a subset A of U, m(A) is a number characterizing the probability (or degree of belief) that can be assigned to A, but without any specification of how this degree of belief might be apportioned over A: thus, it might be associated with any subset of A. In this respect, the function m induces the so-called plausibility and belief measures that bound above and below the probability of a given set A of interest: such measures are defined as

( ) ( ) ∑ ∅ ≠ ∩ = A B B m A Pl and ( ) ( ) ∑ ⊂ = A B B m A Bel
, respectively. Measure Bel(A) can be viewed as the minimum degree of belief that must be associated with A (i.e., it accounts for the evidence "supporting" A). Similarly, measure Pl(A) can be viewed as the maximum degree of belief that could be associated with A (i.e., it accounts for the evidence "not contradicting" A) [START_REF] Ferson | Constructing probability boxes and Dempster-Shafer structures[END_REF][START_REF] Helton | A sampling-based computational strategy for the representation of epistemic uncertainty in model predictions with evidence theory[END_REF][START_REF] Sentz | Combination of Evidence in Dempster-Shafer Theory[END_REF][START_REF] Shafer | Perspectives on the theory and practice of belief functions[END_REF][START_REF] Dempster | Upper and Lower Probability Inferences Based on a Sample from a Finite Univariate Population[END_REF] .

For the sake of completeness and precision, it is worth pointing out that the most of the theories mentioned above are 'covered' by the general common framework of imprecise probabilities [START_REF] Beer | Special issue "Imprecise probabilities -What can they add to engineering analyses?[END_REF][START_REF] Beer | Imprecise probabilities in engineering analyses[END_REF][START_REF] Blockley | Analysing uncertainties: Towards comparing Bayesian and interval probabilities[END_REF] .

Actually, as highlighted above, "a key feature of imprecise probabilities is the identification of bounds on probabilities for events of interest" [START_REF] Kozine | Imprecise reliabilities: experiences and advances[END_REF] . "The distance between the probability bounds reflects the indeterminacy in model specifications expressed as imprecision of the models. This imprecision is the concession for not introducing artificial model assumptions" [START_REF] Beer | Imprecise probabilities in engineering analyses[END_REF] . For further reflections on this subject, the reader is referred to Refs. 72, 55, 88 and 89.

It is worth admitting that these imprecise probability-based theories have not yet been broadly accepted for use in the risk assessment community. Till now, the development effort made on these subjects has mostly had a mathematical orientation, and it seems fair to say that no established framework presently exists for practical risk assessment based on these alternative theories [START_REF] Aven | Some considerations on the treatment of uncertainties in risk assessment for practical decision making[END_REF] .

Among the alternative approaches mentioned above, that based on possibility theory is by many considered one of the most attractive for extending the risk assessment framework in practice. In this paper, we focus on this approach for the following reasons: (i) the power it offers for the coherent representation of uncertainty under poor information (as testified by the large amount of literature in the field, see above); (ii) its relative mathematical simplicity; (iii) its connection with fuzzy sets and fuzzy logic, as conceptualized and put forward by Zadeh [START_REF] Zadeh | Fuzzy sets as a basis for a theory of possibility[END_REF] : actually, in his original view possibility distributions were meant to provide a graded semantics to natural language statements, which makes them particularly suitable for quantitatively translating (possibly vague, qualitative and imprecise) expert opinions; finally, (iv) the experience of the authors themselves in dealing and computing with possibility distributions [START_REF] Pedroni | Empirical comparison of methods for the hierarchical propagation of hybrid uncertainty in risk assessment, in presence of dependences[END_REF][START_REF] Pedroni | Uncertainty analysis in fault tree models with dependent basic events. Risk Analysis[END_REF][START_REF] Pedroni | Hierarchical propagation of probabilistic and non-probabilistic uncertainty in the parameters of a risk model[END_REF][START_REF] Pedroni | Empirical Comparison of Two Methods for the Bayesian Update of the Parameters of Probability Distributions in a Two-Level Hybrid Probabilistic-Possibilistic Uncertainty Framework for Risk Assessment[END_REF] . One the other hand, it is worth remembering that possibility theory is only one of the possible "alternatives" to the incorporation of uncertainty into an analysis (see the approaches mentioned above).

Propagation of uncertainty to the output of the system model

The scope of the uncertainty analysis is the quantification and characterization of the uncertainty in the output Z of the mathematical model fZ(Y) = fZ(Y1, Y2, …, Yj, …, YN) that derives from uncertainty in analysis inputs Y = {Y1, Y2, …, Yj, …, YN} (see Section 2) [START_REF] Helton | Survey of sampling-based methods for uncertainty and sensitivity analysis[END_REF] . In the light of the considerations reported in the previous Section 3.1, this requires the joint, hierarchical propagation of hybrid aleatory and epistemic uncertainties through the model fZ(Y) [START_REF] Helton | Expected Dose for the Seismic Scenario Classes in the 2008 Performance Assessment for the Proposed High-Level Radioactive Waste Repository at Yucca Mountain, Nevada[END_REF] .

When both aleatory and epistemic uncertainties in a two-level framework are represented by probability distributions, a two-level (or double loop) Monte Carlo (MC) simulation is usually undertaken to accomplish this task [START_REF] Limbourg | Uncertainty analysis using evidence theory -confronting level-1 and level-2 approaches with data availability and computational constraints[END_REF][START_REF] Frey | Methods for Characterizing Variability and Uncertainty: Comparison of Bootstrap Simulation and Likelihood-Based Approaches[END_REF][START_REF] Karanki | Uncertainty Analysis Based on Probability Bounds Approach in Probabilistic Safety Assessment[END_REF] : the result is a 'bundle' of aleatory probability distributions, one for each realization of the epistemically-uncertain parameters.

Alternatively, when the epistemic uncertainties are represented by possibility distributions, the hybrid Monte Carlo (MC) and Fuzzy Interval Analysis (FIA) approach d is typically considered. In the hybrid MC-FIA method the MC technique [START_REF] Zio | The Monte Carlo Simulation Method for System Reliability and Risk Analysis[END_REF] is combined with the extension principle of fuzzy set theory [START_REF] Baraldi | A combined Monte Carlo and possibilistic approach to uncertainty propagation in event tree analysis[END_REF][START_REF] Baudrit | Joint propagation of probability and possibility in risk analysis: toward a formal framework[END_REF][START_REF] Baudrit | Joint propagation of variability and imprecision in assessing the risk of groundwater contamination[END_REF][START_REF] Kentel | Probabilistic-fuzzy health risk modeling[END_REF][START_REF] Zadeh | Fuzzy sets[END_REF] , within a "two-level" hierarchical setting [START_REF] Baudrit | Representing parametric probabilistic models tainted with imprecision[END_REF][START_REF] Pedroni | Empirical comparison of methods for the hierarchical propagation of hybrid uncertainty in risk assessment, in presence of dependences[END_REF][START_REF] Pedroni | Hierarchical propagation of probabilistic and non-probabilistic uncertainty in the parameters of a risk model[END_REF][START_REF] Kentel | 2D Monte Carlo versus 2D Fuzzy Monte Carlo Health Risk Assessment[END_REF][START_REF] Möller | Time-dependent reliability of textile-strengthened RC structures under consideration of fuzzy randomness[END_REF](100) . This is done by: (i) FIA to process the uncertainty described by possibility distributions: in synthesis, intervals for the epistemically-uncertain parameters described by possibility distributions are identified by performing a repeated, level-wise interval analysis; (ii) MC sampling of the random variables to process aleatory uncertainty [START_REF] Baudrit | Representing parametric probabilistic models tainted with imprecision[END_REF] : given the intervals of the epistemically-uncertain parameters, families of probability distributions for the random variables are propagated through the model.

Instead, if the epistemic uncertainties are described within the framework of evidence theory, the Monte Carlo (MC)-based Dempster-Shafer (DS) approach employing Independent Random Sets (IRSs) e is typically undertaken. In the MC-based DS-IRS method the focal sets (i.e., intervals)

representing the epistemically-uncertain parameters are randomly and independently sampled by MC according to the corresponding probability (or belief) masses [START_REF] Helton | Quantification of Margins and Uncertainties: Alternative Representations of Epistemic Uncertainty[END_REF](101)(102)(103) .

In the present paper, particular focus is devoted to the MC-FIA approach: a detailed description of this technique and an illustrative application are reported in Section 4.2.

Updating as new information becomes available

In this Section, we address the issue of updating the representation of the epistemically-uncertain parameters of aleatory models (e.g., probability distributions), as new information/evidence (e.g., data) about the system becomes available.

d In the following, this method will be referred to as "hybrid MC-FIA approach" for brevity. e In the following, this method will be referred to as "MC-based DS-IRS approach" for brevity.

The framework adopted is the typical Bayesian onethat is based on the well-known Bayes rulewhen epistemic uncertainties are represented by (subjective) probability distributions (30-32, 73, 104-107) .

Alternatively, when the representation of epistemic uncertainty is non-probabilistic, other methods of literature can be undertaken (108) . In Ref. In the present paper, the purely possibilistic Bayes' theorem is taken as reference: a detailed description of the approach and illustrative applications are reported in Section 4.3.

Dependences among input variables and parameters

Two types of dependence need to be considered in risk assessment [START_REF] Ferson | Dependence in probabilistic modeling, Dempster-Shafer theory, and probability bounds analysis[END_REF] . The first type relates to the (dependent) occurrence of different (random) events (in the following, this kind of dependence will be referred to as 'objective' or 'aleatory'). An example of this objective (aleatory) dependence may be represented by the occurrence of multiple failures which result directly from a common or shared root cause (e.g., extreme environmental conditions, failure of a piece of hardware external to the system, or a human error): they are termed Common Cause Failures (CCFs) and typically can concern identical components in redundant trains of a safety system [START_REF] Usnrc | Guidance on the Treatment of Uncertainties Associated with PRAs in Risk-Informed Decision Making[END_REF]115) ; another example is that of cascading failures, i.e., multiple failures initiated by the failure of one component in the system, as a sort of chain reaction or domino effect (116,117) .

The second type refers to the dependence possibly existing between the estimates of the epistemically-uncertain parameters of the aleatory probability models used to describe random events/variables (in the following, this kind of dependence will be referred to as 'state-ofknowledge' or 'epistemic'). This state-of-knowledge (epistemic) dependence exists when the epistemically-uncertain parameters of aleatory models are estimated by resorting to dependent information sources (e.g., to the same experts/observers or to correlated data sets) [START_REF] Usnrc | Guidance on the Treatment of Uncertainties Associated with PRAs in Risk-Informed Decision Making[END_REF][START_REF] Apostolakis | Pitfalls in risk calculations[END_REF] . [START_REF] Ferson | Dependence in probabilistic modeling, Dempster-Shafer theory, and probability bounds analysis[END_REF]125) and the Distribution Envelop Determination (DEnv) method (126)(127)(128)(129) have been adopted to account for all kinds of (possibly unknown) objective and epistemic dependences among correlated events/variables.

In the present paper, particular focus is devoted to the DEnv method: a detailed description of the technique and an illustrative application to Fault Tree Analysis (FTA) are reported in Section 4.4.

RECOMMENDATIONS FOR TACKLING THE CONCEPTUAL AND TECHNICAL ISSUES ON UNCERTAINTY IN ENGINEERING RISK ASSESSMENT

On the basis of the considerations made in Section 3, techniques are here recommended for tackling the four issues presented before. Guidelines on the recommended use of the techniques in practice are provided, with illustrative applications to simple risk assessment models.

Quantitative modeling and representation of uncertainty coherently with the information available on the system

In all generality, we consider an uncertain variable Y , whose (aleatory) uncertainty is described by a probability model, e.g., a PDF ) | ( θ y p Y , where } ..., , ..., , , {

2 1 P m θ θ θ θ = θ
is the vector of the corresponding internal parameters (see Section 3.1). In a two-level framework, the parameters θ are themselves affected by epistemic uncertainty [START_REF] Limbourg | Uncertainty analysis using evidence theory -confronting level-1 and level-2 approaches with data availability and computational constraints[END_REF][START_REF] Helton | Probability of Loss of Assured Safety in Systems with Multiple Time-Dependent Failure Modes: Representations with Aleatory and Epistemic Uncertainty[END_REF] . In the present work, we recommend to describe these epistemic uncertainties by the (generally joint) possibility distribution ) (θ θ π

. A random variable Y with possibilistic parameters θ is referred to as a Fuzzy Random Variable (FRV) in the literature [START_REF] Baudrit | Representing parametric probabilistic models tainted with imprecision[END_REF] . Details about FRVs are given in the following Section 4.1.1; then, the benefits of using a possibilistic description of epistemic uncertainty (instead of the classical, probabilistic one) are demonstrated by means of an illustrative example in Section 4.1.2.

Recommended approach: Fuzzy Random Variables (FRVs)

By way of example, we consider the uncertain variable Y (e.g., the maximal water level of a river in a given year) described by a Gumbel probability model, i.e.

, Y ~ ) | ( θ y p Y = ) , | ( δ γ y p Y =                     - - + - - δ γ δ γ δ y y exp exp 1
. We suppose that parameter 2 θ δ = (i.e., the scale parameter) is known with absolute precision, i.e., it is a fixed point value ( 2 θ δ = = 100), whereas parameter 1 θ γ = (i.e., the location parameter) is epistemically-uncertain. f We consider, for the sake of the example, that the only information available on the value of the parameter 1 θ γ = is that it ranges in the interval [aγ, bγ] = [900, 1300], with most likely value (i.e., mode) cγ = 1100. When the background knowledge on a parameter is partial like in the present case, the classical procedure for describing its uncertainty is to identify the corresponding maximum entropy PDF. However, this way of proceeding does not eliminate the fact that the information available on 1 θ γ = is not sufficient for assigning a single specific PDF to describe the epistemic uncertainty in the parameter.

In facts, such scarce information is compatible and consistent with a variety of PDFs (e.g., truncated normal, lognormal, triangular, …) that obviously comprise also the maximum entropy one.

Alternatively, one of the ways of representing the uncertainty on 1 θ γ = is offered by the framework of possibility theory [START_REF] Baudrit | Practical Representations of Incomplete Probabilistic Knowledge[END_REF][START_REF] Baudrit | Joint Propagation and Exploitation of Probabilistic and Possibilistic Information in Risk Assessment[END_REF][START_REF] Baudrit | Representing parametric probabilistic models tainted with imprecision[END_REF][START_REF] Dubois | Possibility Theory and Statistical Reasoning[END_REF] . For the simple numerical example considered above, a triangular possibility distribution ) (γ π γ with core (i.e., vertex) cγ = 1100 and support (i.e., base) [aγ, bγ] = [900, 1300] could be used (Figure 1, left) [START_REF] Dubois | Possibility Theory and Statistical Reasoning[END_REF] : indeed, it can be demonstrated that such possibility distribution encodes the family of all the probability distributions with mode cγ = 1100 and support [aγ, bγ] = [900, 1300] [START_REF] Ferson | Constructing probability boxes and Dempster-Shafer structures[END_REF][START_REF] Baudrit | Practical Representations of Incomplete Probabilistic Knowledge[END_REF][START_REF] Dubois | Possibility Theory and Statistical Reasoning[END_REF] (obviously, this does not mean that the triangular possibility distribution is the only one able to describe such a probability family).

Actually, for a given set S (i.e., of a given interval of values of parameter γ) the possibility function

) (γ π γ
gives rise to probability bounds (i.e., upper and lower probabilities), referred to as necessity and possibility measures { ( )

S N γ , ( ) S Π γ
} and defined as

( ) { } ) ( sup γ π γ γ γ S S Π ∈ = and
f Obviously, in real risk assessment studies, a situation where one parameter of a given (aleatory) probability model is perfectly known and the other one is affected by significant epistemic uncertainty is far unlikely. However, notice that this example is here introduced only for the purpose of clearly and simply illustrating the basics of possibility theory.

( ) { } ) ( sup 1 ) ( 1 γ π γ γ γ γ S S Π S N ∉ - = - =
, respectively, where S is the set (interval) complementary to S on the axis of real numbers [START_REF] Ferson | Constructing probability boxes and Dempster-Shafer structures[END_REF][START_REF] Baudrit | Practical Representations of Incomplete Probabilistic Knowledge[END_REF][START_REF] Dubois | Possibility Theory and Statistical Reasoning[END_REF] . It can be demonstrated that the probability ) (S P γ of the interval S is bounded above and below by such necessity and possibility values, i.e., ( )

) ( ) ( S Π S P S N γ γ γ ≤ ≤ : see Ref.
130 for a formal proof of this statement. Also, from the definitions of { ( )

S N γ , ( ) S Π γ
} and referring to the particular set S = (-∞, γ], we can deduce the associated cumulative necessity and possibility measures

( ) ( ] ( ) γ γ γ , ∞ - = N S N and ( ) ( ] ( ) γ γ γ , ∞ - = Π S Π
, respectively (Figure 1, right). These measures can be interpreted as the limiting lower and upper bounds : actually, ( )

γ α A N ≤ ] [ γ α γ A P ∈ ≤ ( ) γ α A Π ,
which becomes, by definition of possibility and necessity measures,

{ } ) ( sup 1 γ π γ γ γ α A ∉ - ≤ ] [ γ α γ A P ∈ ≤ { } ) ( sup γ π γ γ γ α A ∈ , i.e., 1 -α ≤ ] [ γ α γ A P ∈
≤ 1 [START_REF] Baudrit | Practical Representations of Incomplete Probabilistic Knowledge[END_REF] (Figure 1, left shows three CIs for α = 0, 0.5 and 1).

In general, other techniques exist for constructing possibility distributions: for example, in Refs. for α = 0 (solid lines) and α = 0.5 (dashed lines). In the same way, a bundle of CDFs for Y, namely

( ) { } α δ γ , | y F Y = ( ) { } 100 , : , | = ∈ σ γ δ γ γ α A y F Y
, can be constructed, which is bounded above and below by 

α α α - ≥ ≤ ≤ 1 ] [ y F y F y F P Y Y Y ( ) ( ) ( ) 
, with 0 ≤ α ≤ 1 [START_REF] Baudrit | Representing parametric probabilistic models tainted with imprecision[END_REF][START_REF] Baudrit | Joint propagation of probability and possibility in risk analysis: toward a formal framework[END_REF][START_REF] Baudrit | Joint propagation of variability and imprecision in assessing the risk of groundwater contamination[END_REF] . Using the jargon of evidence theory [START_REF] Helton | A sampling-based computational strategy for the representation of epistemic uncertainty in model predictions with evidence theory[END_REF][START_REF] Duy | An alternative comprehensive framework using belief functions for parameter and model uncertainty analysis in nuclear probabilistic risk assessment applications[END_REF][START_REF] Sentz | Combination of Evidence in Dempster-Shafer Theory[END_REF] , ( ) of Y [START_REF] Baudrit | Representing parametric probabilistic models tainted with imprecision[END_REF][START_REF] Baudrit | Joint propagation of probability and possibility in risk analysis: toward a formal framework[END_REF][START_REF] Baudrit | Joint propagation of variability and imprecision in assessing the risk of groundwater contamination[END_REF]131) . 

y F Y

Illustrative example

The benefits coming from the use of the hybrid probabilistic and possibilistic FRV approach illustrated in the previous Section 4. obtained by resorting to a probabilistic description of parameter γ (dashed line). In this respect, it is important to remember that in a two-level hierarchical framework of uncertainty representation, the quantiles of an uncertain variable Y are not fixed point values, but rather they are epistemicallyuncertain variables. In particular, if epistemic uncertainty is represented by probability distributions, then the quantiles of Y are correspondingly described by probability distributions. In the same way, when epistemic uncertainty is represented by possibility distributions, then the quantiles are described by possibility distributions [START_REF] Pedroni | Empirical comparison of methods for the hierarchical propagation of hybrid uncertainty in risk assessment, in presence of dependences[END_REF] . In this latter case, a couple of bounding CDFs (i.e., of cumulative possibility and necessity measures) can be associated to the corresponding quantiles using the formulas introduced in Section 4.1.1. The advantage of using a non-probabilistic representation of epistemic uncertainty lies in the possibility of providing bounds on the estimates of the 95-th quantile (in the light of the scarce information available on the variable it can be seen that the upper bound 0.3225 of the interval [0, 0.3225] (representing a conservative assignment of the exceedance probability "informed" by a faithful representation of the imprecision related to γ) is about 11 times larger than the corresponding point value generated by the purely probabilistic method h . This means that if we base our analysis on an inappropriately precise assumption (i.e., on the selection of a specific probability distribution even in presence of scarce information), we may significantly underestimate risk (for example, the probability of a given accident and/or the severity of the corresponding consequences). Instead, using families of probability distributions (within the framework, e.g., of possibility theory) implicitly introduce a sort of "informed conservatism" into the analysis, which should lead the decision maker to be "safely"-coherent with his/her limited and/or imprecise background knowledge. i

On the other hand, it has to be acknowledged that: (i) a poorly done possibilistic analysis can be just as misleading as a poorly done probabilistic analysis; (ii) even if possibility theory constitutes a "rigorous" tool for transforming the available information into an uncertainty representation, such uncertainty description remains, to a certain degree, subjective: for example, "it requires additional judgments in the specification of the possibility function" [START_REF] Aven | Some considerations on the treatment of uncertainties in risk assessment for practical decision making[END_REF] ; (iii) as argued in Ref. 18, even if a possibilistic analysis "meets to a large extent the ambition of objectivity by trying to reduce the g A remark is in order with respect to this sentence and to the existence "in reality" of a "true value" of the probability.

For subjective probabilities such "true" values have no meaning. Instead "true" values can be obviously defined for the frequentist probabilities. In the present paper we adopt a two-level, hierarchical framework to model uncertainty (also called probability-of-frequency approach): thus, a true value of the exceedance probability can be defined. h In this paper, a given (probability or consequence) estimate is considered in a broad sense more "conservative" than another one, if it implies and leads to a higher level of risk. However, since a discussion on the concept of "conservatism" goes beyond the scopes of the present paper, further details are not given here for brevity: the interested reader is referred to, e.g., Ref. 136 and references therein. i In other words, in line with Ref. 18, we may say that such non-probabilistic approaches can be considered "objective" tools for transforming the available information into an uncertainty representation, in the sense that they try to avoid the use of "subjective judgements and assumptions" in the analysis.

amount of arbitrary assumptions made in the analyses, it does not provide the decision maker with specific scientific judgments about epistemic uncertainties from qualified analysts and experts".

Actually, "expressing epistemic uncertainties means a degree of subjectivity, and decision making normally needs to be supported by qualified judgments" [START_REF] Aven | On the Need for Restricting the Probabilistic Analysis in Risk Assessments to Variability[END_REF] . In this respect, sometimes the bounds provided by a possibilistic analysis may be considered rather "non-informative and the decision maker would ask for a more refined assessment: in such cases, it is expected that the analysts are able to give some qualified judgments, so that a more precise assessment can be obtained" [START_REF] Aven | On the Need for Restricting the Probabilistic Analysis in Risk Assessments to Variability[END_REF] . (  ) 
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Recommended approach: Monte Carlo (MC) and Fuzzy Interval Analysis (FIA)

The hybrid MC and FIA approach combines the MC technique [START_REF] Zio | The Monte Carlo Simulation Method for System Reliability and Risk Analysis[END_REF] with the extension principle of fuzzy set theory [START_REF] Baraldi | A combined Monte Carlo and possibilistic approach to uncertainty propagation in event tree analysis[END_REF][START_REF] Baudrit | Joint propagation of probability and possibility in risk analysis: toward a formal framework[END_REF][START_REF] Baudrit | Joint propagation of variability and imprecision in assessing the risk of groundwater contamination[END_REF][START_REF] Kentel | Probabilistic-fuzzy health risk modeling[END_REF][START_REF] Zadeh | Fuzzy sets[END_REF]135) by means of the following main steps [START_REF] Baudrit | Representing parametric probabilistic models tainted with imprecision[END_REF][START_REF] Pedroni | Empirical comparison of methods for the hierarchical propagation of hybrid uncertainty in risk assessment, in presence of dependences[END_REF][START_REF] Pedroni | Hierarchical propagation of probabilistic and non-probabilistic uncertainty in the parameters of a risk model[END_REF][START_REF] Kentel | 2D Monte Carlo versus 2D Fuzzy Monte Carlo Health Risk Assessment[END_REF][START_REF] Möller | Time-dependent reliability of textile-strengthened RC structures under consideration of fuzzy randomness[END_REF](100) :

1. set α = 0 (outer loop, processing epistemic uncertainty by FIA); 2. select the α-cut sets , i.e., ( )

z F Z α = Plα Z ((-∞, z]) = ( ) { } z F Z α max and
( )

z F Z α = Belα Z ((-∞, z]) = ( ) { } z F Z α min
, respectively; 

( ) ( ) ( ) { } 1 0 : , ≤ ≤ α α α A Pl A Bel Z Z
, A = (-∞, z]: these sets of functions can then be synthesized into a single pair of plausibility and belief functions, Pl Z (A) and Bel Z (A), A = (-∞, z], as described in Section 4.1.1.

It is worth noting that performing an interval analysis on α-cuts assumes total dependence among the epistemically-uncertain parameters. Actually, this procedure implies strong dependence among the information sources (e.g., the experts or observers) that supply the input possibility distributions, because the same confidence level (1 -α ) is chosen to build the α-cuts for all the epistemically-uncertain parameters [START_REF] Baudrit | Joint Propagation and Exploitation of Probabilistic and Possibilistic Information in Risk Assessment[END_REF] (see Section 4.4 for further discussions on dependence).

Illustrative examples

In what follows, we report some of the results obtained in a previous work by some of the authors [START_REF] Pedroni | Empirical comparison of methods for the hierarchical propagation of hybrid uncertainty in risk assessment, in presence of dependences[END_REF] , in which the hybrid MC-FIA approach (Section 4. [START_REF] Pedroni | Empirical comparison of methods for the hierarchical propagation of hybrid uncertainty in risk assessment, in presence of dependences[END_REF][START_REF] Pedroni | Hierarchical propagation of probabilistic and non-probabilistic uncertainty in the parameters of a risk model[END_REF] For the exemplification, we consider the mathematical model Z1 = fZ1(Y1, Y2, Y3) already presented in Ref. 58: the uncertain inputs Y1, Y2•and Y3 are described by lognormal probability distributions with (triangular) possibilistic parameters. Figure 4 shows the plausibility and belief functions, ( ] ( )

1 , 1 z Pl Z ∞ - = ( ) 1 1 z F Z and ( ] ( ) 1 , 1 z Bel Z ∞ - = ( ) 1 1 z F Z
of the model outputs Z1 produced by the hybrid MC-FIA (solid lines) and MC-based DS-IRS (dashed lines) approaches [START_REF] Pedroni | Empirical comparison of methods for the hierarchical propagation of hybrid uncertainty in risk assessment, in presence of dependences[END_REF] . The results are very similar, i.e., in the present case, the effect of the different uncertainty propagation method is not evident [START_REF] Pedroni | Empirical comparison of methods for the hierarchical propagation of hybrid uncertainty in risk assessment, in presence of dependences[END_REF][START_REF] Pedroni | Hierarchical propagation of probabilistic and non-probabilistic uncertainty in the parameters of a risk model[END_REF] . Then, in order to highlight the effects of the different uncertainty propagation approaches, the upper and lower CDFs, ( ] ( )

Bel Z 1((-∞, z 1 ]) MC-based DS-IRS: Pl Z 1((-∞, z 1 ]) Hybrid MC-FIA: Bel Z 1((-∞, z 1 ]) Hybrid MC-FIA: Pl Z 1((-∞, z 1 ])
1 , 1 z Bel Z ∞ -
of model output Z1 obtained by the hybrid MC-FIA (solid lines) and MC-based DS-IRS (dashed lines) approaches [START_REF] Pedroni | Empirical comparison of methods for the hierarchical propagation of hybrid uncertainty in risk assessment, in presence of dependences[END_REF] α-cuts of level α = 0 of all the possibilistic parameters of the model inputs Y1, Y2 and Y3. Such combination of α-values, i.e., {α1 = 0, α2 = 0, α3 = 0}, is always "processed" by fuzzy interval analysis in the hybrid MC-FIA method, due to the underlying assumption of total dependence among the information sources (e.g., the experts or observers) that supply the parameters possibility distributions: actually, the same possibility (resp. confidence) level α (resp., 1 -α) is chosen to build the α-cuts for all the epistemically-uncertain parameters (see Section 4.2.1). On the contrary, such combination of possibility (resp., confidence) values, i.e., {α1 = 0, α2 = 0, α3 = 0} (resp., {1-α1 = 1, 1-α2 = 1, 1-α3 = 1}), cannot be obtained easily (i.e., with high probability) by the MC-based DS-IRS approach, which performs a plain random sampling among independent intervals. This is coherent with the real processes of expert elicitation, in that it is difficult to find different (independent) experts that provide estimates about different uncertain parameters with the same (and, in this case, maximal) confidence.

The higher conservatism of the hybrid MC-FIA approach is reflected, e.g., by the values of the > ranges within [0, 0.1500] for the hybrid MC-FIA method, whereas it is 0 for the MC-based DS-IRS approach: thus, the uncertainty propagation performed by random sampling of independent focal sets leads to a dramatic underestimation of the exceedance probability [START_REF] Pedroni | Empirical comparison of methods for the hierarchical propagation of hybrid uncertainty in risk assessment, in presence of dependences[END_REF] .

Some considerations are in order with respect to the results shown. The comparison shows that the choice of the uncertainty propagation method (and implicitly of the state of dependence among the epistemically-uncertain parameters of probability models) is not so critical (e.g., in risk-informed decisions) only when the extreme bounding upper and lower CDFs of the model output are of interest to the analysis: actually, the curves produced by the hybrid MC-FIA and the MC-based DS-IRS approaches are almost identical. However, the analysis of other quantitative indicators (e.g., the distribution of a given quantile of the output) shows that the hybrid MC-FIA method produces a larger separation between the plausibility and belief functions than the MC-based DS-IRS approach, giving rise to more conservative results (in particular, in the range of small probabilities that are of particular interest in the risk assessment of complex, highly reliable systems).

Updating the uncertainty representation with new information

In all generality, let ) (θ 

, Y ~ ) | ( θ y p Y = Gum(θ) = Gum(γ, δ) = ) , | ( δ γ y p Y and ) (θ θ π = ) , ( , δ γ δ γ π . Moreover, let ] ..., , ..., , , [ 2 1 D k y y y y = y
be a vector of D observed pieces of data representing the new information/evidence available for the analysis:

referring to the example above, y may represent a vector of D values collected over a long period time (e.g., many years) of the yearly maximal water flow of the river under analysis.

i. the transformation is simple and can be straightforwardly applied to any distribution (137) ;

ii. the resulting possibilistic likelihood is closely related to the classical, purely probabilistic one (which is theoretically well-grounded) by means of the simple and direct operation of normalization that preserves the "original structure" of the experimental evidence;

iii. it can be easily verified that the resulting possibilistic likelihood keeps the sequential nature of the updating procedure typical of the standard Bayes theorem.

Notice 

Illustrative example

For completeness, we report (and extend) some of the results obtained in a previous work by the authors [START_REF] Pedroni | Empirical Comparison of Two Methods for the Bayesian Update of the Parameters of Probability Distributions in a Two-Level Hybrid Probabilistic-Possibilistic Uncertainty Framework for Risk Assessment[END_REF] , in which the purely possibilistic Bayes' theorem described above is applied for updating the possibilistic parameters of aleatory PDFs in a simple literature case study involving the riskbased design of a flood protection dike [START_REF] Limbourg | Uncertainty analysis using evidence theory -confronting level-1 and level-2 approaches with data availability and computational constraints[END_REF] . In the risk model considered the maximal water level c Z of a river (i.e., the output variable Z of the model) is given as a function of several (uncertain)

parameters (the inputs Y to the model), produced by the classical MLE method are also shown for comparison (dots) [START_REF] Pedroni | Empirical Comparison of Two Methods for the Bayesian Update of the Parameters of Probability Distributions in a Two-Level Hybrid Probabilistic-Possibilistic Uncertainty Framework for Risk Assessment[END_REF][START_REF] Limbourg | Uncertainty analysis using evidence theory -confronting level-1 and level-2 approaches with data availability and computational constraints[END_REF] . From a mere visual and qualitative inspection of Figure 6, it can be seen that both approaches are suitable for revising the prior possibility distributions by means of empirical data. In particular, it is evident that: (i) the most likely (i.e., preferred) values cθ of the epistemically-uncertain parameters (i.e., those values in correspondence of which the possibility function equals 1) are moved towards the MLE estimates MLE θ ˆ in all the cases considered; (ii) the area Sθ underlying the corresponding possibility distributions is significantly reduced: noting that this area is related to the imprecision in the knowledge of the possibilistic parameter (i.e., the larger the area, the higher the imprecision), it can be concluded that both approaches succeed in reducing the epistemic uncertainty (nevertheless, note that the agreement between the results obtained with the two numerical procedures does not necessarily establish the correctness or appropriateness of those procedures).
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On the other hand, it is evident that the strength of Approach A in moving the most likely values cθ towards the corresponding MLE estimates MLE θ ˆ is always higher than that of Approach B.

Actually, the distances between the MLE estimates MLE In addition, it is interesting to note that the strength of Approach B in reducing epistemic uncertainty is slightly higher than that of Approach A only when the amount of available data is quite large (i.e., in the revision of the possibility distributions of parameters γ and δ of the PDF of Y1 = Q, by means of D1 = 149 pieces of data): actually, the areas underlying the corresponding possibility distributions are reduced by 25.56-30.49% and 28.74-33.01% by Approaches A and B, respectively. In all the other cases, the power of Approach A in reducing the epistemic uncertainty is higher than that of Approach B and this difference becomes more and more evident as the size of the data set decreases. This is particularly evident in the estimation of the standard deviation σKs of Ks (Figure 6, right): on one side, the posterior distribution produced by the hybrid approach (B) seems not to be influenced by the revision process (actually, the most likely value of the parameter, Several considerations are in order with respect to the results obtained. Both methods succeed in updating the possibilistic description of the epistemically-uncertain parameters of (aleatory) probability distributions by means of data. In addition, when the Bayesian update is performed based on a data set of large size (e.g., > 100 in this case), the strength of the two approaches in reducing the epistemic uncertainty is quite similar. This demonstrates that although the two methods are conceptually and algorithmically quite different, in presence of a "strong" experimental evidence they produce "coherent" results (i.e., posterior possibility distributions that bear the same overall "uncertainty content"): this is a fair outcome since the results provided by the two methods are expected to be more and more similar (i.e., more and more coherent with the experimental evidence) as the size of the data set increases. Instead, the strength of the purely possibilistic approach (A) in reducing epistemic uncertainty is consistently higher than that of the hybrid one (B) in presence of mediumand small-sized data sets (e.g., ≈ 5-30 in the present study) (which is often the case in the risk analysis of complex safety-critical systems). In such cases, embracing one method instead of the other may significantly change the outcome of a decision making process in a risk assessment problem involving uncertainties: this is of paramount importance in systems that are critical from the safety view point, e.g., in the nuclear, aerospace, chemical and environmental fields. However, it is absolutely important to acknowledge that even if the strength of method A in reducing epistemic uncertainty is higher than that of method B, this does not necessarily imply that method A is "better" or "more effective" than method B overall. Actually, if on one side a consistent reduction in the epistemic uncertainty is in general desirable in decision making processes related to risk assessment problems (since it significantly increases the analyst confidence in the decisions), on the other side this reduction must be coherent with the amount of information available. In this view, an objection may arise in the present case: is the remarkable strength of Approach A in reducing epistemic uncertainty (with very few pieces of data) fully justified by such a small amount of data? In other words, is this considerable reduction of epistemic uncertainty coherent with the strength of the experimental evidence or is it too optimistic? With respect to that, it has to be admitted that the uncertainty reduction power of the purely possibilistic approach (A) is strongly dependent on the shape of an artificially constructed possibilistic likelihood that could in principle bias the analysis. However: (i) in the approach recommended in the present paper, this possibilistic function is very closely related to the classical, purely probabilistic one (which is theoretically well-grounded) by a simple and direct operation of normalization that preserves the "original structure" of the experimental evidence; (ii) in general, a probability-to-possibility transformation (properly performed according to the rules of possibility theory) always introduces additional artificial epistemic uncertainty into the analysis, i.e., it does not artificially reduce it (because it replaces a single probabilistic distribution by a family of distributions) (132,134,135) . On the basis of the considerations above, it seems unlikely that the purely possibilistic approach (A) may produce results that are dangerously over-optimistic with respect to those of the hybrid one (B).

Finally, the computational time required by the hybrid approach (B) is consistently (i.e., hundreds or thousands times) higher than that associated to the purely probabilistic one (A): this is explained by the necessity of repeatedly applying many (e.g., hundreds) times the purely probabilistic Bayes' theorem for each α-cut analyzed.

Dependence among the input variables and parameters

As discussed in Section 3.4, both objective and state-of-knowledge dependences need to be considered in risk assessment analyses [START_REF] Usnrc | Guidance on the Treatment of Uncertainties Associated with PRAs in Risk-Informed Decision Making[END_REF][START_REF] Ferson | Dependence in probabilistic modeling, Dempster-Shafer theory, and probability bounds analysis[END_REF][START_REF] Apostolakis | Pitfalls in risk calculations[END_REF] . However, in many practical cases the state of dependence among the uncertain model parameters and variables is difficult to define precisely. In such situations, conservatism requires that all kinds of (possibly unknown) dependences be accounted for. To do this, the Distribution Envelope Determination (DEnv) method is here recommended (126)(127)(128)(129) . In Section 4.4.1 the method is outlined in detail; a demonstration of the approach on a case study concerning Fault Tree Analysis (FTA) is given in Section 4.4.2.

Recommended approach: Distribution Envelope Determination (DEnv) method

The DEnv method allows computing extreme upper and lower CDFs (1) no matter what dependencies exist among the inputs; these bounds are also the "pointwise best possible, which means they could not be any tighter without excluding some possible dependences" [START_REF] Ferson | Dependence in probabilistic modeling, Dempster-Shafer theory, and probability bounds analysis[END_REF] . Notice that this approach can be applied both at the objective and epistemic levels [START_REF] Pedroni | Empirical comparison of methods for the hierarchical propagation of hybrid uncertainty in risk assessment, in presence of dependences[END_REF][START_REF] Pedroni | Uncertainty analysis in fault tree models with dependent basic events. Risk Analysis[END_REF] . The method requires the following steps (126)(127)(128)(129) :

1. represent the uncertainty on the inputs Y1, Y2, …, Yj, …, YN within the framework of Dempster-Shafer (DS) theory of evidence. The application of evidence theory produces a description of the inputs in terms of so-called DS structures ( )

( ) ( ) { } j j i Y i Y n i A m A j j j j ..., , 2 , 1 : 
1 1 y F Y = ] [ 1 1 y Y P < = ( ) [ ] ∑ ≠ ∩ 0 , 0 1 1 1 1 1 y A i Y i Y A m and
( )

1 1 y F Y = ] [ 1 1 y Y P < = ( ) [ ] ∑ ⊂ 1 1 1 1 1 , 0 y A i Y i Y A m
. An exemplary DS structure and the corresponding upper and lower CDFs are pictorially shown in Figure 7 j [START_REF] Ferson | Dependence in probabilistic modeling, Dempster-Shafer theory, and probability bounds analysis[END_REF][START_REF] Ferson | Constructing probability boxes and Dempster-Shafer structures[END_REF][START_REF] Helton | A sampling-based computational strategy for the representation of epistemic uncertainty in model predictions with evidence theory[END_REF][START_REF] Sentz | Combination of Evidence in Dempster-Shafer Theory[END_REF][START_REF] Shafer | Perspectives on the theory and practice of belief functions[END_REF] ; 
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) and the resulting lower CDF on Z is the minimal possible ( ( )

z F Z DEnv = ( ) { } z F Z min
) given a precise set of constraints (126)(127)(128)(129) : (3) j Notice that representing the uncertainty in the inputs Y1, Y2, …, Yj, …, YN by DS structures does not impair the generality of the description. Actually, any other type of distribution that may be used to describe the uncertainty in Y1, Y2, …, Yj, …, YN can be easily transformed into a DS structure: approaches for transforming probability distributions can be found in Ref. 102, whereas techniques for transforming possibility distributions can be found in Ref. 33. (4) subject to the constraints that: (i) the probability masses ( )
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are conserved (i.e., ( ) ( ) for Z, such optimization problems have to be solved for all the values z of interest.
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Finally, notice that an alternative sampling-based approach to (i) the propagation of a DS structure through a model and (ii) the construction of approximations to the cumulative plausibility and belief functions can be found in Refs. 39 and 44; however, being a sampling-based strategy, this approach cannot encompass the treatment of unknown dependences between uncertain variables. represents the extreme (most conservative) case where no assumptions about the states of objective dependence among all the BEs are made. Instead, Configuration T2 represents an 'intermediate' case. In particular, in Configuration T2 positive objective dependence is assumed between two of the six BEs (in this case, between two events representing failures of mechanical components): this situation is far from unlikely in real systems and may be due to several causes, e.g., (i) shared pieces of equipment (e.g., components in different systems are fed from the same electrical bus) or (ii) physical interactions (e.g., failures of some component create extreme environmental stresses, which increase the probability of multiple-component failures). Finally, in Analysis 2 only three 'extreme' situations (namely, E1-E3) are considered: in particular, in Configurations E1, E2 and E3 states of independence, total (perfect) dependence and unknown epistemic dependence, respectively, are assumed among all the probabilities of all the BEs of the FT. 1. for the first issue, the Fuzzy Random Variable (FRV) approach can be one of those recommended for uncertainty modeling and representation, in particular when the data and information available on the problem of interest are scarce, vague and/or imprecise. In such a framework, aleatory uncertainty is represented by probability models (i.e., probability distributions), whereas epistemic uncertainty in the internal parameters of the aleatory models is described by possibility distributions. The resulting FRV defines a family of nested pairs of aleatory probability distributions, each of which bounds the "true" probability distribution with a given confidence level.

In the examples here proposed, the FRV approach has been shown to provide more conservative results than the classical, purely probabilistic one in the estimation of important quantities, like the distribution of a quantile of the model output. On the other hand, this does not mean that possibility distributions should be always used to represent epistemic uncertainty. Actually: (i) other non-probabilistic approaches exist for tackling problems characterized by imprecise information (see, e.g., evidence theory); (ii) in some cases (e.g., in the presence of a relevant amount of data) also classical probability theory can obviously serve this purpose;

2. for the second issue, in general the hierarchical propagation of hybrid aleatory (probabilistic)

and epistemic (possibilistic) uncertainty should be carried out coherently with the state of dependence between the epistemically-uncertain parameters, if known. On the other hand, if the objective of the analyst is that of producing conservative risk estimates, then the MC-FIA approach should be adopted. Actually, it has been show to provide more conservative results than the MC-based DS-IRS approach in the estimation of the distributions of a given quantile of the model output. In addition, this higher conservatism is particularly evident in the range of extreme probabilities (i.e., around 0 and 1) that are of paramount importance in realistic risk assessment applications involving highly reliable engineering systems;

3. for the third issue, the purely possibilistic counterpart of the classical probabilistic Bayes' theorem is strongly suggested (instead of the hybrid one) for updating, in a Bayesian framework, the possibilistic representation of the epistemically-uncertain parameters of (aleatory) probability distributions. This is due to the following reasons: (i) its strength in reducing epistemic uncertainty is significantly higher, in particular when the amount of available data is small: this is important in decision making processes since reducing epistemic uncertainty significantly increases the analyst confidence in the decisions; (ii) the computational time required is consistently lower. However, it has to be remarked that the construction of a possibilistic likelihood required by this method still represents an issue to be tackled from the theoretical and practical viewpoint in order to avoid introducing biases in the analysis: with respect to that, future research will be devoted to the investigation of additional methods, either resorting to probability-possibility transformations or (preferably) building possibilistic functions directly from rough experimental data;

4. for the fourth issue, it has been shown that (i) the treatment of objective dependences among random events is very critical since they have a dramatic impact on the system risk measures: in this view, unknown (or, at least, positive) objective dependence should be assumed among random events, in particular if the corresponding probabilities are small (e.g., of the order of 10 -3 -10 -2 ); (ii) the conditions of epistemic dependence should not be neglected when small probabilities and extreme quantiles have to be estimated: with respect to that, unknown (or, at least, perfect) epistemic dependences should be assumed in order to obtain conservative risk estimates; however, if objective dependences are also present, the effects of epistemic dependence are likely to be overwhelmed by those of objective dependence. In the light of these results, the DEnv method is strongly recommended to account for all kinds of (possibly unknown) objective and epistemic dependences.

Tackling these issues is undoubtedly a step forward towards the use of non-probabilistic settings for risk analysis in engineering and gives encouraging perspectives for future studies. Without taking any dogmatic position, the proposed methodology could be considered as an alternative to the more common probabilistic approach.

However, these conclusions should not hide some difficulties in the practical use of these methods which are currently partially addressed and should be more investigated in future works. A first limitation comes from the computational cost of these approaches, which can become prohibitive when the system model is a CPU time consuming code as it can be often the case in complex system safety studies (e.g. finite elements CFD or mechanical codes, multi-physical coupling of models). This problem can be tackled by distributed computing and/or meta-modeling techniques (the latters adding an additional level of uncertainty).

Another interesting perspective for future work is the definition of point risk indicators (e.g. a probability of failure). That can be done quite easily (at least by a conceptual viewpoint) in the fully-probabilistic framework: the Bayesian point estimator is the value minimizing the expectation of a loss function depending on the "distance" of the proposed value from the real (albeit unknown) one, the loss function encoding the conservatism one wants to give to the point risk indicator (107) . In some studies, it should be interesting to have at disposal a formal theory for choosing a point value of the quantity of interest to be estimated, especially when the interval resulting from the methodology shown hereinbefore is very large. Depending on the context, the counterpart of the conservatism of these intervals is the difficulty in making decision under their base.

As a closing general comment, it is worth pointing out that although in some of the recommendations above we have chosen "informed" conservatism as a possible criterion of comparison between the probabilistic and possibilistic methods, we do not want to overstate the benefits of conservatism in itself. Actually, (i) assumptions that are conservative without justification may cause a misallocation of resources; (ii) excessive conservatism can impair the

  109, a Generalized Bayes Theorem (GBT) has been proposed within the framework of evidence theory. In Refs. 110 and 111, a modification of Bayes theorem has been presented to account for the presence of fuzzy data and fuzzy prior Probability Distribution Functions (PDFs). In Refs. 112 and 113, a purely possibilistic counterpart of the classical, well-grounded probabilistic Bayes theorem has been proposed to update the possibilistic representation of the epistemically-uncertain parameters of (aleatory) probability distributions. Finally, Ref. 114 has introduced a hybrid probabilistic-possibilistic method that relies on the use of Fuzzy Probability Density Functions (FPDFs), i.e., PDFs with possibilistic (fuzzy) parameters (e.g., fuzzy means, fuzzy standard deviations, …): it is based on the combination of: (i) Fuzzy Interval Analysis (FIA) to process the uncertainty described by possibility distributions and (ii) repeated Bayesian updating of the uncertainty represented by probability distributions.
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  = P((-∞, γ]), that we can build in coherence with the scarce information available on γ, i.e., only the mode and support.In other words, we can state that the triangular possibility distribution ) (γ π γ of Figure1left produces a couple of CDFs (Figure 1 right), that bound the family of all the possible CDFs with mode cγ = 1100 and support [aγ, bγ] = [900, 1300] (see Refs. 43, 47 and 50 for a formal proof).In order to provide an additional practical interpretation of the possibility distribution ) we can define its so-called α-cut sets (intervals) = [1000, 1200] is the set (interval) of γ values for which the possibility function is greater than or equal to 0.5 (dashed segment in Figure1, left). In the light of the discussion above, the α-cut set γ α A of parameter γ can be interpreted as the (1 -α)•100% Confidence Interval (CI) for γ, i.e., the interval such that α
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 10 1.1 are here shown by comparison with a traditional, purely probabilistic two-level framework, where the epistemically-uncertain parameter γ of the Gumbel probability model is itself described by a single PDF ) (γ γ p ; notice that the results reported hereafter are presented for the first time in this paper. In order to perform a fair comparison between the two approaches, a sample from the PDF ) (γ γ p here employed is obtained by applying the principle of insufficient reason (132) to the possibility distribution left. The procedure for obtaining such a sample is (132, 133) : (i) draw a random realization α* for α in [0, 1) and consider the α-cut level ] ) sample a random realization γ* for γ from a uniform probability distribution on γ α* A . Other techniques for the transformation of possibility distributions into PDFs can be found in Refs. 60, 132, 134 and 135. In order to highlight the effects of different representations of epistemic uncertainty, we analyze the 95-th quantile 95 . of the uncertain variable Y. Figure 3 shows the corresponding bounding CDFs 95 ℜ ∈ ) produced using a possibilistic (solid lines) representation of the epistemically-uncertain parameter γ together with the single CDF
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 342 Figure 3. Epistemic distributions of the 95-th quantile 95 . 0 Y of Y ~ Gum(γ, δ) obtained through a possibilistic (solid lines) and probabilistic (dashed line) representation of parameter γ
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 1 parameters vectors { j θ : j = 1, 2, …, N};3. letting parameters jθ range within the corresponding α-cuts hybrid" input variables j Y , j = 1, …, N;4. propagate the (input) families of CDFs by standard MC sampling to obtain the (output) family of CDFs Z (inner loop, processing aleatory uncertainty by standard MC simulation);5. identify the limiting CDFs (that bound above and below the "true" CDF α)•100%) as those that 'envelop' the family
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  2.1) is used to propagate mixed probabilistic and possibilistic uncertainties through mathematical models. The effectiveness of the proposed technique is shown by means of a comparison with the MC-based Dempster-Shafer (DS) approach employing Independent Random Sets (IRSs), where the possibility distributions describing the epistemically-uncertain parameters are discretized into focal sets that are randomly and independently sampled by MC (see Section 3.2). Such discretization requires the following steps (48) : (i) determine Ne (nested) focal sets for the generic possibilistic parameter θ as the α-cuts In this paper, Ne = 21 and mαt = 0.05 are chosen for the sake of comparison with the hybrid MC-FIA approach (see Section 4.2.1).
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 1 of Z1 are further analyzed. Figure5, left, shows the bounding CDFs for95 . produced by the hybrid MC-FIA (solid lines) and the MC-based DS-IRS (dashed lines) approach; for illustration purposes, Figure5, right, shows the possibility distributions DS-IRS:
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  Y(built on the basis of a priori subjective engineering knowledge and/or data). For example, in the flood risk assessment example used in what follows Y may represent the yearly maximal water flow of a river described by the Gumbel distribution of Section 4.1: thus
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  of the parameters of the aleatory PDFs of the inputs are represented by triangular possibility distributions: see Ref. 61 for further details. The benefits coming from the use of the proposed method are here shown by means of a comparison to the hybrid probabilistic-possibilistic approach proposed in Ref. 114 (hereafter also called 'Approach B' for brevity) and based on the combination of: (i) FIA to process the uncertainty described by possibility distributions; and (ii) repeated Bayesian updating of the uncertainty represented by probability distributions. In order to simplify the notation, in what follows let θ be one of the uncertain parameters of the PDFs of Y1 = Q, Y2 = Zm, Y3 = Zv and Y4 = Ks, i.e., θ = γ , δ , Zm µ , Zm σ , Zv µ , Zv σ , s K µ or Ks σ . By way of example, Figure 6 illustrates the possibility distributions of the epistemically-uncertain parameters γ and σKs of the aleatory PDFs of Y1 = Q and Y4 = Ks, respectively: in particular, the prior possibility distributions ) (θ π θ are shown as solid lines, whereas the marginal posterior possibility distributions ) Section 4.3.1) and B (114) using D1 = 149 and D4 = 5 pieces of data are shown in dashed and dotdashed lines, respectively; the point estimates MLE θ ˆ
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 6 Figure 6. Prior and posterior possibility distributions of the epistemically-uncertain parameters γ and σKs of the aleatory PDFs ( ) δ γ , q p Q (left) and

  θ ˆ and the posterior most likely values produced by Approach A are 1.35-7.94 times lower than those generated by Approach B.
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 6 72, and the area underlying the corresponding posterior possibility distribution, Ks S σ = 3.95, are quite close to those of the prior, i.e., 6.89 and 4.11, respectively); on the other side, the posterior distribution generated by the purely possibilistic approach (A) is almost centered on the point estimates obtained by the MLE method and the corresponding area is reduced by about 9%.

Finally, in addition

  to the strength of the approaches in revising the (prior) possibilistic description of the uncertain parameters of aleatory variables, also the computational cost associated to the methods has to be taken into account. In this respect, the time tcomp required by Approach B is approximately T•Nα times larger than that of Approach A, since it entails T repetitions of the purely probabilistic Bayes theorem for each of the Nα α-cuts analyzed (in this case, T•Nα = 100•21 = 2100): see Ref. 114 for details.
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 1211 …, N: in other words, input Yj is described by a set of nj intervals (focal elements) is assigned a probability (or belief) mass ( ) j = 1, 2, …, N. Notice that the DS structures described above can be transformed into upper and lower Cumulative Distribution Functions (CDFs) (called cumulative plausibility and belief functions, respectively): in particular,

1 Figure 7 .

 17 Figure 7. Exemplary DS structure (left) and corresponding upper and lower CDFs (right)

Figure 8 ,F

 8 Figure 8, left, depicts the upper and lower CDFs

Figure 8 .
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  is 0.0285, whereas the interval produced by the hybrid FRV approach is [0, 0.3225]. If a faithful description of the (scarce and imprecise) information available on the variable

	). For example, 95 . 0 Y exceeds a = [0, 0.3225], then the analyst cannot exclude that in reality such let us refer to the quantitative indicator ] [ * 95 . 0 95 . 0 y Y P > , i.e., the probability that ] [ * 95 . 0 95 . 0 y Y P > given safety threshold y 0.95Y leads to exceedance probability is equal to the highest "possible" value obtained (i.e., 0.3225) g . In this light,

* (= 1400 in this case): the point estimate provided by the purely probabilistic approach

  that other techniques of transformation of probability density functions into possibility distributions exist: see Refs. 132, 134 and 135. Techniques are also available to construct possibility distributions (and, thus, possibilistic likelihood functions) directly from experimental data (i.e., without resorting to "artificial" transformations): see Refs. 138 and 139 for details.
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The new evidence acquired can be used to update the a priori uncertainty representation ) (θ ) of θ after y is obtained. In Section 4.3.1, a method based on a purely possibilistic counterpart of the classical, probabilistic Bayes theorem is suggested for the updating; in Section 4.3.2, the effectiveness of the recommended approach is assessed, for the first time to the best of the authors' knowledge, by comparison with a hybrid probabilistic-possibilistic technique of literature.

Recommended approach: purely possibilistic Bayes' theorem

The purely possibilistic method (hereafter also referred to as 'Approach A' for brevity) is based on a purely possibilistic counterpart of the classical, probabilistic Bayes theorem (112,113) :

{ }

Illustrative example

In what follows, we report some of the results obtained in a previous work by some of the authors [START_REF] Pedroni | Uncertainty analysis in fault tree models with dependent basic events. Risk Analysis[END_REF] , in which the effects of objective and epistemic dependences are analyzed with reference to the Top Event (TE) probability P(X) of a Fault Tree (FT) containing nBE = 6 Basic Events (BEs)

with epistemically-uncertain probabilities

. The order of magnitude of the BE probabilities is around 10 -3 : this is reasonable for realistic safety-critical systems where the components are usually highly reliable. Further details can be found in the cited reference. upper bound 1 (resp., lower bound 0). In other words, the CDFs produced under assumptions of perfect and unknown epistemic dependence are almost identical in the range of extreme probabilities (i.e., extreme quantiles) that are of particular interest in the risk assessment of highly reliable systems. This is confirmed by the analysis of actually, the corresponding estimates may differ even by orders of magnitude. Moreover, this underestimation is shown to be quite dramatic for small BE probabilities (e.g., around 10 -3 like in the present case): this poses concerns for the risk assessment of systems where the components are highly reliable and, thus, characterized by small failure probabilities.

With respect to Analysis 2, it is shown that: (i) the assumption of epistemic independence among the probabilities of random events leads to a non-negligible underestimation of the risk associated to the system (here represented by the upper bound of the 95-th quantile of the TE probability) with respect to the assumptions of perfect and unknown epistemic dependence (e.g., by about 1.5 times):

this is particularly evident in the estimation of small probabilities and extreme quantiles that are of paramount importance in the risk assessment of highly reliable systems; (ii) the estimates for the upper bound of the 95-th quantile of the TE probability produced by the assumptions of perfect and unknown epistemic dependence are comparable and (iii) the effects of epistemic dependence among the BE probabilities are quantitatively less relevant and critical than those of objective dependence among the BEs.

CONCLUSIONS AND DISCUSSION

In this paper, the following conceptual and technical issues on the uncertainty treatment in the risk assessment of engineering systems have been considered: (1) quantitative modeling and representation of uncertainty, coherently with the information available on the system of interest;

(2) propagation of the uncertainty from the input(s) to the output(s) of the model of the system; (3) (Bayesian) updating of the uncertainty representation as new information becomes available; (4) modeling and representation of dependences among the model input variables and parameters.

Different approaches to tackle each of the issues 1.-4. listed, outside a fully probabilistic framework have been compared. On the basis of the comparisons and of previous research by the authors [START_REF] Pedroni | Empirical comparison of methods for the hierarchical propagation of hybrid uncertainty in risk assessment, in presence of dependences[END_REF][START_REF] Pedroni | Uncertainty analysis in fault tree models with dependent basic events. Risk Analysis[END_REF][START_REF] Pedroni | Hierarchical propagation of probabilistic and non-probabilistic uncertainty in the parameters of a risk model[END_REF][START_REF] Pedroni | Empirical Comparison of Two Methods for the Bayesian Update of the Parameters of Probability Distributions in a Two-Level Hybrid Probabilistic-Possibilistic Uncertainty Framework for Risk Assessment[END_REF] , the following guidelines and recommendations have been drawn: results of an entire analysis, because it makes the analysts appear to lack an understanding of the problem under consideration; (iii) in some cases, an assumption, which is conservative with respect to some results of a given analysis, may be non-conservative with respect to other results of the same analysis. Overly conservative assumptions can be as damaging to decision making as overly optimistic assumptions (i.e., not "anchored" to the available information). In an analysis performed to support a possibly critical, safety-related decision, the appropriate goal is to be neither overly optimistic nor overly pessimistic in the assumptions used, but rather to use "objective" and rigorous tools for transforming the available information into a "faithful" description of the uncertainties that are present in the analysis and its results.