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ABSTRACT

Models for the assessment of the risk of complginearing systems are affected by uncertainties,
due to the randomness of several phenomena invailvédhe incomplete knowledge about some of
the characteristics of the system. The objectivahef present paper is to provide operative
guidelines to handle some conceptual and techmssales related to the treatment of uncertainty in
risk assessment for engineering practice. In patéc the following issues are addressed: (1)
guantitative modeling and representation of undetiacoherently with the information available
on the system of interest; (2) propagation of theautainty from the input(s) to the output(s) of th
system model; (3) (Bayesian) updating as new irdtion on the system becomes available; (4)
modeling and representation of dependences amomgnibut variables and parameters of the
system model. Different approaches and methodsem@nmended for efficiently tackling each of
the issues (1(4) above; the tools considered are derived frorthlmbassical probability theory as
well as alternative, non-fully probabilistic uncanmty representation frameworks (e.g., possibility
theory). The recommendations drawn are supportedti®y results obtained in illustrative

applications of literature.

Keywords: uncertainty representation and propagation, Bagagdate, dependences.



1 INTRODUCTION

The aim of this work is to critically address sos@nceptual and technical issues related to the
treatment of uncertainty in risk assessment foiregging practice, with a particular focus on non-
probabilistic approaches. The motivation is thenaskledgement that the subjectregk nowadays
plays a relevant role in the design, developmepgration and management of components,
systems and structures in many types of indlis®y This is particularly true for civil, nuclear,
aerospace and chemical systems that are safatatciind must thus be designed and operated
within a quantitative risk-informed approach aimedsystematically integrating deterministic and
probabilistic analyses to obtain a ratiodaktisionon the utilization of resources for safety. Intsuc
rationalization, explicit consideration is giventte likelihood of accidents(scenarios) and to their
potentialconsequencé&st?,

In order to describe the physical phenomena that leed to system failurepathematical (risk)
models are built that provide a representation of thel mastem dependent on a number of
hypothesesand parameters The risk model provides numerical outputs (erglevant safety
parameters) possibly to be compared with predefiederical safety criteria for further guidance
to risk-informed decision making proceséed % 13 14 However, in practicenot all the
characteristics of the system under analysis caiullyecaptured in the risk model, which leads to
uncertaintyon both the values of the (input) parameters anthe hypotheses supporting the model
structuré 57} such input uncertainty causes uncertainty in rifedel outputs and, thus, in the
correspondingisk estimatesThis output uncertainty must be estimated fagaistic quantification

of the system behavior and associated risk, foirugecision making 51"

In this paper, we focus on four relevant, concdparal practical, issues on the treatment of

uncertainty in the risk assessment of safety-aligngineering systems:



1. The uncertainties in the model (input) parametensl &ypotheses have to be first
systematicallyidentified and classified then, they have to bguantitativelymodeledand
describedby rigorous mathematical approaches coherently thieinformationavailable on
the system. The key point is to guarantee thatnaiogies are taken into account in a way
that theknowledgerelevant for the risk assessment processegesentedin the most
faithful mannef* 1822) For sake of simplicity, we will not deal here &gjply with
uncertainties tainting the system’s model itselfhéther this point is the object of many
research and engineering works in the computerrempats community, e.g. Refs. 23-26,
in engineering practice it is more common to sejeathe phases of assessing model's
accuracy and propagating uncertainties from inpubatput variablé$”. See also the
interesting and pragmatic viewpoint on this issuRef. 28.

2. The uncertainties in the input(s) have toppbepagatedonto the output(s) of the risk model
(i.e., onto the risk measures), to provide the sieni makers with a clearly risk-informed
picture of the problem upon which they can confttiereason and deliberdté 2 22 29)

3. The quantitative representation of uncertainty sed¢d be updated in a Bayesian
framework, whemewinformation/evidence (e.qg., data) becomes avaif&t).

4. Possibledependencesxisting among the input parameters and variabighe system risk
model need to be properly accounted®fr Actually, it is widely acknowledged that
neglecting such dependenamsild lead to dramaticinderestimationsf the risk associated
to the functioning of complex, safety-critical engering systen®3" (e.g.,

underestimation of the magnitude of the consequeotan accident scenario).

For more than 30 years, a probabilistic framewa® been embraced to address the process of risk
assessment and the treatment of the associatetainties. The common term used is Probabilistic

Risk Assessment (PRA, also referred to as Quantt&Risk Assessment-QRAY). However, the



purely probability-based approaches to risk ancertagty analysis could be challenged under the
common conditions of limited or poor knowledge, wtibe information available does not provide
a strong basis for a specific probability assignti&nin this view, a broader risk description is
sought where all the uncertainties are laid ouaifpland flat" with no additional information
inserted in the analysis in the form of assumptiamd hypotheses which cannot be proven right or
wrong. This concern has sparked a number of irgesbns in the field of uncertainty
representation and analysis, which has led to tbeeldpments ofalternative (non-fully
probabilistic) frameworks for describing uncertainties in rigls@ssment$2% 28 38 399 ¢ g fuzzy
set theor{f?, fuzzy probabilitie$?), random set theofi?, evidence theof§? 43-6) possibility
theory*”-5%, probability bound analysis using probability-bex@-boxes§” 5V interval analysi§®

53 and interval probabilitié¥"; notice that most of these theories can be indwdéhin the general

common framework aimprecise probabilitie§®5")

In this context, the main objective of the presgmiper is to show in a systematic and
comprehensive framework how some conceptual antinieal issues on the treatment of
uncertainty in risk assessment (items-41. above) can be effectively tackled outside the
probabilistic setting: practically speakindjfferentapproaches and methods will be recommended
for efficiently addressingachof the issues 14. listed above; classical probability theory toats
well as alternative, non-probabilistic ones (intparar, possibility theory) are considered. The
recommendations are ‘informed’ by (i) a criticalieav of the literature approaches to solving the
specific issues and (ii) the research work of th#hnars on addressing these issues: with respect to
the latter item (ii), some of the considerations based on results contained in articles previously
published by the authd?&®?: other conclusions are instead drawn from analységinally

presented in this paper (e.g., part of the workteel to the issue of Bayesian updating).



The remainder of the paper is organized as folldwsSection 2, risk assessment and uncertainty
analysis are introduced. In Section 3, the fourceptual and technical issues related to uncertainty
treatment in risk analysis mentioned above areeptesl and critically analyzed, and the relevant
literature reviewed. In Section 4, techniques a®mmended to effectively tackle such issues;
results of the application of the proposed techesqto some case studies of literature are also

shown. Finally, guidelines and recommendationsamemarized in the concluding Section.

2 UNCERTAINTY IN RISK ASSESSMENT

The quantitative analyses of the phenomena ocgurim many engineering systems and
applications are based amathematical modelsvhich are translated into numerical computer sode
for quantificatiof® ” 2 In engineering practice, the mathematical modetsnot capable of
capturingall the characteristics of the system under anafy&is This leads taincertaintyon both
the values of the model input parameters/variables on the hypotheses supporting the model
structure. Such uncertainty propagates within tloeleh and causes uncertainty in its outffits
Formally, we consider a mathematical mof€Y), which depends on the input quantitées {1,

Y2, ..., Y], ..., Yn} and on the (possibly implicit) functiofz(-). The model is used to evaluate one or
more output quantitied = {Zi, Z, ..., 4, ..., Zo} of the system under analysis:

Z2={Z1,22, ....,2, .... 20} = f2(Y) = fz(Y1, Y2, ..., Y, ..., ). 1)

By way of example, in the risk-based design of aodl protection dike the output quantity of
interest may be represented by the water leveh@fritver in proximity of a residential af#4 In
what follows, for the sake of simplicity of illusttion and without loss of generality we consider
only one (scalar) outpwt, i.e.,Z ={Z1, 2, ..., 2, ..., Zo} = Z =fz(Y).

The uncertainty analysis of requires an assessment of the uncertainties aboand their

propagation through the modg{-) to produce an assessment of the uncertairiag A.



In the context of risk assessment, uncertaintys/eniently distinguished intiwo differenttypes
‘aleatory’ (also known as ‘objective’, ‘stochastiof ‘irreducible’) and ‘epistemic’ (also known as
‘subjective’, ‘state-of-knowledge’ or ‘reduciblé®®* 7 15 16. 63-65) Aleatory uncertainty is related to
randomvariations i.e., to the intrinsicallyandom natureof several of the phenomena occurring
during system operation. It concerns, for instarthe, occurrence of the (stochastic) events that
define various possible accident scenarios forfetysaritical system (e.qg., a nuclear power plént)
10,66, 67) physical quantities like the maximal water flohaoriver during a year, extreme events like
earthquakes or natural processes like erosion edinsntatioff> 68 Epistemic uncertainty is
instead associated to tleek of knowledgabout some properties and conditions of the phenem
underlying the behavior of the systems. This urdety manifests itself in the representation of the
system behavior, in terms of both uncertainty iarttodelstructurefz(-) andhypothesesssumed
andparameteruncertainty in thefixed but poorly known values of the internal paramet&tsf the
modef** 16 69 While the first source of uncertainty has beedely investigated and more or less
sophisticated methods have been developed to déalitw research is still ongoing to obtain
effective and agreed methods to handle the unogyteglated to the model structffie*®) See also
Ref. 28 who distinguishes betweptodelinaccuracies(the differences betweeh andfz(Y)), and
model uncertaintieslue to alternative plausible hypotheses on thenginena involved In this
paper, we are concerned only with the uncertaimthhé modeparametersy = {Y1, Yo, ..., Y], ...,

Yn}: an example is represented by the (impreciselchmgent probabilities in a fault trée’ 34 70)

3 SOME ISSUES ON THE PRACTICAL TREATMENT OF
UNCERTAINTIES IN ENGINEERING RISK ASSESSMENT: A

CRITICAL LITERATURE SURVEY

@ Notice that model uncertainty also includes tha faat the model could be teimplifiedand therefore would neglect
some important phenomena affecting the final resthis latter type of uncertainty is sometimes tifesd
independently from model uncertainty and is knowoanpletenessncertaintsf: .



In Sections 3.1-3.4, four issues relevant to theattnent of uncertainty in engineering risk

assessment are critically discussed, on the ba#ie @vailable literature on the subject.

3.1 Quantitative modeling and representation of uncertaty coherently with
the information available on the system

Probability models are typically introduced to regent aleatory uncertainty: see, for example, the
Poisson/exponential model for events randomly agaogirin time (e.g., random variations of the
operating state of a valV&) %8 the binomial model for describing the “failures demand” of
mechanical safety systethd? and the Gumbel model for the maximal water levieh oiver in a
particular yedf?. Probability models constitute the basis for ttagistical analysis of the data and
information available on a system, and are constlegessential for assessing the aleatory
uncertainties and drawing useful insights on itsdoan behavidf?. They are also capable of
updating the probability values, as new data afatnmation on the system become available.

A probability model presumes some sort of mostability, by the construct opopulationsof
similar units (in the Bayesian context, formally iafinite set ofexchangeableandom variableS¥:
2)_In this framework, the standard procedure forstrueting probability models of random events
and variables is as follows: (i) observe the preadsnterest over a finite period of time, (ii)llext
data about the phenomenon, (iii) perform statistealyses to identify the probability model (i.e.,
distribution) that best captures the variabilitytire available data and (iv) estimate the internal
parameters of the selected probability mbéfef- & 7 30 34 73, 7owever, such ‘presumed’ model
stability is often not fulfilled and the proceduik(iv) above cannot be properly carried Gt

In the engineering risk assessment practical conteg situations are ofteunique because the

structures systems and components are, in the enduely manufactured, operated and

b In afrequentistview, the available data are interpretedhaservableandomrealizationsof an underlyingrepeatable
probabilistic model (e.g., a probability distritart) representing the aleatory phenomenon of intevdsich can be
approximated withincreasing precisioiby the analyst as thszeof the available data siicrease$).



maintained, so that their life realizations is miéntical to any others. Then, the collection of
repeated random realizations of the related ranploemomena of interest (e.g., failure occurrences)
meansin reality the construction ofictional populations oihon-existingsimilar situations. Then,
probability models in general cannot be easilyrtli in some cases, they cannot be meaningfully
defined at all. For example, it makes no senseefmel the (frequentist) probability of a terrorist
attack’®. In other cases, the conclusion may not be sooolviFor example, the (frequentist)
probability of an explosion scenario in a proceipmay be introduced in a risk assessment,
although the underlying population of infinite siamisituations is somewhat difficult to descfbe

In addition, even when probability models with paeders can be established (justified) reflecting
aleatory uncertainty, in many cases the amountatd dvailable is insufficient for performing a
meaningful statistical analysis on the random phesmwn of interest (e.g., because collecting this
data is too difficult or costly); in other casdsg pieces of data themselves may be highly impeecis
in such situations, the internal parameters ofdilected probability model cannot be estimated
with sufficient accuracy and epistemic (state-obwtedge) uncertainty is associated with tfé€m
. A full risk description needs to assess the ¢epi&) uncertainties about these quantities. This
framework oftwo hierarchicallevels of uncertainty is referred to as “two-lévatting* 2% 62 78)

In the current risk assessment practice, the episteincertainty in the parameters entering the
(probability) models of random events is typicallgpresented by (subjective) probability
distributions within aBayesianframework: subjective probability distributionsptare thedegree

of beliefof the analystwith respect to the values of the parameters iegtehe aleatory models,
conditional on his/herbackground knowled§e?® & 7 18. 28, 34, 68, 70. 7984 o\wever, the probability-
based approach to epistemic uncertainty represemizdn be challenged by several practical and
conceptual arguments. First of all, representingtemic uncertainty by probability distributions
(albeit subjective) amounta practiceto representing partial ignorance (imprecisionjhiasame

way as randomness (variabili§) /"> then, the resulting distribution of the outpunhdaardly be



properly interpreted: “the part of the resultingisace due to epistemic uncertainty (that could be
reduced) is uncleaf™. Also, the fully probabilistic framework for assewy risk and uncertainties
may be too narrow, as the subjective expert knogdeatiat the probability distributions are based
on could be poor and/or even based on wrong assumsptthus leading to conclusions that can
mislead decision making. Actually, in thaique situations of risk assessment, the information
available may not represent a sufficiently stronghowledge-basisfor a specific probability
assignmerit Furthermore, in practical risk assessment andsidecmaking contexts, “there are
often many stakeholders and they may not be sadisfith a probability-based assessment based on
subjective judgments made by one analysis grétipagain, a broader risk description is sought.
“It is true that adopting the subjective probabilgpproach, probabilities calwaysbe assigned,
but the information basissupporting the assignments magpt be reflected by the numbers
produced. One may for example assess two situabotis resulting in subjective probabilities
equal to, e.g., 0.7, but in one case the assignmeyt be supported bgubstantialamount of
relevantdata, the other byro dataat all”®Y,

To overcome the above shortcomings of the fullybptmlistic representation of uncertainty in risk
assessmentalternative (non-fully probabilisti approaches for representing and describing
epistemic uncertainties in risk assessment hava baggestétf?! 37) e.g., fuzzy set thedfy),
fuzzy probabilitie$?, random set theofi?, Dempster-Shafer theory of evidefée*3 44 46. 89
possibility theor{#”%, interval analysi€> %) interval probabilitie€€? and probability bound
analyses using p-boxés>)

In probability bound analysigntervalsare used for those parameters for which, dugrtorance

the analyst isiot ableor willing to assign greciseprobability: rather, he/she prefers to describe

such parameters onlymprecisely by means of aange of values, all of whiclcoherentwith the

¢ Evidently, in those situations where the informatis not of a type of “degree of belief’ (in thense of a subjective
probability), one does not have the informationdezkto assign a specific probability: in those sa#ige analyst may
accept that and he/she is lead to interval proitiaisilor to develop such knowledge.

10



information availableand reflecting his/hess¢arcg background knowledgen the problem; for the
other components, traditional probabilistic anaysicarried out. This procedure results in a caupl
of extremdimiting Cumulative Distribution Functions (CDF8)amely, a probability box or p-box)
that bound above and below the “true” CDF of the quantityioterest. However, this way of
proceeding results often in very wide intervals ahd approach has been criticised for not
providing the decision-maker with specific analyshd expert judgments about epistemic
uncertaintie$®. The other frameworks mentioned above allow foe timcorporation and
representation oincompleteinformation. Their motivation is to be able toatesituations where
there is more information than that supporting just anterval assignment on an uncertain
parameter, buessthan that required to assigrsiagle specifigprobability distribution

All these theories produce epistemic-based unceytalescriptions and in particulgrobability
intervals In fuzzy set theory membership functions are eygd to express theegree of
compatibility of a given numerical value to a fuzzy (i.e., vagumprecisely defined) set (or
interval). In possibility theory, uncertainty igoresented by using@ossibility distribution function

that quantifies thedegree of possibilityof the values of a given uncertain parameter, ¥ay,
Formally, an application of possibility theory inves the specification of a pa(U ,nY) (called

possibility space), where: () is a set that contains everything that could o@euhe particular
universe under consideration (e.g., it containghalvalues that parametércan assume); (i} is
the possibility distribution function, defined ds and such that & z"(y) < 1 fory O U and
sup{z'(y): y O U} = 14750 Whereas in probability theory a single probagpititstribution function
is introduced to define the probability of any m (or event)A, in possibility theory one

possibility function gives rise to @upleof probability bounds(i.e., upper and lower probabilities)

for interval A, referred to apossibilityandnecessitymeasures and defined &&'(A)=suf7" (y)}
yOA

and NY(A) = 1 - sudr'(y)} = 1- m(A°), respectively”®. Finally, in evidence theory
VOA

11



uncertainty is described by a so-calleody of evidengei.e., a list offocal sets/element&.g.,
intervals) each of which is assignedpeobability (or belief) mass(so-called Basic Probability
Assignment-BPA). Formally, an application of evidertheory involves the specification of a triple
(U, S m) (called evidence space), where:UWi)s a set that contains everything that could oatur
the particular universe under consideration (namély sample space or universal set); Siis a
countable collection of subsets Uf (i.e., the set of the so-called focal elementsi), (n is a
function (i.e., the BPA) defined on subsetdJpfsuch that: (im(A) > 0, ifA LI S (i) m(A) =0, ifA

L UandA O S and (i) Zm(A):l. For a subseA of U, m(A) is a number characterizing the
A1S

probability (or degree of belief) that can be ass@jtoA, butwithoutany specification ofiow this
degree of belief might be apportioned o¥erthus, it might be associated wimy subset ofA. In
this respect, the functiom induces the so-callgalausibility andbelief measures thdaioundabove

and below the probability of a given sé& of interest: such measures are defined as

PI(A)= > m(B) and Bel(A)=> m(B), respectively. Measur@elA) can be viewed as the

B AZ0 BOA
minimum degree of belief thatnust be associated wittA (i.e., it accounts for the evidence
“supporting A). Similarly, measurd”l(A) can be viewed as thmaximumdegree of belief that
could be associated with (i.e., it accounts for the evidencedt contradicting A)“3: 44 46. 85, 86)

For the sake of completeness and precision, itaghapointing out that the most of the theories
mentioned above are ‘covered’ by the general comfranework ofimprecise probabiliti€8>57),
Actually, as highlighted above, “a key feature wiprecise probabilities is the identification of
bounds on probabilities for events of inter€&” “The distance between the probability bounds
reflects theindeterminacyin model specifications expressed iagrecisionof the models. This
imprecision is the concession faot introducing artificial model assumptionig®®. For further

reflections on this subject, the reader is refetoeRefs. 72, 55, 88 and 89.

12



It is worth admitting that these imprecise probipibased theories have not yet been broadly
accepted for use in the risk assessment communikynow, the development effort made on these
subjects has mostly had a mathematical orientatiod, it seems fair to say that no established
framework presently exists for practical risk assesnt based on these alternative theBtes

Among the alternative approaches mentioned abted,ldased on possibility theory is by many
considered one of the most attractive for extendiegrisk assessment framework in practice. In
this paper, we focus on this approach for the Valhg reasons: (i) the power it offers for the
coherent representation of uncertainty under pofarination (as testified by the large amount of
literature in the field, see above); (ii) its réiat mathematical simplicity; (iii) its connectionitiv
fuzzy sets and fuzzy logic, as conceptualized anidgward by Zadef?: actually, in his original
view possibility distributions were meant to prowich graded semantics to natural language
statements, which makes them particularly suitésequantitatively translating (possibly vague,
gualitative and imprecise) expert opinions; finalliy) the experience of the authors themselves in
dealing and computing with possibility distributgsi®Y. One the other hand, it is worth
remembering that possibility theory is omgeof the possible “alternatives” to the incorporatmmf

uncertainty into an analysis (see the approachesiomed above).

3.2 Propagation of uncertainty to the output of the syeem model

The scope of the uncertainty analysis is the gfieation and characterization of the uncertainty in
the outputZ of the mathematical moddh(Y) = f2(Y1, Yo, ..., Vi, ..., Yn) that derives from
uncertainty in analysis inputé = {Y1, Y2, ..., Yj, ..., Ya} (see Section $°. In the light of the
considerations reported in the previous SectiontBi4 requires thgint, hierarchical propagation
of hybrid aleatory and epistemic uncertainties through tbdetfz(Y)©".

When both aleatory and epistemic uncertainties itwe-level framework are represented by

probability distributions, a two-level (or doubleop) Monte Carlo (MC) simulation is usually

13



undertaken to accomplish this t&#8k* %3 the result is a ‘bundle’ of aleatory probability
distributions, one for each realization of the ggpiscally-uncertain parameters.

Alternatively, when the epistemic uncertainties agpresented by possibility distributions, the
hybrid Monte Carlo (MC) and Fuzzy Interval Analy$i§A) approach is typically considered. In
the hybrid MC-FIA method the MC technid®f®is combined with the extension principle of fuzzy
set theor{?%7), within a “two-level” hierarchical settiffty: 58 6% %8190 Thijs is done by: (i) FIA to
process the uncertainty described by possibilitgtriiutions: in synthesisintervals for the
epistemically-uncertain parameters described bysipihsy distributions are identified by
performing a repeated, level-wise interval analy6iy MC sampling of the random variables to
process aleatory uncertaiff); given the intervals of the epistemically-uncertain pasters,
familiesof probability distributions for the random varieb are propagated through the model.
Instead, if the epistemic uncertainties are desdriwithin the framework of evidence theory, the
Monte Carlo (MC)-based Dempster-Shafer (DS) apgroamploying Independent Random Sets
(IRSsY is typically undertaken. In the MC-based DS-IRSthod thefocal sets(i.e., intervals)
representing the epistemically-uncertain parameteesandomly and independentlysampled by
MC according to the corresponding probability (eliéf) masseg® 101-103)

In the present paper, particular focus is devatetheé MC-FIA approach: a detailed description of

this technique and an illustrative application rgorted in Section 4.2.

3.3 Updating as new information becomes available

In this Section, we address the issue of updatiegrépresentation of the epistemically-uncertain
parameters of aleatory models (e.g., probabilistrdiutions), asnew information/evidence (e.g.,

data) about the system becomes available.

4 1n the following, this method will be referredas “hybrid MC-FIA approach” for brevity.
€ In the following, this method will be referredds “MC-based DS-IRS approach” for brevity.

14



The framework adopted is the typical Bayesian -otigat is based on the well-known Bayes rule
when epistemic uncertainties are represented Ibjestive) probability distributiof®-32 73 104-107)
Alternatively, when the representation of epistemomcertainty is non-probabilistic, other methods
of literature can be undertak¥?. In Ref. 109, a Generalized Bayes Theorem (GB) legen
proposed within the framework of evidence theonyRefs. 110 and 111, a modification of Bayes
theorem has been presented to account for thermeesd fuzzy data and fuzzy prior Probability
Distribution Functions (PDFs). In Refs. 112 and ,1&3purely possibilistic counterpart of the
classical, well-grounded probabilistic Bayes theottegas been proposed to update the possibilistic
representation of the epistemically-uncertain patans of (aleatory) probability distributions.
Finally, Ref. 114 has introduced a hybrid probahitpossibilistic method that relies on the use of
Fuzzy Probability Density Functions (FPDFs), iRDFs with possibilistic (fuzzy) parameters (e.qg.,
fuzzy means, fuzzy standard deviations, ...): itasdal on the combination of: (i) Fuzzy Interval
Analysis (FIA) to process the uncertainty descrilbgdpossibility distributions and (ii) repeated
Bayesian updating of the uncertainty representegrblyability distributions.

In the present paper, the purely possibilistic Baybeorem is taken as reference: a detailed

description of the approach and illustrative agilans are reported in Section 4.3.

3.4 Dependences among input variables and parameters

Two types of dependence need to be consideredkragsessmeft. The first type relates to the
(dependentpccurrenceof different (random) events (in the followingjgikind of dependence will
be referred to as ‘objective’ or ‘aleatory’). Anample of this objective (aleatory) dependence may
be represented by the occurrence of multiple fedwrhich result directly from a common or shared
root cause (e.g., extreme environmental condititaiBjre of a piece of hardware external to the
system, or a human error): they are termed Commaus€ Failures (CCFs) and typically can

concern identical components in redundant traire sfety systeth ' another example is that of

15



cascading failures, i.e., multiple failures iniédtby the failure of one component in the systesra a
sort of chain reaction or domino efféét 117)

The second type refers to the dependence possiibting between theestimatesof the
epistemically-uncertairparametersof the aleatory probability models used to descnibndom
events/variables (in the following, this kind of pg@dence will be referred to as ‘state-of-
knowledge’ or ‘epistemic’). This state-of-knowleddepistemic) dependence exists when the
epistemically-uncertairparametersof aleatory models are estimated by resorting épeddent
information sourcege.qg., to the same experts/observers or to ctecbtiata set8) 3+,

Considerable efforts have been done to addresstolgieand state-of-knowledge dependences in
risk analysis. In Ref. 118, objective dependenaiesng random events/variables have been treated
by means of alpha factor models within the tradaioframework of CCF analysis. In Refs. 33 and
119, the use of Frank copula and Pearson correlatefficient has been proposed to describe a
wide range of objective dependences among aleatwpnts/variables. In Ref. 120, (fuzzy)
dependency factors are employed to model depenelamts/variables. In Ref. 121 the rank
correlation method has been proposed to charaetdependencies between epistemically uncertain
variables. In Refs. 7 and 34, total (perfect) stdtknowledge dependence among the failure rates
of mechanical components has been modeled by imgosiaximal correlation among the
corresponding (subjective) probability distribusonin Refs. 122 and 123, state-of-knowledge
dependences among the probabilities of the Basentsv(BEs) of a Fault Tree (FT) have been
described by traditional correlation coefficientglgropagated by the method of moments. In Ref.
124, statistical epistemic correlations have beewdeted by resorting to the Nataf transformation
within a traditional Monte Carlo Simulation (MCSamework. In Refs. 59 and 91, the Dependency
Bound Convolution (DBC) approaéh 2 and the Distribution Envelop Determination (DEnv)
method?612% have been adopted to account for all kinds of ibtys unknown) objective and

epistemic dependences among correlated eventdilewia
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In the present paper, particular focus is devotethé DEnv method: a detailed description of the

technique and an illustrative application to Fauke Analysis (FTA) are reported in Section 4.4.

4 RECOMMENDATIONS FOR TACKLING THE CONCEPTUAL
AND TECHNICAL ISSUES ON UNCERTAINTY IN
ENGINEERING RISK ASSESSMENT

On the basis of the considerations made in Se&tioechniques are here recommended for tackling
the four issues presented before. Guidelines omet@mmended use of the techniques in practice

are provided, with illustrative applications to gil@ risk assessment models.

4.1 Quantitative modeling and representation of uncertanty coherently with
the information available on the system

In all generality, we consider an uncertain vaeall, whose (aleatory) uncertainty is described by
a probability model, e.g., a PDP" (y|0), where 0 ={8,,6, ,...,6, .....6, } is the vector of the
corresponding internal parameters (see Section Bi1g two-level framework, the parametdts
are themselves affected by epistemic uncert&@mt?) In the present work, we recommend to
describe these epistemic uncertainties by the (gingoint) possibility distributionz’ € ) A

random variableY with possibilistic parameterg is referred to as a Fuzzy Random Variable
(FRV) in the literaturé®. Details about FRVs are given in the following Smt 4.1.1; then, the
benefits of using a possibilistic description ofistgmic uncertainty (instead of the classical,

probabilistic one) are demonstrated by means dfustrative example in Section 4.1.2.

4.1.1 Recommended approach: Fuzzy Random Variables (FRVS)

By way of example, we consider the uncertain végiab (e.g., the maximal water level of a river

in a given year) described by a Gumbel probabititydel, i.e..Y ~ p"(y|0) = p'(y|y,0) =
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M&ex;{—(y;y+ex;{—y—;yjﬂ. We suppose that parame@r &, (i.e., the scale parameter) is

known with absolute precision, i.e., it is a fixpdint value ¢ =68, = 100), whereas parameter
y=6, (i.e., the location parameter) is epistemicallgemain’ We consider, for the sake of the
example, that the only information available on va&ie of the parametgr= ¢, is that it ranges in
the interval &, b)] = [900, 1300], with most likely value (i.e., mgde, = 1100. When the
background knowledge on a parametgyadial like in the present case, the classical procefiure
describing its uncertainty is to identify the cependingmaximum entropy?DF. However, this
way of proceeding doesot eliminate the fact that the information availalole y =46, is not
sufficientfor assigning ainglespecificPDF to describe the epistemic uncertainty in theameter.
In facts, such scarce informationciempatibleandconsistentith avariety of PDFs (e.g., truncated
normal, lognormal, triangular, ...) that obviouslyngarisealsothe maximum entropy one.
Alternatively, one of the ways of representing tineertainty ony =4, is offered by the framework
of possibility theor{#”%%. For the simple numerical example considered abaveriangular
possibility distribution77” g )with core (i.e., vertexg, = 1100 and support (i.e., base), [b,] =
[900, 1300] could be used (Figure 1, I6R) indeed, it can be demonstrated that such poigibil
distribution encodes thiamily of all the probability distributions with modg = 1100 and support
[a,, b] = [900, 1300f% 47 59 (obviously, this doesiot mean that the triangular possibility
distribution is theonly one able to describe such a probability family).

Actually, for a given se8 (i.e., of a given interval of values of paramefethe possibility function

77 (y) gives rise tgrobability bounddi.e., upper and lower probabilities), referrechtonecessity

and possibility measures N’(S),777(S)} and defined as 17’(S)=sudn’(y)} and
s

f Obviously, in real risk assessment studies, aitn where one parameter of a given (aleatorypgiodity model is
perfectly knowrand the other one is affected &ignificant epistemic uncertainig far unlikely. However, notice that
this example is here introducedly for the purpose of clearly and simply illustratithg basics of possibility theory.
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NV(S)=1—HV(§) :1—sup{ny(y)}, respectively, wheré is the set (interval) complementarySo
yas

on the axis of real numbéts 4" 59 It can be demonstrated that the probabilRy S @f)the
interval S is bounded aboveand below by such necessity and possibility values, i.e.,
NV(S)S P"(S)<I1"(S): see Ref. 130 for a formal proof of this statemehlso, from the
definitions of {N”(S),7"(S)} and referring to the particular s&t= (<o, y], we can deduce the
associated cumulative necessity and possibility measureN’(S)=N"((-«,)]) and
11(S)=11"((-,y]), respectively (Figure 1, right). These measures loa interpreted as the
limiting lower and upper boundg’(y) and F(y) to the “true” CDFF”(y) = P((-, 7]), that we
can build in coherence with the scarce informatwailable ony, i.e., only the mode and support.

In other words, we can state that the triangulassiimlity distribution 777 §/ ) of Figure 1 left

produces a couple of CDFs (Figure 1 right), thairabthefamily of all the possible CDFs with

modec, = 1100 and suppora], b,] = [900, 1300] (see Refs. 43, 47 and 50 for a fdrproof).

In order to provide an additiongkactical interpretation of the possibility distributiorr” y ( of

y=6,, we can define its so-calledcut sets (intervalspy = {y: 7'(y) > a}, with0< a < 1.

For example, A/, = [1000, 1200] is the set (interval) ¢f values for which the possibility function
is greater than or equal to 0.5 (dashed segmehigure 1, left). In the light of the discussion

above, thex-cut set A/ of parametep can be interpreted as the (b}100% Confidence Interval
(Cl) for y, i.e., the interval such tha®[yOA/]=1-a: actually, N(A;) < P[yOA] < H(A{),

which becomes, by definition of possibility and essity measured,— sur{ﬂy(y)} < PlyOA] <
VOAY

sur{ﬂy(y)}, i.e., 1-a< Pl[yOA] <1“)(Figure 1, left shows three Cls fer= 0, 0.5 and 1).
VoA,

In general, other techniques exist for construcgogsibility distributions: for example, in Refs8 5

and 60 methods based on Chebyshev inequality agktoscompute possibility distributions using
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estimated means and variances; finally, in Ref.intlications are provided to build possibility

functions for uncertain parameters with known sutgpand means and/or quantiles.
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Figure 1. Left: triangular possibility distributiom” () of parameterp. Right: bounding lower and
upper CDFs fory, E”(y) = N”((~0,y]) and F*(y) = 177 ((~ o, y]), respectively

As a result of the possibilistic description of tepistemically-uncertain parameter, for each
possibility (resp., confidence) level (resp., 1 —a) in [0, 1], afamily of PDFs (namely,

{pY(y|y, 5)}0) can be generateglso for random variabléy, by letting parametey range within
the correspondingi-cut set A”, i.e., {pY(y|y,5)}a = {pY(y|y,5):yD Aj,leod. By way of
example, Figure 2, left, shows four PDFs belongmghe family{py(y|y, 5)}a for « = 0 (solid

lines) andn = 0.5 (dashed lines). In the same way, a bund@DFs forY, namely{FY(y|y, 5)}

{FY(y|y,8):y0A/,0=10Q, can be constructed, which is bounded above arldwbdy

FY(y)=sudF¥(y]y,6=100} and F)(y)= EL{FY(yW,J:lOO)}, respectively. Sincer’ Y an
Vo,

be interpreted as a set of nested Cls for paramédtere above), it can be argued thatdfmits of

77 (y) induce also a set olested pairof CDFS{(EZ (y) IfaY(y)):Os a s]} which bound the “true”
CDF F"(y) with confidence larger than or equal to (&)-i.e., P[F.(y)< F"(y)< F)(y)]21-a,

with 0 < a < 1¢% % %) Using the jargon of evidence the8f*®, F.'(y) and F)(y) are often

referred to as thelausibility and belief functions (of levela) of the setS = (-, V], i.e.,
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FY(y)=PIY(S) and F)(y)=Bel'(S), respectively (see Section 3.1). For illustratipurposes,
Figure 2, right, showsl?(S) and Bel'(S), S = (0, yl, built in correspondence of thecuts of
levela = 0 (solid lines), 0.5 (dashed lines) and 1 (cmdfabd line) ofi” ¥ XFigure 1, left).

Finally, the set of nestedpairs of CDFs {(Bel!(S),PI}(S)):0<a<1}, S = (=, y], can be

1
j PI’(S)da and

0

synthesized into &ingle pair of plausibility and belief functions a@IY(S)

1
Bel" (S):J'BeIZ(S)da, respectively (dotted lines in Figure 2, right):ather words,PI"(S) and
0

BeIY(S) are obtained byaveraging the nested plausibility and belief functions geted at
different possibility levels: [ [0, 1]. The plausibility and belief functior8l¥(S) and Bel” (S) are

shown to represent th@ést boundsfor the “true” CDF FY(y) of Y49 94,95, 131)
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Figure 2. Example of Fuzzy Random Variable EFRV)

4.1.2 lllustrative example
The benefits coming from the use of the hybrid plolistic and possibilistic FRV approach

illustrated in the previous Section 4.1.1 are h@rewn by comparison with a traditional, purely

probabilistic two-level framework, where the epmsteally-uncertain parameter of the Gumbel
probability model is itself described by a singl®RP p”(y); notice that the results reported

hereafter are presented for the first time in gaper. In order to perform a fair comparison betwee
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the two approaches, samplefrom the PDF p” ¢ )here employed is obtained by applying the

principle of insufficient reasét¥? to the possibility distributionﬂy(y) of Figure 1, left. The
procedure for obtaining such a sampl&7s'33 (i) draw a random realizatiagt for o in [0, 1) and

consider thex-cut level A7, =[y V.l = {y: ' (y)= a*}; (il) sample a random realizatigh for y

from a uniform probability distribution onA.. Other techniques for the transformation of

possibility distributions into PDFs can be foundRafs. 60, 132, 134 and 135.

In order to highlight the effects of different repentations of epistemic uncertainty, we analyee th

95-th quantileY **° of the uncertain variablé. Figure 3 shows the corresponding bounding CDFs
S (y°'95) andFY" (y°95) (y*°>00) produced using a possibilistic (solid lines) eantation of

the epistemically-uncertain parametertogether with thesingle CDF FYOQS(yOQS) y*® 00)

obtained by resorting to a probabilistic descriptad parametey (dashed line). In this respect, it is
important to remember that int@o-levelhierarchical framework of uncertainty represeotatithe
guantiles of an uncertain variab¥eare not fixed point values, but rather they are epistettjica
uncertain variables. In particular, if epistemiceriainty is represented by probability distribagp
then the quantiles of are correspondingly described by probability disitions. In the same way,
when epistemic uncertainty is represented by piisgildlistributions, then the quantiles are
described by possibility distributiofi8. In this latter case, a couple of bounding CDFs.,(iof
cumulative possibility and necessity measures) lmarassociated to the corresponding quantiles
using the formulas introduced in Section 4.1.1. Tddvantage of using a non-probabilistic
representation of epistemic uncertainty lies in pbssibility of providingboundson the estimates

of the 95-th quantile (in the light of the scarnéormation available on the variable). For example,

095* ]

let us refer to the quantitative indicatefyY °° > y®**'], i.e., the probability thal °**® exceeds a

given safety thresholg®®>" (= 1400 in this case): thpoint estimateprovided by the purely
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probabilistic approach is 0.0285, whereasittierval produced by the hybrid FRV approach is [0,

0.3225]. If a faithful description of the (scaraedamprecise) information available on the variable

Y leads to P[Y®® >y%*] = [0, 0.3225], then the analysannot excludehat in reality such

exceedance probability is equal to the highestsibs” value obtained (i.e., 0.3225)n this light,

it can be seen that the upper bound 0.3225 ofriteevial [0, 0.3225] (representingcanservative
assignment of the exceedance probabiitydrmed by a faithful representation of the imprecision
related toy) is about 11 timefarger than the correspondingpint valuegenerated by the purely
probabilistic method This means that if we base our analysis onirappropriately precise
assumption (i.e., on the selection o$ecific probability distribution even in presence safarce
information), we may significantly underestimatskri(for example, the probability of a given
accident and/or the severity of the correspondingsequences). Instead, usifegmilies of
probability distributions (within the framework,ge. of possibility theoryimplicitly introduce a
sort of “informed conservatism” into the analysmhich should lead the decision maker to be
“safely”-coherent with his/her limited and/or impisebackground knowledge

On the other hand, it has to be acknowledged (hatpoorly donepossibilistic analysis can be just
as misleading as a poorly done probabilistic amsilyd) even if possibility theory constitutes a
“rigorous” tool for transforming the available information into ancertainty representation, such
uncertainty description remains, to a certain degrebjective for example, “it requireadditional
judgmentsin the specificationof the possibility functiorf®Y: (i) as argued in Ref. 18, even if a

possibilistic analysis “meets to a large extent anebition ofobjectivity by trying to reduce the

9 A remark is in order with respect to this senteand to the existence “in reality” of a “true valuw# the probability.
For subjective probabilities such “true” values @daw meaninginstead “true” values can be obviously definedtfe
frequentistprobabilities. In the present paper we adopt alevel, hierarchical framework to model uncertaifgyso
called probability-of-frequency approach): thusiee value of the exceedance probability can bmeef

h In this paper, a given (probability or consequérestimate is considered inbaoad sense more “conservative” than
another one, if it implies and leads tohaher level of risk. However, since a discussion on twncept of
“conservatism” goes beyond the scopes of the ptesmer, further details are not given here fowrityethe interested
reader is referred to, e.g., Ref. 136 and referetioarein.

" In other words, in line with Ref. 18, we may shgitsuch non-probabilistic approaches can be cereidbbjective
tools for transforming the available informatiomnaran uncertainty representation, in the sensettiegttry to avoid the
use of ‘subjective judgemengndassumptiorisin the analysis.
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amount of arbitrary assumptions made in the ans)yseloesnot provide the decision maker with
specific scientific judgmentsabout epistemic uncertainties frogualified analysts and experts”.
Actually, “expressing epistemic uncertainties meargegree of subjectivity, and decision making
normally needs to be supported duyalified judgments®. In this respect, sometimes the bounds
provided by a possibilistic analysis may be conm&derather “non-informative and the decision
maker would ask for anore refinedassessment: in such cases, it is expected thantigsts are

able to give some qualified judgments, so thatose precisessessment can be obtairt&l”
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Figure 3. Epistemic distributions of the 95-th gtikenY *° of Y ~ Gumy, ¢) obtained through a
possibilistic (solid lines) and probabilistic (dasthline) representation of parameter

4.2 Propagation of uncertainty to the output of the syfem model

With reference to the model functia = f,(Y)=f,(Y, ¥, ,...Y, .....Yy) (1), we consideN input
variablesY = {Y1, Y2, ..., Y], ..., Yn} affected byhybrid aleatory and epistemic uncertainty and
represented by PDFsp{(j (y; 10,):1=12,...,N} with epistemically-uncertain parameterg {: j =
1, 2, ...,N} described by possibility distributions” (0; . )n order tgointly propagate thesmixed

uncertainty representations, we recommend the dhybtonte Carlo (MC) and Fuzzy Interval
Analysis (FIA) approach detailed in Section 4.2He effectiveness of the proposed approach is

assessed by comparison with other uncertainty geta techniques in Section 4.2.2.

4.2.1 Recommended approach: Monte Carlo (MC) and Fuzzy Iterval Analysis (FIA)
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The hybrid MC and FIA approach combines the MC mégineé® with the extension principle of
fuzzy set theoy*97 139py means of the following main stéfjs>8 60 98-100)

1. seta = 0 (outer loop, processing epistemic uncertdaytyIlA);

2. select thea-cut sets Af,’j of the N (joint) possibility distributions z” (0, )of the
epistemically-uncertain parameters vectofs:{j = 1, 2, ... ,N};

3. letting parameter®); range within the correspondingcuts Af‘ , ‘generate’families of
cors{F"(yl6,} ={F"(y1e,):6, 0 A/} for the *hybrid” input variabled,,j = 1, ...,N;

4. propagate the (inputjamilies of CDFs {FY" (y|49j )}a through the mathematical model

z=1(Y,,Y,....Y,) by standard MC sampling to obtain the (outpfznily of CDFs

n

{Fz(z)}a for Z (inner loop, processing aleatory uncertainty lapdard MC simulation);
5. identify the limiting CDFs (that bound above andobe the “true” CDF FZ%(z) with

confidence (1- )-100%) as those that ‘envelop’ the fami{FZ(z)}a, ie, F?(z) =

Pl Z(—», Z) = max{F7(2)} andF?%(z) = BelX(~», 2) = min{F?(2)}, respectively;
6. If a <1, then seta =a+Aa (e.g.,Aa = 005in this paper) and return to step 2. above;
otherwise, stop the algorithm.
The output of the algorithm is thus representechésted sets of plausibility and belief functions
{(Bel?(A),PIZ(A)):0< @ <1}, A = (-, Z: these sets of functions can then be synthesizteda
single pair of plausibility and belief function®I%(A) and BeF(A), A = (o, 7], as described in
Section 4.1.1.
It is worth noting that performing an interval aymé ona-cuts assumewtal dependencamong

the epistemically-uncertain parameter&ctually, this procedure impliestrong dependencamong

the information sources(e.g., the experts or observers) that supply theuti possibility
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distributions, because the sam@nfidence leve{(l — a) is chosen to build the-cuts forall the

epistemically-uncertain parameté&® (see Section 4.4 for further discussions on depece).

4.2.2 lllustrative examples

In what follows, we report some of the results oi#d in a previous work by some of the
author€®, in which the hybrid MC-FIA approach (Section 4R2is used to propagate mixed
probabilistic and possibilistic uncertainties thghumathematical models. The effectiveness of the
proposed technique is shown by means of a compavigh the MC-based Dempster-Shafer (DS)
approach employing Independent Random Sets (IR®bgre the possibility distributions
describing the epistemically-uncertain parameteesdecretizedinto focal setsthat arerandomly
and independentlysampled by MC (see Section 3.2). Such discretimatequires the following

step&?®): (i) determineNe (nested) focal sets for the generic possibilipicameter as theu-cuts
A, =18, ’6_’0«]’ t=12,.., N, with o, =1>a,>..>a, ,>a, =0; (ii) build the probability
mass distribution of the focal sets by assignmg =Aa, =a, —a,,,. In this paperNe = 21 and

m.t = 0.05 are chosen for the sake of comparison thighhybrid MC-FIA approach (see Section

4.2.1)8.¢0)

For the exemplification, we consider the mathena&ticodelZ; = fz1(Y1, Y2, Y3) already presented
in Ref. 58: the uncertain inpu¥s, Y2-andYz are described by lognormal probability distribaso

with (triangular) possibilistic parameters. Figuteshows the plausibility and belief functions,
PI%((-,z]) = F2(z) and Bel*((-»,z]) = F*(z) of the model output&: produced by the

hybrid MC-FIA (solid lines) and MC-based DS-IRS ¢Had lines) approacH&® The results are
very similar, i.e., in the present case, the eftddhe different uncertainty propagation method is
not evidern®® ) Then, in order to highlight the effects of thdfefient uncertainty propagation

095

approaches, the upper and lower CDIst}O%(zf'%) and Ezlm(z1 ) respectively, of the 95-th
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quantile Z>* of z, are further analyzed. Figure 5, left, shows thending CDFs forz>®

produced by the hybrid MC-FIA (solid lines) and thi€-based DS-IRS (dashed lines) approach;

for illustration purposes, Figure 5, right, shows tpossibility distributionsnzlogs(210'95) that

corresponds to the CDFs by means of the reIatiG_rfé)gs(zf%) = sup {nflo'%(zf%)} and
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It can be seen that the hybrid MC-FIA method presualarger gap between the upper and lower

CDFs F&" (21095) and F*" (210'95) than the MC-based DS-IRS approach in the regiomsrevthe
cumulative probabilities are close to “extreme”ue, i.e., wherd= =" (21095) ~0andF*" (210-95) ~

1. This is explained as follows. Notice that thduea of Z2 for which F%™(z%) = 0 and

g™ (21095) ~ 1 correspond to the lower and upper bounds, réispbg of thea-cut of levela = 0

of the possibility distributionzz%" (zf"%) (by way of example, the-cut A%, of level a = 0.05
produced by the hybrid MC-FIA is indicated by arsowm Figure 5, right). All this considered, it
should be noticed that thecut AZ. of levela = 0 of the possibility distributionr” (zf"%) can be

generatednly by “combining” and propagating through the modeidtionZ; = fz1(VY1, Y2, Y3) the
o-cuts of levela = 0 of all the possibilistic parameters of the model inpYtsY> and Ys. Such
combination ofa-values, i.e., §1 = 0, a2 = 0, az = 0}, is always “processed” by fuzzy interval
analysis in the hybrid MC-FIA method, due to thederlying assumption ofotal dependence
among the information sources (e.g., the expertbservers) that supply the parameters possibility
distributions: actually, theamepossibility (resp. confidence) levet (resp., 1 —-«) is chosen to
build thea-cuts for all the epistemically-uncertain paramef@ee Section 4.2.1). On the contrary,
such combination of possibility (resp., confidencalues, i.e., ¢1 = 0,02 = 0, a3 = 0} (resp., {1a1
=1, 1luo2 = 1, 1oz = 1}), cannot be obtained easily (i.e., with higtobability) by the MC-based
DS-IRS approach, which performs a plain random diag@mongindependentntervals. This is
coherent with the real processes of expert elioitatin that it is difficult to find different
(independent) experts that provide estimates abdfdrent uncertain parameters with the same
(and, in this casenaxima) confidence.

The higher conservatism of the hybrid MC-FIA apmtoas reflected, e.g., by the values of the
exceedance probability?[Z** > z** [here z** = 1000). For example, it can be seen that
P[Z%* > 2’*'] ranges within [0, 0.1500] for the hybrid MC-FIA thed, whereas it is 0 for the
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MC-based DS-IRS approach: thus, the uncertaintpamgation performed by random sampling of

independent focal sets leads to a dramatiberestimatiorof the exceedance probabiffy.

Some considerations are in order with respectéadkults shown. The comparison shows that the
choice of the uncertainty propagation method (anplicitly of the state of dependence among the
epistemically-uncertain parameters of probabilitgd@ls) isnot so critical (e.g., in risk-informed
decisions)only when theextremeboundingupper and lower CDFs of the model output are of
interest to the analysis: actually, the curves peed by the hybrid MC-FIA and the MC-based DS-
IRS approaches asmost identicalHowever, the analysis of other quantitative iatlics (e.g., the
distribution of a givemuantile of the output) shows that the hybrid MC-FIA methm@duces a
larger separation between the plausibility anddbélinctions than the MC-based DS-IRS approach,
giving rise tomore conservativeesults (in particular, in the range sshall probabilitiesthat are of

particular interest in the risk assessment of cemphighly reliable systems).

4.3 Updating the uncertainty representation with new iformation

In all generality, letz’ € )be the (joint)prior possibility distribution for the epistemically-
uncertain parameter8 =[4,,6,,....8,,....6, df the (aleatory) PDFp" (y|#) of input variableY

(built on the basis of a priori subjective enginegrknowledge and/or data). For example, in the

flood risk assessment example used in what follgwsay represent the yearly maximal water flow
of a river described by the Gumbel distributionSction 4.1: thusy ~ p'(y|0) = Gum(@) =
Gun(y, 8) = p* (y|y,9) andz’ @)= z"°(y,d). Moreover, lety =[y,, ¥, ,...,Y, »..Yp ]b€ a vector

of D observedpieces of data representing tewinformation/evidencavailablefor the analysis:

referring to the example abovg, may represent a vector bBf values collected over a long period

time (e.g., many years) of the yearly maximal wéltaw of the river under analysis.
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The new evidence acquired can be used to update the & prioertainty representation’ 6 ( 3
7"°(y,0) of @ = [y, ], i.e., to calculate theosterior possibility distributionz’ € ) (i.e.,

7"°(y,0|y)) of @ after y is obtained. In Section 4.3.1, a method based purely possibilistic

counterpart of the classical, probabilistic Bayesorem is suggested for the updating; in Section
4.3.2, the effectiveness of the recommended aphrisagssessed, for the first time to the best®f th

authors’ knowledge, by comparison with a hybridlgadoilistic-possibilistic technique of literature.

4.3.1 Recommended approach: purely possibilistic Bayesheorem
The purely possibilistic method (hereafter als@mefd to as ‘Approach A’ for brevity) is based on

a purely possibilistic counterpart of the classipabbabilistic Bayes theoréht?: 113

7! 0]y) &’ (0)
sgp{n‘z ©1y) & 0)}

7’ 01y) = (2)

wherez! @ |y ) is the possibilistic likelihood of the parameterctor @ given the newly observed

datay, and quantitiest” @( y Jandz’ @) are defined above. Notice thaup{nf @y =z’ (0)} is a
0

normalization factor such thau;{n" @] y)} =1, as required by possibility the&f,
0

It is worth mentioning that forms of the possiliitsBayes theorem alternative to (2) can be
constructed as a result of other definitions of dperation of ‘conditioning’ with possibility

distributions: the reader is referred to Refs. Bl 113 for technical details. In this paper,
expression (2) is recommended because “it satidBsgable properties of the revision process and

leads to continuous posterior distributiofs?.

The possibilistic likelihoodz! & Y )is here obtained byransformingthe classical probabilistic

7
likelihood functionL? @ |y )throughnormalizationi.e.,z’ @ |y) = L ©61y) (137) This choice
L 0
sugL’ @1y)
7

has been made for the following main reasons:
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i.  the transformation is simple and can be straighi@odly applied to any distributiéi”:

ii.  the resulting possibilistic likelihood islosely relatedto the classical, purely probabilistic
one (which is theoretically well-grounded) by meafighe simple and direct operation of
normalization that preserves thariginal structure of the experimental evidence;

iii. it can be easily verified that the resulting potisitic likelihood keeps theequentiainature
of the updating procedure typical of the standaagié® theorem.

Notice that other techniques of transformation adbability density functions into possibility
distributions exist: see Refs. 132, 134 and 136hMgues are also available to construct possibilit
distributions (and, thus, possibilistic likelihoddnctions) directly from experimentadata (i.e.,

without resorting to “artificial” transformations$ee Refs. 138 and 139 for details.

4.3.2 lllustrative example

For completeness, we report (and extend) someeofdbults obtained in a previous work by the
author€Y, in which the purely possibilistic Bayes’ theorescribed above is applied for updating
the possibilistic parameters of aleatory PDFs sinaple literature case study involving the risk-

based design of a flood protection d¥&e In the risk model considered the maximal wateeleZ,

of a river (i.e., the output variabl& of the model) is given as a function of severalcgrtain)

parameters (the inputto the model), i.e.Z = ,(Y,,Y,.Y;,Y,) = Z, = f, (Q,Z,,. Z,.K,), with Y1 =

Q~ cumy.d), Y2 = Z, ~ N(tyn0y), Ya = Z, ~ N(1ty,,0,,) and¥s = K, ~ N(y.,0,.); the
‘priors’ of the parameters of the aleatory PDFshef inputs are represented by triangular possibilit
distributions: see Ref. 61 for further details.

The benefits coming from the use of the proposedhote are here shown by means of a
comparison to the hybrid probabilistic-possibitisipproach proposed in Ref. 114 (hereafter also

called ‘Approach B’ for brevity) and based on tleenbination of: (i) FIA to process the uncertainty

31



described by possibility distributions; and (ii)peated Bayesian updating of the uncertainty

represented by probability distributions.

In order to simplify the notation, in what followst  be one of the uncertain parameters of the
PDFs ofY1=Q, Y2 =Zm, Ys=ZyandYa =Ks, i.e.,0 =y, O, Uy, Oz, Uy,s Oy My OF Oys. By

way of example, Figure 6 illustrates the possiiliistributions of the epistemically-uncertain
parameters andoks of the aleatory PDF$® (q| ¥, 5) (left) and p*- (ks | /,IKS,O'KS) (right) of Y1 = Q
andY: = Ks, respectively: in particular, the prior possilyiltistributions 77° @ )are shown as solid
lines, whereas thmarginal posterior possibility distributiong’ 8(y| 9btained by Approaches A
(Section 4.3.1) and B4 usingD1 = 149 andD4 = 5 pieces of data are shown in dashed and dot-

dashed lines, respectively; the point estima¥¢ produced by the classical MLE method are also

shown for comparison (dot8) 62

1
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Figure 6. Prior and posterior possibility distridans of the epistemicallg/-uncertain parameters
andos of the aleatory PDFp? (qy, ) (left) and p*« (K, | 4y, Os) (right) of Yi = Q and ¥ = Ks.
The point estimated obtained by the classical Mldihwd are shown for comparison

From a mere visual and qualitative inspection @uFé 6, it can be seen that both approaches are
suitable for revising the prior possibility distitions by means of empirical data. In particulais i
evident that: (i) the most likely (i.e., preferradjluescs of the epistemically-uncertain parameters

(i.e., those values in correspondence of whichpthesibility function equals 1) are moved towards
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the MLE estimate9™® in all the cases considered; (i) the aBainderlying the corresponding
possibility distributions is significantly reducedoting that this area is related to the imprecisio
the knowledge of the possibilistic parameter (tlee, larger the area, the higher the imprecisibn),
can be concluded that both approaches succeeducing the epistemic uncertainty (nevertheless,
note that the agreement between the results oltawth the two numerical procedures does not
necessarily establish the correctness or apprepeas of those procedures).

On the other hand, it is evident that gteengthof Approach A in moving the most likely values
towards the corresponding MLE estimaté¥'* is always higher than that of Approach B.

Actually, the distances between the MLE estimaf¥® and the posterior most likely values
produced by Approach A are 1.35-7.94 tinfeser than those generated by Approach B.

In addition, it is interesting to note that theesigth of Approach B in reducing epistemic
uncertaintyis slightly higherthan that of Approach Anly when the amount of available data is

quitelarge (i.e., in the revision of the possibility distriians of parameterg and o of the PDF of

Y1 = Q, by means oD: = 149 pieces of data): actually, the areas unohgrlthe corresponding
possibility distributions are reduced by 25.56-830%4and 28.74-33.01% by Approaches A and B,
respectively. In all the other cases, the poweAmbroach A in reducing the epistemic uncertainty
is higherthan that of Approach B and this difference becomere ananore evidenas the size of
the data sedlecreasesThis is particularly evident in the estimationtbé standard deviatiosks of

Ks (Figure 6, right): on one side, the posterior riisition produced by the hybrid approach (B)
seems not to be influenced by the revision protassially, the most likely value of the parameter,

C,,. = 6.72, and the area underlying the correspongsgerior possibility distributions, =

3.95, are quite close to those of the prior, 6689 and 4.11, respectively); on the other side, th
posterior distribution generated by the purely pgmkstic approach (A) is almost centered on the

point estimates obtained by the MLE method andctteesponding area is reduced by about 9%.
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Finally, in addition to the strength of the appioeg in revising the (prior) possibilistic descripti

of the uncertain parameters of aleatory variab#sy thecomputational costissociated to the
methods has to be taken into account. In this pesplee timetcomp required by Approach B is
approximatelyT-N, timeslarger than that of Approach A, since it entdllsepetitions of the purely
probabilistic Bayes theorem for each of ter-cuts analyzed (in this case N, = 100-21 = 2100):

see Ref. 114 for details.

Several considerations are in order with respec¢hé¢oresults obtained. Both methods succeed in
updating the possibilistic description of the egisically-uncertain parameters of (aleatory)
probability distributions by means of data. In digei, when the Bayesian update is performed
based on a data set lafge size (e.g., > 100 in this case), thteengthof the two approaches in
reducing the epistemic uncertainty is quginilar. This demonstrates that although the two
methods are conceptually and algorithmically qudd#ferent, in presence of astrond
experimental evidence they produamHherent results (i.e., posterior possibility distributirihat
bear thesameoverall “uncertainty content”): this is a fair gotme since the results provided by the
two methods are expected to be more and rsondar (i.e., more and more coherent with the
experimental evidence) as the size of the datansetases Instead, the strength of the purely
possibilistic approach (A) in reducing epistemicamainty isconsistentlyhigher than that of the
hybrid one (B) in presence afedium andsmaltsized data sets (e.g:,5-30 in the present study)
(which is often the case in the risk analysis ofmptex safety-critical systems). In such cases,
embracing one method instead of the other may fagnily change the outcome of a decision
making process in a risk assessment problem inwgluincertainties: this is of paramount
importance in systems that are critical from thietyaview point, e.g., in the nuclear, aerospace,
chemical and environmental fields.

However, it is absolutely important to acknowledfat even if the strength of method A in

reducing epistemic uncertainty is higher than tfahethod B, this doesot necessarilymply that
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method A is bettef or “more effective than method Boverall Actually, if on one side a
consistent reduction in the epistemic uncertairgyin generaldesirable in decision making
processes related to risk assessment probleme (sisignificantlyincreaseshe analystonfidence

in the decisions), on the other side this reductust becoherentwith the amount oinformation
available In this view, an objection may arise in the presease: is theemarkablestrength of
Approach A in reducing epistemic uncertainty (wrtdry few pieces of datdylly justifiedby such

a small amount of data? In other words, is thiss@®rable reduction of epistemic uncertainty
coherent with the strength of the experimental evie or is it too optimistic? With respect to that,
it has to be admitted that the uncertainty redmcgiower of the purely possibilistic approach (A) is
strongly dependent on the shape ofaatificially constructedpossibilistic likelihood that could in
principle bias the analysis. However: (i) in the approach recomuhed in the present paper, this
possibilistic function isvery closely relatedo the classical, purely probabilistic one (whish
theoretically well-grounded) by a simple and direperation of normalization that preserves the
“original structure” of the experimental evidenc@) in general, a probability-to-possibility
transformation (properly performed according to thkes of possibility theoryalwaysintroduces
additional artificial epistemic uncertainty into the analysis, i.e.daes not artificially reduce it
(because it replacessingleprobabilistic distribution by g&amily of distributions§32 134 135 On the
basis of the considerations above, it seemigely that the purely possibilistic approach (A) may
produce results that adangerously over-optimistwwith respect to those of the hybrid one (B).
Finally, the computational time required by the hgtapproach (B) isonsistentlyi.e., hundreds or
thousands timeg)igherthan that associated to the purely probabilistie (A): this is explained by
the necessity of repeatedly applying many (e.gndheds) times the purely probabilistic Bayes’

theorem foreacha-cut analyzed.
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4.4 Dependence among the input variables and parameters

As discussed in Section 3.4, both objective andesigknowledge dependences need to be
considered in risk assessment analysés 3*) However, in many practical cases the state of
dependence among the uncertain model parametergasiattles is difficult to define precisely. In
such situations, conservatism requires thHt kinds of (possibly unknown dependences be
accounted for. To do this, the Distribution Envelopetermination (DEnv) method is here
recommendeéédf®1?) In Section 4.4.1 the method is outlined in detaildemonstration of the

approach on a case study concerning Fault Treey8isglFTA) is given in Section 4.4.2.

4.4.1 Recommended approach: Distribution Envelope Deternmation (DEnv) method

The DEnv method allows computimgtremeupper and lower CDF§Z (z) and FZ., (z) on the

outputZ of the modelf(Y1, Yo, ..., Y], ..., Yn) (1) no matterwhat dependencies exist among the
inputs; these bounds are also the “pointwiest possiblewhich means they could not be any
tighter without excluding some possible dependetit&sNotice that this approach can be applied
bothat the objectivand epistemic level&® 5% The method requires the following stégst?)

1. represent the uncertainty on the inpits Yz, ..., Yj, ..., Yn within the framework of

Dempster-Shafer (DSheory of evidenceThe application of evidence theory produces a
description of the inputs in terms of so-called ﬁl&‘;lctures{(Ai;i m(A'('J )) i = lZ,...,ni},j =

1, 2, ...,N: in other words, input; is described by a set of intervals (focal elements)
A',’I :[Zi,-j ,37:."] each of which is assigned a probability (or b¢lmfalssm(ﬁf(‘j ) =12, ...,
n,j=1,2,..,N. Notice that the DS structures described abovebeatransformed into

upper and lower Cumulative Distribution Functio@Dfs) F% and F* (calledcumulative

plausibility and belief functions, respectively): in particularE %(y,) = P[Y,<y,] =
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Figure 7. Exemplary DS structure (Ieft) and correlsdlng upper and Iower CDFs (r|ght)

2. propagate the input focal elements through the e, Y-, ..., Yn) to obtain the output

focal elements Aj>"i-'v = [Zizln Flliei] g min {6,V v Y )
Y,0A) j=12..N

max  {f, (V.Y =12, 00, i=1,2, N

i 1 ] )
Y,0A) §=12..N

3. properly assign thejdint) probability massesrn(AiZiz”i““iN Yo the output focal elements
Al obtained at step 2. above in such a way thatehelting upper CDF o is the
maximal possible (i.e. FDEnV = max{F }) and the resulting lower CDF afis the
minimal possible €2, (z) = mrn{ “(z )}) given a precise set of constraitfs!?®)

. oy | — .
Find m{A/" )i = 12,..,n,,j = 12...,N
_ _ o 3)
F&n(2) = ma{F2(2)} = max S mlas ) Loz
A‘Zi'znjju,iN:fz(Ai(]i’Ai(zz .... IJJ .... Ai(',\\“Jﬂ[O,Z]¢O
I Notice that representing the uncertainty in theuts Y1, Y2, ..., Y;, ..., Yn by DS structures does not impair the

generality of the description. Actuallginy other type of distribution that may be used tocdbs the uncertainty ilvs,

Yo, ...,

Yi, ..., Yn can be easily transformed into a DS structureragghes for transformingrobability distributions

can be found in Ref. 102, whereas techniques émsformingpossibility distributions can be found in Ref. 33.

37



Find m{A/= )i = 12,.,n,j = 12,.,N:
FZ (7)= min{Ez (Z)}= min zm(pgz..ij..m) Oz (4)

A\Ziz..ijmiN:fz(Ai}l’Aié .... |JJ .... AI(N JD[O,Z]
subject to the constraints that: (i) the probagbillinassesm(&) are conserved (i.e.,

Nia Mg Ny

izz z...zm(pi;z--”"“)=m(Ai,i), ij=1,2 ..,.n,j=1, 2 ..N); and (i) the

=Li,=l 010 ,=1 =1 :
probability massesn(A/*"™ are larger than or equal to zero.

It is worth noting that in order to construct taetire CDFs FZ, (z) and FZ., (2) for Z,

such optimization problems have to be solvedfbthe values of interest.
Finally, notice that an alternative sampling-baapgroach to (i) the propagation of a DS structure
through a model and (ii) the construction of apjprations to the cumulative plausibility and belief
functions can be found in Refs. 39 and 44; howdweing a sampling-based strategy, this approach

cannot encompass the treatmentimtnowndependences between uncertain variables.

4.4.2 lllustrative example

In what follows, we report some of the results of#d in a previous work by some of the
author®?, in which the effects of objective and epistemépendences are analyzed with reference
to the Top Event (TE) probability(X) of a Fault Tree (FT) containinge = 6 Basic Events (BES)

with epistemically-uncertain probabilitie’@D(Bj): 1=12...,n, =6}. The order of magnitude of

the BE probabilities is around #0this is reasonable for realistic safety-critisgbtems where the
components are usually highly reliable. Furthenifettan be found in the cited reference.

Two classes of analyses are performed to analyzeeffieets of different states of objective
(Analysis 1) and epistemic (Analysis 2) dependemaceong the BEs. In Analysis 1, three
configurations (namely, T1-T3) are considered: Camftjon T1 represents the reference, baseline

case wherall the BEs are considered (objectivelyjlependentOn the opposite, Configuration T3
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represents thextreme(most conservatiyecase wher@o assumptions about the states of objective
dependence amorgll the BEs are made. Instead, Configuration T2 reptesam ‘intermediate’
case. In particular, in Configuration T@sitive objective dependence is assumed between two of
the six BEs (in this case, between two events repteg) failures of mechanical components): this
situation is far from unlikely in real systems andy be due to several causes, e.g., (i) sharediec
of equipment (e.g., components different systems are fed from tteameelectrical bus) or (ii)
physical interactions (e.g., failures of some congrt create extreme environmental stresses,
which increase the probability of multiple-componéalures). Finally, in Analysis 2 only three
‘extreme’ situations (namely, E1-E3) are consideneghrarticular, in Configurations E1, E2 and E3
states of independence, total (perfect) dependeme unknown epistemic dependence,

respectively, are assumed amatigthe probabilities oéll the BEs of the FT.
Figure 8, left, depicts the upper and lower coFdX) andEP(X) obtained foP(X) under different
assumptions of objective dependence among the Biy#is 1). In order to provide a quantitative

evaluation of the effects of such states of objectilependence, the intervgp ™, p;*°] =

[(FP)*(095), (EP(X))_1(0.95)] for the 95-th percentild(X )°* of P(X) is computed. Notice that

095 _ 095

po%s = (EP(X))_l(O.QS) can be interpreted as a conservative assignmenP()** (i.e., a
conservative estimate of risk). It can be seen tthatvalues ofps™ are 7.23-18 and 8.98-18 in
Configurations T1 and T2. This means that negledirtypothetical state of positive dependence
betweeronly onepair of BEs is sufficient for underestimatig> (and, thus, the risk associated to
the system) by 12.42 times. Finally, Configuratidhrepresents the ‘extreme’ case whan&nown

095

objective dependence is assumed amalhghe BEs of the FT. Actually, the value @™ is

2.59-1@, i.e., 35.87 times larger than those obtained wtitk ‘baseline’ assumption of objective

independence among all the BEs (Configuration T1).
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With reference instead to Analysis 2, Figure 8htiglepicts the upper and lower CDFS™) and

EP(X) obtained under different states of epistemic ddperoe among the probabilities aff the

BEs (Analysis 2). It is evident that the upper amadr CDFsF ") and EP(X) obtained under the

assumption of unknown epistemic dependence (ddtedbbnes)completely envelopll the others
(i.e., they obviously represemhore conservativeestimates of the bounding distributions). In
addition, it is worth noting that the lower (resppper) CDFs obtained under the assumption of
perfect epistemic dependence &exy closeto those produced by the assumption of unknown
epistemic dependence in the region where the cumwellprobability is very close to the ‘extreme’
upper bound 1 (resp., lower bound 0). In other wpte CDFs produced under assumptions of
perfect and unknown epistemic dependence ameost identicalin the range ofextreme

probabilities (i.e., extreme quantilgsthat are of particular interest in the risk assgnt ofhighly
reliable systems. This is confirmed by the analysispgf®, whose values are 4.40:406.41-1¢

and 7.23- 18 under the assumptions of independence, total akidown dependence, respectively.
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Figure 8. Effect of objective (left) and epistemiglft) dependences on P(X)

Some considerations are in order with respectdadbults obtained. With respect to Analysis 1, the
assumption of objective independence among theaBksysleads to aeriousunderestimation of
the risk associated to the system (here represénytéide upper bound of the 95-th quantile of the

TE probability) with respect to the assumptions offge# and unknown objective dependence:
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actually, the corresponding estimates may diffeeneby orders of magnitudeMoreover, this
underestimation is shown to be quiteamatic for small BE probabilities (e.g., around %0ike in

the present case): this poses concerns for thasszissment of systems where the components are
highly reliable and, thus, characterized by snalufe probabilities.

With respect to Analysis 2, it is shown that: figtassumption of epistemic independence among
the probabilities of random events leads twa-negligibleunderestimation of the risk associated to
the system (here represented by the upper boutlied5-th quantile of the TE probability) with
respect to the assumptions of perfect and unkngigtezic dependence (e.g., by about 1.5 times):
this is particularly evident in the estimationsmhall probabilitiesandextreme quantilethat are of
paramount importance in the risk assessmethtigifly reliable systems; (ii) the estimates for the
upper bound of the 95-th quantile of the TE probghiroduced by the assumptions of perfect and
unknown epistemic dependence a@mparableand (iii) the effects of epistemic dependence
among the BE probabilities auantitativelyless relevantand critical than those of objective

dependence among the BEs.

5 CONCLUSIONS AND DISCUSSION

In this paper, the following conceptual and techhissues on the uncertainty treatment in the risk
assessment of engineering systems have been o@usid€l) quantitativemodeling and
representatiorof uncertainty coherently with thenformation availableon the system of interest;
(2) propagationof the uncertainty from the input(s) to the ou{pubf the model of the system; (3)
(Bayesian)updating of the uncertainty representation as new inforamatitecomes available; (4)
modeling and representationagpendenceamong the model input variables and parameters.
Different approaches to tackleach of the issues 4. listed, outside a fully probabilistic
framework have been compared. On the basis ofdh#arisons and of previous research by the

author€8-%V) the following guidelines and recommendations Hasen drawn:
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1. for the first issue, the Fuzzy Random Variable (FRApproach can bene of those
recommended for uncertainty modeling and repretientan particular when the data and
information available on the problem of interest sxarce vagueand/orimprecise In such
a framework, aleatory uncertainty is representedptnpability models (i.e., probability
distributions), whereas epistemic uncertainty ie ihternal parameters of the aleatory
models is described bgossibility distributions. The resulting FRV definesfamily of
nested pairs of aleatory probability distributions, each of wiibounds the “true”
probability distribution with a givermonfidencelevel In the examples here proposed, the
FRV approach has been shown to prowvidere conservativeesults than the classical,
purely probabilistic one in the estimation of imiamt quantities, like the distribution of a
guantile of the model output. On the other hands tioesnot mean that possibility
distributions should balwaysused to represent epistemic uncertainty. Actudl)yother
non-probabilistic approaches exist for tackling hjeons characterized by imprecise
information (see, e.g., evidence theory); (ii) am® cases (e.g., in the presence @&avant
amount of data) also classical probability theay obviously serve this purpose;

2. for the second issue, in general the hierarchicggyation of hybrid aleatory (probabilistic)
and epistemic (possibilistic) uncertainty shoulddagried out coherently with the state of
dependence between the epistemically-uncertaimyeeas,if known On the other hand, if
the objective of the analyst is that of producimggservative risk estimates, then the MC-
FIA approach should be adopted. Actually, it hasnbshow to provide more conservative
results than the MC-based DS-IRS approach in ttenason of the distributions of a given
guantile of the model output. In addition, this higher cemn&tism is particularly evident in
the range oéxtremeprobabilities (i.e., around 0 and 1) that are afgonount importance in

realistic risk assessment applications involvirghhy reliable engineering systems;
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3. for the third issue, the purely possibilistic caanpiart of the classical probabilistic Bayes’
theorem is strongly suggested (instead of the Hybre) for updating, in a Bayesian
framework, the possibilistic representation of #yistemically-uncertain parameters of
(aleatory) probability distributions. This is duettee following reasons: (i) itstrengthin
reducing epistemic uncertainty is significantiigher, in particular when the amount of
available data ismalt this is important in decision making processexesireducing
epistemic uncertainty significantly increases thalgst confidence in the decisions; (ii) the
computational timeequired is consistentlpwer. However, it has to be remarked that the
construction of a possibilistitkelihood required by this method still represents an igsue
be tackled from the theoretical and practical vieimpin order to avoid introducing biases
in the analysis: with respect to that, future reseavill be devoted to the investigation of
additional methods, either resorting to probabifipssibility transformations or (preferably)
building possibilistic functions directly from robgxperimental data;

4. for the fourth issue, it has been shown that @)tteatment of objective dependences among
random events ivery critical since they have a@ramatic impact on the system risk
measures: in this viewynknown (or, at leastpositive objective dependence should be
assumed among random events, in particular if treesponding probabilities aamall
(e.g., of the order of 1-10?); (ii) the conditions of epistemic dependence $thawt be
neglectedvhensmall probabilitiesandextreme quantilebave to be estimated: with respect
to that,unknown(or, at leastperfec) epistemic dependences should be assumed in torder
obtain conservative risk estimates; however, ieotlye dependences aaso present, the
effects of epistemic dependence are likely to dwerwhelmedby those of objective
dependence. In the light of these results, the DiEethod is strongly recommended to

account forall kinds of (possiblyinknown objective and epistemic dependences.
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Tackling these issues is undoubtedly a step forw@sards the use of non-probabilistic settings for
risk analysis in engineering and gives encourag@gpectives for future studies. Without taking
any dogmatic position, the proposed methodologydcba considered as an alternative to the more
common probabilistic approach.

However, these conclusions should not hide sonfieulifes in the practical use of these methods
which are currently partially addressed and shdagddmore investigated in future works. A first
limitation comes from the computational cost ofsiaepproaches, which can become prohibitive
when the system model is a CPU time consuming @sdé& can be often the case in complex
system safety studies (e.g. finite elements CFDnechanical codes, multi-physical coupling of
models). This problem can be tackled by distributechputing and/or meta-modeling techniques
(the latters adding an additional level of uncertigi

Another interesting perspective for future workthe definition of point risk indicators (e.g. a
probability of failure). That can be done quite igaét least by a conceptual viewpoint) in the
fully-probabilistic framework: the Bayesian poirdtienator is the value minimizing the expectation
of a loss function depending on the “distance”h& proposed value from the real (albeit unknown)
one, the loss function encoding the conservatisenveants to give to the point risk indicat8f. In
some studies, it should be interesting to havasatodal a formal theory for choosing a point value
of the quantity of interest to be estimated, esciwhen the interval resulting from the
methodology shown hereinbefore is very large. Ddpgnon the context, the counterpart of the
conservatism of these intervals is the difficutymaking decision under their base.

As a closing general comment, it is worth pointiogt that although in some of the
recommendations above we have chosen “informed’servatism as a possible criterion of
comparison between the probabilistic and possilalismethods, we dmot want to overstate the
benefits of conservatismn itself Actually, (i) assumptions that are conservatiwgthout

justification may cause a misallocation of resources; (ii) est@esconservatism can impair the
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results of an entire analysis, because it makesulaéysts appear to lack an understanding of the
problem under consideration; (iii) in some casesassumption, which is conservative with respect
to some results of a given analysis, may be nosewative with respect tother results of the
sameanalysis. Overly conservative assumptions cansbéaaaging to decision making as overly
optimistic assumptions (i.e., not “anchored” to #wailable information). In an analysis performed
to support a possibly critical, safety-related diexi, the appropriate goal is to be neither overly
optimistic nor overly pessimistic in the assumpsiarsed, but rather to use “objective” and rigorous
toolsfor transforming the available information intéfaithful” description of the uncertainties that

are present in the analysis and its results.
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