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for data-driven prognostics of
heterogeneous fleets

Sameer Al-Dahidi1, Francesco Di Maio1, Piero Baraldi1 and Enrico Zio1,2

Abstract
In this work, we consider the problem of predicting the remaining useful life of a piece of equipment, based on data col-
lected from a heterogeneous fleet working under different operating conditions. When the equipment experiences vari-
able operating conditions, individual data-driven prognostic models are not able to accurately predict the remaining
useful life during the entire equipment life. The objective of this work is to develop an ensemble approach of different
prognostic models for aggregating their remaining useful life predictions in an adaptive way, for good performance
throughout the degradation progression. Two data-driven prognostic models are considered, a homogeneous discrete-
time finite-state semi-Markov model and a fuzzy similarity–based model. The ensemble approach is based on a locally
weighted strategy that aggregates the outcomes of the two prognostic models of the ensemble by assigning to each
model a weight and a bias related to its local performance, that is, the accuracy in predicting the remaining useful life of
patterns of a validation set similar to the one under study. The proposed approach is applied to a case study regarding a
heterogeneous fleet of aluminum electrolytic capacitors used in electric vehicle powertrains. The results have shown
that the proposed ensemble approach is able to provide more accurate remaining useful life predictions throughout the
entire life of the equipment compared to an alternative ensemble approach and to each individual homogeneous
discrete-time finite-state semi-Markov model and fuzzy similarity–based models.
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Introduction

In industries such as nuclear, oil and gas, chemical and
transportation, unforeseen equipment failures are
extremely costly in terms of repair costs, lost revenues,
environmental hazards and human fatalities.1 To
anticipate failures and mitigate their consequences, pre-
dictive maintenance approaches are being developed,
based on the assessment of the actual equipment degra-
dation condition and on the prediction of its evolution
for setting the optimal time for maintenance.1–4 The
underlying concept is that of failure prognostics, that
is, predicting the remaining useful life (RUL) of the
equipment undergoing degradation 5–8 (the amount of
time the equipment can continue performing its func-
tions under the operational and working conditions it
will experience).

In practice, efficient failure prognostics avoids sys-
tem failures and unscheduled shutdowns, helps per-
forming efficient maintenance strategies and allows full

exploitation of the equipment useful life. Hence, failure
prognostics increases the system availability and safety,
while reduces maintenance costs.5,6,8–10

Approaches for RUL estimation can be generally
categorized into model-based and data-driven.5,6,11–18

Model-based approaches use physics-based models to
describe the degradation behavior of the equip-
ment.8,12,19,20 For example, Gebraeel and Pan21 pre-
sented a degradation modeling framework for RUL
prediction of rolling bearings under time-varying
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operational conditions; Li et al.22,23 proposed two pre-
diction models of defect propagation in bearings; Luo
et al.17 developed a model-based prognostic technique
that relies on an accurate simulation model for system
degradation prediction and applied the developed tech-
nique to a vehicle suspension system. Despite the fact
that these approaches have been shown capable of pro-
viding accurate prognostic results, the assumptions and
simplifications on which they are based may pose lim-
itations on their practical deployment.7,12,24–26 On the
other side, data-driven prognostic approaches do not
use any explicit physics-based model, but rely exclu-
sively on the availability of process data related to
equipment health to build (black-box) models that cap-
ture the degradation and failure modes of the equip-
ment.5,8,20,25,27–30

In this work, the availability of condition monitoring
data from similar pieces of equipment, forming what in
the industrial context is called a fleet,31,32 motivates the
development of data-driven prognostic approaches that
capitalize on the information contained in such data to
estimate the equipment RUL. In practice, heteroge-
neous fleets of P pieces of equipment, which have differ-
ent and/or similar technical features, typically undergo
different usages under different operating conditions.
Thus, even if the fleet data can provide wider knowl-
edge concerning the equipment behavior and, thus, can,
in principle, improve the efficiency of the fault prognos-
tics task,31–33 they are difficult to be treated within tra-
ditional data-driven prognostic schemes.

The main difficulty in prognostics tasks using fleet
data is that the equipment typically experiences differ-
ent operating conditions, which influence both the con-
dition monitoring data and the degradation
processes.34 Therefore, individual data-driven prognos-
tic models might not provide satisfactory RUL predic-
tions in terms of accuracy: each model can provide
accurate RUL predictions under some operating condi-
tions but less accurate in others.35 To overcome this,
ensemble approaches, based on the aggregation of mul-
tiple model outcomes, have been introduced, with
superior robustness and accuracy than the individual
models36,37 and the possibility of estimating the uncer-
tainty of the predictions.38

This work proposes an ensemble formed by different
data-driven prognostic models, capable of aggregating
the RUL predictions in an adaptive way, for good per-
formance throughout the entire degradation trajectory
of an equipment.

Two data-driven prognostic base models are consid-
ered: (1) a homogeneous discrete-time finite-state semi-
Markov model (HDTFSSMM)10,34 and (2) a fuzzy
similarity–based (FSB) model.24 The former approach
entails building a statistical model of degradation, esti-
mating its parameters and using the model within a
direct Monte Carlo (MC) simulation scheme39 to esti-
mate the equipment RUL, whereas the latter model
evaluates the similarity between the test degradation
trajectory and the available fleet run-to-failure training

trajectories and uses the RULs of these latter to esti-
mate the RUL of the former, considering how similar
they are.24,40–42

The ensemble approach developed tailors the local
fusion method developed in Baraldi et al.43 to the scope
of RUL aggregation. It is based on the following main
four steps:

1. Retrieve patterns from the validation set similar to
the test pattern under analysis for the prediction.
The retrieved validation patterns will be used
for optimizing the values of the local fusion
method, that is, the weights in Step 2 and the
biases in Step 3.

2. Assign a weight to each individual model of the
ensemble; the weight is proportional to the model
prediction accuracy estimated on the retrieved
patterns.

3. Quantify the bias of each individual model of the
ensemble; the bias is proportional to the model
average RUL prediction error estimated on the
retrieved patterns.

4. Aggregate the outputs, accounting for the model’s
weights and biases.

With respect to Step 1, a novel strategy is proposed
for the identification of the patterns of the validation
set similar to the test pattern. In Baraldi et al.,43 the
similar patterns are those with the smallest distance
from the test pattern under analysis, regardless of the
degradation trajectory they belong to. This might cause
identifying all the similar patterns in the same degrada-
tion trajectory and, thus, the ensemble approach might
provide less accurate RUL predictions. This can be jus-
tified by the fact that the prediction accuracy of each
individual model of the ensemble depends on the diver-
sity and representativeness of the identified patterns
that influence the weights assigned to the models. In
other words, all degradation trajectories of the valida-
tion set can, in principle, bring useful information for
determining the RUL of the test trajectory currently
developing. Therefore, the proposed strategy considers
at most only one similar pattern from each validation
trajectory.

With respect to Step 2, three weighting strategies
have been considered:

a. Weight proportional to the inverse of the mean
absolute error (mae) made by the model on the
identified patterns of the validation set similar to
the test pattern.43

b. Weight proportional to the logarithm of the
inverse of the mae.43

c. The Borda-count method.36

The quantification of the bias of each model in Step
3 consists in calculating the local mean error made by
the model on the identified patterns of the validation
set similar to the test pattern.43

Al-Dahidi et al. 351



With respect to Step 4, the output aggregation is per-
formed by a weighted average of the individual model
RUL prediction to which the model local bias (Step 3)
is subtracted, with the weights computed in Step 2.

Thus, the original contributions in this work are
twofold:

1. The application of the local fusion method43 for
fault prognostics task.

2. The proposal of a new method for selecting pat-
terns of the validation set most similar to the test
pattern.

The proposed approach is applied to a case study
regarding a heterogeneous fleet of aluminum electroly-
tic capacitors used in electric vehicle powertrains. The
performance of the proposed approach is verified with
respect to the accuracy index (AI)44 and is compared
with the performance of each individual model. For
further comparison, an alternative ensemble approach
is applied to the case study and its results are compared
to those obtained by the individual models and the pro-
posed ensemble approach. The alternative approach is
an adaptive switching ensemble approach for data-
driven prognostics that selects the HDTFSSMM at
early stages of life and the FSB model at the last stages
of life.34,45

The remaining of this article is organized as follows.
In section ‘‘The data-driven prognostic models,’’ the
two prognostic models are briefly recalled. In section
‘‘The locally adaptive ensemble approach for data-
driven prognostics,’’ the proposed ensemble approach
for the accurate estimation of the RUL of equipment
belonging to a heterogeneous fleet working under vari-
able operating conditions is illustrated. In section
‘‘Aluminum electrolytic capacitors in fully electrical
vehicles’ case study,’’ a case study regarding a heteroge-
neous fleet of aluminum electrolytic capacitors used in
electric vehicle powertrains is described, and the results
obtained with the proposed ensemble approach are dis-
cussed and compared with each individual model and
an alternative adaptive switching ensemble approach.
Finally, some conclusions are drawn in section
‘‘Conclusion.’’

The data-driven prognostic models

This section briefly illustrates the two data-driven prog-
nostic models considered: the HDTFSSMM (section
‘‘The HDTFSSMM’’) proposed by Al-Dahidi et al.10,34

and the FSB model (section ‘‘The FSB model’’),24

respectively.
Let us assume that we have available Ip measure-

ments for each one of the p=1; . . . ;P pieces of equip-
ment of a heterogeneous fleet monitored at predefined
times t1; t2; . . . ; tl; tIp , l=1; . . . ; Ip. The time interval
tl � tl�1 between two measurements is assumed to be
formed by M discrete time steps. The P pieces of

equipment are divided into Ptrain training, Pvalid valida-
tion and Ptest test sets for the purpose of building the
individual models, developing the proposed ensemble
approach and verifying its performance, respectively.
Each pth trajectory is a Z-dimensional trajectory, where
Z is the number of signals representative of the equip-
ment behavior and of the operating conditions that the
equipment is subjected to. Among the training trajec-
tories, Pc

train are complete run-to-failure trajectories (i.e.
trajectories that last all the way to the instance when
the degradation state reaches the threshold value
beyond which the equipment loses its functionality)
and Pic

train =Ptrain � Pc
train are incomplete run-to-failure

trajectories (i.e. trajectories that do not reach the failure
threshold).

The HDTFSSMM

The degradation process is assumed to follow a homo-
geneous (i.e. memoryless), discrete-time (i.e. transitions
among states occur at discrete time instants), finite-state
(i.e. a finite set of degradation states) and semi-Markov
(i.e. transition rates depend on the current state sojourn
time with any arbitrary distribution) model.46–49 The
transition rates are taken as discrete Weibull distribu-
tions, as these are the probability distributions most
commonly used to describe degradation processes of
industrial equipment.10,48,50

The flowchart for the method is sketched in
Figure 1. The method goes along the following two
phases: a training phase for building the degradation
model and estimating its parameters and a test phase
for using the model within a direct MC simulation
scheme to estimate the RUL of an equipment. Overall,
it entails three main steps:10,34

Step 1: Setting up the number of states of the
HDTFSSMM. The multidimensional segments of mea-
surements taken from the Ptrain degradation trajectories

are appended in the matrix X. The objective is to parti-

tion the collected data in X into G dissimilar groups
(whose number is a priori unknown), such that data
belonging to the same group characterize the degrada-
tion states of the HDTFSSMM that has to be built.

To this aim, an unsupervised ensemble clustering
approach is adopted (refer to Al-Dahidi et al.51 and
Baraldi et al.52,53 for more details): two base clusterings
are first performed on two groups of signals (the first
populated by signals representative of the equipment
behavior and the second representative of the operating
conditions) and, then, ensembled to get the final con-
sensus clusters G that can be seen as the states repre-
sentative of the different degradation levels of the
equipment that are influenced and explained by differ-
ent operating conditions.51 The failure state (i.e. an
absorbing state) at which the degradation level reaches
the failure threshold value is added to those states to
build the transition diagram of the equipment opera-
tion with Gfinal states (i.e. Gfinal =G+1 states).
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Phase 2: States transition parameters estimation and
their uncertainty quantification. Once the topology of
the model is fully defined, the parameters governing
the transitions among the degradation states and their
uncertainty are to be estimated by resorting to the
maximum likelihood estimation (MLE) technique and
the Fisher information matrix (FIM), respectively
(refer to Kendall and Stuart54 for more details).
Phase 3: Direct MC simulation of the degradation pro-
gression for the online estimation of the RUL. At the
current time tj, the RUL provided by the

HDTFSSMM dRULjðHDTFSSMMÞ of a test equip-

ment is estimated using the M latest measurements of
the Z-dimensional signals and by resorting to the direct
MC simulation with Nmax trials.

55

The FSB model

The idea underpinning this model is to evaluate the
similarity between the test trajectory and the Pc

train com-
plete run-to-failure reference trajectories available and
to use the RULs of these latter to estimate the RUL of
the former, considering how similar they are.24

The flowchart for the method is sketched in
Figure 2. It entails four steps:

Step 1: Pointwise difference computation. At the current
time tj, the distance d

ptrain
l between the sequence of the

M latest measurements of the Z signals �rj�M+1:j of the
test trajectory and all M-long segments
�r ptrainl�M+1:l; l=1; . . . ; I ptrain of all reference trajectories
ptrain =1; . . . ;Ptrain is computed

d
ptrain
l =

XM
i=1

�rj�M+ i � �r ptrainl�M+ i

�� ��2 ð1Þ

where �x� �yj j2 is the square Euclidean distance between
vectors �x and �y.
Step 2: Pointwise similarity computation. The similarity
S

ptrain
l of the training trajectory segment �r ptrainl�M+1:l to the

test segment is defined as a function of the distance
measure d

ptrain
l . In Di Maio and Zio,24 the following

bell-shaped function has turned out to give robust
results in FSB due to its gradual smoothness24,41,42

S
ptrain
l = e

� � lnðaÞ
b2

d
ptrain
l

2

� �
ð2Þ

The arbitrary parameters a and b can be set by the
analyst to shape the desired interpretation of similarity
into the fuzzy set: the larger the value of the ratio
ð�lnðaÞÞ=ðb2Þ, the narrower the fuzzy set and the
stronger the definition of similarity. The choice of the
values of a and b depends on the application and are
typically optimized by trial and error using the trajec-
tories of the validation set.24

Step 3: Weight definition. To assign the weight v ptrain

given to the ptrainth reference trajectory accounting for
how similar it is to the test segment, the maximum
similarity along the ptrainth row of the matrix of equa-
tion (2) is first identified

S
ptrain
l� = max

l=1;...;Iptrain

S
ptrain
l ð3Þ

The weight v ptrain is, then, computed resorting to the
arbitrarily chosen decreasing monotone function, which
guarantees that the smaller the minimum distance (the
larger the similarity), the larger the weight given to the
ptrainth reference pattern, where ptrain =1; . . . ;Ptrain

v ptrain =S
ptrain
l� e

1
b
1�Sptrain

l�ð Þð Þ ð4Þ

Then, the weight v ptrain is normalized

v ptrain =
v ptrainPPtrain

ptrain =1

v ptrain

ð5Þ

For the prediction of the test equipment RUL, an
RUL value crul ptrainl� is assigned to each training

Figure 1. Flowchart of the HDTFSSMM.
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trajectory ptrain=1; . . . ;Ptrain by considering the differ-
ence between the trajectory failure time tF and the last
time instant tl� of the trajectory segment �r ptrainl��M+1:l� ,
which has the maximum similarity Sptrain

l� with the test
trajectory

crul ptrainl� = tF � tl� ð6Þ

Step 4: RUL estimation. The RUL prediction of the test

equipment at the current time tj, dRULjðFSBÞ, is given

by the similarity-weighted sum of the values crul ptrainl�

dRULjðFSBÞ=
XPtrain

ptrain =1

v ptrain crul ptrainl� ð7Þ

The locally adaptive ensemble approach
for data-driven prognostics

Let us assume to have available H different prognostic
models. We aggregate the RUL predictions for the gen-
eral test trajectory by dynamically adapting the weights

considering the distance of the test pattern to the pat-
terns of a validation set Pvalid.

More specifically, the aggregation of the prognostic
models outcomes requires to associate a weight wh

j and
a bias bhj to the RUL prediction dRULjðhÞ of each model
h. The basic idea consists in correcting the values ofdRULjðhÞ by subtracting the estimated bias bhj and
weighting the dRULjðhÞ with wh

j .
43 Notice that weights

and biases are different at each test time j.
The method flowchart is sketched in Figure 3. It

entails five main steps:

Step 1: RUL predictions by the different prognostic mod-
els. At the current time tj, H RUL predictionsdRULjðhÞ, h=1; . . . ;H are provided by the H prognos-
tic models.
Step 2: Pattern pointwise difference computation. The
distance dpvalid

l between the sequence of the M latest
measurements of the Z signals �rj�M+1:j of the test
trajectory and all M-long segment �r pvalidl�M+1:l;
l=1; . . . ; I pvalid of all reference trajectories
pvalid =1; . . . ;Pvalid is computed

Figure 2. Flowchart of the FSB model.
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d
pvalid
l =

XM
i=1

�rj�M+ i � �r pvalidl�M+ i

�� ��2 ð8Þ

Step 3: Weight definition. The weight wh
j of the hth

model is calculated based on its performance in predict-
ing the RUL of the patterns of the validation set which
are closer to the test pattern.

In practice, the reference pattern with the minimum
distance d

pvalid
l� is identified for each pvalidth reference tra-

jectory as the pattern with the largest similarity to the
test pattern

d
pvalid
l� = min

l=1;...;Ipvalid

d
pvalid
l ð9Þ

Since the local mae maehj;Pvalid
(defined in equation

(10)) provides information about the performance of
the hth model in predicting the RUL of the Pvalid identi-
fied patterns, it can be considered an estimation of the
error that will affect the RUL prediction of the hth
model and thus be used for the calculations of the
weight wh

j

maehj;Pvalid
=

PPvalid

pvalid =1

crul pvalidl� ðhÞ � rul
pvalid
l�

��� ���
Pvalid

ð10Þ

where crul pvalidl� ðhÞ and rul
pvalid
l� are the RUL prediction

provided by the hth model for the pattern identified
from the pvalid trajectory and its true RUL, respectively.

According to Baraldi et al.,43 three different weight-
ing strategies have been considered:

a. Weights proportional to the inverse of the mae

wh
j =

1

maehj;Pvalid

ð11Þ

b. Weights proportional to the logarithm of the
inverse of the normalized mae

wh
j =log

max
Pvalid;h

crul pvalidl�;j ðhÞ � rul
pvalid
l�;j

��� ���
maehj;Pvalid

2
64

3
75 ð12Þ

where max
Pvalid;h

crul pvalidl�;j ðhÞ � rul pvalidl�;j

��� ��� is the maximum

value of the error over all patterns of the valida-
tion set Pvalid and all models h; h=1; . . . ;H.43

c. Weights are assigned according to the Borda-
count method.36 The estimated local error is used
to make a ranking of the different models and to
assign them a score Ch

j , 1\Ch
j \H, according to

their position in the ranking, that is, 1 for the
worst performing model and H for the best per-
forming one

wh
j =Ch

j ð13Þ

Step 4: Bias calculations. The bias correction bhj of the
hth model is taken equal to the local mean error

mehj;Pvalid
=

PPvalid

pvalid =1

crul pvalidl� ðhÞ � rul
pvalid
l�

� �
Pvalid

ð14Þ

This quantity represents the accuracy of the RUL
predictions obtained by each model h on the Pvalid

patterns of the validation set closer to the test
pattern.

Step 5: Aggregation of the RULs provided by the indi-
vidual models. Once the weights and the biases are cal-
culated, each dRULjðhÞ is corrected by subtracting the
estimated bias bhj and, then, combined with the others
by means of a weighted average43

Figure 3. Flowchart of the proposed ensemble approach.
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dRULjðensembleÞ=

PH
h=1

wh
j :

dRULjðhÞ � bhj

� �
PH
h=1

wh
j

ð15Þ

Aluminum electrolytic capacitors in fully
electrical vehicles’ case study

The potential benefit of using the proposed ensemble
approach is demonstrated in a case study regarding a
heterogeneous fleet of P=150 aluminum electrolytic
capacitors used in electric vehicle powertrains.34,56 The
performance of the proposed approach in providing
accurate RUL estimates is here compared with those of
each individual model and of an alternative ensemble
approach.

The available data

The main degradation mechanism of electrolytic capaci-
tors is the vaporization of the electrolyte, whose degra-
dation speed is largely influenced by the component
working temperature.57

During the capacitor life, the following Z=2 signals
are measured:

1. ESRmeasured is a direct measurement of the compo-
nent degradation.

2. The temperature T experienced by the capacitor,
which represents the operating condition most
influencing the degradation process of the
capacitor.

Given the unavailability of real data describing the
degradation of a fleet of capacitors, the degradation
trajectories have been simulated by applying a physics-
based model of the electrolyte vaporization.56,58

According to Rigamonti et al.,56 the normalized
equivalent series resistance ESRnorm is considered as a
degradation indicator. The physics-based degradation
model is represented by a first-order Markov process

ESRnorm
t =ESRnorm

t�1 eFðTt�1Þ+vt�1 ð16Þ

where vt�1 is the process noise at time t� 1 and
FðTt�1Þ is a coefficient which defines the degradation
rate of the capacitor depending on the capacitor work-
ing temperature at time t� 1.

The equation linking the measurements to the
ESRnorm is

ESRmeasured
t =ESRnorm

t � a+ be�
ðTESR

t
�273:15Þ
c

� �
+ht ð17Þ

where a, b and c are the measurement parameters, TESR
t

is the temperature at which the measurement has been
performed at time t (usually different from the aging
temperature that the capacitor experienced) and ht is
the measurement noise at time t.59

The simulation of the evolution of the ESRnorm for a
fleet of capacitors is performed by assuming an initial
value equal to 100% and iteratively applying equation
(16) with a time step equal to 1 h. The failure time of
the capacitor is defined as the time at which ESRnorm of
the capacitor reaches the failure threshold of 200%.58

The measured ESR values, ESRmeasured, have been
obtained by applying equation (17) to the numerically
simulated degradation indicator values ESRnorm for
arbitrary parameter values,56 and the possible tempera-
ture profiles have been simulated by taking into account
the suggestions of design experts of the motor beha-
vior:60,61 temperature variations experienced by the
capacitors during life are mainly caused by (1) the sea-
sonality of the environmental external temperature and
(2) the aging (barely up to 10% of its initial temperature
value). Therefore, the simulated temperature profiles
follow an arbitrary sinusoidal function that justifies sea-
sonality, by adding to this a shift sigmoidal function
accounting for aging.

The heterogeneity among the P=150 capacitors
that belong to the fleet is guaranteed by considering
arbitrary parameter values for the sinusoidal and the
sigmoidal functions describing the operating
conditions.

For clarification purposes, Figure 4 shows the
simulated data of two capacitors (capacitor 1 and capa-
citor 2—dark and light shade of color, respectively):
Figure 4 (top) shows ESRnorm, Figure 4 (left bottom)
shows ESRmeasured, whereas Figure 4 (right bottom)
shows the T profiles experienced by the capacitors. It is
worth noticing that the higher the temperature, the
faster the vaporization process due to the increase in
the self-heating effects and, hence, the faster the failure
process too as shown in Figure 4 (top, capacitor 2—
light shade of color).56,62

The whole data set is divided into Ptrain =100 train-
ing, Pvalid =25 validation and Ptest =25 test trajec-
tories. Among the Ptrain=100 trajectories, Pc

train=20
last all the way to the failure threshold, whereas
Pic
train=80 are incomplete, that is, measurement data

are not available until failure. For clarification pur-
poses, Figure 5 shows the ESRnorm of the complete and
incomplete run-to-fail degradation trajectories (in dark
and light shade of color, respectively).

All the measurements of the Ptrain=100 trajectories
are stored in the matrix X that is used to build the indi-
vidual models (as presented in section ‘‘Implementation
of the ensemble approach’’), and thus, to develop the
ensemble approach. For computational convenience,
1000 time steps between two successive measurements
(i.e. M=1000) are considered.

Implementation of the ensemble approach

The individual models are built using the trajectories of
the Ptrain =100 capacitors. With respect to the
HDTFSSMM, the whole set is used to build the degra-
dation model and estimate its parameters, and

356 Proc IMechE Part O: J Risk and Reliability 231(4)



Nmax=1000MC trials have been used in the direct MC
simulation step aimed at predicting the RUL of the
Ptest=25 capacitors.34 With respect to the FSB model,
only the Pc

train =20 complete run-to-failure training
trajectories are used to build a reference library for esti-
mating the RUL of the Ptest=25 capacitors.

Finally, for each ptestth capacitor, ptest =1; . . . ;Ptest,
and at each time tj; j=1; . . . ; I ptest , the proposed ensem-
ble approach is applied following the scheme presented
in section ‘‘The locally adaptive ensemble approach for
data-driven prognostics’’ using Pvalid=25 capacitors
for the purpose of aggregating the outcomes of the indi-
vidual models.

The evaluation metric considered in this work is
the AI)44 that is defined as the relative error of the
RUL prediction. In practice, small AI values indicate
more accurate predictions. The AI evaluation metric is
defined by44

AIptest =
XIptest
j=1

crul ptestj � rul
ptest
j

��� ���
rul ptestj

; AI=

PPtest

ptest =1

AIptest

Ptest
ð18Þ

where AIptest and AI are the average AI of the ptestth
equipment and of the overall Ptest pieces of equipment,
respectively.

Results

Table 1 reports the average values of the AI for the
three alternative weight strategies and the individual
models. It can be seen that the ensemble approach with
any weighting scheme outperforms any of the individ-
ual model in terms of the AI and that the ensemble
with the weight strategy (b) achieves the most accurate
RUL predictions (i.e. smallest AI equal to 0.37), with
42.19% improvement with respect to the best individ-
ual model, FSB, whose AI is 0.64.

In Figure 6 (top), the RUL estimates obtained by
the proposed ensemble approach (weighting strategy
(b)) for two capacitors are plotted in solid line, together
with those obtained by the HDTFSSMM and the FSB
in circles and squares, respectively.

The analysis of Figure 6 suggests that

Figure 4. The true degradation process (top), the ESR measurements (left bottom) and the temperature profiles experienced by
the capacitors (right bottom).

Table 1. Value of the AI for the Ptest = 25 trajectories obtained by the proposed ensemble approach and the individual models.

HDTFSSMM FSB model Locally adaptive ensemble approach

AI 1.24 0.64 Weight strategy (a): 0.42
Weight strategy (b): 0.37
Weight strategy (c): 0.47

HDTFSSMM: homogeneous discrete-time finite-state semi-Markov model; FSB: fuzzy similarity–based; AI: accuracy index.
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1. The predictions provided by the two models are
comparable: even if the HDTFSSMM provides
more accurate RUL predictions at the early stages
of the capacitor life, the FSB model provides more
accurate predictions when the capacitor approaches
the end of life.

2. The ensemble of the two models, instead, allows
obtaining more accurate predictions throughout
the lives of the capacitors than each individual
model.

Figure 6 (bottom) shows the weights dynamically
assigned to the two models at each time t:

1. The HDTFSSMM gets a larger weight from the
beginning of the lives to approximately
t=12; 500 h compared with the FSB model. This

can be justified by the fact that the HDTFSSMM
exploits information taken from both the complete
and the incomplete run-to-failure trajectories,
whereas the FSB model only uses the first source
of information. Furthermore, the complete run-to-
failure trajectories used for training the FSB model
are characterized by short lives (see Figure 5) and,
thus, the FSB model tends, on average, to underes-
timate the capacitor RUL at the beginning of its
degradation trajectory.

2. The FSB model gets exceptionally large weights
toward the end of the capacitors’ lives compared
with the HDTFSSMM. This can be justified by the
fact that the HDTFSSMM based on a statistical
model for the estimation of the Weibull distributed
transition time is not effective when the capacitors
approach the failure times.

On the basis of this considerations, one might argue
that an alternative approach that uses only the
HDTFSSMM for the early stage of the capacitor life
and, then, only the FSB model might be superior (from
the methodological point of view) and more efficient.
The following section ‘‘Comparison with the adaptive
switching ensemble approach’’ compares the perfor-
mances of the proposed ensemble approach of section
‘‘The locally adaptive ensemble approach for data-
driven prognostics’’ with that of this latter alternative,
developed as in Al-Dahidi et al.45

Comparison with the adaptive switching ensemble
approach

The approach is structured into two phases:45 an offline
selection of the optimal switching time topt before which

Figure 5. Examples of simulated complete and incomplete
run-to-failure degradation trajectories.

Figure 6. Comparison of the RUL predictions for two capacitors provided by the proposed ensemble approach and each individual
model of HDTFSSMM and FSB.
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the HDTFSSMM is used for providing the RUL esti-
mates and after which the FSB is used (the interested
reader may refer to Appendix 2 for further details on
the procedure) and an online phase that relies on topt to
switch between the HDTFSSMM and the FSB for pre-
dicting the RUL of the Ptest=25 capacitors.

For the case of interest, by adopting a trial-and-error
procedure using the validation set trajectory, topt turns
out to be equal to 9000 h.

Table 2 reports the AI calculated on the Ptest=25
test trajectories for the locally adaptive ensemble
approach (weighting strategy (b)) compared with the
adaptive switching ensemble approach. Notice that the
proposed ensemble approach is more satisfactory, since
it provides lower AI values.

The estimates of the RUL obtained by the adaptive
switching ensemble approach for two capacitors are
shown in Figure 7 in dark solid lines before and after topt
(together with those obtained by the locally adaptive
ensemble approach in light solid line and each individual
model in circle and square markers). It can be easily
noticed that the proposed ensemble approach outper-
forms the adaptive switching ensemble approach in terms
of accuracy throughout the entire lives of the capacitors.

Conclusion

The operating conditions experienced during the life of
an equipment influence both the condition monitoring
data and the degradation processes. Thus, prognostics
for a heterogeneous fleet of equipment working under
variable operating conditions is a complex and difficult
task, and prognostic approaches based on the use of
individual data-driven models might not provide

satisfactory predictions of the RUL in terms of accu-
racy throughout the entire life of the equipment.

In this work, we have proposed an ensemble
approach based on the use of two data-driven prognos-
tic models: an HDTFSSMM and an FSB model. The
RUL predictions provided by the two models are
aggregated using a locally weighted strategy which
assigns a weight and a bias using a measure of a local
performance of the ensemble individual models, that is,
the accuracy in predicting the RUL of patterns of a
validation set similar to the one under study.

The proposed approach is capable of (1) benefiting
from the availability of condition monitoring data col-
lected from heterogeneous fleets and (2) aggregating the
RUL predictions in an adaptive way, for good perfor-
mance throughout the entire degradation trajectory of
an equipment and, thus, enhancing the RUL estimation.

Thus, the main original contributions of this work
are as follows:

1. The application of the local fusion method devel-
oped in Baraldi et al.43 for fault prognostics task.

2. The proposal of a new method for selecting patterns
of the validation set most similar to the test pattern.

The proposed approach has been applied to a case
study regarding a heterogeneous fleet of aluminum
electrolytic capacitors used in electric vehicle power-
trains. The performance of the proposed approach has
been compared with the performance of each individ-
ual model and to an alternative ensemble approach,
showing its feasibility and benefit when dealing with
data collected from heterogeneous fleets.

Future work will be devoted to (1) the comparison
of the proposed ensemble approach to model-based

Figure 7. Comparison of the RUL predictions for two capacitors provided by the proposed ensemble approach, the switching
ensemble approach and each single model of HDTFSSMM and FSB.

Table 2. Values of the AI for the Ptest = 25 test trajectories.

Locally adaptive ensemble approach (weighting strategy (b)) Adaptive switching ensemble approach

AI 0.37 0.51

AI: accuracy index.
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prognostic approaches and (2) the application of the
proposed ensemble approach on real industrial degra-
dation trajectories collected from the operations of a
fleet of industrial equipment.
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Appendix 1

Notation

a; b; c parameter characteristics of the
capacitor

AI average accuracy index of the
Ptest pieces of equipment

AIptest average accuracy index of the ptest
equipment

bhj bias associated with the hth
prognostic model at time tj

d pvalid
l pointwise difference between

�rj�M+ i and �r pvalidl�M+ i

d
pvalid
l� minimum distance d

pvalid
l of pvalid

trajectory at time tl�

ESRnorm capacitor degradation indicator
F coefficient which defines the

degradation rate of the capacitor
g index of degradation state,

g=1; . . . ;Gfinal

G number of degradation states
(final consensus clusters) of
equipment

Gfinal number of degradation states
including the failure state of
equipment

h index of the prognostic model,
h=1; . . . ;H

H number of individual prognostic
models

Ip number of measurements of pth
equipment

I ptest number of measurements of ptest
equipment

I ptrain number of measurements of ptrain
equipment

I pvalid number of measurements of pvalid
equipment

KNN K-nearest neighbors
l index of the measurement time,

l=1; . . . ; Ip
maehj;Pvalid

local mean absolute error
obtained by the hth prognostic
model at time tj of the Pvalid

trajectories
mehj;Pvalid

local mean error obtained by the
hth prognostic model at time tj of
the Pvalid trajectories

M number of discrete time steps
between two successive
measurements, tl � tl�1

Nmax number of MC simulation trials
p index of equipment in the fleet,

p=1; . . . ;P
ptest index of equipment used for

testing, ptest=1; . . . ;Ptest

ptrain index of equipment used for
training, ptrain =1; . . . ;Ptrain

pvalid index of equipment used for
validation, pvalid=1; . . . ;Pvalid

P number of pieces of equipment in
the fleet

Ptest number of pieces of equipment in
the fleet used for testing

Ptrain number of pieces of equipment in
the fleet used for training

Pc
train number of complete-run-to-

failure equipment used for
training

Pic
train number of incomplete-run-to-

failure equipment used for
training

Pvalid number of pieces of equipment in
the fleet used for validation

Qh
j score provided to the hth

prognostic model in the Borda-
count method at time tj

rul
ptest
j true RUL of the ptest capacitor at

time tj
rul ptrainl� true RUL of the ptrain trajectory

at time tl�

rul pvalidl� true RUL of the pvalid trajectory
at time tl�

�rj�M+1:j jth segment of length M of a test
trajectory

�r ptrainl�M+1:l lth segment of length M of ptrain
reference trajectory,
l=1; . . . ; I ptrain ; ptrain=1; . . . ;
Ptrain

�r pvalidl�M+1:l lth segment of length M of pvalid
trajectory, l=1; . . . ; I pvalid ;
pvalid =1; . . . ;Pvalidcrul ptestj RUL prediction of the ptest
capacitor at time tjcrul pvalidl� ðhÞ RUL prediction provided by the
hth prognostic model for a pvalid
trajectory at time tl�dRULjðensembleÞ ensemble RUL prediction of the
H prognostic models at time tj of
a test trajectorydRULjðFSBÞ RUL prediction provided by the
FSB model for a test trajectory at
time tjdRULj

ðHDTFSSMMÞ
RUL prediction provided by the
HDTFSSMM for a test
equipment at time tj

S
ptrain
l measure of similarity between

�r ptrainl�M+1:l and �rj�M+1:j

S ptrain
l� largest similarity between the

ptrain trajectory and the jth
segment of a test trajectory at
time tl�

tF failure time of the ptrain trajectory,
ptrain=1; . . . ;Ptrain

tj jth test time of a test equipment
tl lth measurement time of an

equipment
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tl� last time instant of the segment
�r ptrainl��M+1:l� which has the
maximum similarity with the test
trajectory

topt optimum switching time of the
adaptive switching ensemble
approach

tsw possible switching time of the
adaptive switching ensemble
approach, tsw= ½tmin

sw ; t
max
sw �

Tt aging temperature experienced by
the capacitor at time t

TESR
t capacitor temperature at which

the ESR measurement has been
performed at time t

v ptrain weight assigned to the ptrain
reference trajectory in the FSB
model, ptrain =1; . . . ;Ptrain

wh
j weight associated with the hth

prognostic model at time tj
X dataset matrix of the collected

measurements
z index of signal
Z number of signals of each

degradation trajectory

a;b parameters of the bell-shaped
similarity function of the FSB
model

d
ptrain
l pointwise difference between

�r ptrainl�M+1:l and �rj�M+1:j

ht random noise representing the
measurement error at time t

vt process noise representing the
degradation process stochasticity
at time t

Appendix 2

The adaptive switching ensemble approach

The adaptive switching ensemble model45 (sketched in
Figure 8) entails first an offline selection of the optimal
switching time topt among all the possible switching
times tsw= ½tmin

sw ; t
max
sw �, where tmin

sw . is the first measure-
ment time and tmax

sw is the longest end of life that mini-
mizes the accuracy index (AI) over the Pvalid validation
trajectories, that is, the relative error of the RUL
prediction.44

Then, an online usage for predicting the RUL of
Ptest pieces of equipment. In other words, the optimal
switching time topt represents the time up to which
HDTFSSMM is used for providing the RUL estimates
at the early stage of the equipment life and beyond
which FSB is used when the equipment approaches the
end of life.

Figure 8. Flowchart of the adaptive switching ensemble approach..
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