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Model Uncertainty in Accelerated Degradation
Testing Analysis

Le Liu, Xiao-Yang Li, Enrico Zio, Senior Member, IEEE, Rui Kang, and Tong-Min Jiang

Abstract—In accelerated degradation testing (ADT), test data
from higher than normal stress conditions are used to find stochas-
tic models of degradation, e.g., Wiener process, Gamma process,
and inverse Gaussian process models. In general, the selection of
the degradation model is made with reference to one specific prod-
uct and no consideration is given to model uncertainty. In this
paper, we address this issue and apply the Bayesian model averag-
ing (BMA) method to constant stress ADT. For illustration, stress
relaxation ADT data are analyzed. We also make a simulation
study to compare the s-credibility intervals for single model and
BMA. The results show that degradation model uncertainty has
significant effects on the p-quantile lifetime at the use conditions,
especially for extreme quantiles. The BMA can well capture this
uncertainty and compute compromise s-credibility intervals with
the highest coverage probability at each quantile.

Index Terms—Accelerated aging, Bayesian methods, degrada-
tion, stochastic processes, uncertainty.

NOMENCLATURE

A. Acronyms
ALT Accelerated life test(ing).
ADT Accelerated degradation test(ing).
AIC Akaike’s information criterion.
BMA Bayesian model averaging.
D–S Dempster–Shafer
MLE Maximum-likelihood estimator.
MCMC Markov chain Monte Carlo.
USP Unified stochastic degradation model.
PDF Probability density function.
CDF Cumulative density function.
FPT First passage time.
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BISA Birnbaum–Saunders-type distribution.
CP Coverage probability.
AL Average interval length.

B. Notation
X(t) Product degradation path.
Λ(t) Age function of time t.
γ Time-scale parameter.
μ, σ Degradation parameters.
α0 , α1 Acceleration parameters.
a(t), b(t) Parameters in the unified model.
c, C Candidate model c, number of models.
D ADT dataset.
fN (·) PDF of normal distribution.
fGa(·) PDF of Gamma distribution.
fIG (·) PDF of inverse Gaussian distribution.
i, j, k ith stress level, unit j, measurement k.
K Number of stress levels.
ni Test samples under the ith stress level.
mij Number of measurements for unit j under the ith

stress level.
s, s′ Stress level.
L(·), l(·) Likelihood and log-likelihood function.
θc , θ̂c , ˜θc Vector of parameters.
ω Failure threshold.
p, z Quantile.
tp , tpc , t̂pc p-quantile lifetime at the use condition.
q Confidence level.
∇tp First derivative of tp .
AV ar(·) Asymptotic variance.
I , I−1 Fisher information matrix, its inverse.
Γ(·) Gamma function.
ψ(·), ψ1(·) Digamma and trigamma function.
P (·) Model probability.

I. INTRODUCTION

MANY products are designed to be highly reliable and
to have a long lifespan, e.g., battery life of 15 years for

hybrid electric vehicles [1]. Traditional reliability tests are obvi-
ously not suitable for the reliability assessment of such products
over such long time spans. Thus, accelerated degradation tests
(ADT) are widely used to accelerate the failure/degradation
processes by exposing the products to severe test conditions.
Successful applications of ADT have been developed for batter-
ies [2], light-emitting diodes [3], metal–oxide–semiconductor
field-effect transistors [4], smart electricity meter [5], and
others.
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In standard ADT data analysis, a degradation model is as-
sumed to describe the degradation paths of the samples tested at
different stress levels and some specific parameters of the model
are assumed to be stress related, as described by a given accel-
eration model, e.g., the drift coefficient in the Wiener process
[6]–[8]. In general, acceleration models are assumed based on
the physical mechanisms of the tested samples or empirical ob-
servations of the stress variable [9], e.g., temperature-Arrhenius
model, voltage-Eyring model, etc. After obtaining the data from
ADT, inference on unknown parameters is taken up, both of the
degradation and acceleration models. Then, the product relia-
bility assessment and lifetime evaluation are performed with the
estimated parameters under the given use conditions. Statistical
inference methods for ADT data analysis have been extensively
reviewed in [10] and [11].

In the literature, stochastic process models has drawn more
attention than degradation-path models due to their ability to de-
scribe temporal variability [12], like the Wiener process model
[13], [14], Gamma process model [15]–[18], and inverse Gaus-
sian process model [19]–[22]. The Wiener process model is of-
ten used when the degradation process is fluctuating with time. If
the degradation process is nondecreasing, both Gamma and in-
verse Gaussian process models are generally used in preference
to the Wiener process model and to ensure the monotonous prop-
erty. However, in some engineering applications, the Wiener
process model is also used to deal with monotonous data. Ex-
amples are given in [23]–[25].

For a given ADT dataset, more than one model might be
plausible to describe it. Thus, model uncertainty exists in stan-
dard ADT data analysis, which has not been considered and that
may lead to wrong inferences. Also, in ALT, different lifetime
distributions may plausibly describe the time to failure data and
the problem of model uncertainty arises. This is, for example,
treated in [26] by the BMA method, with demonstration that the
choice of the distribution has significant effects on the results of
the lifetime evaluation at the use conditions, especially for ex-
treme quantiles. For ADT, the AIC has been introduced to select
the appropriate model [7], [27]. However, the effect of model
uncertainty on the lifetime evaluation results is not considered.
In [28], both Wiener and Gamma process models have been
used, and shown to give accurate parameter estimates. How-
ever, the question remains to how the degradation model affects
the lifetime evaluation results and how the model uncertainty
can be accounted for.

Although it would be possible account both for accelerating
and degradation models uncertainty, as mentioned in [26], this
can result in a very complicated extrapolation. Hence, follow-
ing [26] in this paper, we consider only the uncertainty about
the degradation models by analyzing three stochastic process
models commonly used in ADT.

With respect to model uncertainty in literature, many works
have addressed this issue [29]–[31]. In [32], two approaches,
i.e., alternate hypotheses (also known as model averaging) and
adjustment factor, have been used to treat model uncertainty by
expert judgments. The former one combines all the available
models through a mixture of probabilities. The latter selects a
best model as reference and updates it with information from
the other models. Model averaging has been fully extended into
BMA [33]–[36], by the integration of model prior knowledge

and the likelihood function of the obtained data for each model.
In [37], it is applied to account for model uncertainty based on
the differences between experimental observations and model
predictions.

One problem of the model averaging method is that it assumes
that the real model is one of the candidate models since the sum-
mation of model probabilities must be equal to one, even though
it is unknown and of difficult interpretation, and controversial in
practical applications. To relax this assumption, D–S theory can
be introduced, using belief and plausibility functions to account
for model uncertainty [38], [39]. Some difficulties may arise in
this method for the elicitation of expert knowledge on the belief
values to assign to the models.

As to the adjustment-factor method, some work has been
done for its application to accelerated testing models based on
field lifetime or degradation data. For example, Wang et al. [40]
chose exponential and Weibull lifetime distributions as the ref-
erence models for Device-A ALT data; then, a calibration factor
is introduced to update the reference models with the field fail-
ure data since the lab-test environment and field conditions are
different. A similar procedure is used for ADT models in [41].

In this paper, we contribute to accounting for model uncer-
tainty in the lifetime evaluation from ADT data. The BMA
method is selected due to its mathematical soundness and com-
putational convenience. For the application of BMA, we assume
that the three degradation models are an exhaustive set within
which the real model lies. An alternative could be to the D–S
theory with expert knowledge or the adjustment-factor method
based on field information, but these are not within the scope of
this paper, and will be considered in future works.

The rest of the paper is organized as follows. In Section II,
a unified stochastic process (USP) model is defined to comprise
the three candidate models and the statistical inferences. The
MLE and its s-confidence interval for p-quantile lifetime esti-
mation at the use conditions are also proposed. The lifetime is
determined assuming that the considered degrading units fail
when the degradation levels exceed a given threshold, called the
failure threshold. In Section III, the BMA method for model
uncertainty analysis is introduced and MCMC is implemented
for its numerical resolution. In Sections IV and V, an illustrative
example is presented to show the implementation of the method
proposed in the preceding sections. Finally, some concluding
remarks are given in Section VI.

II. THE USP MODEL FOR ADT EVALUATION

A. Unified Stochastic Degradation Model

In standard ADT analysis, it is customary to assume that
the degradation X(t) follows a process with statistically inde-
pendent increments, where the mean and variance of X(t) are
proportional to the age function of time as Λ(t), and Λ(t) is
a nonnegative increasing function. Herein, a unified stochastic
process X(t) = USP(t) is a process with statistically indepen-
dent increments such that the mean and variance functions have
the form

E(X(t)) = μΛ(t) (1)

Var(X(t)) = σ2Λ(t) (2)
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where μ, σ2 > 0 and Λ(t) is a nonnegative increasing function.
If for any fixed t > 0, the PDF of X(t) depends on two param-
eters a(t) and b(t), which are values of positive time functions
a and b, then, we use notation X(t) = USP(a(t), b(t)), shortly
X = USP(a, b). Taking into account that the mean and the vari-
ance are functions of a(t) and b(t), equalities (1) and (2) imply
that these functions can be written in terms of μ, σ2 and Λ(t).

For instance, the unified stochastic process model becomes
the Wiener process model when X(t) ∼ N(a(t), b(t)), where
a(t) = μΛ(t) is the mean value and b(t) =

√

σ2Λ(t) is the
standard deviation. For any fixed t > 0, the PDF of X(t) is
fN (x|a(t), b(t)), where

fN (x | a(t), b(t)) =
1√

2πb(t)
exp

[

− (x− a(t))2

2b(t)2

]

. (3)

The unified stochastic process model becomes the Gamma
process model when X(t) ∼ Ga(a(t), b(t)), where a(t) =
μ2 Λ(t)
σ 2 is the shape parameter and b(t) = σ 2

μ > 0 is the
scale parameter. For any fixed t > 0, the PDF of X(t) is
fGa(x|a(t), b(t)), where

fGa(x | a(t), b(t)) =
b(t)−a(t)

Γ(a(t))
xa(t)−1exp

(

− x

b(t)

)

, x > 0.

(4)
The unified stochastic process model becomes the inverse

Gaussian process model when X(t) ∼ IG(a(t), b(t)), where

a(t) = μΛ(t) is the mean parameter and b(t) = μ3 Λ2 (t)
σ 2 > 0 is

the shape parameter. For any fixed t > 0, the PDF of X(t) is
fIG (x|a(t), b(t)), where

fIG (x | a(t), b(t))=
√

b(t)
2πx3 exp

[

−b(t)(x− a(t))2

2a(t)2x

]

, x > 0.

(5)
Through the above definitions, we can analyze the influence

of the degradation model uncertainty on the p-quantile lifetime
at the use conditions.

B. Acceleration Model With Normalized Stress

The acceleration model describes the relationship between
the accelerated stress s′i and the degradation rate μi . It can
be obtained based on either physical knowledge of the tested
products or empirical observations. The typical physics-based
acceleration models include the Arrhenius model, Eyring model,
etc. [9], while the empirical acceleration models include the
Coffin–Manson model [42], etc. A general log-linear form of

the model can be written as

μi = exp(α0 + α1si) (6)

where α0 and α1 are two constant parameters, and si is the
normalized accelerated stress level given by [8]

si =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1/s′0 − 1/s′i
1/s′0 − 1/s′H

Arrhenius relation

lns′i − lns′0
lns′H − lns′0

power law relation

s′i − s′0
s′H − s′0

exponential relation

(7)

where s′0 and s′H are the normal and highest stress levels, re-
spectively. Formulas (7) imply s0 = 0, sH = 1, si ∈ [0, 1], i =
1, 2, . . . ,K, and the degradation rate at the use conditions is
μ0 = exp(α0).

C. Statistical Inference

For the constant stress scenario, we assume thatX(tijk ) is the
kth degradation value of unit j under the ith stress level and tijk
is the corresponding measurement time, i = 1, 2, . . . ,K, j =
1, 2, . . . , ni , k = 1, 2, . . . ,mij , whereK is the number of stress
levels, ni is the number of test samples under the ith stress level,
and mij is the number of measurements for unit j under the ith
stress level.

Let xijk = X(tijk ) −X(tij (k−1)) be the observed degra-
dation increment and Λijk = Λ(tijk ) − Λ(tij (k−1)) the
corresponding increment of the age function. In addition, the
exponential form of Λ(t) = tγ is used for time-scale transfor-
mation: when γ = 1, a linear function is given for the time;
otherwise, it is nonlinear.

From the definitions in (3)–(5), the likelihood function of the
ADT data D is given as

L(D|θ) =
K
∏

i=1

ni
∏

j=1

mi j
∏

k=1

fUSP(xijk |aijk , bijk ) (8)

where the unknown parameter vector θ = [α0 , α1 , σ, γ]. The
MLE of θ̂ can be easily obtained by maximizing the corre-
sponding log-likelihood function, l(θc |Mc,D) in (9)–(11), as
shown at bottom at this page, where we denote by M1 , M2 ,
and M3 the candidate Wiener, Gamma, and inverse Gaussian
process models, respectively. See (9)-(11) at the bottom of the
page.

l(θ1 |M1 ,D) =
K
∑

i=1

ni
∑

j=1

mi j
∑

k=1

{

− 1
2

ln2π − 1
2

lnσ2 − 1
2

lnΛijk − (xijk − μiΛijk )
2)

2σ2Λijk

}

(9)

l(θ2 |M2 ,D) =
K
∑

i=1

ni
∑

j=1

mi j
∑

k=1

{

− lnΓ
(

μ2
i Λijk

σ2

)

− μ2
i Λijk

σ2 ln

(

σ2

μi

)

+
(

μ2
i Λijk

σ2 − 1
)

lnxijk − μixijk
σ2

}

(10)

l(θ3 |M3 ,D) =
K
∑

i=1

ni
∑

j=1

mi j
∑

k=1

{

3
2

lnμi + lnΛijk − 1
2

ln2π − 1
2

lnσ2 − 3
2

lnxijk − μi (xijk − μiΛijk )
2

2σ2xijk

}

(11)
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Noted that some degradation trajectories exceed the failure
threshold under certain circumstances, which lead to the situa-
tion with both degradation and failure time data available. In this
paper, we specifically concentrated on the model uncertainty in
accelerated degradation testing analysis with degradation data
only. For the situation also with failure time data, readers are
referred to [27], [40], and [41].

D. p-Quantile Lifetime and Its Variance Through MLE

In the following, the p-quantile lifetime of interest is de-
rived for the unified stochastic process USP(a, b), which can be
used for maintenance decision-making or verifying the lifetime
and reliability levels of the tested products.

1) p-Quantile Lifetime at the Use Condition: It is easy to
verify that in the considered Wiener process the random variable
Y = Λ(T ) has the following inverse Gaussian PDF:

Y ∼ fIG

(

y | ω
μ
,
ω2

σ2

)

(12)

where T is the FPT (i.e., the time at which the degradation
process first exceeds the failure threshold ω). Hence, given that
Λ(t) is a monotone increasing function, the following CDF is
obtained for T

FT (t) = 1 − Φ

(

ω − μΛ(t)
√

σ2Λ(t)

)

+ exp
(

2ωμ
σ2

)

Φ

(

−ω + μΛ(t)
√

σ2Λ(t)

)

(13)

where Φ(·) denotes the CDF of a standard Normal random vari-
able. The last term in the right-hand side of the equality accounts
for the fact that in the Wiener process the events [X(t) ≤ ω
and X∗(t) > ω] have a probability strictly greater than zero
[43], where X∗(t) = sups∈[0,t]X(s). In fact, in the case of the
Wiener process the events T > t and X(t) ≤ ω are not equiv-
alent. Nonetheless, when μΛ(t) 	 σ

√

Λ(t), this term can be
ignored because in this case the Wiener process is practically
non-decreasing, and the CDF of the FPT can be approximated
as

FT (t) ∼= 1 − Φ

(

ω − μΛ(t)
√

σ2Λ(t)

)

. (14)

It is possible to show that such approximation is still appli-
cable in the case of the Gamma and inverse Gaussian processes
[21], [27].

It is easy to verify that, using this CDF, the following ap-
proximate expression can be obtained for the p-quantile of the

random variable T at the use condition of interest, μ0

tp = Λ−1

⎡

⎣

ω

4μ0

⎛

⎝

σ√
ωμ0

zp +

√

4 +
σ2z2

p

ωμ0

⎞

⎠

2⎤

⎦ (15)

where zp is the p-quantile of the standard normal distribution
and Λ−1(·) is the inverse function of Λ(·). In fact, assumed that
T has the CDF in (14), it results that the variable Y = Λ(T ) has
the following BISA CDF

FY (y) = Φ

[

1
α

(

√

y

β
−
√

β

y

)]

(16)

with α = σ√
ωμ and β = ω

μ [27], [43]. Hence, being [44]

yp =
β

4

(

αzp +
√

4 + α2z2
p

)2
(17)

it results

tp = Λ−1(yp) = Λ−1
[

β

4

(

αzp +
√

4 + α2z2
p

)2
]

(18)

and thus, being α = σ√
ωμ and β = ω

μ , writing μ0 in place of μ,
expression (15) is obtained.

2) Approximate Confidence Intervals Based on Fisher Infor-
mation Matrix: When constructing confidence interval with the
MLE information, both empirical (or observed) and expected
Fisher information matrixes can be used, see [45] and [46]. In
this paper, the expected fisher information matrix is selected.
Based on the best asymptotically normal distribution property
of the MLE, we get the asymptotic distribution of t̂p

t̂p ≈ N
(

tp , AV ar(t̂p)
)

(19)

where AV ar(t̂p) is the asymptotic variance of t̂p . The
̂AV ar(t̂p) is adopted to obtain the local estimate of AV ar(t̂p),
that is

̂AV ar(t̂p) = (∇tp)′I−1(θc)∇tp (20)

where ∇tp is the first derivative of tp in (15) with respect to θc ,
and I−1(θc) is the inverse of the expected Fisher information
matrix I(θc) in (21), shown at the bottom of this page. The ele-
ments of I(θc) and ∇tp can be found in the Appendixes A and
B, respectively. Meanwhile, the values of those elements will be
computed plugging the MLE estimates of unknown parameters
θc into (21).

In order to obtain the approximate 100(1 − q)% confidence
interval for tp , the logarithmic transformation is commonly

I(θc) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

E
[

− ∂ 2 l(θc |Mc ,D )
∂α2

0

]

E
[

− ∂ 2 l(θc |Mc ,D )
∂α0 ∂α1

]

E
[

− ∂ 2 l(θc |Mc ,D )
∂α0 ∂σ 2

]

E
[

− ∂ 2 l(θc |Mc ,D )
∂α0 ∂γ

]

E
[

− ∂ 2 l(θc |Mc ,D )
∂α2

1

]

E
[

− ∂ 2 l(θc |Mc ,D )
∂α1 ∂σ 2

]

E
[

− ∂ 2 l(θc |Mc ,D )
∂α1 ∂γ

]

E
[

− ∂ 2 l(θc |Mc ,D )
∂ (σ 2 )2

]

E
[

− ∂ 2 l(θc |Mc ,D )
∂σ 2 ∂γ

]

Symmetric E
[

− ∂ 2 l(θc |Mc ,D )
∂γ 2

]

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(21)
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used [11]
⎡

⎢

⎢

⎢

⎢

⎣

t̂p

exp

(

z1− q
2

√

̂AV ar( t̂p )
t̂p

) , t̂pexp

⎛

⎝z1− q
2

√

̂AV ar(t̂p)

t̂p

⎞

⎠

⎤

⎥

⎥

⎥

⎥

⎦

.

(22)
Note that the aforementioned p-quantile life tp and its con-

fidence interval are naturally for Gamma and inverse Gaussian
process models since they are strictly increasing. However, the
Wiener process model is not monotonic that the ignorance of
the exponential part will result in larger values of p than the
settings (e.g., 0.01, 0.5). Hence, the tp will become larger with
more wider intervals, which is more likely to capture the true
values. The results for the Wiener process model in Tables III
and IV show that it has acceptable coverage probabilities with
wider intervals maybe because of the approximation.

III. MODEL UNCERTAINTY THROUGH BMA

In this paper, degradation model uncertainty is considered.
In order to evaluate the effects of model uncertainty to the
p-quantile lifetime, the BMA method is used. This method ac-
counts for model uncertainty by the combination of the infer-
ences from different candidate models [33]. Herein, we briefly
recall its basic formulation and, then, propose its computational
implementation by the MCMC method.

A. Bayesian Model Averaging

Denoting by � the quantity of interest, i.e., the p-quantile
lifetime tp at the use condition, its posterior distribution given
data D is given as

f(�|D) =
C
∑

c=1

f(�|Mc,D)P (Mc |D) (23)

where f(�|Mc,D) is the posterior density of � assuming that
Mc is the correct model and P (Mc |D) is the posterior probabil-
ity that candidate model Mc is the correct model, which serves
as weight in the average and is given by

P (Mc |D) ∝ f(D|Mc)P (Mc) (24)

where P (Mc) is the prior probability that Mc is the correct
model and f(D|Mc) is the integrated likelihood of model Mc .
Let θc denote the parameter vector of modelMc , with parameter
prior f(θc |Mc); the integrated likelihood of D in (24) is, then,
given by

f(D|Mc) =
∫

L(D|θc ,Mc)f(θc |Mc)dθc (25)

where L(D|θc ,Mc) is the likelihood function for model
Mc, c = 1, 2, . . . , C(=3, in our case).

B. MCMC Implementation

The integral forms in (24) and (25) cannot be easily computed
unless the closed form of the integrated likelihood function is
available. In order to implement the BMA for model uncertainty
analysis, the MCMC method is developed to generate samples

TABLE I
MLE ESTIMATES AND STANDARD ERRORS OF THE UNKNOWN

PARAMETERS IN THE USP

Model α0 std α1 std σ std γ std lmax AIC

M 1 −2.2811 0.2411 2.0047 0.2064 0.4538 0.0360 0.4726 0.0173 −225.3 458.5
M 2 −1.6391 0.1841 1.4323 0.1387 0.4685 0.0367 0.4518 0.0161 −215.9 439.8
M 3 −1.5954 0.1740 1.4098 0.1223 0.5185 0.0497 0.4484 0.0158 −217.6 443.1

from the parameter posterior distribution f(θc |D,Mc) through
the following procedures, using the software WinBUGS [47].
Then, the p-quantile at the use conditions can be obtained by
(15) from the selected samples.

1) Model Prior Probability P (Mc): The setting of the
model prior probability can be based on either expert knowl-
edge or previous ADT of the same kind of products. In practice,
one sets this probability to be uniformly distributed if no such
prior information is available, i.e., P (Mc) = 1

3 , c = 1, 2, 3.
2) Parameter Prior f(θc |Mc): The parameter vector θc is

[αoc , α1c , σc , γc ]. Here, informative priors are adopted, which
allow using available prior information. In fact, considered that
high temperature stress levels are expected to result in accel-
erating the degradation process, that is to say, increasing μ, it
is possible to say that α1c should be likely greater than zero.
As to γ, which regulates the degradation trend, a nonlinear
fitting with simply x = μtγ for each degradation path can pro-
vide the necessary prior information. Note that both σc and γ
are positive parameters. In fact, σc is the scale coefficient of
the standard deviation of the degradation process and γ is the
power of the age function Λ(t) = tγ , that is increasing. Indeed,
in the considered unified degradation model, both mean and
variance functions have nondecreasing increments, see (1) and
(2). Hence, the s-independent and informative prior is assigned,
based on the MLE results θ̂c from Section II-C

f(α0c |Mc) ∼ fN (α0c |α̂0c , 0.01)

f(α1c |Mc) ∼ fN (α1c |α̂1c , 0.01)

f(σc |Mc) ∼ fGa(σc |100σ̂2
c , 0.01/σ̂c)

f(γc |Mc) ∼ fN (γc |γ̂c , 0.01). (26)

Herein, the variances of the priors are set to be 0.01 for the
study in Sections IV and V. For other cases, the standard error
(std) of the unknown parameters from MLE can assist the set-
ting of this value, see Table I. The precision for parameters in
WinBUGS is the reciprocal of the setting variance. To choose
the prior distributions for α1c and γc , we assume them to be nor-
mally distributed but ensure their nonnegative properties with
P (α1c < 0) ≈ 0 and P (γc < 0) ≈ 0. Otherwise, one could use
the truncated normal, lognormal or Gamma distributions as al-
ternative choices if the assumptions are invalid.

3) Parameter Posterior f(θc |D,Mc): If the ADT data D
are obtained, from (8) and (26), the posterior distribution of θc
can be given with the standard Bayes’ theorem, that is

f(θc |D,Mc) ∝ f(θc |Mc) ·
K
∏

i=1

ni
∏

j=1

mi j
∏

k=1

fUSP(xijk |aijk , bijk ).

(27)
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Through (27), the fully conditions of α0c , α1c , σc , and γc
can be directly derived, and then a Gibbs sampling strategy can
be used to draw parameter samples iteratively with WinBUGS
software. The convergence property of the sampling chains will
be checked by the Gelman–Rubin index, which is the degree
of approximating 1 [47]. Applications can be found in [41] and
[48]. When it is converged, a fixed number of samples can be
generated from the posterior functions of the parameter vector

after a burn-in period (e.g., the first 1000 samples), i.e., ˜θ
i

c =
[α̃i0c , α̃

i
1c , σ̃

i
c , γ̃

i
c ], i = 1, 2, . . . , d, for the following calculations,

e.g., d = 5000.
Mentioned that parameter of the priors in (26) are cali-

brated using MLE estimates based on actual data, and then
updated on the basis of the same data used to formulate the like-
lihood in (27), which is not fully Bayesian approach. However,
this procedure can produce posteriors that are similar to priors
for the calculation of p-quantile lifetime analysis when the prior
information is scarce, and provide satisfactory results [26], [49].

4) Model Posterior Probability P (Mc |D): From (24) with
P (Mc) = 1/3, the model posterior probability is proportional
to the integrated likelihood f(D|Mc), which can be approxi-

mated with the samples 
θ
i

c = [
αi0c , 
α
i
1c , 
σ

i
c , 
γ

i
c ], i = 1, 2, . . . , r,

generated directly from the parameter prior f(θc |Mc) in (26).
Then, the model posterior probability is given as

P (Mc |D) ∝ 1
r

r
∑

i=1

L(D|
αi0c , 
αi1c , 
σic , 
γic). (28)

5) Model Averaging for p-Quantile Lifetime tp : We at first
calculate the model posterior probabilities P (Mc |D) based on
(28). Define that Sumc = 1

r

∑r
i=1 L(D|
αi0c , 
αi1c , 
σic , 
γic). Then,

P (Mc |D) = Sumc
∑C

c= 1 Sumc
.

Assumed that d groups of parameter samples are generated

from f(θc |D,Mc) in (27), i.e., ˜θ
i

c , i = 1, 2, . . . , d, c = 1, 2, 3.
For single model Mc , its p-quantile lifetime inferences tpc can

be constructed based on tipcs given by substituting ˜θ
i

c into (15).
After that, the model averaging can be conducted directly based
on tipcs with the model probability P (Mc |D) according to (23),
which allows the analysis for both single model and BMA
method simultaneously without generating new parameter sam-
ples. An algorithm is given below.

Generate parameter samples ˜θ
i

c from (27), i = 1, 2, . . . , d,
c = 1, 2, 3
Set p value
for i = 1 to d do

Compute tipc , c = 1, 2, 3, according to (15)
Generate a random number ri from the uniform
distribution [0,1]
If ri ∈ [0, P r(M1 |D)], then tip = tip1 ; else if

ri ∈ [P (M1 |D),
∑2

c=1 P (Mc |D)], then tip = tip2 ;
otherwise, tip = tip3

end for

The BMA statistical inferences can be obtained by analyz-
ing the selected tips, e.g., median values, (1 − q)% s-credibility
intervals. The BMA results can be compared with tipc and also

Fig. 1. Stress relaxation data under three temperature stress levels.

MLEs from Section II-D. From the viewpoint of both standard
Bayesian and frequentist approaches, this comparison will fur-
ther verify that in the case considered in the next Section, the
p-quantile lifetime evaluation results will lead to overconfident
inferences without accounting for model uncertainty in ADT
analysis.

IV. ILLUSTRATIVE EXAMPLE

We use stress relaxation ADT data to illustrate model uncer-
tainty in ADT data analysis and show its influence on p-quantile
lifetime evaluation at the use conditions. Stress relaxation is the
resistance loss of a component due to a constant strain over time.
For instance, the contacts of electrical connectors fail because
of the excessive stress relaxation. The data are originated from
[50] and listed in [21, Table IV]. Three accelerated temperature
stress values have been considered in ADT, i.e., 65, 85, and
100 ◦C, to collect data for lifetime evaluation at the normal op-
erating temperature of 40◦C, see Fig. 1. The electrical connector
is said to have failed when the stress relaxation exceeds 30%,
i.e., ω = 30.

A. MLE Analysis

In [21], the inverse Gaussian process model is used for ADT
modeling and designing optimal test plans without account-
ing for model uncertainty. Here, the unified degradation model
USP(a, b) proposed in Section II-A is used and the MLE re-
sults are given in Table I, where the estimated standard er-
rors are computed through the square roots of the diagonal
elements of the inverse of the expected Fisher information ma-
trix. Substituting the results into (15) and (22), we can plot
the MLE of the quantiles at the use condition and the cor-
responding 95% s-normal approximation s-confidence inter-
vals with p = (0.01, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 0.95, 0.99), see
Fig. 2(c) and (d) for tp in normal scale (some data for M1 are
eliminated to guarantee the presentation) and logarithm scale,
which can give an intuitive understanding on the differences of
lifetime evaluation among the three candidate models. Mean-
while, Fig. 2(a) and (b) presents the PDF and CDF of FPT.
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Fig. 2. (a) PDF and (b) CDF for FHT, MLE, and 95% s-confidence intervals for tp in (c) normal scale and (d) logarithm scale (∇ and � are the upper and lower
boundaries, respectively).

Herein, we also compute the expected and empirical Fisher
matrixes to understand the differences between them. For M1 ,
the values are

I(θ1)exp =

⎛

⎜

⎝

849.9045 743.0543 0 6.3226e3
743.0543 673.8037 0 5.4793e3

0 0 2.1816e3 3.6469e3
6.3226e3 5.4793e3 3.6469e3 5.6562e4

⎞

⎟

⎠

and

I(θ1)emp =
⎛

⎜

⎝

849.9045 743.0543 −2.7878e− 5 6.3226e3
743.0543 672.4577 −2.7158e− 5 5.4793e3

−2.7878e− 5 −2.7158e− 5 2.1816e3 3.6469e3
6.3226e3 5.4793e3 3.6469e3 5.6671e4

⎞

⎟

⎠

respectively. It can be seen that the expected and empirical Fisher
matrixes are almost equal, which are also true for M2 and M3 .
Hence, the expected Fisher information matrix is selected to
construct the confidence intervals for the p-quantile lifetime.

From Fig. 2(c) and (d), the p-quantiles for model M1 are
larger than the other two models with wider confidence inter-
vals, and the low limit values are even larger than the MLEs
of M2 and M3 . For M2 and M3 , if the quantiles of interest
are at middle quantile (p = 0.5), the differences are negligible:
t0.5 is 7.0036e4 (4.0623e4, 1.2074e5) for M2 and 6.9066e4
(3.8742e4, 1.2313e5) forM3 . However, the results are very dif-
ferent at extreme quantiles. For instance, the MLE and 95%
s-confidence interval of t0.01 (t0.99) for M2 are 2.5988e4
(1.8874e5) and (1.6107e4, 4.1932e4) (1.00181e5, 3.5557e5).
When it comes to M3 , the results are 2.3457e4 (2.0336e5)

and (1.4180e4, 3.8802e4) (1.0313e5, 4.0098e5). In addition,
the MLE results for M3 are smaller than for M2 at low
quantiles (p < 0.5). On the contrary, at high quantiles, they
are larger than that from M2 .

The above-mentioned analysis has shown that the stochastic
model used for ADT analysis can impact the inference results
of the p-quantile lifetime. For selecting which model to use, one
may use the AIC and choose the model with the lowest AIC
value. Given the MLE results in Table I, M2 would be selected
with AIC = 439.8 againstM3 (443.1) andM1 (458.5). However,
such model selection only tells how well a given model fits the
data. No information is provided about the influence of model
uncertainty on the lifetime evaluation results of interest [26].
It is true that the Gamma process model suits better the stress
relaxation data than the other two models. However, the inverse
Gaussian process model is artificially chosen in [21] as the
underlying degradation model. Such problem may also exist in
the other two models for ADT analysis, see [17] and [28]. Hence,
model uncertainty should be considered in ADT analysis. For
this reason, the BMA method is here used to account for model
uncertainty and evaluate its effects on lifetime evaluation.

B. BMA Analysis

Following the procedure in Section III-B, we generated
10 000 samples to compute the posterior probability of each
candidate model. The results are P (M1 |D) = 7.1041e− 5,
P (M2 |D) = 0.8146, and P (M3 |D) = 0.1854. This indicates
that the Gamma process model is the best model to represent
the stress relaxation ADT data, which is in accordance with
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Fig. 3. Posterior density of (a) t0 .01 , (b) t0 .50 , and (c) t0 .99 [the solid line is
for BMA; the dotted and the dashed lines are for Gamma and inverse Gaussian
process models, respectively].

the results from MLE and AIC. As shown, the contribution of
M1 is negligible with significantly low posterior probability.
Hence, the posterior samples of tp are computed from M2 with
probability of 0.8146 and from M3 with probability of 0.1854.
For the inferences of quantiles under BMA, the algorithm in
Section III-B5 is used and the assigned variances 0.01 of the
prior distributions is appropriate to generate prior samples. We
plot the middle and extreme quantiles using the ksdensity func-
tion in MATLAB, see Fig. 3 for the posterior densities of t0.01 ,
t0.50 , and t0.99 under M2 , M3 , and BMA, respectively.

As shown in Fig. 3, the density functions of M2 and M3 are
different at extreme quantiles, while similar at middle quantile.
As expected, most of BMA realizations are from M2 , since M2
is the best model and, thus, has a larger posterior probability.
In order to compare the results from the single model with
BMA, we sort the tipcs from M2 , M3 , and tips of BMA, and
compute the posterior median and 95% s-credibility intervals,
as reported in Table II. For the median value, the differences
are around 1000 h when p = 0.01 and 10 000 h when p =
0.99, and about 300 h when p = 0.50. The results demonstrate
that significant differences exist when choosing the degradation
model, especially for extreme quantiles, and that BMA, which
provides (compromise) point estimates between those of M2
and M3 , allows computing confidence intervals that account
for such uncertainty. The same is true for the 95% s-credibility
intervals. From Table II, we see that the lower and upper limit
values of BMA are between those of M2 and M3 : for instance,
the lower limit of BMA when p = 0.01 is 1.4331e4 h, while that
from M2 and M3 are 1.4297e4 and 1.4606e4 h, respectively.

TABLE II
POSTERIOR MEDIAN AND 95% s-CREDIBILITY INTERVALS

OF M2 , M3 , AND BMA, IN HOURS

Model Quantile Median 95% s-credibility interval

0.01 2.5190e4 [1.4297e4, 4.1077e4]
M 2 0.50 6.8834e4 [3.5687e4, 1.2129e5]

0.99 1.8666e5 [8.7705e4, 3.6325e5]
0.01 2.3106e4 [1.4606e4, 3.7888e4]

M 3 0.50 6.8762e4 [4.2084e4, 1.1883e5]
0.99 2.0607e5 [1.1576e5, 3.8676e5]
0.01 2.4739e4 [1.4331e4, 4.0745e4]

BMA 0.50 6.8550e4 [3.6661e4, 1.2134e5]
0.99 1.9122e5 [9.0412e4, 3.6808e5]

Through the analysis from MLE and BMA in Sections IV-A
and IV-B, it can be concluded that ignoring model uncertainty
may result in significant differences on the p-quantile lifetime
estimated from the obtained ADT data. In the next section, a
simulation study is given to show the superiority of BMA.

V. SIMULATION STUDY

In this section, we set up a simulation study to compare the
BMA s-credibility intervals with those from single model Mc .
For simplicity, the MLE results from Table I are treated as the
real values to simulate the degradation paths of stress relaxation
under three temperature stress levels. The total sample size of
n =18 and 36 is simulated to evaluate the effect of sample size
on the lifetime evaluation results. Meanwhile, all samples are
equally allocated into the three temperature stress levels. Noted
that in the presence of negative increments when the Wiener
process model M1 is used for generating ADT data, we assume
P (M1 |D) = 1, and P (M2 |D) = P (M3 |D) = 0.

The generating process for each degradation path X(tijk ) at
the ith stress level at the time tijk (see [21, Table V]) is as
follows:

1) select the model Mc as the working model;
2) generate xijk from Mc according to the settings in

USP(a, b) from (3)–(5) with the values in Table I, where
Λ(tijk ) = tγijk − tγij (k−1) ;

3) compute X(tijk ) =
∑mi j

k=1 xijk .
During each replication, the true values in Table I are

used to generate the ADT data. Then, the MLE estimates
θ̂ for the generated data are used to calibrate the priors in
(26). Herein, the MLE estimates should be around the true
values. Therefore, the assumptions of P (α1c < 0) ≈ 0 and
P (γc < 0) ≈ 0 are still applicable to ensure their nonnega-
tive property. For instance, P (α13 < 0) = 1.9534e− 45 ≈ 0,
P (γ3 < 0) = 3.6628e− 06 ≈ 0. After that, model Mc and
BMA can compute their corresponding 95% s-credibility in-
tervals at each quantile. Also, the s-confidence and s-credibility
intervals from model selection via AIC (MAIC ) and the higher
posterior probability (MHP) are given to compare the perfor-
mance of BMA with that from both frequentist and Bayesian
viewpoints, through the CP and AL on 1000 replications.

With the settings in Table I, the negative increments exist in
almost every replication for M1 , which will make M1 the only
suitable model without model uncertainty. Thus,M2 andM3 are
used to generate ADT data. However, with other settings, M1
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TABLE III
CP AND AL (IN PARENTHESES) WHEN GAMMA PROCESS IS USED AS THE CORRECT MODEL

p 0.01 0.05 0.10 0.30 0.50 0.70 0.90 0.95 0.99

M 2 M 1 0.885 0.9 0.903 0.913 0.917 0.918 0.926 0.929 0.931
n = 18 (2.9870e4) (4.3774e4) (5.3855e4) (8.3371e4) (1.1307e5) (1.5333e5) (2.3716e5) (2.9167e5) (4.2764e5)

M 2 0.937 0.937 0.937 0.933 0.935 0.935 0.933 0.931 0.932
(2.7051e4) (3.7601e4) (4.4983e4) (6.5799e4) (8.5977e4) (1.1256e5) (1.6630e5) (2.0048e5) (2.8371e5)

M 3 0.774 0.692 0.648 0.543 0.487 0.451 0.411 0.397 0.363
(4.2364e4) (6.6893e4) (8.7336e4) (1.6483e5) (2.7970e5) (5.2803e5) (1.5672e6) (2.7246e6) (7.6146e6)

MHP 0.937 0.937 0.935 0.932 0.934 0.934 0.933 0.931 0.932
(2.7116e4) (3.7717e4) (4.5140e4) (6.6106e4) (8.6461e4) (1.1332e5) (1.6771e5) (2.0236e5) (2.8692e5)

MA IC 0.907 0.905 0.908 0.910 0.906 0.907 0.904 0.905 0.904
(2.7401e4) (3.7904e4) (4.5231e4) (6.5814e4) (8.5669e4) (1.1172e5) (1.6406e5) (1.9716e5) (2.7762e5)

BMA 0.937 0.937 0.935 0.932 0.934 0.934 0.932 0.931 0.933
(2.7175e4) (3.7853e4) (4.5347e4) (6.6589e4) (8.7260e4) (1.1465e5) (1.7024e5) (2.0581e5) (2.9267e5)

M 2 M 1 0.917 0.926 0.928 0.932 0.933 0.939 0.945 0.947 0.95
n = 36 (1.9739e4) (2.8443e4) (3.4638e4) (5.2391e4) (6.9848e4) (9.3013e4) (1.4014e5) (1.7017e5) (2.4360e5)

M 2 0.945 0.944 0.945 0.944 0.939 0.943 0.943 0.942 0.942
(1.8002e4) (2.4883e4) (2.9679e4) (4.3115e4) (5.6015e4) (7.2892e4) (1.0666e5) (1.2794e5) (1.7940e5)

M 3 0.693 0.561 0.496 0.37 0.305 0.245 0.183 0.17 0.141
(2.8843e4) (4.4880e4) (5.7742e4) (1.0200e5) (1.5748e5) (2.5212e5) (5.2715e5) (7.6365e5) (1.5427e6)

MHP 0.944 0.943 0.945 0.944 0.939 0.942 0.942 0.941 0.941
(1.8005e4) (2.4890e4) (2.9690e4) (4.3138e4) (5.6053e4) (7.2957e4) (1.0679e5) (1.2811e5) (1.7968e5)

MA IC 0.940 0.938 0.938 0.939 0.939 0.939 0.938 0.938 0.934
(1.8402e4) (2.5402e4) (3.0271e4) (4.3885e4) (5.6948e4) (7.4002e4) (1.0803e5) (1.2943e5) (1.8113e5)

BMA 0.945 0.944 0.945 0.944 0.939 0.943 0.943 0.942 0.942
(1.8010e4) (2.4904e4) (2.9715e4) (4.3200e4) (5.6163e4) (7.3135e4) (1.0714e5) (1.2858e5) (1.8050e5)

TABLE IV
CP AND AL (IN PARENTHESES) WHEN INVERSE GAUSSIAN PROCESS IS USED AS THE CORRECT MODEL

p 0.01 0.05 0.10 0.30 0.50 0.70 0.90 0.95 0.99

M 3 M 1 0.846 0.864 0.876 0.898 0.904 0.906 0.917 0.922 0.929
n = 18 (2.9569e4) (4.4850e4) (5.6250e4) (9.0793e4) (1.2692e5) (1.7743e5) (2.8672e5) (3.6008e5) (5.4818e5)

M 2 0.927 0.928 0.93 0.929 0.926 0.916 0.911 0.903 0.897
(2.3836e4) (3.2747e4) (3.8939e4) (5.6215e4) (7.2774e4) (9.4368e4) (1.3741e5) (1.6449e5) (2.2989e5)

M 3 0.926 0.926 0.928 0.924 0.922 0.922 0.931 0.932 0.933
(2.3992e4) (3.3180e4) (3.9660e4) (5.8190e4) (7.6511e4) (1.0109e5) (1.5201e5) (1.8508e5) (2.6767e5)

MHP 0.924 0.924 0.926 0.923 0.921 0.920 0.929 0.927 0.929
(2.3969e4) (3.3141e4) (3.9607e4) (5.8083e4) (7.6339e4) (1.0080e5) (1.5145e5) (1.8432e5) (2.6634e5)

MA IC 0.927 0.923 0.926 0.925 0.920 0.918 0.915 0.916 0.915
(2.4229e4) (3.3285e4) (3.9636e4) (5.7667e4) (7.5328e4) (9.8854e4) (1.4711e5) (1.7819e5) (2.5508e5)

BMA 0.927 0.925 0.928 0.926 0.925 0.926 0.93 0.931 0.933
(2.4000e4) (3.3193e4) (3.9677e4) (5.8259e4) (7.6628e4) (1.0131e5) (1.5241e5) (1.8554e5) (2.6835e5)

M 3 M 1 0.889 0.912 0.923 0.934 0.944 0.948 0.953 0.955 0.956
n = 36 (1.9429e4) (2.8959e4) (3.5943e4) (5.6601e4) (7.7584e4) (1.0623e5) (1.6638e5) (2.0570e5) (3.0423e5)

M 2 0.939 0.934 0.928 0.913 0.89 0.871 0.844 0.833 0.809
(1.5839e4) (2.1678e4) (2.5713e4) (3.6908e4) (4.7561e4) (6.1358e4) (8.8660e4) (1.0571e5) (1.4663e5)

M 3 0.942 0.94 0.94 0.943 0.948 0.947 0.947 0.946 0.947
(1.6144e4) (2.2271e4) (2.6580e4) (3.8826e4) (5.0867e4) (6.6944e4) (9.9995e4) (1.2128e5) (1.7397e5)

MHP 0.942 0.940 0.940 0.943 0.948 0.947 0.947 0.946 0.947
(1.6143e4) (2.2269e4) (2.6575e4) (3.8815e4) (5.0848e4) (6.6913e4) (9.9935e4) (1.2120e5) (1.7384e5)

MA IC 0.942 0.938 0.938 0.938 0.936 0.935 0.934 0.931 0.930
(1.6337e4) (2.2464e4) (2.6761e4) (3.8954e4) (5.0885e4) (6.6760e4) (9.9255e4) (1.2014e5) (1.7168e5)

BMA 0.942 0.94 0.94 0.943 0.948 0.947 0.949 0.947 0.948
(1.6142e4) (2.2270e4) (2.6581e4) (3.8838e4) (5.0898e4) (6.7002e4) (1.0012e5) (1.2143e5) (1.7424e5)

could be used as given in [28]. The results are listed in Tables III
and IV, with the model Mc being M2 and M3 , respectively.

From the simulation study, some results and considerations
are shown below.

1) If M2 is the true model, the CPs of the intervals are
lower than 0.8 with model mis-specification of M3 . With
the larger values of p, the performance of M3 is much
worse, even less than 0.2 when increasing the sample size.
Maybe Fig. 2 can give some explanations: The differences

between M2 and M3 become wider with larger values of
p. When choosing M3 instead of M2 , such differences
become significant that the confidence intervals of M3
fails to capture the true parameter values of M2 . Hence,
the problem of model mis-specification could become se-
rious.

2) If M3 is the true model, the mis-specification model M2
performs well with CPs around 0.9 at small sample sizes.
From Table IV, the CPs for wrong model M2 are even
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better than that forM3 with narrower ALs when p ≤ 0.5 in
the case of n = 18. The reasons are from the performance
of MLE used to calibrate the priors, the approximation of
CP and AL values obtained via Monte Carlo simulation
and also the physical similarity between this two models
as discussed in [20]. However, when increasing the sample
size as n = 36, the problem of mis-specification becomes
serious compared with n = 18.

3) Under different scenarios, model M1 can give satisfac-
tory CPs over 0.84. The reason is that M1 regards the
monotonous degradation paths as if both increasing and
decreasing increments exist. Hence, the uncertainty of
degradation path (or the property of Wiener process) leads
to wider ALs of M1 than the correct model, and are more
likely to capture the real values.

4) From the CPs and ALs in Tables III and IV, BMA performs
better thanMAIC , and slightly better thanMHP with wider
intervals that are the compromise results of the candidate
modelsMc . In addition, BMA has narrower intervals than
that from M1 . These results demonstrate the superiority
of the BMA method on modeling model uncertainty in
ADT analysis.

VI. CONCLUSION

In traditional ADT analysis, stochastic process models, i.e.,
Wiener, Gamma and inverse Gaussian processes, are used for
degradation modeling and lifetime evaluation of highly reliable
and long lifespan products. In this paper, we analyze the effect
of stochastic degradation model uncertainty on the p-quantile
lifetime at the use conditions, through the BMA method. Ana-
lyzing stress relaxation ADT data, we have highlighted that the
differences on the p-quantile lifetime estimated by the different
models can be significant, especially at extreme quantiles. By
a simulation study, we have shown that model uncertainty can
be significant and that the BMA method is a good way to treat
it, giving compromise s-credibility intervals with highest CP at
each quantile.

The main original contributions of this work are as follows.
1) The importance of the stochastic degradation model for

ADT data analysis is highlighted and the case study of
stress relaxation ADT data is used to demonstrate that
significantly different results in lifetime evaluation at the
use conditions can be obtained.

2) The problem of degradation model uncertainty has been
effectively dealt with by the BMA method, giving satis-
factory p-quantile lifetime evaluation results.

The main focus of this paper has been on analyzing the degra-
dation model uncertainty on the p-quantile lifetime evaluation
in constant stress ADT data analysis. Future work may extend it
to the ADT analysis under other stress profiles, e.g., step-stress
and progressive stress. Meanwhile, it is recognized that also
model uncertainty in design ADT plans is worth consideration
for future work.

APPENDIX A
FISHER INFORMATION MATRIX I(θc)

The first and second derivatives of μi with re-
spect to α0 and α1 are ∂μi
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APPENDIX B
FIRST DERIVATIVE OF p-QUANTILE LIFETIME

In (15), the first derivative of p-quantile lifetime tp with
respect to the parameters is ∇tp = [ ∂ tp∂α0
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whose elements are given in (59)–(62), where A =
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