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a b s t r a c t 

We develop a novel prognostic method for estimating the Remaining Useful Life ( RUL ) of industrial equip- 

ment and its uncertainty. The novelty of the work is the combined use of a fuzzy similarity method for 

the RUL prediction and of Belief Function Theory for uncertainty treatment. This latter allows estimating 

the uncertainty affecting the RUL predictions even in cases characterized by few available data, in which 

traditional uncertainty estimation methods tend to fail. From the practical point of view, the mainte- 

nance planner can define the maximum acceptable failure probability for the equipment of interest and 

is informed by the proposed prognostic method of the time at which this probability is exceeded, allow- 

ing the adoption of a predictive maintenance approach which takes into account RUL uncertainty. The 

method is applied to simulated data of creep growth in ferritic steel and to real data of filter clogging 

taken from a Boiling Water Reactor (BWR) condenser. The obtained results show the effectiveness of the 

proposed method for uncertainty treatment and its superiority to the Kernel Density Estimation (KDE) 

and the Mean-Variance Estimation (MVE) methods in terms of reliability and precision of the RUL pre- 

diction intervals. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Various data-driven methods have been proposed for predicting

the Remaining Useful Life ( RUL ) of degrading equipment ( Hines &

Usynin, 2008; Vachtsevanos, Lewis, Roemer, Hess, & Wu, 2006; Zio,

2012 ), i.e., the time left before the equipment will stop fulfilling

its functions. Data-driven methods are of interest when an explicit

model of the degradation process is not known; they are built

based on observations of the degradation process of one or more

similar equipment, and usually perform the regression of the fu-

ture equipment degradation path until pre-defined criteria of fail-

ure are met ( Baraldi, Mangili, & Zio, 2012a,b; Niu and Yang, 2010;

Baraldi, Cadini, Mangili, & Zio, 2013a, b; Baraldi, Mangili, & Zio

2013; Di Maio, Tsui, & Zio, 2012; Zio & Di Maio 2012 ). Among data-

driven methods one can distinguish between (i) degradation-based

approaches, modeling the future equipment degradation evolution

and (ii) RUL prediction approaches, directly predicting the RUL

( Wang, Yu, Siegel, & Lee, 2008 ). 
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Degradation-based approaches use statistical models that learn

he equipment degradation evolution from time series of the ob-

erved degradation states ( Gorjian, Ma, Mittinty, Yarlagadda, & Sun,

009; Wang, Carr, Xu, & Kobbacy, 2011; Zhao, Tao, ZhuoShu, & Zio,

013 ); the predicted degradation state is, then, compared with the

ailure criteria, e.g., the threshold of the degradation parameter be-

ond which the equipment fails performing its function (failure

hreshold). Examples of modeling techniques used in degradation-

ased approaches are Auto-Regressive models ( Benkedjouh, Med-

aher, Zerhouni, & Rechak, 2013; Gorjian et al., 2009 ), multivari-

te adaptive regression splines ( Lee, Ni, Djurdjanovic, Qiu, & Liao,

006 ), Relevance Vector Machines ( Di Maio et al., 2012; Nystad,

009 ) and Gaussian Processes ( Baraldi et al., 2013a; Rasmussen,

006 ). 

RUL prediction approaches, instead, typically resort to artificial

ntelligence techniques that directly map the relation between the

bservable parameters and the equipment RUL , without the need

f predicting the equipment degradation state evolution towards

 failure threshold ( Peel, 2008; Schwabacher and Goebel, 2007 ).

echniques used in direct RUL prediction approaches are most of-

en similarity-based (also known as instance-based) learning al-

orithms ( Zhang, Tse, Wan, & Xu, 2015; Zio & Di Maio, 2010 ). As

hese methods avoid performing explicit generalization, they have
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roved to be effective also when few training data with no clear

atterns of regularity are available for training. Others regression

ethods, such as ANNs, could be used to perform direct RUL pre-

iction, however, due to the large number of parameters to be

uned in these models, they typically require large training sam-

les to provide accurate models that do not overfit the data. 

Degradation–based prognostics provides more informative and

ransparent outcomes than direct RUL prediction prognostics, since

t supplies a prediction not only of the current equipment RUL , but

lso of the entire degradation trajectory that the equipment will

ollow. However, degradation-based prognostics, differently than

irect RUL prediction prognostics, requires identifying a degrada-

ion indicator and fixing a failure threshold, which may be diffi-

ult in practice, especially in cases where only few and/or irregular

egradation trajectories are available, and may introduce further

ncertainty and sources of errors. In fact, the information avail-

ble for modeling the equipment degradation may be scarce and

ncomplete, e.g., few examples of similar equipment degradation

rajectories may be available, the degradation state of the equip-

ent may not be directly measured, and the failure criteria may

ot be known with precision. Therefore, the RUL estimate should

ake into account the intrinsic uncertainty due to the variability

f the degradation process (caused, for example, by the micro-

tructural differences between pieces of the same equipment, or

y unforeseen future loads, operational settings and external con-

itions) ( Baraldi et al., 2012a,b ), which implies that we cannot be

ure that two identical pieces of equipment, having experienced

he same degradation path up to the present time, will keep fol-

owing exactly the same path also in the future. 

Thus, given the scarcity of information typically available and

he different sources of uncertainty to which the RUL estimate is

ubject to (i.e., due to different environmental conditions, mea-

urement noise, process noise, etc. ( Al-Dahidi, Baraldi, Di Maio, &

io, 2014 )), data-driven models can commit errors in the RUL es-

imate ( Yan, Koç, & Lee, 2004 ), and uncertainty management be-

omes a fundamental task in prognostics. Indeed, it is necessary

o provide maintenance planners with an assessment of the ex-

ected mismatch between the real and predicted equipment fail-

re times, in order to allow them confidently planning mainte-

ance actions, according to the maximum acceptable failure prob-

bility ( Tang, Kacprzynski, Goebel, & Vachtsevanos, 2009 ). 

However, in spite of the recognized potential of the data-driven

pproaches, they still face difficulties in providing a measure of

onfidence on the RUL predictions, i.e., the uncertainty affecting

he predictions. For example, fuzzy similarity-based model ( Zio &

i Maio, 2010 ) and regression methods such as ANNs ( Wang &

achtsevanos, 2001 ) typically do not provide an explicit and di-

ect quantification of the RUL prediction uncertainty, whereas other

ethods such as Relevance Vector Machine ( Di Maio et al., 2012;

ystad, 2009 ) or Gaussian Process Regression ( Rasmussen, 2006 ;

araldi et al., 2013a ) have been shown capable of quantifying RUL

rediction uncertainty in cases in which a training set made by a

arge number of examples of the phenomena that we want to rep-

esent is available ( Baraldi et al., 2013 ), but they may experience

ifficulties in cases of scarce available data. 

In this context, the objective of the present work is to develop

 novel method for properly representing the uncertainty in the

UL prediction. In practice, the maintenance planner defines the

aximum acceptable failure probability and is informed by the

rognostic method of the time at which this probability will be

xceeded. To this purpose, we consider the direct RUL similarity-

ased prognostic model proposed in ( Zio & Di Maio, 2010 ), which

ses a set of degradation trajectories collected in a reference li-

rary and performs a data-driven similarity analysis for predict-

ng the RUL of a newly developing degradation trajectory (here-

fter called test trajectory). The matching process is based on the
valuation of the distance between the reference and test trajec-

ories ( Angstenberger, 2001 ). This method has been selected be-

ause of its favorable characteristics in terms of capability of deal-

ng with few and/or irregular degradation trajectories in compar-

son with other time-series approaches for direct RUL prediction.

his prognostic model is here extended in order to provide a

easure of confidence in the RUL prediction. To address this is-

ue, we adopt a solution based on belief function theory (BFT)

also called Dempster–Shafer or evidence theory) ( Dempster, 1976;

hafer, 1976; Su et al., 2011 ). The BFT allows combining different

ieces of (uncertain) evidence, based on the assignment of basic

elief masses to subsets of the space of all possible events, which

re, in this case, the possible values that the equipment RUL can

ake. In practice, the proposed method considers each reference

rajectory as a piece of evidence regarding the value of the RUL of

he test trajectory. These pieces of evidence are discounted based

n their similarity to the test trajectory and pooled using Demp-

ter’s rule of combination ( Altinçay, 2007; Petit-Renaud & Denoeux,

004 ). The result is a basic belief assignment (BBA) that quantifies

ne’s belief about the value of the RUL for the test trajectory given

he reference trajectories. From the BBA, the total belief (i.e., the

mount of evidence) supporting the hypothesis that the RUL will

all in any specific interval can be computed. In this context, we

ropose to define a prediction interval as an interval to which a

ufficiently large total belief has been assigned. 

The method is applied to two case studies considering simu-

ated data generated by a non-linear model of creep growth in fer-

itic steel and real industrial data concerning the clogging of fil-

ers used to clean the sea water pumped in a Boiling Water Re-

ctor (BWR). The performance of the proposed method is verified

ith respect to three performance indicators (i.e., Mean Square Er-

or ( MSE ) for estimating the accuracy of the RUL predictions, Cov-

rage ( Cov ) for the reliability of the prediction intervals and Mean

mplitude ( MA ) for their precision ( Baraldi, Mangili, & Zio, 2015 ).

or comparison, the Kernel Density Estimation (KDE) ( Botev, Gro-

owski, & Kroese, 2010 ) and the Mean-Variance Estimation (MVE)

 Nix & Weigend, 1994 ) methods which have already been success-

ully applied for estimating RUL predictions uncertainty in different

rognostic applications on industrial components such as turbofan

ngines ( Wang, 2010 ) and turbine blades ( Baraldi et al., 2012a ), are

pplied to the same case studies and their results are compared to

hose obtained by the proposed method. 

The remaining part of the paper is organized as follows: in

ection 2 , the methodology for the direct RUL similarity-based pre-

iction of equipment RUL is described and a method for integrating

t with belief function theory is proposed to provide a measure of

onfidence in the similarity-based RUL prediction; in Section 3 , two

umerical applications concerning the growth of creep damage in

erritic steel and the clogging of sea water filters are presented,

nd the results obtained by the proposed method are discussed

nd compared with those obtained by two alternative methods. Fi-

ally, some conclusions are drawn in Section 4 . 

. Methodology 

We assume to have R reference trajectories, which contain mea-

urements collected during the degradation of R pieces of equip-

ent similar to the one currently monitored (test equipment).

et z r 
1: n r 

= [ z r 
1 
, . . . , z r 

i 
, . . . , z r 

n r 
] , r = 1 , . . . R , be a reference trajectory,

here z r 
i 

= [ z r 
1 
( τi ) , . . . , z 

r 
p ( τi ) , . . . , z 

r 
P 
( τi ) ] and z r 

P 
( τi ) is the value of

arameter z r p measured at time τ i for trajectory r , and let τ r 
F be its

ailure time. 

Let z test 
1: I 

= [ z 1 , . . . , z i , . . . , z I ] be the test trajectory, containing I

bservations for the equipment of interest from τ i to the present

ime τ . 
I 
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2.1. Similarity-based RUL prediction 

The idea underpinning the RUL estimation method is to eval-

uate the similarity between the test trajectory and the R refer-

ence trajectories, and to use the RULs corresponding to the lat-

ter to estimate the RUL corresponding to the test trajectory ( Guha

& Chakraborty, 2010; Liu, Zhao, & Jiao, 2012; Petit-Renaud & De-

noeux, 2004; Wang et al., 2008; Zio & Di Maio, 2010 ). 

Trajectory similarity is evaluated considering the pointwise dif-

ference between n -long sequences of observations. Let z test 
I−n +1: I 

be

the sequence of the n latest observations available for the test tra-

jectory and z r 
j−n +1: j 

, a sequence of the same length extracted from

the reference trajectory r , we take as measure of the distance be-

tween z test 
I−n +1: I 

and z r 
j−n +1: j 

the quantity 

δr 
j = 

√ 

n ∑ 

i =1 

d 2 
(
z test 

I−n + i , z 
r 
j−n + i 

)
(1)

where d 2 ( x, y ) is the square Euclidean distance between vectors

x and y . Then, the similarity s r 
j 

between z test 
I−n +1: I 

and z r 
j−n +1: j 

is

defined as a function of the distance measure δr 
j 

( Zio, Di Maio, &

Stasi, 2010 ): 

s r j = exp 

( 

−
(
δr 

j 

)2 

λ

) 

(2)

The value of the arbitrary parameter λ is set by the analyst

based on an optimization procedure, which will be explained in

Section 3 directly on the case studies: the smaller is the value of

λ, the stronger the definition of similarity. A strong definition of

similarity implies that the two segments under comparison have

to be very close in order to receive a similarity value s r 
j 

signifi-

cantly larger than zero. In practice, the parameter λ is often set to

the value that minimizes the error of the similarity-based predic-

tion computed on a validation dataset. 

Based on this definition of similarity, for each reference trajec-

tory. we can identify the n -long sequences of observations with

highest similarity with the test sequence z test 
I−n +1: I 

. Let τ r 
j ∗ , r =

1 , . . . , R , be the last time instant of such most similar sequences.

Then, for each reference trajectory, we retain its RUL at time τ r 
j ∗

RU L r = τ r 
F − τ r 

j ∗ (3)

as a prediction of the RUL of the test trajectory. Finally, the

similarity-based prediction R ̂  U L of the test equipment RUL at time

τ I is given by the weighted sum of the values RUL r : 

R ̂

 U L = 

∑ R 
r=1 s 

r 
j ∗ RU L r ∑ R 

r=1 s 
r 
j ∗

(4)

The idea behind the weighting of the predictions RUL r associ-

ated to the individual trajectories is that: i) all failure trajectories

in the reference library can, in principle, bring useful information

for determining the RUL of the trajectory currently developing; ii)

those segments of the reference trajectories which are most similar

to the latest part of the test trajectory should be the most informa-

tive for its RUL computation. 

2.2. Prediction interval based on belief function theory 

Uncertainty affects the RUL estimate and, thus, maintenance

plans cannot be based only on the RUL prediction provided by

Eq. (4) : a reliable indicator of its uncertainty must be also consid-

ered. In this Section, we assume that the maintenance planner is

able to specify a maximum acceptable equipment failure probabil-

ity, α, and we propose a method, based on the Belief Function (or
empster–Shafer) Theory (BFT) ( Dempster, 1976; Shafer, 1976 ), to

dentify the latest time at which, according to the available infor-

ation, we can guarantee that the probability of the equipment to

e failed is lower than α. Since in this work we consider situations

haracterized by degradation processes affected by large variabil-

ty and we use an empirical model developed using few degrada-

ion trajectories, we expect RUL predictions to be characterized by

arge uncertainty. In this work, we adopt an uncertainty represen-

ation method based on BFT because its capability of representing

imited knowledge on an uncertain quantity ( Helton, 2004; Yager,

987 ). If we consider, for example, an extreme case in which the

nly information available on the equipment RUL is that it will lie

n the interval [ 0 , τmax 
F 

] , the classical probabilistic representation

f the uncertainty will be, according to the principle of indiffer-

nce, an uniform distribution with range [ 0 , τmax 
F 

] . However, as it

as been shown in Yager (2011 ), this assignment causes the para-

ox that it assigns a precise probability value to an event such as

RUL in the interval [ 0 , τmax 
F 

/ 2 ] ”, whereas, according to the avail-

ble knowledge, the probability of this event can have any value

etween 0 and 1. For these reasons, in the presence of large uncer-

ainty on the RUL prediction, we suggest to use an approach based

n the BFT. 

For the ease of clarity and for completeness of the paper, the

otions of BFT necessary for understanding the proposed method

ill be recalled in the following. For further details about the

athematical developments and the possible interpretations of the

heory, the interested reader is referred to Dempster (1976), Shafer

1976) and Smets (1998) . 

The BFT represents the belief of an agent about the value of

n uncertain variable Y assuming values y in the frame of discern-

ent �Y . Based on the available information and knowledge, the

gent provides a basic belief assignment (BBA) made of a set of

asses m Y (Y k ) assigned to subsets Y k , k = 1 , 2 , . . . of �Y , based on

he available information. The mass m Y (Y k ) represents the belief

hat the value of Y belongs to the subset Y k . Any subset Y k with

ssociated a finite mass m Y (Y k ) > 0 is called focal element; the

BA verifies the condition that the sum of all its masses is 1. 

Let us assume that two agents, with two different sources of in-

ormation and knowledge, provide two BBAs m 

1 
Y 

and m 

2 
Y 

. According

o the Dempster’s rule of combination, the two BBAs can be aggre-

ated into the BBA m 

1 �2 
Y 

: 

 

1 �2 
Y ( Y k ) = 

1 

K 

∑ 

Y k ′ ∩ Y k ′′ = Y k 
m 

1 
Y ( Y k ′ ) m 

2 
Y ( Y k ′′ ) , ∀ Y k ∈ �Y , Y k � = ∅ 

m 

1 �2 
Y ( ∅ ) = 0 (5)

here 

 = 1 −
∑ 

Y k ′ ∩ Y k ′′ = ∅ 
m 

1 
Y ( Y k ′ ) m 

2 
Y ( Y k ′′ ) (6)

s a normalization factor introduced to convert a possibly subnor-

al BBA (i.e., a BBA assigning a finite mass to the empty set ∅ )
nto a normal one. 

It may occur that one doubts the reliability of a source of in-

ormation inducing the BBA m Y . In this case, the discounting op-

ration can be used to reduce by some factor χ ∈ [0, 1] the be-

ief assigned by m Y to the evidence conveyed by that information

 Petit-Renaud & Denoeux, 2004 ): 

˜ m Y ( Y k ) = ( 1 − χ) m Y ( Y k ) , ∀ Y k ∈ �Y , Y k � = �Y 

˜ 
 Y ( �Y ) = χ + ( 1 − χ) m Y ( �Y ) (7)

Notice that the mass assigned to the frame of discernment �Y 

epresents the ignorance about the value of Y because it indicates

he absence of evidence that the value of Y belongs to any subset

 of � . 
k Y 
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The BFT has been applied to treat uncertain information in clas-

ical nonparametric regression by associating to each training pat-

ern of input/output pairs ( x i , v i ) the BBA m Y ( Y i = { y i } ) = 1 hav-

ng as single focal element the pattern output v i ( Petit-Renaud &

enoeux, 2004 ). In a similarity-based approach each training pat-

ern is treated as an expert whose opinion is assumed to be the

ore relevant the more similar the pattern is to the test input x

i.e., the larger the similarity, the more useful the information for

UL estimation). Such belief is well modeled by a discounting op-

ration that reduces the belief m Y ( Y i = { y i } ) = 1 of a training pat-

ern ( x i , y i ) proportionally to its dissimilarity to the test pattern. In

articular, in the application to prognostics, we assign to each in-

ut/output pair ( z r 
1: n r 

, RU L r ) , r = 1 : R , of a reference trajectory and

orresponding RUL prediction RUL r , the BBA m 

r 
RUL ( { RU L r } ) = 1 and

he discounting factor χ defined by χ = 1 − γ .s r 
j ∗ where γ ∈ [0,

] represents the degree of trust given to the entire set of refer-

nce trajectories and the similarity s r 
j ∗ is given by Eq. (2) . Thus,

rom Eq. (7) , the discounted BBAs ˜ m 

r 
RUL ( { RU L r } ) , r = 1 : R are ob-

ained: 

˜ 
 

r 
RUL ( { RU L r } ) = γ .s r j∗

˜ 
 

r 
RUL ( �RUL ) = 1 − γ .s r j∗ (8) 

The frame of discernment �RUL is the domain of RUL defined

y the interval [ 0 , τmax 
F 

− τI ] , where τmax 
F 

is the maximum possible

ife duration of the equipment provided by an expert. The quantity
max 
F 

− τI = RU L max is the maximum value that can be assumed by

he variable RUL at the present time τ I , whereas 0 is, obviously,

he minimum possible value of the equipment RUL . 

It is important to notice that γ < 1 implies that a part of belief

s assigned to the ignorance represented by �RUL , even in the un-

ealistic case of a reference trajectory exactly identical to the test

ne. Then, parameter γ represents the analyst prior opinion about

he maximum information that can be derived from a reference

rajectory about the test trajectory. In fact, the belief assigned to

he event R ̂  U L = RU L r when the two trajectories z r 
1: n r 

and z test 
1: I 

are

dentical, that is when s r 
j ∗ = 1 , is equal to γ . 

Finally, by combining the discounted BBAs ˜ m 

r 
RUL , r = 1 : R by

he Dempster’s rule of combination, we obtain the combined BBA

 RUL : 

 RUL ( { RU L r } ) = 

γ .s r 
j ∗

K 

∏ 

r ′ � = r 

(
1 − γ .s r 

′ 
j ∗
)
, r = 1 : R 

 RUL ( �RUL ) = 

1 

K 

R ∏ 

r=1 

(
1 − γ .s r j ∗

)
(9) 

here 

 = 

R ∏ 

r=1 

(
1 − γ .s r j∗

)
+ γ . 

R ∑ 

r=1 

s r j∗
∏ 

r ′ � = r 

(
1 − γ .s r 

′ 
j∗
)

(10) 

Given the BBA in Eq. (9) , we can finally calculate the belief as-

ociated to any interval [ RUL inf , RUL sup ] as the sum of the belief

asses associated to all subsets included in [ RUL inf , RUL sup ]: this

epresents the amount of belief that directly supports the hypoth-

sis RUL test ∈ [ RUL inf , RUL sup ] where RUL test is the true RUL of the

est equipment, and it has been interpreted as a lower bound for

he probability that RUL test ∈ [ RUL inf , RUL sup ], or, analogously, as an

pper bound for the probability that RUL test �∈ [ RUL inf , RUL sup ]. 

In conclusion, a left-bounded interval 	+ (α) =
 RU L in f (α) , + ∞ ] , such that a belief 1 − α is assigned to it,

rovides the following information about the probability distri-

ution of the true equipment RUL : P ( RU L test > RU L in f ( α) ) > 1 − α
r, equivalently, P ( RUL test < RUL inf ( α)) < α. The advantage of this

atter interpretation of RUL inf ( α) is that it can be used to plan

he maintenance action: performing maintenance before RUL inf ( α)

uarantees a probability of failure lower than α. 
The predictive interval 	+ (α) depends in large measure on the

alue assigned to parameter γ by the analyst, based on her/his

pinion about the relevance of the information derived from his-

orical trajectories when making predictions about a new one. As it

ay be difficult for the analyst to express a reliable opinion about

, we suggest to set its value considering the coverage of the re-

ulting prediction intervals 	+ (α) ., i.e., the probability that given a

rajectory with RUL equal to RUL true and the corresponding credible

nterval 	+ (α) , the condition RU L true ∈ 	+ (α) is verified. Indeed,

 desirable property for 	+ (α) is that its coverage, which can be

stimated using training data, is greater than 1 − α. This procedure

ill be discussed in more detail in the next Section. 

. Numerical application 

In this Section, we verify the proposed method for the uncer-

ainty quantification of a similarity-based prognostic approach and

ompare its effectiveness with that of two alternative methods, i.e.,

he Kernel Density Estimation (KDE) and Mean-Variance Estima-

ion (MVE) methods, on simulated and real data. In Section 3.1 ,

he similarity-based method is applied to simulated data concern-

ng the evolution of creep damage in ferritic steel. The influence on

he prognostic performance of parameters λ of Eq. (2) and γ of Eq.

8) is also investigated, and a procedure for setting their values is

roposed. On the basis of these results, in Section 3.2 , the method

s applied to real data taken from a case study about the clogging

f filters in a BWR condenser. 

.1. Simulated data: creep growth in ferritic steel 

Ferritic steels are widely used for welded steam pipes in the

onstruction of power plant components that operate under high

emperature and stress conditions. In such conditions, the creep

eformation and rupture are important factors in determining the

quipment lifetimes. 

.1.1. Creep growth models 

We have simulated the evolution of the creep strain ε in ferritic

teel exposed to a load σ , by using the uni-axial form of the non-

inear creep constitutive equations proposed within the framework

f Continuum Damage Mechanics by Mustata and Hayhurst (2005) :

 

 

 

 

 

 

 

˙ ε = A sinh 

[
Bσ (1 −H) 

(1 −φ)(1 −ω) 

]
˙ H = 

h ̇ ε 
σ

(
1 − H 

H∗
)

˙ φ = 

K c 
3 
(1 − φ) 

4 

˙ ω = C ˙ ε 

(11) 

here ɛ is the creep strain, i.e., the percentage of elongation of

he turbine blade in the longitudinal direction with respect to its

riginal length, φ and ω are two damage state variables describ-

ng, respectively, the coarsening of the carbide precipitates, and the

nter-granular creep constrained cavitation damage, H is the hard-

ning state variable used to represent the strain hardening effect

ttributed to primary creep, and A, B, H 

∗, h, K c and C are material

nherent characteristics. Each characteristic ϕ m 

= A, B, H 

∗, h, K c , C

aries with the temperature according to the Arrhenius law, i.e.,

 m 

= ϕ m 0 exp ( −Q m 

/T ) , m = 1 : 6 , where T is the operating temper-

ture and ϕm 0 and Q m 

are parameters whose values have to be

etermined experimentally. 

To generate different trajectories, the intrinsic variability of the

egradation process is simulated by sampling the values of the

oad σ and temperature T to which the steel is exposed at each

ime step from a normal distribution centered on their mean val-

es, whereas the variability of the degradation process of similar

ieces of equipment is simulated by sampling the values of param-

ters ϕ and Q m 

, m = 1 : 6 , at the beginning of each new simu-
m 0 
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Fig. 1. Example of simulated creep growth trajectory (upper) with the correspond- 

ing sequence of observations (bottom). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Performance indicators for three different values of λ in corre- 

spondence of γmax . 

λ 5 × 10 −5 5 × 10 −4 5 × 10 −3 

γ max 1.0 0.7 0.6 

Cov 0.2 β = 25% 0.915 0.868 0.846 

β = 50% 0.918 0.814 0.870 

β = 75% 0.955 0.840 0.861 √ 

MSE (10 3 ) β = 25% 9.065 9.851 10.552 

β = 50% 6.272 6.807 6.976 

β = 75% 3.089 3.589 3.793 

MA 0.2 (10 3 ) β = 25% 17.871 6.217 9.202 

β = 50% 12.571 4.568 6.233 

β = 75% 8.646 2.685 3.304 
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lated degradation trajectory. Finally, in order to generate the se-

quence of observations z r 
1: n r 

= { ε( τi ) + v i } r i =1: n r 
, with n r being the

time of the last observation before failure of the r th degradation

trajectory, a white Gaussian noise v i is added to the simulated

creep strain ɛ ( τ i ) at the observation time τ i . We assume failure to

happen when the limiting creep strain value of 2% is reached. Fig. 1

shows an example of simulated creep growth trajectory (upper)

and the corresponding sequence of observations z r 
1: n r 

(bottom). 

3.1.2. Results 

All the degradation trajectories used in this Section have been

simulated by iteratively applying the simulation model of Eq. (11) .

Using the simulated trajectories, we have developed N 

trn = 50 dif-

ferent prognostic models, each one built using a different training

set { z r 
1: n r 

, r = 1 : R } , made by R = 7 different training trajectories.

Each model is, then, verified with respect to N 

tst = 50 different test

trajectories, z 
q 
1: I 

, q = 1 : N 

tst . 

Let us define R ̂  U L l and RUL 
in f 

l 
(α) , l = 1 : N 

trn , as the predictions

of the RUL and of its left bound with belief 1 − α, obtained by

the model developed using the trajectories in the l th training set,

for the q th test trajectory, q = 1 : N 

tst . The three following perfor-

mance indicators, obtained by simple average of the N 

tst perfor-

mances of each l th model on all the test trajectories, will be con-

sidered for quantifying the BTF similarity-based method capabili-

ties for RUL estimation: 

- The Mean Square Error ( MSE ), i.e., the mean value of the square

error ( R ̂  U L l − RU L true ) 2 made in predicting the true RUL, RUL true 

of the q th test equipment, q = 1 : N 

tst . The MSE measures the

accuracy of the prediction R ̂  U L l and is desired to be as small as

possible. 

- The Coverage ( Cov α) of the prediction interval 	+ 
l 
(α) =

[ RUL 
in f 

l 
(α) , + ∞ ] , i.e., the percentage of times the condition

RU L true > RUL 
in f 

l 
(α) is verified, where 1 − α is the belief asso-

ciated by the RUL BBA to the interval 	+ 
l 
(α) . This indicator

measures the reliability of the interval and we expect to obtain

values of Cov α larger than 1 − α, since the belief 1 − α associ-

ated to the interval is a lower bound for the probability that

the test equipment true RUL is in the interval, i.e., is greater

than RUL 
in f 

l 
(α) . 

- The Mean Amplitude ( MA α) of the interval [ RUL 
in f 

l 
(α) , R ̂  U L l ] ,

which gives a measure of the precision of the RUL prediction.

In order to have a high precision, we wish to keep the value of

MA α as small as possible. 

In Fig. 2 , the variation of the square root of the MSE indica-

tor with parameter λ is shown for the three life values of β =
5% , 50% , and 75% of the equipment life fraction β = τI / τF . Notice

hat the RUL predictions, R ̂  U L , are obtained using the similarity-

ased weighted average in Eq. (4) , whereas the prediction intervals

re estimated using the target belief 1 − α = 0 . 8 . As expected, the

rediction error decreases as the life fraction β increases, i.e., as

e get closer to failure. Results in Fig. 2 show that the maximum

ccuracy of R ̂  U L is obtained for values of the parameter λ around

 × 10 −5 . 

The precision of the prediction, which is evaluated by the in-

icator MA α , is also an important aspect to be considered in the

ptimization procedure. However, the choice of parameters λ and

should be subordinate to the verification that the coverage Cov α
s actually larger than 1 − α. Lower values of the coverage would

ndicate that a too large belief mass has been assigned to the pre-

ictions RUL r provided by the reference trajectories most similar to

he test trajectory, so that the belief 1 − α assigned to the predic-

ion interval is not justified by the experimental evidence. 

Fig. 3 shows the coverage Cov 0.2 of the left bounded prediction

nterval 	+ (0 . 2) (upper), the square root of the MSE made by the

rediction R ̂  U L (middle) and the mean amplitude MA 0.2 of the in-

erval [ RU L in f ( 0 . 2 ) , R ̂  U L ] (bottom) in correspondence of three dif-

erent values of parameter λ as a function of the parameter γ . 

For the value of λ = 5 × 10 −5 that maximizes the accuracy of

he prediction R ̂  U L , the coverage is always larger than the min-

mum accepted value of 1 − α = 0 . 8 . However, for such a small

alue of λ the precision, represented by the indicator MA 0.2 , is

uch lower than for λ = 5 × 10 −4 and λ = 5 × 10 −3 . This is due

o the fact that if λ is small, the similarity of a reference trajectory

ends to be small, except in the rare case of a trajectory very simi-

ar to the test trajectory. As a consequence, for very small values of

, it is often hard to support with sufficient evidence the hypoth-

sis that the RUL value belongs to any subset of the RUL domain

RUL . 

These observations have motivated the adoption of the follow-

ng procedure for setting the parameters γ and λ: 

1. We identify some possible values of λ (e.g., in this case study,

λ1 = 0 . 5 × 10 −5 , λ2 = 0 . 5 × 10 −4 , λ2 = 0 . 5 × 10 −3 ). 

2. For each value of λ in 1., we derive a condition for parameter

γ by imposing a coverage, Cov 0.8 greater than 0.8 (e.g., γ ≤ 1

if λ = 5 × 10 −5 , γ ≤ 0.7 if λ = 5 × 10 −4 and γ ≤ 0.6 if λ = 5 ×
10 −3 ). 

Since the precision tends to monotonically increase (amplitude

of MA tends to decrease) as γ increases, we choose, for each

value of λ, the maximum γ value which satisfies the condition

in 2. ( γ = 1 . 0 if λ = 5 × 10 −5 , γ = 0 . 7 if λ = 5 × 10 −4 , and γ =
0 . 6 if λ = 5 × 10 −3 ). 

3. Among the identified pairs of values of λ and γ in 2., we

choose the pair with the most satisfactory trade-off between

prediction accuracy and precision. 

With respect to the last step of the procedure, Table 1 reports

he performance of the three identified pairs of values of λ and γ
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Fig. 2. Square root of the MSE of the prediction R ̂  U L as a function of parameter λ. 

Fig. 3. Value of the three performance indicators as a function of γ at three fractions β of the trajectory life durations and for three values of λ. 
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n terms of prediction accuracy (square root of the MSE indicator),

overage ( Cov 0.2 ), and precision ( MA 0.2 ). Based on these results, we

et the parameters to the values λ = 5 × 10 −4 and γ = γmax = 0 . 7 ,

ince performances are better for this value of λ than for λ = 5 ×
0 −3 , both in terms of accuracy and precision, whereas, and with

espect to λ = 5 × 10 −5 , a large improvement of the precision is

btained at the expenses of a small reduction in the accuracy. 

Fig. 4 shows the predictions obtained at all measurement time

nstants τ I for 4 new test trajectories different from those used for

arameter settings. More results and a more detailed discussions

an be found in Appendix A , where it is shown that the large os-

illations of the confidence bound that are observed in Fig. 4 can

e attenuated by increasing the value of λ or reducing the value of
, at the price of a lower accuracy and precision. Also, their am-

litude becomes smaller when the density of reference trajectories

vailable is larger (for instance because a larger number of degra-

ation trajectories have been observed or because their variability

s smaller). 

.1.3. Comparison with other uncertainty estimation methods 

In this Section, we apply the Kernel Density Estimation (KDE)

 Botev et al., 2010 ) and the Mean-Variance Estimation (MVE) ( Nix

 Weigend, 1994 ) methods for the quantification of the RUL pre-

iction uncertainty in the numerical case study. The obtained re-

ults are compared with those obtained by the proposed method

onsidering the MSE, Cov and MA performance indicators. 
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Fig. 4. Predictions obtained for 4 different test trajectories using λ = 5 × 10 −4 and γ = 0 . 7 . 
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KDE is a non-parametric method used for estimating the Prob-

ability Density Function (PDF) of a random variable ( Botev et al.,

2010 ). The basic idea is to assign a kernel function to each obser-

vation in a data set, and then, to sum all kernels to obtain the PDF

( Botev et al., 2010 ). In this work, the KDE is employed for estimat-

ing the PDF of the RUL prediction provided by the SB model at

each time instant τ i . The reader interested in more details about

the KDE method can refer to ( Botev et al., 2010 ). 

MVE has been originally proposed in Nix and Weigend

(1994) for constructing prediction intervals of an uncertain vari-

able using a feedforward ANN properly developed for this purpose.

In this work, the MVE is employed for constructing the 1 − α = 0 . 8

prediction intervals of the RUL predictions provided by an ensem-

ble of H bootstrapped ANNs models ( Carney, Cunningham, & Bhag-

wan, 1999; Polikar, 2006 ). The reader interested in more details

about the MVE method can refer to Nix and Weigend (1994 ). In

this application, an ensemble of H = 5 ANNs models has been built

considering a training set formed by N 

trn = 50 training trajecto-

ries. Each ANN is characterized by an architecture with three layers

(input, hidden and output) and 10 hidden neurons. Different ANN

configurations characterized by M inputs taken from a time win-

dow of M consecutive measurements have been considered. The

optimum value of M = 1 has been identified by trials and errors

considering the MSE, Cov and MA performance indicators on a val-

idation set. The ensemble output (i.e., the predicted RUL ) is ob-

tained by averaging the outputs of the H = 5 ANNs. A further ANN

with 3 layers and 60 hidden neurons has been built to estimate

the RUL prediction uncertainty. 

Table 2 reports the average values of the performance indicators

over the N 

tst = 50 test trajectories obtained by the proposed, the

KDE and the MVE methods. 

The results show that the proposed method provides more

precise RUL predictions (i.e., lower MA 0.2 which corresponds to

narrower prediction intervals) and more reliable prediction in-
ervals (i.e., larger Cov 0.2 ) satisfying the desired coverage level

f 0.8, whereas the KDE and the MVE, even though they as-

ure the desired coverage level of 0.8, they provide less pre-

ise RUL predictions (i.e., larger MA 0.2 values which correspond to

arger prediction intervals). One can also recognize that the pro-

osed and the KDE methods, based on the use of the SB model

or the RUL point estimator, provide slightly less accurate RUL

redictions. This is due to the fact that the ensemble approach

sed in this case in combination with the MVE method to pro-

ide the RUL point estimator is more robust and accurate than

he individual SB model used by the proposed and the SB-KDE

ethods. 

Fig. 5 shows the estimates of the RUL and the associated lower

onfidence bounds provided by the three methods for one test tra-

ectory. One can easily recognize that the proposed method pro-

ides narrower confidence bound (lower MA 0.2 ) than those of the

B-KDE and the ANN-MVE methods. 

This analysis shows the capability of the proposed method of

roperly quantifying the uncertainty affecting the RUL predictions

ith narrower confidence bounds (lower MA 0.2 ) and larger cover-

ge values (larger Cov 0.2 ) compared to the two alternative methods.

otice, however, that the proper setting of the parameters of the

roposed method for balancing accuracy and precision of the pre-

ictions might be time-consuming, as discussed in Section 3.1.2 .

he capability of the proposed method for uncertainty treatment

n case of few and/or irregular degradation trajectories is verified

y its application on the real data regarding the clogging of BWR

ondenser filters of Section 3.2 . 

.2. Real data: clogging of BWR condenser filters 

In this Section, we consider the heat exchanger filters used to

lean the sea water entering the condenser of the BWR reactor of

 Swedish nuclear power plant. During operations, filters undergo
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Table 2 

Average value of the performance indicators over N tst = 50 test trajectories obtained by applying the proposed and 

the two alternative methods. 

Proposed method (SB-BFT) Alternative method (SB-KDE) Alternative method (ANN-MVE) 

√ 

MSE (10 3 ) 3.597 3.597 3.359 

Cov 0.2 0.936 0.962 0.857 

MA 0.2 (10 3 ) 2.594 6.527 3.882 

Fig. 5. Comparison of the obtained RUL predictions and the corresponding confidence bounds for one test trajectory by the proposed method (dots and continuous line, 

respectively), SB-KDE (dots and dot line, respectively) and ANN-MVE (squares and dash line, respectively). 
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logging and, once clogged, can cumulate particles, seaweeds, and

ussels from the cooling water in the heat exchanger. For this rea-

on, prompt and effective cleaning of the filters is desirable. Pre-

ictive maintenance can help achieving this result, keeping main-

enance costs reasonably low. 

From data collected on field, we have available sequences of

bservations z 
q 
1: n q 

, q = 1 : 8 taken during the clogging process of

 = 8 historical filters. Each observation z 
q 
i 

= [ 	P 
q 
i 
, ˙ M 

q 
i 
, T 

q 
i 

] con-

ains the measurements of the pressure drop 	P 
q 
i 

, the flow across

he filter ˙ M 

q 
i 

and the sea water temperature T 
q 

i 
collected at time

i during the clogging process of the q th filter. 

For clarification purposes, Fig. 6 shows the sequences of obser-

ations z 
q 
i 

collected during the clogging process of filters, q = 1 , 2

nd 4 from the beginning of their life ( τi = 0 ) to the failure ( τi =
q 
F 

). It is worth noticing that: 

• the typical behavior of filter clogging characterized by an in-

crease of the pressure drop 	P 
q 
i 

( Fig. 6 (top)) and a decrease

of the flow rate across the filter ˙ M 

q 
i 

( Fig. 6 (middle)) is clearly

observable, 
• the larger the sea water temperature, the faster the clogging

process, 
• the large variability of the filter lifetimes due to the variability

of the sea water temperature. 

To further investigate the large variability in the clogging pro-

ess of the Q = 8 filters, we consider the degradation indicator I 
q 
i 

hich quantifies the amount of clogging of filter q at time τ and
i 
s defined by ( Nystad, 2009 ): 

 

q 
i 

= 

	P q 
i (

˙ M 

q 
i 

)2 
(12) 

Fig. 7 shows the evolution of the degradation indicator I 
q 
i 

uring the lives of the Q = 8 filters. It can be observed that

he clogging process is, indeed, affected by lar ge uncertain-

ies, which, according to the analysis of Fig. 6 and the opin-

ons of plant experts, is caused by the variability of the sea

ater conditions such as temperature and other factors influ-

ncing the life cycle of mussels, algae and other sea organ-

sms; in this context, the challenge is to provide sufficiently nar-

ow confidence intervals for the value of the predicted filters

UL . 

The prognostic method proposed is applied to each trajectory q

t the three life fractions β as in Section 3.1.2 , using the remain-

ng R = 7 trajectories as reference trajectories in a leave-one-out

cheme. Fig. 8 shows how the three performance indicators MSE,

ov α and MA α of Section 3.1.2 vary with parameter γ for three val-

es of parameter λ (0.1, 0.05 and 0.01). These results confirm those

btained for the simulated creep growth data of Section 3.2 : the

SE has a minimum around λ = 0 . 05 and the value of the MA 0.2 

ndicator decreases with both λ and γ . Notice also that, for the

alues of λ considered in Fig. 8 , almost all possible values of γ
re acceptable since the coverage Cov 0.2 is always larger than 0.8,

xcept for λ = 0 . 1 and γ = 1 . The precision obtained for λ = 0 . 05

hen γ = 1 is very close to that obtained for λ = 0 . 1 , whereas

he error is lower. Then, this optimization leads us to set λ = 0 . 05

nd γ = 0 . 95 for generating the prognostic predictions with uncer-
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Fig. 6. The sequences of observations of the pressure drop ( 	P q 
i 

) (top), the flow rate ( ˙ M 

q 

i 
) (middle) and the temperature ( T q 

i 
) (bottom) collected during the life of three 

filters. 

Fig. 7. Evolution of the filter clogging degradation indicator during the lives of Q = 8 filters. 
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Fig. 8. Value of the three performance indicators as a function of γ at three fractions β of the trajectory life durations and for three values of λ. 

Fig. 9. predictions obtained for the Q = 8 filter clogging trajectories available, using parameters λ = 0 . 05 and γ = 0 . 95 . 
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ainty in correspondence of each observation available. We do not

et γ = 1 to account for the fact that the information provided by

 piece of equipment about another one is uncertain even when

heir degradation paths up to the present time are identical, that

s when s r 
j ∗ = 1 . Appendix B discusses the counterintuitive results

btained by setting γ = 1 . 
Results obtained with λ = 0 . 05 and γ = 0 . 95 are shown in

ig. 9 for all Q = 8 test trajectories available. In trajectory 4, the

onfidence bound is for most of the time equal to zero. This means

hat its similarity with all reference trajectories is rather low and,

hus, the prediction is very uncertain. Also in many other cases, the

rediction accuracy is rather low and the prediction interval large.
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Table 3 

Average value of the performance indicators for the Q = 8 test trajectories obtained by the proposed method 

and the two alternative methods. 

Proposed method (SB-BFT) Alternative method (SB-KDE) Alternative method (ANN-MVE) 

√ 

MSE 3.743 3.743 5.710 

Cov 0.2 0.986 0.815 0.734 

MA 0.2 3.742 4.167 3.944 
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However, due to the small number of training trajectories available

and the large uncertainties affecting the clogging process, we can

be satisfied with this result. 

The obtained results are compared with those obtained by the

SB-KDE and the ANN-MVE methods. The ANN-MVE method is ap-

plied to each q th trajectory, using the remaining R = 7 trajectories

as training and validation trajectories (with a time window length

of M = 5 consecutive measurements optimized by trials and errors)

in a leave-one-out scheme. 

Table 3 reports the average values of the performance indicators

over the Q = 8 test trajectories. 

The results show that the proposed and the SB-KDE methods

allow obtaining the desired coverage level of 0.8, although the

proposed method provides narrower prediction intervals (smaller

MA 0.2 ) than those provided by the SB-KDE method. With respect

to the RUL accuracy, the SB is more accurate than the ensemble

of ANN used by the ANN-MVE method. This confirms the ability

of the proposed method to deal with few and irregular degrada-

tion trajectories and provide more accurate RUL predictions com-

pared to an ensemble method, which typically requires more train-

ing data. 

This analysis proves the effectiveness of the proposed method,

when few training data are available, in i) accurately predicting

the RUL of the filters and ii) properly quantifying the uncertainty

affecting the RUL predictions with narrower confidence bounds

(lower MA 0.2 ) and larger coverage values (larger Cov 0.2 ). As already

mentioned, the limitation of the proposed method lies in the dif-

ficulty of properly setting its parameters while balancing the accu-

racy and the precision of the predictions. 

4. Conclusions 

In this work, we have considered the problem of directly pre-

dicting the RUL of a degrading equipment and providing a measure

of confidence on the prediction, based on a set of reference degra-

dation trajectories experienced by similar equipment failed in the

past. To this aim, a similarity-based approach is integrated within

the framework of belief function theory. 

Two key elements in the application of the method are the pa-

rameter λ, which defines how strong is the desired interpretation

of similarity, and the parameter γ , which defines the degree of

trust given to the reference trajectories. Using artificial data sim-

ulated by a non-linear model for creep growth in ferritic steel, we

have analyzed how the values of these two parameters influence

the performance of the method and given some indications on how

to set their values. 

Finally, we have applied the method to the problem of predict-

ing the RUL of clogging filters used in nuclear power plants, obtain-

ing prediction intervals for the values of the RUL with satisfactory

accuracy, considering the large uncertainties affecting the clogging

process. 

Furthermore, the Kernel Density Estimation (KDE) and the

Mean-Variance Estimation (MVE) methods have been applied to

the same case studies to quantify the uncertainty affecting the RUL

predictions. The comparison of the obtained results confirms the
uperiority of the proposed method with respect to the two alter-

ative methods in terms of reliability (i.e., Cov ) and precision (i.e.,

A ). More specifically, the proposed method has been proved to

e effective also when few training data are available thanks to

he capability of the BFT of properly representing and treating the

ncertainty when scarce information is available. 

We expect that the use of a method able to associate to a

UL point estimation also a reliable and narrower prediction in-

erval can help the building the maintenance decision maker con-

dence towards prognostics and allow adopting predictive mainte-

ance approaches in real industrial applications. To this purpose, it

ould be important to quantify the benefits that can be obtained

n terms of metrics such as Return on Investment (ROI) or Total

ifecycle Costs. Future work will devoted to this aim. 

A limitation of the proposed method is the presence of possi-

ly large oscillations in the confidence bounds, which may be con-

using for the maintenance planner. It has been shown that such

scillations can be reduced by conveniently setting the parameter

alues; this, however might be time-consuming and could also re-

uce the accuracy and precision of the prediction. Notice also, that

he amplitude of the oscillation decreases as the density of the ref-

rence trajectories increases. 
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ppendix A 

In this Appendix, we extend the discussion in Section

.1.2 about the performance of the similarity-based prognostic ap-

roach on the simulated data. First, we provide an illustrative ex-

mple that explains the low precision of predictions obtained us-

ng small values of parameter λ. Then, we discuss choices of the

arameters values different than the one proposed in Section 3.1.2 ,

hat is λ = 5 × 10 −4 and γ = 0 . 7 . 

Fig. A.1 shows the RUL prediction with the relative prediction

nterval for a specific trajectory (left) in correspondence of two

ifferent values of parameter λ: λ = 5 × 10 −5 (upper) and λ =
 × 10 −4 (bottom). Notice that for λ = 5 × 10 −5 , the lower bound

f the prediction interval is equal to 0 for large part of the trajec-

ory ( Fig. A.1 , upper, left); this does not mean that the evidence of

ery early failure is high (as demonstrated by the fact that the pre-

icted RUL is far from 0), but only that the evidence drawn from

he reference trajectories is not sufficient to assert with the de-

ired belief 1 − α = 0 . 8 that the RUL value is actually larger than

. In other words, the prediction RU L in f = 0 is a statement of igno-

ance about the value of RUL . Contrarily, in the case of λ = 5 × 10 −4 

 Fig. A.1 , bottom, left) the lower bound of the prediction interval is

http://dx.doi.org/10.13039/501100001809
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Fig. A.1. comparison of the RUL prediction with confidence bound (left) and the similarity values and BBAs assigned to the different trajectories at τ23 =21,811 h (right) for 

two values of λ: λ = 5 × 10 −5 (upper) and λ = 5 × 10 −4 (bottom). 
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lways higher than 0. Fig. A.1 , right shows the values of the sim-

larity s r 
j ∗ assigned to each reference trajectory r = 1 : 7 and the

BA m RUL assigned to the corresponding prediction RUL r and to

he RUL domain �RUL at time τ23 = 21 , 811 h, which is character-

zed by a confidence bound equal to 0 using λ = 5 × 10 −5 . No-

ice that the similarities s r 
j ∗ obtained using λ = 5 × 10 −5 are sig-

ificantly lower than those obtained using λ = 5 × 10 −4 , and, con-

equently, the mass m RUL ( �RUL ) assigned to the RUL domain using

= 5 × 10 −5 is larger than 0.2, so that the total belief assigned to

he trajectories predictions RUL r does not reach the required value

f 0.8. 

In Fig. 4 in Section 3.1.2 , the predictions obtained with λ =
 × 10 −4 and γ = 0 . 7 , are shown and two phenomena can be ob-

erved: first, some situations of ignorance about the value of RUL

here RU L in f = 0 , are still encountered. This is due to the fact that

he information provided by the reference trajectories is not rel-

vant for a specific test trajectory, e.g., because they are too dis-

imilar. Another noticeable phenomenon in Fig. 4 is the presence

f large jumps of the confidence bound RUL inf . These jumps occur

hen the reference trajectory corresponding to the minimum RUL

rediction RUL r included in the prediction interval in order to at-

ain the desired belief 1 − α = 0 . 8 changes. 

Although justified by the method, the oscillations of the confi-

ence bound may be confusing for the maintenance planner. A re-

uction in the oscillations can be obtained by increasing the value

f λ or reducing the value of γ , at the price of a lower accuracy

nd precision. 

Fig. A.2 shows the RUL predictions obtained for the same four

rajectories of Fig. 4 using the parameters values λ = 5 × 10 −3 
nd γ = 0 . 5 . Table A.1 compares the performance of the predic-

ion computed on N 

tst = 50 test trajectories different from those

sed for optimizing the parameters, in this case and in the case

f Fig. 4 where λ = 5 × 10 −4 and γ = 0 . 7 . In the Table, the mean

alue of the RUL , RUL , for different values of the life fraction β is

lso shown, and the performance indicators 
√ 

MSE and MA 0.2 are

xpressed also as a percentage of RUL . 

The results of Fig. A.2 and Table A.1 confirm that the oscillation

f the confidence bound can be damped down by increasing the

alue of λ or reducing the value of γ , but this choice increases the

rediction error and the amplitude MA 0.2 . Clearly, to an increased

A 0.2 corresponds also a higher value of the coverage indicator

o v 0.2 . 

When a situation with a larger density of reference trajecto-

ies is considered, the oscillations of the lower bound become of

maller amplitude, although more frequent. This happens, for ex-

mple, when a larger number R of reference trajectories is avail-

ble or when the variability within the degradation trajectories be-

omes smaller. To show this, we have reduced the variance of the

arameters ϕm 0 and Q m 

, m = 1 : 6 , and of the load σ and temper-

ture T used in the model of Eq. (11) to simulate N 

tst = 50 test

rajectories and N 

trn = 50 training sets of R = 50 reference trajec-

ories. The optimization procedure applied for the case with R = 7

as been used to set the parameters to the values λ = 5 × 10 −5 and

= 0 . 95 . Four examples of the predictions obtained are shown in

ig. A.3 , whereas the values of the performance indicators are pre-

ented in Table A.2 . As expected, with a higher density of training

rajectories available, the prediction is both more accurate and pre-
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Fig. A.2. Predictions obtained for 4 different test trajectories of Fig. 4 using λ = 5 × 10 −3 and γ = 0 . 5 . 

Table A.1 

RUL prediction performance. 

β = 25% β = 50% β = 75% 

RUL (10 4 ) 2.711 1.827 0.975 

Cov 0.2 
λ = 5 × 10 −4 ;
γ = 0 . 7 

0.782 0.814 0.849 

λ = 5 × 10 −3 ;
γ = 0 . 5 

0.838 0.850 0.853 

√ 

MSE (10 3 ) 
λ = 5 × 10 −4 ;
γ = 0 . 7 

9.152 33.8% 5.965 32.6% 3.191 32.7% 

λ = 5 × 10 −3 ;
γ = 0 . 5 

9.822 36.2% 6.160 33.7% 3.411 35.0% 

MA 0.2 (10 3 ) 
λ = 5 × 10 −4 ;
γ = 0 . 7 

8.445 31.2% 5.594 30.6% 3.228 33.1% 

λ = 5 × 10 −3 ;
γ = 0 . 5 

11.300 41.7% 7.167 39.2% 3.960 40.6% 

Table A.2 

RUL prediction performance with λ = 5 × 10 −5 and γ = 0 . 95 . 

β = 25% β = 50% β = 75% 

RUL (10 4 ) 3.108 2.090 1.102 

Cov 0.2 0.814 0.832 0.808 √ 

MSE (10 3 ) 5.313 17.1% 3.4 4 4 16.5% 1.659 15.1% 

MA 0.2 (10 3 ) 4.961 16.0% 3.187 15.2% 1.788 16.2% 
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Appendix B 

Fig. A.4 shows the predictions obtained for the Q = 8 trajecto-

ries, when parameters λ = 0 . 05 and γ = 1 are used. In trajectory

6, we notice that the confidence bound is higher than the RUL pre-

diction. This is an example of the counterintuitive results that can

be obtained by setting γ = 1 if two trajectories are very similar.

Fig. A.5 shows the similarities s r 
j ∗ and the BBAs m RUL assigned to

the reference trajectories for the test trajectory 6 at time τ15 = 15
orking days (upper). We notice that trajectory 8 receives the be-

ief assignment m RUL ( { RU L 8 } ) = 0 . 937 . Fig. A.5 also shows the evo-

ution of the observable parameters 	P 
q 
i 

, ˙ M 

q 
i 
, and T 

q 
i 

(bottom), for

he test trajectory 6 and the reference trajectory 8 receiving the

aximum belief assignment. We notice that all three parameters

P 
q 
i 

, ˙ M 

q 
i 
, and T 

q 
i 

of the two trajectories are very similar around

ime τ15 = 15 working days, but evolve very differently after that

ime. To correct this problem, it is sufficient to reduce the value of

arameter γ as can be seen from Section 3.2 , Fig. 9 . 
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Fig. A.3. Predictions obtained for 4 different test trajectories using R = 50 reference trajectories and parameters λ = 5 × 10 −5 and γ = 0 . 95 . 

Fig. A.4. predictions obtained for the Q = 8 filter clogging trajectories available using parameters λ = 0 . 05 and γ = 1 . 
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Fig. A.5. Evolution of the three observable parameters 	P q 
i 

, ˙ M 

q 

i 
, and T q 

i 
(bottom) for trajectories q = 6 and q = 8 , with similarities s r 

j ∗ and BBAs m R UL at time τ15 = 15 

working days (upper). 
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