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Multi-State Physics Modeling (MSPM) provides a physics-based semi-Markov modeling framework for a more
detailed reliability assessment. In this work, a three-loop Monte Carlo (MC) simulation scheme is proposed to
operationalize the MSPM approach, quantifying and controlling the uncertainty affecting the system reliability
model. The proposed MC simulation scheme involves three steps: (i) the identification of the system components
that deserve MSPM, (ii) the quantification of the uncertainties in the MSPM component models and their propa-

gation onto the system-level model, and (iii) the selection of the most suitable modeling alternative that balances
the computational demand for the system model solution and the robustness of the system reliability estimates.
A Reactor Protection System (RPS) of a Nuclear Power Plant (NPP) is considered as case study for numerical

evaluation.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

System reliability assessment relies on a model of the system failure
process: the more accurately the model reproduces the system behavior,
the more confident the system reliability assessment. Physical knowl-
edge, expert information and data on the system behavior are used to
build the model and estimate its parameters [2,3]. The uncertainties
in the model and parameters can be propagated by Monte Carlo (MC)
simulation [12,47,50,51], Bayesian posterior analysis [46] and Fuzzy
methodology [5,18,21,22]. Most commonly, MC simulation is used, con-
sisting in repeatedly sampling random values of the inputs from proba-
bility distributions [52].

MSPM is a semi-Markov modeling framework that allows inserting
physical knowledge on the system failure process, for improving the
system reliability assessment by accounting for the effects of both the
stochastic degradation process and the uncertain environmental and op-
erational parameters [17,30,38,40].

In this work, a three-loop MC simulation scheme is proposed for
MSPM system reliability modeling. The proposed MC simulation is made
of three steps: (i) the identification of the components of the system for
which a component-level MSPM is beneficial, because of the importance
of the component for the system unreliability, (ii) the quantification and
propagation of the uncertainty, and (iii) the selection of the proper mod-
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eling details, considering computational demand and robustness of the
result.

The first step is achieved by Sensitivity Analysis (SA), which can
be informed in three different ways: local, regional and global [16,34].
Global SA, in particular, measures the output uncertainty over the
whole distributions of the input parameters and can be performed by
parametric techniques, such as the variance decomposition method
[10,35,36,43,44] and moment-independent method [7,8,13,42]. The
variance-based method measures the part of the output variance that
is attributed to the different inputs or set of inputs, without resorting to
any assumption on the form of the model [11,31,33-35]. The moment-
independent method allows quantifying the average effect of the input
parameters on the reliability of the system and provides their impor-
tance ranking [48]. In this work, we resort to moment-independent sen-
sitivity measures, such as Hellinger distance and Kullback-Leibler diver-
gence [14,20], for ranking the input variables most affecting the system
reliability uncertainty [16,24].

The second step consists in quantifying the uncertainty in the output
of the reliability model. The method adopted for this depends on the
components modeling approach: for binary-state Markov Chain Mod-
els (MCMs), the variance of the transition failure rate is estimated by
Fisher Information Matrix [1,15,26,28]; for MSPM component models,
the transition rates uncertainty is propagated and, therefore, estimated
by MC.
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Fig. 1. RPS scheme [41].

For the last step, MC simulation is utilized to propagate uncertainties
in the system model and estimate the confidence intervals of the system
unreliability.

A Reactor Protection System (RPS) of a Nuclear Power Plant (NPP)
is considered as case study. MCM and MSPM are built for the reliability
assessment. The Resistance Temperature Detector (RTD) is identified as
the most important component. Confidence intervals of the system reli-
ability estimates by RPS-MCM are computed and compared with those
of RPS-MSPM that are obtained by the three-loop MC simulation.

The reminder of the paper is organized as follows. Section 2 describes
the RPS case study and its MCM reliability model taken as reference. In
Section 3, a SA of the MCM is performed and the embedded RTD is iden-
tified as the component most affecting the RPS reliability. RPS-MSPM
is, then, built for it. Section 4 compares the confidence intervals of the
system reliability estimates obtained by MCM and MSPM. In Section 5,
conclusions are drawn.

2. The Reactor Protection System

The RPS function is to trigger the NPP emergency shutdown, when
an anomaly is detected in the measurements of a relevant signal (here
assumed to be a temperature signal). As shown in Fig. 1, the RPS is
composed of two redundant channels (A and B). Each channel consists
of one signal sensor (S-A and S-B), one Bistable Processor Logic (BPL)
subsystem (BPL-A and BPL-B), and one Local Coincidence Logic (LCL)
subsystem (LCL-A and LCL-B). Usually, redundancy is applied to sen-
sors and signal processing units of RPS. However, with respect to the
development of the methods proposed in the paper, we do not consider
this for keeping the modeling complexity at a minimum without loss
of generality. Furthermore, the sensors S-A and S-B are considered to
be RTDs, because of the importance of these components in NPPs digi-
tal Instrumentation and Control (I&C) systems [6,45]. RTDs are safety-
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Fig. 2. The RPS-MCM where states are grouped according to their intra-module and inter-
modules characteristics.

critical components and their effectiveness of detection of anomalous
temperatures is very important for plant operators for monitoring the
NPP operational conditions [23]. The reliability and accuracy of RTDs
is important for controlling the NPP power rate with confidence, guar-
anteeing large power rates with sufficient safety margins [40,45].

If any one of the two redundant measured signals exceeds a trigger-
ing threshold value, a Partial Tripping Signal (PTS) is sent to the cor-
responding BPL. The signal processing activates only if both channels
produce the PTS: each PTS from a BPL is sent to both LCL-A and LCL-B,
which process information by an “AND” gate. In other words, an Emer-
gency Shutdown Signal (ESS) is produced only when receiving two PTSs
from different BPLs; ESSs, then, activate the Reactor Trip Breaker (RTB),
when at least one ESS is triggered, i.e., the information is processed by
an “OR” gate. Once the RTB is activated, the power supply system and
Control Rod Drive Mechanism (CRDM) which are connected with the
RTB activate to control the power of the reactor.

According to the RPS scheme of Fig. 1, three modules are identified:

e The BPL Module consists of two groups of components: sensor and
BPL (i.e., “S-A and BPL-A” and “S-B and BPL-B”); these components
are connected in series and their failure effects on the system can be
combined.

e The LCL Module consists of the two LCLs (i.e., LCL-A and LCL-B);
since the ESS is triggered only when both LCLs simultaneously re-
ceive two PTSs from the two BPLs, this module is highly dependent
of the BPL module.

e The RTB Module.

2.1. The RPS-MCM

In this Section, a binary-state MCM is built as reference for the reli-
ability assessment of the RPS. To do this, intra- and inter-module states
leading to the system failure are identified. Intra-module states refer to
events leading to the system failure that concerns components belonging
to the same module; inter-module states relate to system failures from
combined component events in different modules.

Fig. 2 shows the RPS-MCM, whose states (listed in Table 1) are
grouped into four categories that relate to the intra- and inter-module
distinction. The following assumptions have been made for the subse-
quent quantitative analysis:

e Transitions can occur from the system functioning state (state 0) to
any of the absorbing failure states of the intra-module category and
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Fig. 3. Unreliability curves of RPS and its modules.
Table 1 with reference to the RTD, whose failure rate standard deviation is not
Component states. provided in [39]:
State  Description . . A
¢ Simulation of life tests.
0 RPS functioning state.
1 Either one of the RTD sensors fails. With the mission time T=6 years [40] as the end of the right-
2 Either one of the BPLs fails to send out PTSs. censored life tests, we randomly sample Ny = 1000 trials of RTD failure
3 Either one of the LCLs fails to produce the ESS. . . .. . . ‘e
4 RTB fails. times from an exponential distribution with constant transition rate Ag
5 One LCL has failed and, then, one sensor fails. (Table 2). If the sampled time exceeds the mission time T'= 6years, the
6 One LCL has failed and, then, one BPL fails. test is considered right-censored [49].
7 Both LCLs fail to produce the ESS.
8 One LCL has failed and, then, the RTB fails. ¢ Estimation of the standard deviation 6 gof Ag.
9 Common cause failure of BPL-A and BPL-B.
10 Common cause failure of LCL-A and LCL-B. The variance of ig can be estimated based on the observed Fisher
information [26]. The Fisher Information Matrix is defined from the
Table 2 Maximum Likelihood function or its LogLikelihood [26], and can be

Transition rates [25,39].

Symbol  Description Value (/year)
Ag RTD failure rate 8.760e-1 [39]
A BPL failure rate 8.760e—3 [39]
A LCL failure rate 4.380e-2 [39]
Ar RTB failure rate 3.767e—4 [25]

B Common cause factor 0.1

Ags BPL self-fault failure rate (1- p) 43 =7.884e-3
ALs LCL self-fault failure rate (1= p)"4,=3.942e-2
Asc BPLs common cause failure rate ~ f*4; =8.760e—4
A LCLs common cause failure rate ~ p*4; =4.380e—3

from the intermediate state (state 3) to any of the absorbing states of
the inter-module category. The transition rates are taken from public
databases [25,39] and reported in Table 2.

e No repairs are considered.

The RPS unreliability P(t), and the individual modules unreliabili-
ties Pgp; (1), Py (1), Pryg(®) and Pryier-modules(t) are presented in Fig. 3. A
visual analysis of the unreliability curves shows that most of the system
unreliability P(t) is contributed by the BPL, that is to say, the absorbing
states of the BPL module most contribute to the system unreliability.

2.2. Uncertainty analysis

The standard deviation values of the transition rates of Table 2 are
either provided by public databases or can be estimated by resorting
to Fisher Information [15,26]. The procedure for this is here described
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estimated by [49]:

log L(t, Ag) = log <H fr(tsds) ~HR(tj;iS)>

where i and j are the RTD failure times before T and the times right-
censored by T, respectively, and fr(1;; 45) and R(1;; Ag) are the RTD
failure time probability density function (pdf) and the RTD reliability:

()]
(3)

1

Fr(tpds) = Ag - e7lst
R(tj;ﬁs) = e Asti

With respect to the observable random failure time t, the Fisher In-
formation Matrix J (4 ) can be expressed as:

(is) = <f“°g{<r: %))2

FY R
As a result, the variances of the parameters Ag can be provided from
the main diagonal of its inverse matrix J (1 s), namely, the estimated
standard deviations 6 of the parameters:

“

65 =J"(As) 5)

Under the condition of mild regularity, J~! (i) can be calculated by

Eq.(6):
P (2]

and the standard deviation can be estimated as:

0210gL(t; /IAS)

> ©)
0i%
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Table 3
Estimated transition rates.

Symbol Mean value (/year) Standard deviation (/year)
Ag 8.760e—1 7.720e-1

Ap 8.760e—-3 7.867e—8

A 4.380e-2 1.981e-6

Ar 3.767e—4 1.332e-10

Sample transition rates of RTDs,
BPLs, LCLs and RTB from their
distributions

A

Calculate the system unreliability
PtlAs,ApAr,AR)

NO

YES

Record P(t|As,Ap.A1,/z)

Simulation runs > N,

Obtain the double-sided 90%
confidence interval

Fig. 4. The flowchart of the two-loop MC simulation for the RPS-MCM system reliability

-]

The standard deviations of the transition rates of the BPLs, LCLs,
and RTB are also estimated by the Fisher Information Methodology
(Table 3).

0% log L(t, Ag)

= (@)
0i%

2.3. Uncertainty propagation

Uncertainty in binary transition rates is propagated through the RPS-
MCM as follows (Fig. 4):

(1) Set initial time t, =0 and mission time T=6 years, and partition
the time axis into small intervals of length dt=0.01 years;
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(2) Sample the component failure rates from the Gaussian distribu-
tions N (4, 6;) that are shown in Table 3, where, k=S, B, L, R;

(3) For each time instant t before T, compute the system unreliability
from the MCM [19,32];

P(tlAg, A5, Az, AR)
21-p), (eWWDf-l)

e—(ZAS+(2—ﬂ)/13+(2—ﬂ)/1,_+AR)r
(Bip +4r)

=1-|1+

®)

(4) Repeat the steps (2) and (3) for Na=1000 times;
(5) Compute the 5th and 95th percentiles for each time instant t.

Fig. 5 shows the plot of the pointwise double-sided 90% confidence
interval of the system unreliability. The confidence interval is large all
over the system life T, because of the large uncertainty that affects the
MCM transition rates due to the weak knowledge utilized to build the,
therefore, quite inaccurate RPS-MCM.

3. RPS-MSPM
3.1. The SA approach

The purpose of this step of the analysis is the identification of the
components most important for the system unreliability. This can be a
non-trivial problem, for complex systems whose components reliabil-
ity characteristics (i.e., failure rates) are very uncertain (i.e., with large
standard deviations). For clarity, we describe the approach with refer-
ence to the case study.

For the RPS components, a MSPM is built for reliability assessment.
The SA is performed as follows:

(1) Calculate the moment-independent sensitivity measures between
the unreliability P(¢) of Fig. 3 and the unreliability P,(t) of
its k-th module contributor (i.e., Pgp;(t), Py (1), Prrp(t) and
Prnter-modules(), to identify the most important module in the sys-
tem;

(2) Calculate the moment-independent measure for the sensitivity
between the module unreliability P, (t) and the unreliability of its
[-th embedded component P(t), to identify the component most
affecting the module unreliability.

The moment-independent sensitivity measures here adopted are the
Hellinger distance and Kullback-Leibler divergence [14,16,20], which
rest on the common rationale that the sensitivity measures can be com-
puted as expected generalized distances between the output distribution
and the conditional output distribution given the model input(s) of in-
terest [9]. In detail, the Hellinger distance H; [p(t),p,(t)] measures the
difference between the pdf p(t) of the system unreliability and the pdf
Pi(® of the k-th contributor to the system failure, i.e., BPL, LCL, RTB,
Inter-modules [14, 20]:

[/ (- iy
-/ (Verm@) ]

The k-th contributor is important if H; is small.

The Kullback-Leibler divergence KL, [p(t),pi(t)] measures the differ-
ent information carried by the pdf p(t) of the system failure and the pdf
Pi(®) of the k-th contributor according to Eq. (10) [14, 20]:

)m
pr(®)

with the values in [0, +o0]. In practical cases, the symmetric form of
Kullback-Leibler divergence can be utilized as follows [27]:

Hy [P(l'), Pk(f)] =

C)]

+oo
KL(p(t). py (1) = / P (10)

—oo

p(r)log <
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Fig. 5. Confidence intervals from the RPS-MCM system unreliability.
Table 4

Ranking of contributors to the RPS unreliability.

the RTD degradation-to-failure process, inserting physics knowledge in
the model.

Input H, KL,k In general, a MSPM describes the dynamics of component degrada-
Intra-BPL 0.0013 6.453%—6 tion in terms 9f transitions among a finite n'um.ber M of degradation
Intra-LCL 0.6398 2.4181 states, depending on a parameter vector §. Similarly to MCM, a state
Intra-RTB 0.6872 3.7300 probability P is assigned to each degradation state, forming a state prob-
Inter-Module 0.6000 1.8809

Table 5

Ranking of the contributors to the BPL unreliability.
Input H, KLsym,l
Sensors 0.2391 0.2460
BPLs 0.6219 2.1599

KL, 1 [P0, o )] = KL 1 [0 (D), p(1)]

LKL 0. O] + KL [ 0,900 an

The k-th contributor is important if KL is small, in relative terms.

sym,k
3.1.1. The SA results

Table 4 lists the Hellinger distance and Kullback-Leibler divergence
values for each module contributor to the system unreliability, respec-
tively: both measures identify the BPL as the most important contribu-
tor.

Since the BPL module plays the most significant role in affecting the
reliability of the RPS, we now focus on identifying the BPL component
most contributing to its failure. Fig. 6 shows the unreliability of the BPL
module and of the components therein (i.e., Pg(t) for the sensor and Py(t)
for the BPL-component). The unreliability curves show that most of the
BPL module unreliability Pgp; (t) is contributed by the sensors, that is
to say, the absorbing states of the sensors most contribute to the BPL
module unreliability.

To rank the importance of the 1-th component embedded in the BPL
module, the two SA measures of Eqs. (9) and (11) are quantified. The
sensors turn out to be the most important components contributing to
the BPL module unreliability (see Table 5).

3.2. The RPS-MSPM
The results of the SA performed in Section 3.1 point at the RTD as

the component deserving more modeling efforts for accurate RPS unre-
liability estimation. A component MSPM is here developed to describe
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ability vector P(t, §) = { Py(t,8), P(1,6), - - -, Pi(1,8),- - -, Py (1,6)} for all M
states [17, 29].

The RTD-MSPM can be integrated into the RPS-MSPM of the RPS, to
estimate the system failure probability accounting for both aging- and
environmental-dependent transition rates of the RTD.

3.2.1. The RTD-MSPM

As discussed in [40], among the RTDs failure modes (e.g., bias, drift,
performance degradation, freezing and calibration error), experimental
evidence suggests that the main failure mode is drift [4]. Drift is mea-
sured by the response time r that the RTD needs to reach 63.2% of a
sudden temperature change of the RTD. Aging t and air gap size § be-
tween the bottom of the thermowell and the sensing tip (that changes
because of contamination and mechanical shocks) are the most likely
contributors to the drift [23,37]. The response time z(t,6) is assumed not
to exceed the RTD failure threshold yy during normal operation and in
relation to this, the RTD failure boundary is defined as oF = G(t,6) = 0,
where,

G(t,0) =(t,0) — vy (12)

The RTD-MSPM shown in Fig. 7 depicts, in a two-state diagram, the
partition by OF of the safe domain S from the failure domain F of the
RTD. The RTD-MSPM assumptions are described as follows:

o SFTP is the RTD functioning state and S is the RTD drift failure
state;

o Transitions can occur between the two states with failure rate Ag(t|5)
and repair rate ug(t|6), functions of the time t and the affecting factor
S5

e At the initial time t=0, the RTD is in its initial functioning state
S(fTD.

3.2.2. Uncertainty analysis of the aging- and environmental-dependent
transition rates

To estimate the aging- and environmental-dependent transition rate
Ag(t]8), we build the empirical relationship between z, t and § based on
experimental data [23,45]. In literature, 7(t,6) is usually treated sepa-
rately, i.e., 7(t,0) and 7(0,5). [23] and [45] provide a set of mean re-
sponse times with standard deviations with respect to the aging time
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2 ( / | 5) It is worth mentioning that each trial surface results in a different
S expression of z(t,6), RTD failure boundary oF, transition rate Ag(t|6)
and the cdf, due to the randomly sampled discrete response times upon
which the surface is built on.
([ 5) Therefore, the accuracy of the RTD-MSPM, to a large extent, depends
Mg | on the uncertainties of the RTD physical parameters that are used to
. build the surfaces. Indeed, the variance of the sampled z(t,5) greatly
Fig. 7. RTD-MSPM model. .
affects the output of the MSPM model, the RTD degradation process
Table 6 and the probability of failure boundary JF exceedance for each time.
Experimental data for ¢ at fixed t and 6 =0 [45].
Aging Time t [year] 0 2 4 5 6 3.2.3. Three-loop MC simulation for uncertainty propagation through the
Mean Response Time 7 [s] 21 4.4 4.8 5.0 5.2 RPS-MSPM .
Standard Deviation o(t,0) 1.67 0.77 0.72 0.77 0.67 The RPS-MSPM model of Flg. 12 embeds the RTD-MSPM model

(see Table 6 and Fig. 8, §=0) and a set of mean response times with
respect to the air gap size without aging (listed in Table 7, t=0). Fig. 9
shows the trend of r with deviations at discrete 5, when the RTD is new
and data in Table 7 are used as interpolation data.

An analytical function of z(t,5) can be obtained relying on [40]:

#(t,6) = a, - 7(t — 1,6) (13)

o2(t,6) = 62t — 1,6) + a,° (14)

where 7(t, §) is the mean value of the response time of Table 7 and Fig. 9,
o(t,6) is its standard deviation, and the factor a, accounts for the changes
of response time 7z with the increase of t, by scaling the 7(z,0) using the
scale factor a;:

7(t,0)
Q= —
7t —1,0)
where, a; = 7(1,0)/7(0, 0).

The function z(t,6) consists in a surface fitted to realizations of z(t,6)
sampled from the assumed Gaussian distributions with mean values
7(1,6) and standard deviations o(t,§) at each discrete point, as shown
in Fig. 10 where one trial surface is plotted.

The transition rate ig(t|5) and the cumulative distribution function
(cdf) Pg(t|5) can, thus, be estimated as the probability of z(t,5) to exceed
yy =8s at a given time t, based on a batch of MC simulations that are
run as described in detail in [40]. For the sake of clarity, the estimated
Ag(t|8) for the surface of Fig. 10, obtained by simulating Nb =1000 dif-
ferent degradation processes, is plotted in Fig. 11.

s)
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of Fig. 7, while components other than the RTD are assumed to obey
binary-state behaviors as in the reference MCM of Fig. 2.

We propose the three-loop MC simulation for the RPS reliability as-
sessment, with confidence quantification related to the uncertainty in
the RTD physical parameters propagated through the surfaces z(t,8) of
Section 3.2.2, and in the transition rates for the binary components that
are accounted for by the Fisher Information Matrix of Section 2.2. The
outmost loop within the following procedure (sketched also in Fig. 13)
consists in randomly sampling the values of the physical RPS model
parameters from their distributions and sampling the RTD failure time
(step (D):

(1) Set initial time t; =0, mission time T=6 years and time step
dt=0.01 years;
(2) Randomly sample the transition rates of the binary-states compo-
nents (i.e., BPLs, LCLs, and RTB) from the Gaussian distributions
N (4, 6;)of Table 3, where, k=B, L, R;
(3) Sample the failure times of the binary-states components, from
the exponential distributions with the sampled transition rates;
(4) Randomly sample the multi-state RTD failure time by:
(4a) Fit the randomly sampled realizations of the RTD response
time 7 at each discrete point to a trial surface z(t,6);
(4b) Simulate the RTD degradation process evolution from t=t,
tot=T;
(4c) At each time ¢, sample the air gap size increment dé, from a
normal distribution N(0,0.025¢), resulting in 6=6, +dé,.
(4d) Calculate the response time 7 on the fitted trial surface z(t,5).
(4e) Record the time t at which 7 exceeds the threshold yy =8s,
with air gap size 4.
(5) Integrate the RTD-MSPM into the RPS-MSPMV;
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Table 7
Fitted 7 at t=0 and discrete 6 based on experimental data from [23,45].
Air gap size § [mm] 0 0.4 0.8 1.2 1.6 2.0 2.4
Mean response time t [s] 210 380 497 593 7.02 858 10.95
Standard deviation ¢(0,5) 1.18 1.19 1.64 2.47 3.61 4.98 6.51
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Fig. 9. 7(0,6) with standard deviations.

(5a) Sort all the components sampled failure times;
(5b) Check whether the minimum of the sorted times exceeds T:
¢ If yes, increase the unreliability counter at time T;
¢ If not, check whether at that time the RPS-MSPM reaches
any absorbing state and, if yes, increase the unreliability
counter, or the reliability counter, otherwise.

(6) Run Nb=1000 times steps (1) to (5) to build the empirical
P(t|6; ;A5 Ag), based on the statistics of the system unreliabil-
ity estimates collected at each time t;

(7) Estimate the 5th and 95th percentiles of the unreliability by re-
peating steps (1) to (6) for Nc=1000 times and collecting the
related statistics;

(8) Obtain the pointwise double-sided 90% confidence intervals of
the system unreliability calculated by the RPS-MSPM.
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Fig. 14 shows the estimated P(t,6) with the 90% confidence interval
for the RPS-MSPM of Fig. 12, obtained by the three-loop MC simulation.
The confidence interval is large especially in [0.5, 1.5] years, probably
because the fitted trial surfaces at the basis of the uncertainty propaga-
tion considerably vary from each other due to the large variances of the
data of Tables 6 and 7 utilized to build them. Despite that, as we shall
see in what follows, the robustness of the assessment is much improved
with respect to the RPS-MCM results.

4. Comparison

Fig. 15 shows the results of the RPS reliability assessment by the RPS-
MCM of Section 2 and the RPS-MSPM of Section 3. In general terms, it
can be concluded that the RPS-MSPM results provide a narrower confi-
dence interval than the RPS-MCM, thanks to the integration of physics
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Fig. 11. Conditional failure rate Ag(t|5) of RTD new-to-drift failure mode.

Fig. 12. RPS-MSPM integrating the RTD-MSPM.

knowledge related to operational and environmental parameters. The
confidence interval provided by the MSPM is larger than that of the
MCM at the early stage of the RPS life (t< 1 year): the main reason is
that the fitting surfaces may considerably vary from trial to trial due to
the large variance of the response times at the considered discrete points,
which greatly affect the onset time of the RTD drift failure mode.

For a quantification analysis, two indexes (i.e., the relative uncer-
tainty interval width ¢; and the relative age interval width ¢{p) are pro-
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posed in what follows to compare the accuracy of the MCM with that of
the MSPM.

4.1. The relative unreliability interval width

At each time t, the ratio {, between the mean value of the system un-
reliability and the width of the unreliability interval (i.e., the difference
between the upper and lower bounds) is calculated.

The larger ¢,, the narrower is the confidence interval, and the more
accurate the system reliability modeling approach. Fig. 16 shows that
¢.(t]6) of the MSPM is much larger than ¢,(t) of the MCM: as ¢ increases,
the estimated system unreliability obviously increases but, since MSPM
includes more (physics) knowledge on the system behavior than MCM,
the confidence interval reduces more than that of the MCM. The zoom
of Fig. 16 shows the evolution of {; from t=0 to t=2 years: to further in-
vestigate the dispersion of the unreliability estimates within the bounds,
we calculate, at each time, their empirical pdf and the respective cdf.

Ideally, we would prefer a reliability assessment method that pro-
vides distributions peaked on the mean value (rather than uniform dis-
tributions), because this would facilitate the decision maker that would,
then, be more prone to accept the mean reliability value. Fig. 17 shows
an example of possible empirical distributions (at time t=1 year, with-
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Simulation runs > Nb

Record the statistics of system
unreliability P(#(0545AL;2r)

NO

Simulation runs > N¢

Double-sided 90% confidence
interval

Fig. 13. Flowchart of the three-loop MC simulation.
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Fig. 18. pdf of the MCM estimates vs. pdf of the MSPM estimates at t=1 year.

out any loss of generality). The decision maker would rely on the MSPM
rather than the MCM (light and dark shadowed areas, respectively), be-
cause in the latter case most of the unreliability estimates confirm the
MSPM to be more accurate than the MCM.

Based on the real estimates collected with the Na MC simulations for
the RPS-MCM reliability assessment of Section 2 and the Nc three-loop
MC simulation for the RPS-MSPM of Section 3, Figs. 18 and 19 show the
pdf and cdf curves of the system unreliability at t =1 year. The pdf of the
MCM, as well as its cdf, skews towards large unreliability values, com-
pared to the pdf of the MSPM, demonstrating again the more probable
overestimation of the system unreliability, if the decision maker were
to resort to RPS-MCM.

4.2. The relative age interval width

With respect to each system reliability value P, the ratio ¢, between
the mean value of the system failure time and the width of the age in-
terval (i.e., the difference between the upper and lower bounds), is cal-
culated.
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The larger ¢{p, the narrower the confidence interval, and the more
accurate the system reliability estimate. Fig. 20 shows ¢{p(P|5) of the
MSPM and ¢p(P) of the MCM. The latter is always larger than the for-
mer, whatever the value of P, that means that MSPM better models the
RTD degradation and, therefore, provides more accurate failure time
predictions than the MCM. For clarity sake, {p(P) of the MCM is trun-
cated at P=0.8 because the maximum unreliability of the lower bound
of the MCM is 0.8 within the mission time.

To further investigate the dispersion of the age interval estimates, we
calculate, at each unreliability value P, the empirical pdf and respective
cdf. Ideally, we would prefer a reliability assessment method that pro-
vides distributions peaked on the mean value of the failure time. Fig. 21
shows an example of possible empirical distributions (at P=0.1, with-
out any loss of generality). The decision-maker would rely on the MSPM
rather than the MCM (light and dark shadowed areas, respectively) be-
cause in the latter case most of the failure time estimates confirm the
MSPM to be more accurate than the MCM.

Resorting to the real estimates collected with the Na MC simulation
for the RPS-MCM reliability assessment of Section 2 and the Nc three-
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Fig. 23. cdf of the MCM estimates vs. cdf of the MSPM estimates at P=0.1 .

loop MC simulation for the RPS-MSPM of Section 3, Figs. 22 and 23 are
built with the pdf and cdf curves of the system failure times at P=0.1,
respectively. The pdf of the MCM, as well as its cdf, skew towards the
earlier values, compared with the pdf of the MSPM, revealing the more
possible early-estimation of the failure times, if the decision maker re-
sorts to a MCM.

5. Conclusions

In this paper, a three-loop MC simulation is proposed to properly
quantify the effect of uncertain aging- and environmental-dependent
transition rates of a MSPM for system reliability assessment. The de-
manding knowledge and information requirements to build a system
MSPM calls for the identification of the components most affecting the
system reliability in order to limit the modeling efforts. The obtained
component-level MSPM is, then, embedded into a system-level accurate
model that can guarantee less uncertainty on the system unreliability
estimation, compared to a binary-state modeling approach such as the
MCM.

The application of the three-loop MC approach to a RPS system
shows the twofold potential benefits of integrating the RTD physics
knowledge into the system reliability modeling: on one hand, the nar-
rower confidence interval of the system unreliability of the RPS-MSPM
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with respect to the RPS-MCM would more likely induce the decision-
maker to rely on the reliability assessment measures provided by the
MSPM, whereas, on the other hand, the approach allows balancing mod-
eling efforts and computational demand with accuracy of the results.
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