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a b s t r a c t 

Multi-State Physics Modeling (MSPM) provides a physics-based semi-Markov modeling framework for a more 

detailed reliability assessment. In this work, a three-loop Monte Carlo (MC) simulation scheme is proposed to 

operationalize the MSPM approach, quantifying and controlling the uncertainty affecting the system reliability 

model. The proposed MC simulation scheme involves three steps: ( i ) the identification of the system components 

that deserve MSPM, ( ii ) the quantification of the uncertainties in the MSPM component models and their propa- 

gation onto the system-level model, and ( iii ) the selection of the most suitable modeling alternative that balances 

the computational demand for the system model solution and the robustness of the system reliability estimates. 

A Reactor Protection System (RPS) of a Nuclear Power Plant (NPP) is considered as case study for numerical 

evaluation. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

System reliability assessment relies on a model of the system failure
rocess: the more accurately the model reproduces the system behavior,
he more confident the system reliability assessment. Physical knowl-
dge, expert information and data on the system behavior are used to
uild the model and estimate its parameters [2,3] . The uncertainties
n the model and parameters can be propagated by Monte Carlo (MC)
imulation [12,47,50,51] , Bayesian posterior analysis [46] and Fuzzy
ethodology [5,18,21,22] . Most commonly, MC simulation is used, con-

isting in repeatedly sampling random values of the inputs from proba-
ility distributions [52] . 

MSPM is a semi-Markov modeling framework that allows inserting
hysical knowledge on the system failure process, for improving the
ystem reliability assessment by accounting for the effects of both the
tochastic degradation process and the uncertain environmental and op-
rational parameters [17,30,38,40] . 

In this work, a three-loop MC simulation scheme is proposed for
SPM system reliability modeling. The proposed MC simulation is made

f three steps: ( i ) the identification of the components of the system for
hich a component-level MSPM is beneficial, because of the importance
f the component for the system unreliability, ( ii ) the quantification and
ropagation of the uncertainty, and ( iii ) the selection of the proper mod-
∗ Corresponding author. 
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ling details, considering computational demand and robustness of the
esult. 

The first step is achieved by Sensitivity Analysis (SA), which can
e informed in three different ways: local, regional and global [16,34] .
lobal SA, in particular, measures the output uncertainty over the
hole distributions of the input parameters and can be performed by
arametric techniques, such as the variance decomposition method
10,35,36,43,44] and moment-independent method [7,8,13,42] . The
ariance-based method measures the part of the output variance that
s attributed to the different inputs or set of inputs, without resorting to
ny assumption on the form of the model [11,31,33–35] . The moment-
ndependent method allows quantifying the average effect of the input
arameters on the reliability of the system and provides their impor-
ance ranking [48] . In this work, we resort to moment-independent sen-
itivity measures, such as Hellinger distance and Kullback-Leibler diver-
ence [14,20] , for ranking the input variables most affecting the system
eliability uncertainty [16,24] . 

The second step consists in quantifying the uncertainty in the output
f the reliability model. The method adopted for this depends on the
omponents modeling approach: for binary-state Markov Chain Mod-
ls (MCMs), the variance of the transition failure rate is estimated by
isher Information Matrix [1,15,26,28] ; for MSPM component models,
he transition rates uncertainty is propagated and, therefore, estimated
y MC. 

http://dx.doi.org/10.1016/j.ress.2017.06.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ress
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ress.2017.06.003&domain=pdf
mailto:francesco.dimaio@polimi.it
http://dx.doi.org/10.1016/j.ress.2017.06.003
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Fig. 1. RPS scheme [41] . 
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Fig. 2. The RPS-MCM where states are grouped according to their intra-module and inter- 

modules characteristics. 
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For the last step, MC simulation is utilized to propagate uncertainties
n the system model and estimate the confidence intervals of the system
nreliability. 

A Reactor Protection System (RPS) of a Nuclear Power Plant (NPP)
s considered as case study. MCM and MSPM are built for the reliability
ssessment. The Resistance Temperature Detector (RTD) is identified as
he most important component. Confidence intervals of the system reli-
bility estimates by RPS-MCM are computed and compared with those
f RPS-MSPM that are obtained by the three-loop MC simulation. 

The reminder of the paper is organized as follows. Section 2 describes
he RPS case study and its MCM reliability model taken as reference. In
ection 3 , a SA of the MCM is performed and the embedded RTD is iden-
ified as the component most affecting the RPS reliability. RPS-MSPM
s, then, built for it. Section 4 compares the confidence intervals of the
ystem reliability estimates obtained by MCM and MSPM. In Section 5 ,
onclusions are drawn. 

. The Reactor Protection System 

The RPS function is to trigger the NPP emergency shutdown, when
n anomaly is detected in the measurements of a relevant signal (here
ssumed to be a temperature signal). As shown in Fig. 1 , the RPS is
omposed of two redundant channels (A and B). Each channel consists
f one signal sensor (S-A and S-B), one Bistable Processor Logic (BPL)
ubsystem (BPL-A and BPL-B), and one Local Coincidence Logic (LCL)
ubsystem (LCL-A and LCL-B). Usually, redundancy is applied to sen-
ors and signal processing units of RPS. However, with respect to the
evelopment of the methods proposed in the paper, we do not consider
his for keeping the modeling complexity at a minimum without loss
f generality. Furthermore, the sensors S-A and S-B are considered to
e RTDs, because of the importance of these components in NPPs digi-
al Instrumentation and Control (I&C) systems [6,45] . RTDs are safety-
277 
ritical components and their effectiveness of detection of anomalous
emperatures is very important for plant operators for monitoring the
PP operational conditions [23] . The reliability and accuracy of RTDs

s important for controlling the NPP power rate with confidence, guar-
nteeing large power rates with sufficient safety margins [40,45] . 

If any one of the two redundant measured signals exceeds a trigger-
ng threshold value, a Partial Tripping Signal (PTS) is sent to the cor-
esponding BPL. The signal processing activates only if both channels
roduce the PTS: each PTS from a BPL is sent to both LCL-A and LCL-B,
hich process information by an “AND ” gate. In other words, an Emer-
ency Shutdown Signal (ESS) is produced only when receiving two PTSs
rom different BPLs; ESSs, then, activate the Reactor Trip Breaker (RTB),
hen at least one ESS is triggered, i.e., the information is processed by
n “OR ” gate. Once the RTB is activated, the power supply system and
ontrol Rod Drive Mechanism (CRDM) which are connected with the
TB activate to control the power of the reactor. 

According to the RPS scheme of Fig. 1 , three modules are identified:

• The BPL Module consists of two groups of components: sensor and
BPL (i.e., “S-A and BPL-A ” and “S-B and BPL-B ”); these components
are connected in series and their failure effects on the system can be
combined. 

• The LCL Module consists of the two LCLs (i.e., LCL-A and LCL-B);
since the ESS is triggered only when both LCLs simultaneously re-
ceive two PTSs from the two BPLs, this module is highly dependent
of the BPL module. 

• The RTB Module. 

.1. The RPS-MCM 

In this Section, a binary-state MCM is built as reference for the reli-
bility assessment of the RPS. To do this, intra- and inter-module states
eading to the system failure are identified. Intra-module states refer to
vents leading to the system failure that concerns components belonging
o the same module; inter-module states relate to system failures from
ombined component events in different modules. 

Fig. 2 shows the RPS-MCM, whose states (listed in Table 1 ) are
rouped into four categories that relate to the intra- and inter-module
istinction. The following assumptions have been made for the subse-
uent quantitative analysis: 

• Transitions can occur from the system functioning state (state 0) to
any of the absorbing failure states of the intra-module category and
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Fig. 3. Unreliability curves of RPS and its modules. 

Table 1 

Component states. 

State Description 

0 RPS functioning state. 

1 Either one of the RTD sensors fails. 

2 Either one of the BPLs fails to send out PTSs. 

3 Either one of the LCLs fails to produce the ESS. 

4 RTB fails. 

5 One LCL has failed and, then, one sensor fails. 

6 One LCL has failed and, then, one BPL fails. 

7 Both LCLs fail to produce the ESS. 

8 One LCL has failed and, then, the RTB fails. 

9 Common cause failure of BPL-A and BPL-B. 

10 Common cause failure of LCL-A and LCL-B. 

Table 2 

Transition rates [25,39] . 

Symbol Description Value (/year) 

𝜆S RTD failure rate 8.760e-1 [39] 

𝜆B BPL failure rate 8.760e − 3 [39] 

𝜆L LCL failure rate 4.380e − 2 [39] 

𝜆R RTB failure rate 3.767e − 4 [25] 

𝛽 Common cause factor 0.1 

𝜆BS BPL self-fault failure rate (1 − 𝛽) ∗ 𝜆B = 7.884e − 3 
𝜆LS LCL self-fault failure rate (1 − 𝛽) ∗ 𝜆L = 3.942e − 2 
𝜆BC BPLs common cause failure rate 𝛽∗ 𝜆B = 8.760e − 4 
𝜆LC LCLs common cause failure rate 𝛽∗ 𝜆L = 4.380e − 3 
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from the intermediate state (state 3) to any of the absorbing states of
the inter-module category. The transition rates are taken from public
databases [25,39] and reported in Table 2 . 

• No repairs are considered. 

The RPS unreliability P ( t ), and the individual modules unreliabili-
ies P BPL ( t ), P LCL ( t ), P RTB ( t ) and P Inter-modules ( t ) are presented in Fig. 3 . A
isual analysis of the unreliability curves shows that most of the system
nreliability P ( t ) is contributed by the BPL, that is to say, the absorbing
tates of the BPL module most contribute to the system unreliability. 

.2. Uncertainty analysis 

The standard deviation values of the transition rates of Table 2 are
ither provided by public databases or can be estimated by resorting
o Fisher Information [15,26] . The procedure for this is here described
278 
ith reference to the RTD, whose failure rate standard deviation is not
rovided in [39] : 

• Simulation of life tests. 

With the mission time T = 6 years [40] as the end of the right-
ensored life tests, we randomly sample N R = 1000 trials of RTD failure
imes from an exponential distribution with constant transition rate 𝜆S 

 Table 2 ). If the sampled time exceeds the mission time T = 6years, the
est is considered right-censored [49] . 

• Estimation of the standard deviation �̂�𝑆 of 𝜆S . 

The variance of 𝜆S can be estimated based on the observed Fisher
nformation [26] . The Fisher Information Matrix is defined from the
aximum Likelihood function or its LogLikelihood [26] , and can be

stimated by [49] : 

og 𝐿 

(
𝑡, �̂�𝑆 

)
= log 

( ∏
𝑖 

𝑓 𝑇 
(
𝑡 𝑖 ; �̂�𝑆 

)
⋅
∏
𝑗 

𝑅 

(
𝑡 𝑗 ; �̂�𝑆 

)) 

(1)

here i and j are the RTD failure times before T and the times right-
ensored by T , respectively, and 𝑓 𝑇 ( 𝑡 𝑖 ; �̂�𝑆 ) and 𝑅 ( 𝑡 𝑗 ; �̂�𝑆 ) are the RTD
ailure time probability density function (pdf) and the RTD reliability: 

 𝑇 

(
𝑡 𝑖 ; �̂�𝑆 

)
= �̂�𝑆 ⋅ 𝑒 

− ̂𝜆𝑆 𝑡 𝑖 (2)

 

(
𝑡 𝑗 ; �̂�𝑆 

)
= 𝑒 − ̂𝜆𝑆 𝑡 𝑖 (3)

With respect to the observable random failure time t , the Fisher In-
ormation Matrix 𝐽 ( ̂𝜆𝑆 ) can be expressed as: 

 

(
�̂�𝑆 

)
= 𝐸 

⎡ ⎢ ⎢ ⎣ 
( 

𝜕 log 𝐿 

(
𝑡 ; �̂�𝑆 

)
𝜕 ̂𝜆𝑆 

) 2 ⎤ ⎥ ⎥ ⎦ (4)

As a result, the variances of the parameters �̂�𝑆 can be provided from
he main diagonal of its inverse matrix 𝐽 −1 ( ̂𝜆𝑆 ) , namely, the estimated
tandard deviations �̂�𝑆 of the parameters: 

̂𝑆 = 𝐽 −1 
(
�̂�𝑆 

)
(5)

Under the condition of mild regularity, 𝐽 −1 ( ̂𝜆𝑆 ) can be calculated by
q.(6) : 

 

−1 (�̂�𝑆 

)
= 

[ 

− 𝐸 

( 

𝜕 2 log 𝐿 

(
𝑡 ; �̂�𝑆 

)
𝜕 ̂𝜆2 

𝑆 

) ] −1 

(6)

nd the standard deviation can be estimated as: 
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Table 3 

Estimated transition rates. 

Symbol Mean value (/year) Standard deviation (/year) 

𝜆S 8.760e − 1 7.720e − 1 
𝜆B 8.760e − 3 7.867e − 8 
𝜆L 4.380e − 2 1.981e − 6 
𝜆R 3.767e − 4 1.332e − 10 

Fig. 4. The flowchart of the two-loop MC simulation for the RPS-MCM system reliability 

assessment. 
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𝜕 ̂𝜆2 

𝑆 

) ] −1 

(7)

The standard deviations of the transition rates of the BPLs, LCLs,
nd RTB are also estimated by the Fisher Information Methodology
 Table 3 ). 

.3. Uncertainty propagation 

Uncertainty in binary transition rates is propagated through the RPS-
CM as follows ( Fig. 4 ): 

(1) Set initial time t 0 = 0 and mission time T = 6 years, and partition
the time axis into small intervals of length dt = 0.01 years; 
279 
(2) Sample the component failure rates from the Gaussian distribu-
tions 𝑁( 𝜆𝑘 , ̂𝜎𝑘 ) that are shown in Table 3 , where, k = S, B, L, R ; 

(3) For each time instant t before T , compute the system unreliability
from the MCM [19,32] ; 

𝑃 
(
𝑡 |𝜆𝑆 , 𝜆𝐵 , 𝜆𝐿 , 𝜆𝑅 

)
= 1− 

⎛ ⎜ ⎜ ⎜ ⎝ 1+ 

2 ( 1− 𝛽) 𝜆𝐿 

(
𝑒 ( 𝛽𝜆𝐵 + 𝜆𝐿 ) 𝑡 −1 

)
(
𝛽𝜆𝐵 + 𝜆𝐿 

) ⎞ ⎟ ⎟ ⎟ ⎠ 𝑒 
− ( 2 𝜆𝑆 + ( 2− 𝛽) 𝜆𝐵 + ( 2− 𝛽) 𝜆𝐿 + 𝜆𝑅 ) 𝑡 

(8) 

(4) Repeat the steps (2) and (3) for Na = 1000 times; 
(5) Compute the 5th and 95th percentiles for each time instant t . 

Fig. 5 shows the plot of the pointwise double-sided 90% confidence
nterval of the system unreliability. The confidence interval is large all
ver the system life T , because of the large uncertainty that affects the
CM transition rates due to the weak knowledge utilized to build the,

herefore, quite inaccurate RPS-MCM. 

. RPS-MSPM 

.1. The SA approach 

The purpose of this step of the analysis is the identification of the
omponents most important for the system unreliability. This can be a
on-trivial problem, for complex systems whose components reliabil-
ty characteristics (i.e., failure rates) are very uncertain (i.e., with large
tandard deviations). For clarity, we describe the approach with refer-
nce to the case study. 

For the RPS components, a MSPM is built for reliability assessment.
he SA is performed as follows: 

(1) Calculate the moment-independent sensitivity measures between
the unreliability P ( t ) of Fig. 3 and the unreliability P k ( t ) of
its k -th module contributor (i.e., P BPL ( t ), P LCL ( t ), P RTB ( t ) and
P Inter-modules ( t )), to identify the most important module in the sys-
tem; 

(2) Calculate the moment-independent measure for the sensitivity
between the module unreliability P k ( t ) and the unreliability of its
l -th embedded component P l ( t ), to identify the component most
affecting the module unreliability. 

The moment-independent sensitivity measures here adopted are the
ellinger distance and Kullback-Leibler divergence [14,16,20] , which

est on the common rationale that the sensitivity measures can be com-
uted as expected generalized distances between the output distribution
nd the conditional output distribution given the model input(s) of in-
erest [9] . In detail, the Hellinger distance H k [ p ( t ), p k ( t )] measures the
ifference between the pdf p ( t ) of the system unreliability and the pdf
 k ( t ) of the k -th contributor to the system failure, i.e., BPL, LCL, RTB,
nter-modules [14, 20] : 

 𝑘 

[
𝑝 ( 𝑡 ) , 𝑝 𝑘 ( 𝑡 ) 

]
= 

[ 
1 
2 ∫

(√
𝑝 ( 𝑡 ) − 

√
𝑝 𝑘 ( 𝑡 ) 

)2 
𝑑𝑡 

] 1 
2 

= 

[ 
1 − ∫

(√
𝑝 ( 𝑡 ) ⋅ 𝑝 𝑘 ( 𝑡 ) 

)2 
𝑑𝑡 

] 1 
2 

(9) 

The k -th contributor is important if H k is small. 
The Kullback-Leibler divergence KL k [ p ( t ), p k ( t )] measures the differ-

nt information carried by the pdf p ( t ) of the system failure and the pdf
 k ( t ) of the k -th contributor according to Eq. (10) [14, 20] : 

 𝐿 𝑘 ( 𝑝 ( 𝑡 ) , 𝑝 𝑘 ( 𝑡 ) ) = ∫
+∞

−∞
𝑝 ( 𝑡 ) log 

( 

𝑝 ( 𝑡 ) 
𝑝 𝑘 ( 𝑡 ) 

) 

𝑑𝑡 (10)

ith the values in [ 0 , +∞] . In practical cases, the symmetric form of
ullback-Leibler divergence can be utilized as follows [27] : 
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Fig. 5. Confidence intervals from the RPS-MCM system unreliability. 

Table 4 

Ranking of contributors to the RPS unreliability. 

Input H k KL sym,k 

Intra-BPL 0.0013 6.4539e − 6 
Intra-LCL 0.6398 2.4181 

Intra-RTB 0.6872 3.7300 

Inter-Module 0.6000 1.8809 

Table 5 

Ranking of the contributors to the BPL unreliability. 

Input H l KL sym,l 

Sensors 0.2391 0.2460 

BPLs 0.6219 2.1599 

𝐾
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 𝐿 𝑠𝑦𝑚,𝑘 

[
𝑝 ( 𝑡 ) , 𝑝 𝑘 ( 𝑡 ) 

]
= 𝐾 𝐿 𝑠𝑦𝑚,𝑘 

[
𝑝 𝑘 ( 𝑡 ) , 𝑝 ( 𝑡 ) 

]
= 

1 
2 
𝐾 𝐿 𝑘 

[
𝑝 ( 𝑡 ) , 𝑝 𝑘 ( 𝑡 ) 

]
+ 

1 
2 
𝐾 𝐿 𝑘 

[
𝑝 𝑘 ( 𝑡 ) , 𝑝 ( 𝑡 ) 

]
(11)

The k -th contributor is important if KL sym,k is small, in relative terms.

.1.1. The SA results 
Table 4 lists the Hellinger distance and Kullback-Leibler divergence

alues for each module contributor to the system unreliability, respec-
ively: both measures identify the BPL as the most important contribu-
or. 

Since the BPL module plays the most significant role in affecting the
eliability of the RPS, we now focus on identifying the BPL component
ost contributing to its failure. Fig. 6 shows the unreliability of the BPL
odule and of the components therein (i.e., P S ( t ) for the sensor and P B ( t )

or the BPL-component). The unreliability curves show that most of the
PL module unreliability P BPL ( t ) is contributed by the sensors, that is
o say, the absorbing states of the sensors most contribute to the BPL
odule unreliability. 

To rank the importance of the l-th component embedded in the BPL
odule, the two SA measures of Eqs. (9) and (11) are quantified. The

ensors turn out to be the most important components contributing to
he BPL module unreliability (see Table 5 ). 

.2. The RPS-MSPM 

The results of the SA performed in Section 3.1 point at the RTD as
he component deserving more modeling efforts for accurate RPS unre-
iability estimation. A component MSPM is here developed to describe
280 
he RTD degradation-to-failure process, inserting physics knowledge in
he model. 

In general, a MSPM describes the dynamics of component degrada-
ion in terms of transitions among a finite number M of degradation
tates, depending on a parameter vector 𝛿. Similarly to MCM, a state
robability P is assigned to each degradation state, forming a state prob-
bility vector 𝑃 ( 𝑡, 𝛿) = { 𝑃 0 ( 𝑡, 𝛿) , 𝑃 1 ( 𝑡, 𝛿) , ⋅ ⋅ ⋅, 𝑃 𝑗 ( 𝑡, 𝛿) , ⋅ ⋅ ⋅, 𝑃 𝑀 

( 𝑡, 𝛿) } for all M
tates [17, 29] . 

The RTD-MSPM can be integrated into the RPS-MSPM of the RPS, to
stimate the system failure probability accounting for both aging- and
nvironmental-dependent transition rates of the RTD. 

.2.1. The RTD-MSPM 

As discussed in [40] , among the RTDs failure modes (e.g., bias, drift,
erformance degradation, freezing and calibration error), experimental
vidence suggests that the main failure mode is drift [4] . Drift is mea-
ured by the response time 𝜏 that the RTD needs to reach 63.2% of a
udden temperature change of the RTD. Aging t and air gap size 𝛿 be-
ween the bottom of the thermowell and the sensing tip (that changes
ecause of contamination and mechanical shocks) are the most likely
ontributors to the drift [23,37] . The response time 𝜏( t, 𝛿) is assumed not
o exceed the RTD failure threshold 𝛾Y during normal operation and in
elation to this, the RTD failure boundary is defined as 𝜕𝐹 = 𝐺( 𝑡, 𝛿) = 0 ,
here, 

 ( 𝑡, 𝛿) = 𝜏( 𝑡, 𝛿) − 𝛾𝑌 (12)

The RTD-MSPM shown in Fig. 7 depicts, in a two-state diagram, the
artition by 𝜕F of the safe domain S from the failure domain F of the
TD. The RTD-MSPM assumptions are described as follows: 

• 𝑆 

𝑅𝑇𝐷 
0 is the RTD functioning state and 𝑆 

𝑅𝑇𝐷 
1 is the RTD drift failure

state; 
• Transitions can occur between the two states with failure rate 𝜆S ( t | 𝛿)

and repair rate 𝜇S ( t | 𝛿), functions of the time t and the affecting factor
𝛿; 

• At the initial time t = 0, the RTD is in its initial functioning state
𝑆 

𝑅𝑇𝐷 
0 . 

.2.2. Uncertainty analysis of the aging- and environmental-dependent 
ransition rates 

To estimate the aging- and environmental-dependent transition rate

S ( t | 𝛿), we build the empirical relationship between 𝜏, t and 𝛿 based on
xperimental data [23,45] . In literature, 𝜏( t, 𝛿) is usually treated sepa-
ately, i.e., 𝜏( t ,0) and 𝜏(0, 𝛿). [23] and [45] provide a set of mean re-
ponse times with standard deviations with respect to the aging time
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Fig. 6. Unreliability of the BPL module and of its components. 

Fig. 7. RTD-MSPM model. 

Table 6 

Experimental data for 𝜏 at fixed t and 𝛿 = 0 [45] . 

Aging Time t [year] 0 2 4 5 6 

Mean Response Time 𝜏 [s] 2.1 4.4 4.8 5.0 5.2 

Standard Deviation 𝜎( t ,0) 1.67 0.77 0.72 0.77 0.67 
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see Table 6 and Fig. 8 , 𝛿 = 0) and a set of mean response times with
espect to the air gap size without aging (listed in Table 7 , t = 0). Fig. 9
hows the trend of 𝜏 with deviations at discrete 𝛿, when the RTD is new
nd data in Table 7 are used as interpolation data. 

An analytical function of 𝜏( t, 𝛿) can be obtained relying on [40] : 

̄( 𝑡, 𝛿) = 𝛼𝑡 ⋅ 𝜏( 𝑡 − 1 , 𝛿) (13) 

2 ( 𝑡, 𝛿) = 𝜎2 ( 𝑡 − 1 , 𝛿) + 𝛼𝑡 
2 (14)

here 𝜏( 𝑡, 𝛿) is the mean value of the response time of Table 7 and Fig. 9 ,
( t, 𝛿) is its standard deviation, and the factor 𝛼t accounts for the changes
f response time 𝜏 with the increase of t , by scaling the 𝜏( 𝑡, 0 ) using the
cale factor 𝛼t : 

𝑡 = 

𝜏( 𝑡, 0 ) 
𝜏( 𝑡 − 1 , 0 ) 

(15) 

here, 𝛼1 = 𝜏( 1 , 0 ) ∕ ̄𝜏( 0 , 0 ) . 
The function 𝜏( t, 𝛿) consists in a surface fitted to realizations of 𝜏( t, 𝛿)

ampled from the assumed Gaussian distributions with mean values
̄( 𝑡, 𝛿) and standard deviations 𝜎( t, 𝛿) at each discrete point, as shown
n Fig. 10 where one trial surface is plotted. 

The transition rate 𝜆S ( t | 𝛿) and the cumulative distribution function
cdf) P S ( t | 𝛿) can, thus, be estimated as the probability of 𝜏( t, 𝛿) to exceed

Y = 8s at a given time t , based on a batch of MC simulations that are
un as described in detail in [40] . For the sake of clarity, the estimated

S ( t | 𝛿) for the surface of Fig. 10 , obtained by simulating Nb = 1000 dif-
erent degradation processes, is plotted in Fig. 11 . 
281 
It is worth mentioning that each trial surface results in a different
xpression of 𝜏( t, 𝛿), RTD failure boundary 𝜕F , transition rate 𝜆S ( t | 𝛿)
nd the cdf, due to the randomly sampled discrete response times upon
hich the surface is built on. 

Therefore, the accuracy of the RTD-MSPM, to a large extent, depends
n the uncertainties of the RTD physical parameters that are used to
uild the surfaces. Indeed, the variance of the sampled 𝜏( t, 𝛿) greatly
ffects the output of the MSPM model, the RTD degradation process
nd the probability of failure boundary 𝜕F exceedance for each time. 

.2.3. Three-loop MC simulation for uncertainty propagation through the 
PS-MSPM 

The RPS-MSPM model of Fig. 12 embeds the RTD-MSPM model
f Fig. 7 , while components other than the RTD are assumed to obey
inary-state behaviors as in the reference MCM of Fig. 2 . 

We propose the three-loop MC simulation for the RPS reliability as-
essment, with confidence quantification related to the uncertainty in
he RTD physical parameters propagated through the surfaces 𝜏( t, 𝛿) of
ection 3.2.2 , and in the transition rates for the binary components that
re accounted for by the Fisher Information Matrix of Section 2.2 . The
utmost loop within the following procedure (sketched also in Fig. 13 )
onsists in randomly sampling the values of the physical RPS model
arameters from their distributions and sampling the RTD failure time
step ( 4 )): 

(1) Set initial time t 0 = 0, mission time T = 6 years and time step
dt = 0.01 years; 

(2) Randomly sample the transition rates of the binary-states compo-
nents (i.e., BPLs, LCLs, and RTB) from the Gaussian distributions
𝑁( 𝜆𝑘 , ̂𝜎𝑘 ) of Table 3 , where, k = B, L, R; 

(3) Sample the failure times of the binary-states components, from
the exponential distributions with the sampled transition rates; 

(4) Randomly sample the multi-state RTD failure time by: 
(4a) Fit the randomly sampled realizations of the RTD response

time 𝜏 at each discrete point to a trial surface 𝜏( t, 𝛿); 
(4b) Simulate the RTD degradation process evolution from t = t 0 

to t = T ; 
(4c) At each time t , sample the air gap size increment d 𝛿t from a

normal distribution N (0,0.025 t ), resulting in 𝛿=𝛿0 + d 𝛿t . 
(4d) Calculate the response time 𝜏 on the fitted trial surface 𝜏( t, 𝛿).
(4e) Record the time t at which 𝜏 exceeds the threshold 𝛾Y = 8 s,

with air gap size 𝛿. 
(5) Integrate the RTD-MSPM into the RPS-MSPM; 
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Fig. 8. 𝜏( t ,0) with standard deviations. 

Table 7 

Fitted 𝜏 at t = 0 and discrete 𝛿 based on experimental data from [23,45] . 

Air gap size 𝛿 [mm] 0 0.4 0.8 1.2 1.6 2.0 2.4 

Mean response time t [s] 2.10 3.80 4.97 5.93 7.02 8.58 10.95 

Standard deviation 𝜎(0, 𝛿) 1.18 1.19 1.64 2.47 3.61 4.98 6.51 

Fig. 9. 𝜏(0, 𝛿) with standard deviations. 
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(5a) Sort all the components sampled failure times; 
(5b) Check whether the minimum of the sorted times exceeds T : 

• If yes, increase the unreliability counter at time T ; 
• If not, check whether at that time the RPS-MSPM reaches

any absorbing state and, if yes, increase the unreliability
counter, or the reliability counter, otherwise. 

(6) Run Nb = 1000 times steps (1) to (5) to build the empirical
P ( t| 𝛿; 𝜆B ; 𝜆L ; 𝜆R ), based on the statistics of the system unreliabil-
ity estimates collected at each time t ; 

(7) Estimate the 5th and 95th percentiles of the unreliability by re-
peating steps (1) to (6) for Nc = 1000 times and collecting the
related statistics; 

(8) Obtain the pointwise double-sided 90% confidence intervals of

the system unreliability calculated by the RPS-MSPM. c  

d  

282 
Fig. 14 shows the estimated P( t, 𝛿) with the 90% confidence interval
or the RPS-MSPM of Fig. 12 , obtained by the three-loop MC simulation.
he confidence interval is large especially in [0.5, 1.5] years, probably
ecause the fitted trial surfaces at the basis of the uncertainty propaga-
ion considerably vary from each other due to the large variances of the
ata of Tables 6 and 7 utilized to build them. Despite that, as we shall
ee in what follows, the robustness of the assessment is much improved
ith respect to the RPS-MCM results. 

. Comparison 

Fig. 15 shows the results of the RPS reliability assessment by the RPS-
CM of Section 2 and the RPS-MSPM of Section 3 . In general terms, it

an be concluded that the RPS-MSPM results provide a narrower confi-
ence interval than the RPS-MCM, thanks to the integration of physics
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Fig. 10. Fitted surface of 𝜏( t, 𝛿). 

Fig. 11. Conditional failure rate 𝜆S ( t | 𝛿) of RTD new-to-drift failure mode. 

Fig. 12. RPS-MSPM integrating the RTD-MSPM. 
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nowledge related to operational and environmental parameters. The
onfidence interval provided by the MSPM is larger than that of the
CM at the early stage of the RPS life ( t < 1 year): the main reason is

hat the fitting surfaces may considerably vary from trial to trial due to
he large variance of the response times at the considered discrete points,
hich greatly affect the onset time of the RTD drift failure mode. 

For a quantification analysis, two indexes (i.e., the relative uncer-
ainty interval width 𝜁 and the relative age interval width 𝜁 ) are pro-
t P 

283 
osed in what follows to compare the accuracy of the MCM with that of
he MSPM. 

.1. The relative unreliability interval width 

At each time t , the ratio 𝜁 t between the mean value of the system un-
eliability and the width of the unreliability interval (i.e., the difference
etween the upper and lower bounds) is calculated. 

The larger 𝜁 t , the narrower is the confidence interval, and the more
ccurate the system reliability modeling approach. Fig. 16 shows that

t ( t | 𝛿) of the MSPM is much larger than 𝜁 t ( t ) of the MCM: as t increases,
he estimated system unreliability obviously increases but, since MSPM
ncludes more (physics) knowledge on the system behavior than MCM,
he confidence interval reduces more than that of the MCM. The zoom
f Fig. 16 shows the evolution of 𝜁 t from t = 0 to t = 2 years: to further in-
estigate the dispersion of the unreliability estimates within the bounds,
e calculate, at each time, their empirical pdf and the respective cdf. 

Ideally, we would prefer a reliability assessment method that pro-
ides distributions peaked on the mean value (rather than uniform dis-
ributions), because this would facilitate the decision maker that would,
hen, be more prone to accept the mean reliability value. Fig. 17 shows
n example of possible empirical distributions (at time t = 1 year, with-
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Fig. 13. Flowchart of the three-loop MC simulation. 

284 
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Fig. 14. Estimated RPS-MSPM unreliability with 90% confidence interval. 

Fig. 15. System unreliability with confidence intervals, provided by MCM and MSPM. 

Fig. 16. Relative unreliability interval width. 
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Fig. 17. Example of empirical distributions of the unreliability value at t = 1 year. 

Fig. 18. pdf of the MCM estimates vs. pdf of the MSPM estimates at t = 1 year. 
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f  
ut any loss of generality). The decision maker would rely on the MSPM
ather than the MCM (light and dark shadowed areas, respectively), be-
ause in the latter case most of the unreliability estimates confirm the
SPM to be more accurate than the MCM. 

Based on the real estimates collected with the Na MC simulations for
he RPS-MCM reliability assessment of Section 2 and the Nc three-loop
C simulation for the RPS-MSPM of Section 3 , Figs. 18 and 19 show the

df and cdf curves of the system unreliability at t = 1 year. The pdf of the
CM, as well as its cdf, skews towards large unreliability values, com-

ared to the pdf of the MSPM, demonstrating again the more probable
verestimation of the system unreliability, if the decision maker were
o resort to RPS-MCM. 

.2. The relative age interval width 

With respect to each system reliability value P , the ratio 𝜁P between
he mean value of the system failure time and the width of the age in-
erval (i.e., the difference between the upper and lower bounds), is cal-
ulated. 
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The larger 𝜁P , the narrower the confidence interval, and the more
ccurate the system reliability estimate. Fig. 20 shows 𝜁P ( P | 𝛿) of the
SPM and 𝜁P ( P ) of the MCM. The latter is always larger than the for-
er, whatever the value of P , that means that MSPM better models the
TD degradation and, therefore, provides more accurate failure time
redictions than the MCM. For clarity sake, 𝜁P ( P ) of the MCM is trun-
ated at P = 0.8 because the maximum unreliability of the lower bound
f the MCM is 0.8 within the mission time. 

To further investigate the dispersion of the age interval estimates, we
alculate, at each unreliability value P , the empirical pdf and respective
df. Ideally, we would prefer a reliability assessment method that pro-
ides distributions peaked on the mean value of the failure time. Fig. 21
hows an example of possible empirical distributions (at P = 0.1, with-
ut any loss of generality). The decision-maker would rely on the MSPM
ather than the MCM (light and dark shadowed areas, respectively) be-
ause in the latter case most of the failure time estimates confirm the
SPM to be more accurate than the MCM. 

Resorting to the real estimates collected with the Na MC simulation
or the RPS-MCM reliability assessment of Section 2 and the Nc three-
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Fig. 19. cdf of the MCM estimates vs. cdf of the MSPM estimates at t = 1 year . 

Fig. 20. Relative age interval width. 

Fig. 21. Example of empirical distributions of the failure times at P = 0.1. 
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Fig. 22. pdf of the MCM estimates vs. pdf of the MSPM estimates at P = 0.1. 

Fig. 23. cdf of the MCM estimates vs. cdf of the MSPM estimates at P = 0.1 . 
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oop MC simulation for the RPS-MSPM of Section 3 , Figs. 22 and 23 are
uilt with the pdf and cdf curves of the system failure times at P = 0.1,
espectively. The pdf of the MCM, as well as its cdf, skew towards the
arlier values, compared with the pdf of the MSPM, revealing the more
ossible early-estimation of the failure times, if the decision maker re-
orts to a MCM. 

. Conclusions 

In this paper, a three-loop MC simulation is proposed to properly
uantify the effect of uncertain aging- and environmental-dependent
ransition rates of a MSPM for system reliability assessment. The de-
anding knowledge and information requirements to build a system
SPM calls for the identification of the components most affecting the

ystem reliability in order to limit the modeling efforts. The obtained
omponent-level MSPM is, then, embedded into a system-level accurate
odel that can guarantee less uncertainty on the system unreliability

stimation, compared to a binary-state modeling approach such as the
CM. 

The application of the three-loop MC approach to a RPS system
hows the twofold potential benefits of integrating the RTD physics
nowledge into the system reliability modeling: on one hand, the nar-
ower confidence interval of the system unreliability of the RPS-MSPM
288 
ith respect to the RPS-MCM would more likely induce the decision-
aker to rely on the reliability assessment measures provided by the
SPM, whereas, on the other hand, the approach allows balancing mod-

ling efforts and computational demand with accuracy of the results. 
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