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a b s t r a c t 

Conventional data-driven models for component degradation assessment try to minimize the average estimation 
accuracy on the entire available dataset. However, an imbalance may exist among different degradation states, 
because of the specific data size and/or the interest of the practitioners on the different degradation states. 
Specifically, reliable equipment may experience long periods in low-level degradation states and small times in 
high-level ones. Then, the conventional trained models may result in overfitting the low-level degradation states, 
as their data sizes overwhelm the high-level degradation states. In practice, it is usually more interesting to have 
accurate results on the high-level degradation states, as they are closer to the equipment failure. Thus, during the 
training of a data-driven model, larger error costs should be assigned to data points with high-level degradation 
states when the training objective minimizes the total costs on the training dataset. In this paper, an efficient 
method is proposed for calculating the costs for continuous degradation data. Considering the different influence 
of the features on the output, a weighted-feature strategy is integrated for the development of the data-driven 
model. Real data of leakage of a reactor coolant pump is used to illustrate the application and effectiveness of 
the proposed approach. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

Condition-Based Maintenance (CBM) has gained much attention re-
ently [23,32,8] . Advanced sensors implemented in production systems
easure physical variables related to the equipment degradation and
roper maintenance is recommended based on the assessed degradation
f the equipment. Compared to corrective and scheduled maintenance,
BM can reduce the direct and indirect costs of maintenance and pre-
ent catastrophic failure [1] . 

One of the cornerstones of CBM is the precise assessment of the cur-
ent degradation state of the equipment of interest. If it is monitored
irectly by sensors, it is relatively easy to identify the system degrada-
ion state. Otherwise, the degradation state of the equipment of interest
eeds to be informed from the related monitored variables. For the latter
ase, physical [13,25] , knowledge-based [12,26] or data-driven models
16,33] can be integrated depending on the available knowledge, in-
ormation and data on the degradation [36,46] . Data-driven models, in
articular, benefit from high computation speed and advanced sensors.
hese models can be classified also based on the type of the underlying
∗ Corresponding author at: Chair on System Science and the Energetic Challenge, EDF Found
es Vignes, 92290 Chatenay-Malabry, France. 
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egradation process, i.e. proportional hazard models [30] , discrete-state
egradation [24] , continuous-state degradation [1] . 

In this work, we focus on the data-driven models with supervised
earning methods for continuous degradation assessment. Assuming that
 pool of degradation patterns of similar equipment are available, a data-
riven model is trained off-line with the recorded degradation data and,
hen, it is used to assess on-line the degradation state of an equipment
nder operation. Shen et al. [34] adopt a fuzzy support vector data de-
cription to construct a fuzzy-monitoring coefficient, which serves as
 monotonic damage index of bearing degradation. Logistic regression
odels and incremental rough support vector data description are used

eparately in Caesarendra et al. [6] and Zhu et al. [45] for bearing degra-
ation assessment. Principal component analysis is used in Gómez et
l. [10] to obtain soil degradation indexes for distinguishing between
live farms with low soil degradation and those in a serious state of
egradation. Peng et al. [28] use an inverse Gaussian process model
or degradation modelling. Nonhomogeneous continuous-time hidden
emi-Markov process is proposed in Moghaddass and Zuo [24] for mod-
lling the degradation of devices undergoing discrete, multistate degra-
ation. Vale and Lurdes [37] employ a stochastic model for character-
ation, Laboratoire Genie Industriel, CentraleSupélec, Université Paris-Saclay, Grande voie 
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zing the track geometry degradation process in the Portuguese railway
orthern Line. 

For the development of the previous data-driven models, it is as-
umed that the pool of available degradation data is large and represen-
ative of the different degradation states of the equipment. However,
n practical cases, especially for highly reliable equipment, a problem of
mbalance often exists between different degradation states with respect
o the knowledge, information and data available to characterize them.
or highly reliable equipment, typically there is a long period without
egradation or with low-level degradation states, and the data represen-
ative of high-level degradation states are relatively limited. Training a
ata-driven model on the entire set of recorded data with the objective
f minimizing the average estimation error on the whole degradation
rocess may lead to a relatively worse performance of the trained model
or the data of high level degradation states, as the data on the low-level
egradation states outnumber those on the high-level degradation states
nd the trained model overfits on the low-level degradation states. On
he other hand, if the data on the high-level degradation states is not
ufficiently large and representative, training a data-driven model only
ith the data of high-level degradation states may lead to overfitting

he recorded data and low generalizability on test data. Furthermore,
ven if the data on different degradation states are comparable and rep-
esentative, the industrial practitioner may be more interested in some
egradation states, e.g. the high-level degradation states, the peak val-
es during the degradation process, as they are more critical for the
unctioning of the equipment and, thus, require more accuracy. So, the
ata-driven model should be trained on the whole dataset, but the ob-
ective can not be that of minimizing the average estimation error on
he whole dataset. In this work, an approach is proposed based on cost-
ensitive regression models in combination of a weighted-feature strat-
gy for the imbalance problem in continuous degradation assessment.
o the authors ’ knowledge, no work has been reported on this problem
or continuous degradation assessment. 

Cost-sensitive models are very popular for solving classification
roblems with different costs for different misclassification errors [9] .
hey have been successfully applied in medical diagnosis [39] , object
etection [5] , intrusion detection [15] , face recognition [42] , software
efect prediction [17] etc. The objective of training a cost-sensitive
odel is to minimize the total cost on the misclassification error in
 way to assign a larger cost to the error on the minority class than
hat on the majority class. Cost-sensitive models have been integrated
n neural networks [14] , decision trees [41] , support vector machines
38] , Bayesian networks [11] , etc. Different methods can be used to as-
ign the costs for different misclassification errors and the most popular
ne is to set the costs based on expertise on the problem [40] . Differ-
nt cost-assignment methods can be proposed considering the specific
equirements and characteristics of the application. In the mentioned
revious works, discrete costs are assigned to different classes, assum-
ng that the cost of the misclassification errors on the data of the same
lass is the same. This is reasonable for classification problems with fi-
ite classes. On the contrary, for regression of continuous degradation,
t is infeasible to assign discrete costs for infinite degradation states.
ne way is to discretize the continuous degradation states, but this may
ause loss of information on the degradation states. This work tries to
ropose a method for assigning continuous costs to degradation states.
he proposed method assigns larger costs to the regression errors on
he high-level degradation states than those to the low-level degrada-
ion states and also larger costs to peak values than to normal values in
heir neighborhoods. 

The basic data-driven model used in this paper for integrating the
ost-sensitive strategy is Feature Vector Regression (FVR), a kernel
ethod proposed in Liu and Zio [20] . Training a FVR model requires fea-

ure vector selection and regression model construction. Feature vector
election proceeds by selecting part of the training data points as fea-
ure vectors in the Reproducing Kernel Hilbert Space (RKHS), where the
apping of all training data points can be expressed as a linear combi-
211 
ation of the selected feature vectors. Different to the traditional kernel
ethods that define the estimation function as a kernel expansion on all

he training dataset, the estimate function of FVR is a kernel expansion
nly on the feature vectors. The objective is to minimize the regres-
ion error on the whole training dataset. The parameters in FVR can be
alculated analytically, without using a sophisticated method for tuning
arameters in the model. FVR model is combined with cost-sensitive and
eighted-feature strategies in this work. These strategies are not suit-
ble only for FVR, but also for other regression models for degradation
ssessment. 

Another original contribution of this work is the adopted weighted-
eature strategy. Conventionally, after the raw data are pre-processed,
ome features are selected as inputs and they form directly the input
ectors which are used for training a supervised data-driven model.
owever, the selected features may still have different levels of influ-
nce on the output. In order to characterize this difference in kernel
ethods, larger weights are assigned to the features with a higher in-
uence on the output in the kernel function. Weighted-feature strategy
as been used in Amutha and Kavitha [3] , Peng et al. [29] , Phan et
l. [31] , Liu et al. [18] . The weighted-feature strategy is integrated for
he first time with the basic model (FVR) in this work and it is also
he first time that the weighted-feature strategy is used for degrada-
ion assessment. An efficient optimization process is adopted in this
ork for finding the weights for different features and the parameters in
VR. 

To demonstrate the proposed approach, we make use of a case study
oncerning the estimation of leakage of coolant water from the seal of a
eactor Coolant Pump (RCP) in a Nuclear Power Plant (NPP). The con-

rol of the leakage is very important for safety reasons [21] . Sensors are
nstalled to monitor the temperature, pressure, flow of coolant water.
hese variables are informative for assessing the leakage amount. When
he amount of leakage is low, the reactor can make up the leakage by us-
ng auxiliary and protection systems. But when it is large, the NPP must
e shut down. Thus, operators are more concerned of correctly identi-
ying the leakages of large magnitude than small. Correspondingly, the
ccuracy is more important in case of large amount of leakage than of
mall amount. However, as the NPP components are highly reliable,
ost of the historical recorded data relates to low amounts of leakage,

he data on large amounts of leakage being far less. In this work, the pro-
osed weighted-feature and cost-sensitive FVR is adopted for estimating
ontinuously the leakage from the RCP. 

The remainder of the paper is structured as follows. Section 2 recalls
riefly the FVR method and introduces the approach proposed for as-
essing continuous degradation with imbalance. The case study on the
eakage from RCP is presented in Section 3 with experimental results.
ome conclusions and perspectives are drawn in Section 4 . 

. Weighted-feature and cost-sensitive FVR for degradation 

ssessment 

FVR proposed in Liu and Zio [20] is a kernel method, which allows
asy tuning of hyperparameters and offers a geometrical interpretation.
VR reduces the size of the estimate function by selecting a number of
eature vectors and keeps its generalization power by minimizing the
rror on the whole training dataset. In this Section, FVR is briefly re-
iewed firstly and, then, the weighted-feature and cost-sensitive FVR is
ntroduced, with details on the calculation of the costs and the tuning
f the weight of each feature. 

In the paper, ( 𝒙 , 𝑦 ) represents the input and corresponding output of
 nonlinear relation. 𝑘 ( 𝒙 1 , 𝒙 2 ) is the kernel function, taken as the inner
roduct of 𝜑 ( 𝒙 1 ) and 𝜑 ( 𝒙 2 ) , i.e. ⟨𝜑 ( 𝒙 1 ) , 𝜑 ( 𝒙 2 ) ⟩, and 𝜑 ( 𝒙 ) is the function
hat maps the original data into a high dimensional space (i.e. Repro-
ucing Kernel Hilbert Space (RKHS)), where the relation between in-
ut and output becomes linear. The training dataset is 𝐓 = { ( 𝒙 𝑖 , 𝑦 𝑖 ) } ,
or 𝑖 = 1 , 2 , … , 𝑁 . Without restricting the generalizability of the model,
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Fig. 1. Pseudo-code of the feature vector selection process. 
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f 𝑦 . 

.1. Feature vector regression 

Schölkopf et al. [35] propose nonparametric and semi-parametric
epresenter theorems demonstrating that kernel algorithms with the
inimal sum of an empirical risk term and a regularization term in
KHS as optimization objective achieve their optimal solutions for an
stimate function that is a kernel expansion on the training data points.
pecifically, in mathematical terms, such estimate function 𝑓 ( 𝒙 ) can be
xpressed as 

 ( 𝒙 ) = 

𝑁 ∑
𝑖 =1 

𝛼𝑖 𝑘 ( 𝒙 𝑖 , 𝒙 ) + 𝑏 = 

𝑁 ∑
𝑖 =1 

𝛼𝑖 ⟨𝜑 ( 𝒙 𝑖 ) , 𝜑 ( 𝒙 ) ⟩ + 𝑏, (1)

here 𝛼𝑖 , 𝑖 = 1 , 2 , … , 𝑁 are the Lagrange multipliers and 𝑏 is a con-
tant. 

If there exists such a subset 𝑺 = {( 𝒙 𝑠 
𝑖 
, 𝑦 𝑠 

𝑖 
)} , 𝑖 = 1 , 2 , … , 𝑀 , with

 < 𝑁 , such that the mapping of each training data point can be
xpressed as a linear combination of the mapping of 𝑺 RKHS,
.e. 𝝋 ( 𝒙 ) = 

∑𝑀 

𝑖 =1 𝛽𝑖 ( 𝒙 ) 𝝋 ( 𝒙 𝑠 
𝑖 
) , after replacing 𝜑 ( 𝒙 ) in Eq. (1) with

𝑀 

𝑖 =1 𝛽𝑖 ( 𝒙 ) 𝝋 ( 𝒙 𝑠 
𝑖 
) , the estimate function 𝑓 ( 𝒙 ) can be rewritten as 

 ( 𝒙 ) = 

𝑁 ∑
𝑖 =1 

𝑀 ∑
𝑗=1 

𝛼𝑖 𝛽𝑗 ( 𝒙 ) ⟨𝝋 ( 𝒙 𝑖 ) , 𝝋 ( 𝒙 𝑠 
𝑗 
) ⟩ + 𝑏 = 

𝑀 ∑
𝑗=1 

𝛽𝑗 ( 𝒙 ) ( 

𝑁 ∑
𝑖 =1 

𝛼𝑖 ⟨𝝋 ( 𝒙 𝑖 ) , 𝝋 ( 𝒙 𝑠 
𝑗 
) ⟩) 

+ 𝑏 ; 

hus, 

 ( 𝒙 ) = 

𝑀 ∑
𝑖 =1 

𝛽𝑖 ( 𝒙 )( ̂𝑦 𝑠 𝑖 − 𝑏 ) + 𝑏, (2)

ith 𝑦̂ 𝑠 
𝑖 
= 𝑓 

(
𝒙 𝑠 
𝑖 

)
= 

𝑁 ∑
𝑖 =1 

𝛼𝑖 𝑘 ( 𝒙 𝑖 , 𝒙 𝑠 𝑖 ) + 𝑏. 

With Eq. (2) , FVR formulates the optimization problem as 

Minimize 𝑦̂ 𝑠 
𝑗 
,𝑏 𝑊 = 

1 
𝑁 

𝑁 ∑
𝑖 =1 

(
𝑓 
(
𝒙 𝒊 
)
− 𝑦 𝑖 

)2 
Subject to 𝑓 

(
𝒙 𝒊 
)
= 

𝑀 ∑
𝑗=1 

𝛽𝑗 ( 𝒙 𝒊 )( ̂𝑦 𝑠 𝑗 − 𝑏 ) + 𝑏 

, (3)

here the unknown parameters (decision variables) to optimize are 𝑦̂ 𝑠 
𝑗 
,

 = 1 , 2 , … , 𝑀 and 𝑏 , and the objective of the optimization problem is
he minimal estimation error on the whole training dataset. 
212 
By setting the partial derivatives of 𝑊 with respect to 𝑦̂ 𝑠 
𝑗 

and 𝑏 to
ero, the previous parameters can be calculated by solving the following
ystem of equations: 

 

𝛀 𝐇 

𝚪𝑇 𝑐 

] [ 

𝒚̂ 𝒔 

𝑏 

] 

= 

[ 

𝐏 

𝑙 

] 

, (4) 

here 𝛀 is a 𝑀 ×𝑀 matrix with 𝛀𝑚𝑛 = 

∑𝑁 

𝑖 =1 𝛽𝑚 ( 𝒙 𝒊 ) ∗ 𝛽𝑛 ( 𝒙 𝒊 ) , 𝐇 is a

 × 1 vector with 𝐇 𝑚 = 

∑𝑁 

𝑖 =1 𝛽𝑚 ( 𝒙 𝒊 ) ∗ (1 − 

∑𝑀 

𝑗=1 𝛽𝑗 ( 𝒙 𝒊 )) , 𝚪 is a 𝑀 × 1
ector with 𝚪𝑚 = 

∑𝑁 

𝑖 =1 𝛽𝑚 ( 𝒙 𝑖 ) ∗ (1 − 

∑𝑀 

𝑙=1 𝛽𝑙 ( 𝒙 𝑖 )) , 𝑐 is a constant and 𝑐 =
𝑁 

𝑖 =1 (1 − 

∑𝑀 

𝑗=1 𝛽𝑗 ( 𝒙 𝑖 )) 
2 
; 𝒚̂ 𝒔 = ( ̂𝑦 𝑠 

𝑗 
) , 𝑗 = 1 , 2 , … , 𝑀 and 𝑏 are the un-

nowns in Eq. (3) , 𝐏 is a 𝑀 × 1 vector with 𝐏 𝑚 = 

∑𝑁 

𝑖 =1 𝛽𝑚 ( 𝒙 𝒊 ) ∗ 𝑦 𝑖 , 𝑙 =
𝑁 

𝑖 =1 (1 − 

∑𝑀 

𝑗=1 𝛽𝑗 ( 𝒙 𝑖 )) ∗ 𝑦 𝑖 . 
Feature Vector Selection (FVS) method proposed in Baudat and

nouar [4] can find the previous subset 𝑺 . The main idea is to find
n oblique coordinate system in the RKHS of 𝑘 ( 𝒙 1 , 𝒙 2 ) and, then, each
ector in RKHS can be expressed as a linear combination of the coor-
inate vectors. The FVS method can build such an oblique coordinate
ystem with the mapping of a number of the training data points. Exper-
mental results show that the number of the selected data points may be
ar less than that of the training dataset, i.e. 𝑀 ≪ 𝑁 . A modified version
f the FVS method is proposed in Liu and Zio [20] to speed the selec-
ion process. The local fitness of one data point 𝒙 with respect to the
urrent 𝑺 is calculated as 𝐿𝐹 ( 𝒙 ) = |1 − 𝐾 

𝑡 
𝑺 ,𝑥 

𝐾 

−1 
𝑺 , 𝑺 

𝐾 𝑺 ,𝑥 ∕( 𝑘 ( 𝒙 , 𝒙 )) |. Details
n the method can be found in Baudat and Anouar [4] and Liu and Zio
20] . For completeness, the pseudo-code of the feature vector selection
rocess proposed in Liu and Zio [20] is shown in Fig. 1 . 

The parameters 𝜷( 𝒙 ) = { 𝛽𝑖 ( 𝒙 )} , 𝑖 = 1 , 2 , … , 𝑀 in Eqs. (2)–(4) can be
alculated with the selected feature vectors in 𝑺 as in Eq. (5) : 

( 𝒙 ) = 𝐾 

𝑡 
𝑺 ,𝑥 

𝐾 

−1 
𝑺 , 𝑺 

, (5) 

here 𝐾 𝒔 , 𝒔 is the kernel matrix of 𝑺 and 𝐾 𝑺 ,𝑥 = { 𝑘 ( 𝒙 𝑖 , 𝒙 )} ,
 = 1 , 2 , … , 𝑀 . 

.2. Weighted-feature and cost-sensitive FVR 

For the situation with data imbalance mentioned in the Introduction,
he minimal average error as in Eq. (3) may not give satisfactory results.
o avoid this, different costs should be assigned to the errors on different
ata points during the training process, in order to satisfy the desired
ccuracy on some specific data points of interest. 
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Another issue regards the usefulness of different features for the out-
ut assessment: the features need to be treated differently and larger
eights should be assigned to the more useful ones. In kernel methods,
ifferent weights can be assigned to different features by using kernel
unction 𝑘 ( 𝝎 . ∗ 𝒙 1 , 𝝎 . ∗ 𝒙 2 ) instead of 𝑘 ( 𝒙 1 , 𝒙 2 ) , where 𝝎 is the weight
ector (of the same size as 𝒙 ) of the usefulness of each feature and
perator. ∗ is the element-wise multiplication. 

Initiating the costs of different data points as 𝑪 = [ 𝑐 1 , 𝑐 2 , … , 𝑐 𝑁 

] , the
ptimization problem in Eq. (3) can be reformulated as 

Minimize 𝑦̂ 𝑠 
𝑗 
,𝑏 𝑊 = 

1 
𝑁 

𝑁 ∑
𝑖 =1 

𝑐 𝑖 
(
𝑓 
(
𝒙 𝒊 
)
− 𝑦 𝑖 

)2 
Subject to 𝑓 

(
𝒙 𝒊 
)
= 

𝑀 ∑
𝑗=1 

𝛽𝑗 ( 𝒙 𝒊 )( ̂𝑦 𝑠 𝑗 − 𝑏 ) + 𝑏 

. (6) 

The unknown parameters 𝑦̂ 𝑠 
𝑗 
, 𝑗 = 1 , 2 , … , 𝑀 and 𝑏 in Eq. (6) can be

alculated by solving the following equation: 

 

𝛀 𝐇 

𝚪𝑇 𝑐 

] [ 

𝒚̂ 𝒔 

𝑏 

] 

= 

[ 

𝐏 

𝑙 

] 

, (7) 

here 𝛀 is a 𝑀 ×𝑀 matrix with 𝛀𝑚𝑛 = 

∑𝑁 

𝑖 =1 𝑐 𝑖 𝛽𝑚 ( 𝒙 𝒊 ) ∗ 𝛽𝑛 ( 𝒙 𝒊 ) , 𝐇 is a

 × 1 vector with 𝐇 𝑚 = 

∑𝑁 

𝑖 =1 𝑐 𝑖 𝛽𝑚 ( 𝒙 𝒊 ) ∗ (1 − 

∑𝑀 

𝑗=1 𝛽𝑗 ( 𝒙 𝒊 )) , 𝚪 is a 𝑀 × 1
ector with 𝚪𝑚 = 

∑𝑁 

𝑖 =1 𝑐 𝑖 𝛽𝑚 ( 𝒙 𝑖 ) ∗ (1 − 

∑𝑀 

𝑙=1 𝛽𝑙 ( 𝒙 𝑖 )) , 𝑐 is a constant and 𝑐 =
𝑁 

𝑖 =1 𝑐 𝑖 (1 − 

∑𝑀 

𝑗=1 𝛽𝑗 ( 𝒙 𝑖 )) 
2 
; 𝐏 is a 𝑀 × 1 vector with 𝐏 𝑚 = 

∑𝑁 

𝑖 =1 𝑐 𝑖 𝛽𝑚 ( 𝒙 𝒊 ) ∗
 𝑖 , 𝑙 = 

∑𝑁 

𝑖 =1 𝑐 𝑖 (1 − 

∑𝑀 

𝑗=1 𝛽𝑗 ( 𝒙 𝑖 )) ∗ 𝑦 𝑖 . 
The parameters 𝜷( 𝒙 ) are still calculated with Eq. (5) , but with the

ernel function 𝑘 ( 𝝎 . ∗ 𝒙 1 , 𝝎 . ∗ 𝒙 2 ) . 
In this model, the unknown parameters include the cost vector

 = [ 𝑐 1 , 𝑐 2 , … , 𝑐 𝑁 

] , the weight vector 𝝎 = [ 𝜔 1 , 𝜔 2 , … , 𝜔 𝑁 

] and the pa-
ameters related to the kernel function. 

The cost vector 𝑪 can be calculated analytically. In this work, we
ocus on the peak values and high-level degradation states. The peak
alues may occur abruptly and cause the failures of the system. The
igh-level degradation states are reached close to the failure state of the
ystem and, thus, it is even more important to get good accuracy. Thus,
n this work, the cost is dependent on the degradation state and peak
alue. A large cost is, thus, assigned to data points which are peak values
nd high-level degradation states. Specifically, for a data point ( 𝒙 𝑡 , 𝑦 𝑡 )
ith 𝑡 = 1 , 2 , … , 𝑁 , its cost is calculated as 

 𝑡 = 𝑒 ( 𝑠 𝑡 + 𝑑 𝑡 )∕ 𝜎, (8) 

here 𝑠 𝑡 is the score of the point with respect to the peak function in
q. (9) [27] and 𝑑 𝑡 is the normalized degradation value of 𝑦 𝑡 as in Eq.
10) : 

 𝑡 = 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 
𝑦 𝑡 − 

1 
2 𝑘 

∑2 𝑘 +1 
𝑖 =1 ; 𝑖 ≠𝑡 𝑦 𝑖 , if 𝑡 ≤ 𝑘 

𝑦 𝑡 − 

1 
2 𝑘 

∑𝑡 + 𝑘 
𝑖 = 𝑡 − 𝑘 ; 𝑖 ≠𝑡 𝑦 𝑖 , if 𝑘 < 𝑡 < 𝑁 − 𝑘 

𝑦 𝑡 − 

1 
2 𝑘 

∑𝑁 

𝑖 = 𝑁−2 𝑘 ; 𝑖 ≠𝑡 𝑦 𝑖 , if 𝑡 ≥ 𝑁 − 𝑘 

, f 𝑜𝑟 𝑡 = 1 , 2 , … , 𝑁 , 

 𝑡 = 

𝑎 𝑡 − min ( 𝒂 ) 
max ( 𝒂 ) − min ( 𝒂 ) 

∗ 0 . 8 + 0 . 1 , with 𝒂 = [ 𝑎 1 , 𝑎 2 , … , 𝑎 𝑁 

] , (9) 

 𝑡 = 

𝑦 𝑡 − min ( 𝒚 ) 
max ( 𝒚 ) − min ( 𝒚 ) 

∗ 0 . 8 + 0 . 1 , with 𝒚 = [ 𝑦 1 , 𝑦 2 , … , 𝑦 𝑁 

] . (10) 

The cost is composed of two parts: 𝑠 𝑡 and 𝑑 𝑡 . Peak degradation val-
es have high scores 𝑠 𝑡 and high-level degradation states have relatively
igh values of 𝑑 𝑡 . The two values, 𝑠 𝑡 and 𝑑 𝑡 are normalized in the inter-
al [0.1 0.9] to have equal weights on the cost of one data point. The
arameter 𝜎 in Eq. (8) is a case-specific value that must be set by the
nalyst: the smaller the value of 𝜎 is, the larger the difference between
he different costs. 
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For the parameters in the kernel function and for the weight vec-
or for the different features, an iterative procedure is proposed ( Fig. 2 )
or minimizing the total cost in Eq. (6) . An initial weight vector for the
eatures is set to 1 . With the fixed weight vector, the parameters in the
ernel function are tuned and, then, with the tuned parameters value in
he kernel function, the weight vector is tuned. The process is repeated
ntil a fixed number of iterations maxIter is reached. For tuning the pa-
ameters in the kernel function or the weight vector, conventional opti-
ization methods, e.g. genetic algorithm [43] , grid search [19] , parti-

le swarm optimization [44] , ant colony optimization [22] can be used,
ith the objective of minimizing the total cost on the training dataset
s in Eq. (6) . Note that during the optimization process, the sum of the
eights for the features equals always that of the initial weights. The

onvergence of the iterative optimization process is shown in Section 3 .

. Case study 

The implementation of the proposed approach is sketched in Fig. 3 .
In the experiment, the Radial Basis kernel Function (RBF) is used as

ernel function, i.e. 𝑘 ( 𝒙 1 , 𝒙 2 ) = 𝑒 

− ‖𝒙 1 − 𝒙 2 ‖2 
2 𝛾2 . The value of 𝛾 can be calcu-

ated analytically with Eq. (11) below, as proposed by Cherkassky and
a [7] , whereas the value for 𝜇 is chosen between 0 and 1: by trial and

rror, the value of 𝜇 is set to 0.2. Thus, no explicit optimization method,
.g. grid search, is used for tuning the parameters in RBF. Given the
eight vector 𝝎 , the value of 𝛾 is calculated directly with Eq. (11) after

eplacing 𝒙 by 𝝎 . ∗ 𝒙 . 

2 = 𝜇 ∗ m 𝑎𝑥 ‖𝒙 𝑖 − 𝒙 𝑗 ‖2 , 𝑖, 𝑗 = 1 , … , 𝑁 (11) 

With the calculated value of 𝛾, a grid search method is used to tune
he weights of the different features. Suppose there are 𝐾 features: the
ossible relative weight 𝑟 𝑖 of one feature can be drawn from R = [1 2 3
 5 6 7 8 9] with equal probability; for each combination of the relative
eights [ 𝑟 1 , 𝑟 2 , … , 𝑟 𝐾 ], the weight vector 𝝎 is calculated as 

 𝑖 = 𝑁 𝑓 ∗ 𝑟 𝑖 
/ 𝐾 ∑

𝑗=1 
𝑟 𝑗 , 𝑖 = 1 , 2 , … , 𝐾, (12) 

o satisfy the initial criterion that the sum of the weights equals to the
um of the initial weights for all the features, i.e. 𝑁 𝑓 which is the number
f features. R is an author-specified vector containing the relative weight
alues used to differentiate the contribution of different input variables
o the output. 

The number of maximal iterations is set to 15. 

.1. Verification of the proposed approach 

In order to verify the effectiveness of the proposed approach, it is
ested on several public imbalanced datasets. These imbalanced datasets
re taken from Keel data set Repository for binary classification ad re-
ression [2] . 

The dataset for binary classification present different Imbalance Ra-
ios (IRs). The characteristics of the binary classification datasets are
hown in Table 1 . 

A comparison is carried out between the proposed approach, i.e.
eighted-feature and cost-sensitive FVR (WF-CS-FVR), and a standard
VR. Another method is added to the comparison, i.e. cost-sensitive FVR
CS-FVR) without using the weighted feature strategy, i.e. solving Eq.
6) with the kernel function 𝑘 ( 𝒙 1 , 𝒙 2 ) instead of the weighted-feature
ne 𝑘 ( 𝝎 . ∗ 𝒙 1 , 𝝎 . ∗ 𝒙 2 ) . The accuracy of the binary classification is char-
cterized by the True Positive Rate (TPR) and True Negative Rate (TNR),
hich are the percentages of the correctly classified data points in pos-

tive and negative classes, respectively. 
The results are shown in Table 2 . It is seen that by assigning a larger

eight to the error on the minority class, the TPR value increases and
he TNR value decreases. In the comparison of the results of CS-FVR
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Fig. 2. Iterative optimization of the parameters in the kernel function and the weight vector. 

Fig. 3. Proposed approach. 

Table 1 

Characteristics of the imbalanced binary classification datasets [2] . 

Dataset 
Number of 
instances 

Number of 
attributes 

Imbalance 
Ratio (IR) 

glass1 214 9 1.82 
haberman 306 3 2.78 
new-thyroid1 215 5 5.14 
ecoli3 336 7 8.6 
ecoli-0–6-7_vs_5 220 6 10 
yeast-1_vs_7 459 7 14.3 
ecoli4 336 7 15.8 
abalone-9_vs_18 731 8 16.4 
shuttle-6_vs_2-3 230 9 22 

Table 2 

Results of the proposed approach WF-CS-FVR on the public imbalanced datasets for bi- 
nary classification and comparisons with FVR and CS-FVR. 

Datasets FVR CS-FVR WF-CS-FVR 

TNR TPR TNR TPR TNR TPR 

glass1 0.6296 0.5625 0.4815 0.6875 0.5926 0.6875 
haberman 0.8444 0.1176 0.7556 0.3529 0.7556 0.7059 
new-thyroid1 0.9167 0.7143 0.9167 0.7143 0.9722 0.8571 
ecoli3 0.9508 0.7143 0.8689 0.8571 0.8689 1.0000 
ecoli-0–6-7_vs_5 1.0000 0.5000 1.0000 0.7500 1.0000 0.7500 
yeast-1_vs_7 1.0000 0.3333 0.7412 0.5000 0.7882 0.5000 
ecoli4 1.0000 0.7500 1.0000 0.7500 1.0000 0.7500 
abalone-9_vs_18 0.9928 0.7778 0.8841 1.0000 0.9203 1.0000 
shuttle-6_vs_2-3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
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Table 3 

Characteristics of the datasets for regression. 

Name # of instances # of features Data type 

laser 993 4 numeric 
autoMPG8 392 7 numeric & integer 
forestFires 517 12 numeric & integer 
friedman 1200 5 numeric 
concrete 1030 8 numeric & integer 
nd WF-CS-FVR, we can observe that by integrating weighted-feature
trategies, at least one of the values of TPR and TNR can be improved
or most of the datasets. The results of FVR and WF-CS-FVR show that
214 
or most of the datasets, by sacrificing the accuracy on the majority
lass, a relatively large gain can be obtained on the accuracy of the
inority class. For example, for dataset ‘galss1 ’, the difference of TNR

alues between FVR and WF-CS-FVR is 0.0370 and the difference of TPR
alues is 0.1250, which is much bigger than the difference of the TNR
alues. 

Five datasets are used to test the effectiveness of the proposed frame-
ork for regression. The characteristics of these datasets are shown in
able 3 . The outputs and inputs of these datasets are normalized to [0.0
.9]. The type of the inputs can be numeric or integer. The data points
ith output values bigger than 0.6 are higher data points and the others
re lower data points. The Mean Squared Errors (MSEs) of the proposed
ramework and the benchmark methods (i.e. FVR and CS-FVR) on higher
nd lower data points are shown in Table 4 . 

From Table 4 , the following conclusions can be drawn: 1) the mod-
ls (CS-FVR and WF-CS-FVR) with cost-sensitive strategy give better re-
ults on higher data points; 2) the weighted-feature strategy can further
mprove the accuracy of the CS-FVR model on the higher data points;
) the weighted-feature strategy can give better results even on the lower
ata points than the benchmark methods (e.g. for datasets friedman
nd concrete) when the input attributes are not well scaled during the
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Table 4 

MSEs of the proposed framework and the benchmark methods on the datasets for regres- 
sion. 

Datasets FVR CS-FVR WF-CS-FVR 

MSE on 
higher 
data 
points 

MSE on 
lower 
data 
points 

MSE on 
higher 
data 
points 

MSE on 
lower 
data 
points 

MSE on 
higher 
data 
points 

MSE on 
lower 
data 
points 

laser 3.69E − 4 8.45E − 4 3.30E − 4 1.30E − 3 1.70E − 4 7.12E − 4 
autoMPG8 2.17E − 2 2.20E − 3 2.06E − 2 2.70E − 3 1.90E − 3 3.20E − 3 
forestFires 3.50E − 3 2.94E − 4 2.30E − 3 1.70E − 3 2.20E − 3 1.80E − 3 
friedman 1.90E − 3 1.50E − 2 2.30E − 3 1.90E − 2 9.10E − 4 7.70E − 4 
concrete 5.02E − 4 2.96E − 4 2.22E − 4 8.40E − 4 2.20E − 14 9.23E − 14 
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Fig. 5. Costs of different training data points for Case 1. 
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reprocessing part; 4) the accuracy on the lower data points is normally
omewhat given up. 

.2. Degradation state estimation in a NPP 

The application of the proposed method is shown on a real case con-
erning the amount of leakage from the seals of an RCP of an NPP. 

Twenty variables related to the leakage process are available, e.g.
ow of seal injection supply, temperature of the water seal, tempera-
ure of seal injection line, temperature of by-pass hot leg loop, pres-
ure in the pressure injection line, etc. The recorded data for eight RCPs
rom different NPPs are available, with the true leakage and all related
ariables. The data from the one RCP are used as the test dataset and
he data from other seven RCPs are combined in the training dataset.
wo case studies from two different NPPs are generated from the data,
amed Case 1 and Case 2 separately. For confidentiality considerations,
he leakage values are normalized in the interval [0.1 0.9]. As shown in
Fig. 4 for one RCP, the leakage can take continuous values in the inter-
al [0.1 0.9] and the sizes of the recorded data on different degradation
tates are very different. Considering a partition of the entire range in
ifferent degradation level states, [0.1 0.3], [0.3 0.5], [0.5 0.7], [0.7
.9], the recorded data with leakage values between [0.1 0.3] are much
ore numerous than those for leakage values in the interval [0.3 0.5],

0.5 0.7] and [0.7 0.9]. 

.2.1. The proposed approach 

In the numerical experiment, the costs related to the estimation er-
ors on different data points are calculated by Eq. (8) , with the normal-
zed leakage values. The unknown 𝜎 in the equation is set to be 0.3 to
enalize the importance of the estimation errors on the data points with
 leakage lower than 0.3, as shown in Fig. 5 for Case 1. For example,
Fig. 4. Normalized leakage values in one RCP. 

215 
e can observe that the 1504th data point and the data points num-
ered between 2400 and 2600 have similar degradation values, but as
he 1504th data point is a peak value, its weight (i.e. 10.04) is higher
han those of the data points numbered between the 2400 and 2600 (i.e.
.51–8.01). 

.2.2. Experiment results 

Fig. 6 shows the minimal cost of each iteration of the tuning pro-
ess during the training for Case 1. It is shown that the minimal cost
n Eq. (6) converges to a minimal value. The minimal cost is obtained
t the 11th iteration and it is stable after the 11th iteration, with small
erturbation. The perturbation is caused by the parameter optimizing
ethods, i.e. analytical method for 𝛾 and grid search for 𝝎 which de-

ives only the sub-optimal results. 
The comparison results are given in Table 5 , with regards to the

SEs. The MSE are calculated separately on the whole test dataset, the
est data points with small amount of leakage in [0.1 0.3] (low-level
egradation states) and the test data points with large amount of leakage
n [0.3 0.9] (high-level degradation states). 

From Table 5 , one can observe that the MSE of FVR on the low-level
egradation states is much smaller than that on the high-level degrada-
ion states. The model i.e. FVR is not capable giving satisfactory results
n both low-level and high-level degradation states. The MSE values for
ase 2 are greater than those for Case 1. This is due to the fact that the
Fig. 6. Convergence of the minimal cost during the training process of Case 1. 
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Table 5 

MSE given by the methods (FVR, CS-FVR, WF-CS-FVR) for the test dataset. 

MSE Whole test dataset 
Data with leakage in 
[0.1 0.3] 

Data with leakage in 
[0.3 0.9] 

Case 1 Case 2 Case 1 Case 2 Case 1 Case 2 

FVR 0.0129 0.0216 0.0026 0.0193 0.0185 0.0305 
CS-FVR 0.0077 0.0254 0.0046 0.0257 0.0095 0.0240 
WF-CS-FVR 0.0064 0.0245 0.0019 0.0246 0.0088 0.0232 
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est dataset in Case 1 is closer to the training dataset than in case 2, thus,
upervised-learning methods give better results. 

CS-FVR and WF-CS-FVR give better results than FVR on the data
oints in high-level degradation states, and worse results for data points
n low-level degradation states: this shows that by sacrificing accuracy
n the data points in low-level degradation states, the accuracy on the
ata points with high-level degradation states can be improved. 

Compared to the results given by CS-FVR, by integrating the
eighted-feature strategy in CS-FVR, the results are further improved
n the data points with both low-level and high-level degradation states.
hus, in the case study, the weighted-feature strategy works well. 

. Conclusion 

In practice, considering the imbalance of data and the different needs
f the practitioners on the accuracy of the estimates of the degradation
tates, the traditional data-driven models for degradation assessment
iming at minimizing the average estimation error on the whole training
ataset may give unsatisfactory results. In this paper, cost-sensitive and
eighted-feature strategies are integrated in classical data-driven mod-

ls (specifically, FVR in this work) to improve the results on imbalanced
atasets. Differently from the approach of setting discrete cost values in
he literature, continuous costs are assigned to the different data points
nd an efficient method is proposed for calculating the continuous costs
ith more focus on the peak values and high-level degradation states.

n order to further improve the assessment accuracy, a weighted-feature
trategy is also integrated to differentiate the contributions of different
eatures. The application of the proposed approach on real data of leak-
ge from the seals of RCPs in NPPs has been considered. Details for the
arameters tuning are provided. The results show that the cost-sensitive
trategy can improve the accuracy on the high-level degradation states
nd the weighted-feature strategy can further improve the accuracy both
n high-level and low-level degradation states. 

The proposed weighted-feature and cost-sensitive frameworks are
ot only suitable for FVR, but also applicable with other regression
odels, e.g. support vector machine, artificial neural network, Bayesian
ethods, etc. And the regression models can also be used for degrada-

ion assessment, degradation prediction and failure prediction, depen-
ent on the input-output relation of the data. 
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