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a b s t r a c t 

We propose an analytic, time-variant model that conservatively evaluates the increase in reliability achievable 

when a component is equipped with a Prognostics and Health Management system of known performance metrics. 

The reliability model builds on metrics of literature and is applicable to different industrial contexts. A simulated 

case study concerning crack propagation in a mechanical component is considered to validate the proposed model. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

In the last decade, Prognostics and Health Management (PHM) has
ften been proposed as an effective technology to respond to the reli-
bility challenges posed by the modern safety-critical components and
ystems (e.g., nuclear power plants, oil&gas assets, etc.), in which fail-
res can result not only in significant costs, but also in life-threatening
onsequences such as explosions and natural disasters. 

PHM allows in principle monitoring the system health condition,
redicting its Remaining Useful Life (RUL) and, ultimately, preventing
atastrophic failures [1–5] . However, in practice it is important to know
hich are the reliability and availability of a component or system. In

his respect, to the authors ’ best knowledge a modeling framework that
llows translating the PHM contribution into the component or system
eliability is still lacking. 

A few works have attempted to evaluate the influence of PHM on
ystem Life Cycle Cost (LCC, [6–11] ), looking at the economic bene-
ts of PHM in terms of increase of component or system availability.
n the other hand, for safety-critical applications PHM is expected to
ainly increase the component or system reliability (rather than avail-

bility). PHM helps avoiding over-estimations of the actual component
UL, which may lead to accidents with possible consequences on the
sset, the environment and the public. 

To evaluate the added value of the PHM technology on system re-
iability, it is necessary to characterize the performance of the PHM
dopted. In this respect, a variety of performance metrics and indica-
ors have been introduced for detection (i.e., the recognition of a de-
iation from the normal operating conditions causing such deviation,
.g., [8,12] ), diagnostics (i.e., the characterization of the abnormal state,
.g., [13] ) and prognostics, (i.e., the prediction of the evolution of the
∗ Corresponding author at: Energy Department, Politecnico di Milano, Italy. 
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bnormal state up to failure, e.g., [2,14,15] ). The original contribution
f this work is to propose a general modeling and decision framework
or linking PHM metrics of literature to the component reliability. This
ramework also allows accounting for the decision criterion adopted for
aintenance (overhaul), which heavily depends on the risk attitude of

he decision maker. 
The proposed reliability model is validated by way of a simulated

ase study concerning the crack propagation in a mechanical compo-
ent, which requires to estimate the values of the relevant PHM metrics.

Although various definitions of performance metrics exist in the
HM literature, a detailed procedure to estimate their values is still lack-
ng, apart from a few metrics such as the MTTF [16] . For this, a further
riginal contribution of our work is the Monte Carlo (MC) procedure
roposed to estimate the performance metrics encoded in the developed
eliability model. 

The remainder of the paper is organized as follows: Section 2 briefly
ntroduces the general framework; in Section 3 , the impact of a PHM tool
n system reliability is modeled; Section 4 illustrates a simulated case
tudy concerning the crack propagation in a mechanical component;
ection 5 validates the developed model by way of the simulated case
tudy; Section 6 concludes the work. 

. Modeling framework 

We consider a degrading component, whose degradation state is
onitored every Δt units of time with respect to a continuous indicator

ariable ( Fig. 1 ). The degradation process is stochastic for the degrada-
ion state and two thresholds are considered: the detection threshold,
hich mainly depends on the characteristics of the instrument used for
onitoring the degradation variable (for example, considering that the

nstrument is not capable of detecting the degradation state for values

http://dx.doi.org/10.1016/j.ress.2017.05.024
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ress
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ress.2017.05.024&domain=pdf
mailto:enrico.zio@polimi.it
http://dx.doi.org/10.1016/j.ress.2017.05.024
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Fig. 1. Model setting description; ℎ = 4 , 𝛼 = 0 . 1 , 𝑁 

1 = 11 and 𝑁 

2 = 19 . 
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Nomenclature 

𝜆 Time window modifier, such that 𝑡 𝜆 = 𝑇 𝑝𝑟 + 𝜆( 𝑇 𝑓 − 𝑇 𝑝𝑟 ) ; 
𝜆 ∈ [0, 1] 

𝜆∗ Time from which the values of the performance metrics 
are estimated 

T d Time instant at which the system reaches the detection 
threshold 

T f Time instant at which the system reaches the failure 
threshold 

T 𝜙 Length of the time interval 𝑇 𝑓 − 𝑇 𝑑 
𝑓 𝑇 𝑑 

pdf of time T d 
𝑓 𝑇 𝜙

pdf of T 𝜙
𝑓 𝑇 𝑓 

pdf of T f 
Δt Time interval between two successive Remaining Use- 

ful Life (RUL) predictions 
DTD Detection Time Delay, 𝑇 𝑝𝑟 − 𝑇 𝑑 
f DTD probability density function (pdf) of DTD 

𝑃 𝛼
𝜆

𝛼 − 𝜆 performance ⌊x ⌋ Integer part of x ; that is, 𝑛 ≤ 𝑥 < 𝑛 + 1 , 𝑥 ∈ ℝ , 𝑛 ∈ ℕ 

N Number of maximum RUL predictions before failure 
k ∗ Index of the first time channel at which the decision to 

remove the system from operation can be taken 
h ∗ Index of the first time channel at which a missing alarm 

is risky 
R 𝜆 Uncertain predicted RUL at time indicated by 𝜆
Y 𝜆 Point summarizing the uncertainty in R 𝜆 (e.g., mean, 

median, 10th percentile, etc.) 
𝑅𝑈𝐿 ∗ 

𝜆
Actual RUL at the time indicated by 𝜆

T pr Time of the first RUL prediction 
FP False positives 
FN False negatives 
m Empirical estimate of metric M 

𝑓 𝑅 𝜆
pdf of the predicted RUL at the time window indicated 
by 𝜆

 ( 𝜇, 𝜎2 ) Normal distribution with mean 𝜇 and variance 𝜎2 

 ( 𝑎, 𝑏 ) Uniform distribution between a and b 

elow such threshold), and the failure threshold, above which the com-
onent does not function any more or, more practically, must be main-
ained or replaced for avoiding a catastrophic failure. 

The uncertainty in the time instant T d at which the component
eaches the first threshold is described by the probability density func-
ion (pdf) 𝑓 𝑇 𝑑 . If no action is taken, the component continues its degrad-
ng up to failure occurring at time T f ; its uncertainty is described by pdf
 𝑇 𝑓 

. Finally, we also consider the random variable 𝑇 𝜙 = 𝑇 𝑓 − 𝑇 𝑑 , whose
df is 𝑓 𝑇 𝜙 . 

Realistically, it is assumed that detection is not perfect. Thus, metrics
f literature are exploited to characterize the detection performance. In
his respect, the following two are widely used in practice: false pos-
tive probability (i.e., the probability of triggering undue alarms) and
alse negative probability (i.e., the probability of missing alarm when
equired) [8] ). In addition, Detection Time Delay ( DTD , [12] ) is a de-
ection metric which measures the interval from the time when the de-
ectable degradation state is reached by the component up to its detec-
ion. We use this performance metric, due to two main reasons: on one
and, DTD is viewed as a false negative indicator which depends on
ime (i.e., alarms are missing up to DTD ); on the other hand, the DTD

alues are dependent on the detection algorithm settings, which can be
djusted so that the false positive probability is negligible in the inital
art of the component life [12] . This way, the model development is sim-
lified. To be realistic, we assume that DTD is affected by uncertainty,
hose pdf is f ( 𝛿). 
DTD 

5 
In this setting, the PHM system starts to predict the RUL at time
 𝑝𝑟 = ( ⌊ 𝑇 𝑑 + 𝐷𝑇𝐷 Δ𝑡 ⌋ + 1)Δ𝑡, where ⌊○⌋ indicates the integer part of its ar-
ument. The number of predictions that the PHM can perform before

ailure is 𝑁 = ⌊ 𝑇 𝑓 − 𝑇 𝑝𝑟 Δ𝑡 ⌋. From now on, it is assumed that the system ac-
ually fails at time 𝑇 𝑝𝑟 + 𝑁Δ𝑡, instead of T f ; the smaller Δt , the smaller
he approximation. 

Notice that we have assumed, for simplicity, that the considered
omponent is affected by a single failure mode, so that we do not have
he need of tackling the issue of embedding diagnostic metrics into the
eliability model, and of considering all scenarios originating from deci-
ions based on erroneous diagnoses of the failure mode. Such diagnostic
ssue is left for the future research work. 

Finally, notice also that, in practice, both detection and failure
hresholds may not be easily determined. For example, in helicopter
pplications, PHM systems (also called Health and Usage Monitoring
ystem, HUMS) are mainly based on vibration monitoring to infer the
quipment health [17–19] ; thus, there is no simple way to define a
hreshold directly related to failure. Similar challenges are encountered
n the packaging industry, where the failure conditions of components
ay not be precisely known [20] . Nonetheless, the approach proposed

n the present work applies to any system, provided that some criterion
o define the thresholds exists. The definition of such criterion is out of
he scope of this work, where we assume that the Decision Maker (DM)
as already defined a threshold coherent with his/her objective. 

. Reliability model 

In this Section, we illustrate the mathematical model developed to
valuate the increase in system reliability brought by a PHM system. 

We assume that the PHM-equipped component is stopped when the
100 − 𝛽) th percentile (e.g., 100 − 90 = 10 th) of the currently predicted
UL pdf is smaller than h · Δt : the larger the value of 𝛽, the smaller

he value of the predicted RUL percentile, the more risk-averse the deci-
ion. Similarly, the larger the value of h , the more cautious the decision
aker. 

To set h and 𝛽 in real industrial applications, it should be kept in
ind that the value of h strongly depends on the time required to safely

emove the component from operation (e.g., time required for system
hutdown), whereas 𝛽 relates to the risk associated to the failure (e.g.,
= 5 is a very conservative value, suitable for safety critical applica-

ion). To help the DM to set h and 𝛽 we can use the proposed reliability
odel in a ‘reverse ’ way, to find the combinations of values of h and 𝛽

hat allow meeting the system reliability requirements, also taking into
ccount the considered PHM performance values. Furthermore, we can
valuate the sensitivity of the component reliability value to the selected
pplicable values of h and 𝛽, to find the settings which are less sensitive
o the possible variability of the metrics due to the uncertainty in their
stimations. 

To evaluate the probability of removing the system from operation
efore failure, we need to consider a time-variant prognostic perfor-
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Fig. 3. Regions partitioning the time horizon and examples of possible RUL predictions. 
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ance index and link it to the probability of being in stopping condi-
ions. 

Among the prognostic metrics available in the literature [14,15] , the
ost suitable is the 𝛼 − 𝜆 performance index, 𝑃 𝛼

𝜆
, which is a time-variant

ccuracy indicator ranging in [0, 1]; this allows us to give 𝑃 𝛼
𝜆

a prob-
bilistic interpretation. Various definitions of 𝑃 𝛼

𝜆
have been proposed

n the literature [14,15] , referring to either point-wise or pdf RUL pre-
ictions. In this work, we give the following definition, derived from
14] ( Fig. 2 ). 

Consider the indicator variable: 

𝛼
𝜆
= 

{ 

1 , if 𝑓 𝑅 𝜆 |𝛼+ 𝜆𝛼− 𝜆 ≥ 𝛽

0 , else 
(1)

here 𝑓 𝑅 𝜆 is the pdf of the RUL R 𝜆 predicted at time 𝑡 𝜆 = 𝑇 𝑝𝑟 + 𝜆( 𝑇 𝑓 −
 𝑝𝑟 ) , 𝜆 ∈ [0, 1], whereas 𝛼 is a user-defined parameter which indicates
he required tolerance around the value of RUL ∗ (e.g., 𝛼 ∈ [0.05, 0.2]). 

Then, 𝑃 𝛼
𝜆

is the mean value of Π𝛼
𝜆
, i.e., 𝑃 𝛼

𝜆
= 𝔼 [Π𝛼

𝜆
] . 

Namely, during the test campaign of the algorithm, in which the
alue of the prognostic performance metrics are computed, the algo-
ithm is run on the working system an as large as possible number of
imes. Then, at any trial, Π𝛼

𝜆
is set to 1 if the RUL pdf predicted at t 𝜆 has

n area larger than 𝛽 between 𝛼− 
𝜆
= (1 − 𝛼) 𝑅𝑈𝐿 ∗ 

𝜆
and 𝛼+ 

𝜆
= (1 + 𝛼) 𝑅𝑈𝐿 ∗ 

𝜆
,

eing 𝑅𝑈𝐿 ∗ 
𝜆

the actual RUL at time t 𝜆, i.e., the time up to reaching the
ailure threshold or the threshold above which a maintenance action
ust be performed, depending on the application ( Fig. 2 ). The RUL ∗ 

alue is exactly known at the end of every trial. 
𝑃 𝛼
𝜆

is, then, practically given by the estimate 𝑝 𝛼
𝜆
, which is calculated

y averaging the values Π𝛼
𝜆

gathered from different trials of the PHM
ool at as many as possible instants t 𝜆. The larger the value of 𝑃 𝛼

𝜆
, the

etter the PHM system prediction capability. For more details on 𝑝 𝛼
𝜆

omputation, see Section 5.2 . 
Notice that when Π𝛼

𝜆
= 0 , no inference can be made about the value

f the uncertain RUL prediction: one only knows that the area overlap-
ing [ 𝛼− 

𝜆
, 𝛼+ 
𝜆
] is smaller than 𝛽, with no further information about either

he actual extent of this overlapping or the portion of probability mass
ocated below 𝛼− 

𝜆
, above 𝛼+ 

𝜆
or in an in-between position. 

Notice also that when Π𝛼
𝜆
= 1 , then the interval [(1 − 𝛼) 𝑅𝑈𝐿 ∗ 

𝜆
, (1 +

) 𝑅𝑈𝐿 ∗ 
𝜆
] is the 2-sided 𝛽 confidence interval of the failure time pre-

icted at time t 𝜆. However, for the prediction metrics to be applicable
or supporting risk-averse decision making, we need to refer to an up-
er bound of the probability of over-estimating the RUL (i.e., of not
topping the component), rather than to a 2-sided confidence interval.
o cope with this situation, we combine 𝑃 𝛼

𝜆
with the false positive and

alse negative metrics [15] , which are time-variant indexes defined as,
espectively: 

 𝑁 𝜆 = 𝔼 [Φ𝑁 𝜆] , Φ𝑁 𝜆 = 

{ 

1 , if Υ𝜆 − 𝑅𝑈𝐿 ∗ 
𝜆
> 𝑑 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

𝜆

0 , else 
(2)

 𝑃 𝜆 = 𝔼 [Φ𝑃 𝜆] , Φ𝑃 𝜆 = 

{ 

1 , if Υ𝜆 − 𝑅𝑈𝐿 ∗ 
𝜆
< − 𝑑 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

𝜆

0 , else 
(3)
6 
here Y 𝜆 is a point estimate of the predicted RUL distribution (e.g., the
ean, the median or any other percentile of R 𝜆, etc.) and 𝑑 𝑡ℎ𝑟𝑒𝑠𝑜𝑙𝑑 

𝜆
is a

ser-defined threshold value, which depends on the PHM application.
roceeding exactly in the same way as that of 𝑝 𝛼

𝜆
, we will consider the

stimates fn 𝜆 and fp 𝜆 of FN 𝜆 and FP 𝜆, respectively, which are given by
he corresponding empirical averages of ΦN 𝜆 and ΦP 𝜆 over the available
umber of test trials, achieved through an algorithm test campaign. As
entioned above, notice that when performing a PHM test, RUL ∗ is ex-

ctly known at the end of every trial. This value is, then, used to estimate
N 𝜆, ΦP 𝜆 and the other variables of the model, as shown in Section 5.2 .

In our setting, Y 𝜆 is the (1 − 𝛽) th percentile of 𝑓 𝑅 𝜆 and 𝑑 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 
𝜆

=
× 𝑅𝑈𝐿 ∗ 

𝜆
. Then, FP 𝜆 measures the average portion of times in which

 𝜆 is below 𝛼− 
𝜆
= (1 − 𝛼) 𝑅𝑈𝐿 ∗ 

𝜆
and, thus, it becomes an indicator of how

uch conservative our PHM predictions are at time t 𝜆. Similarly, FN 𝜆

ndicates the riskiness of the PHM algorithm. 
Based on these considerations, we can build the reliability model of a

HM-equipped component with estimated values 𝑝 𝛼
𝜆
, 𝑓𝑛 𝜆, 𝑓𝑝 𝜆 of metrics

 

𝛼
𝜆
, 𝐹 𝑁 𝜆, 𝐹 𝑃 𝜆, respectively. To do this, we divide the time horizon into

hree regions ( Fig. 3 ): 

1. The region in proximity of failure, which is defined by the time
indexes 𝑘 ≥ 𝑁 − ℎ such that (1 + 𝛼) 𝑅𝑈 𝐿 ∗ 

𝜆
≤ ℎ Δ𝑡, where 𝑅𝑈 𝐿 ∗ 

𝜆
=

( 𝑁 − ℎ )Δ𝑡 . This is the same as k ≥ h ∗ , where ℎ ∗ = ⌊𝑁 − 

ℎ 

1+ 𝛼 ⌋. Ge-
ometrically, this region corresponds to time values on the right of
the intersection between the error upper bound line (1 + 𝛼) 𝑅𝑈𝐿 ∗ 

𝜆

and the horizontal line positioned at 𝑅𝑈𝐿 = ℎ Δ𝑡 ( Fig. 3 ). 
2. The safe region, which is indicated by time instants k < k ∗ , where

k ∗ geometrically corresponds to the prediction most proximal to
the intersection between the prediction error lower bound line
(1 − 𝛼) 𝑅𝑈𝐿 ∗ 

𝜆
and the horizontal line at 𝑅𝑈𝐿 = ℎ Δ𝑡 ( Fig. 3 ). 

3. The in-between region, identified by k ∗ ≤ k < h ∗ . 

With respect to region 1, we can note that to have a failure, the
larm is required to be missing h ∗ consecutive times. Now, if Π𝛼

𝜆
= 1 ,

hen the alarm is triggered and the component failure is avoided. On
he contrary, if Π𝛼

𝜆
= 0 , the necessary condition to not activate the alarm

s that the RUL is over-estimated. This situation occurs with probability
1 − 𝑃 𝛼

𝜆
) 𝐹 𝑁 𝜆 ≃ (1 − 𝑝 𝛼

𝜆
) 𝑓𝑛 𝜆. We assume that this probability value also

escribes the uncertainty in having missing alarms; this is a very con-
ervative assumptions: the closer the current time to failure, the larger
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[  
he over-estimation error required to not trigger the alarm (predictions
ust be above the h Δt threshold (see Fig. 3 )). 

With respect to the safe region, we first note that whichever the value
f Π𝛼

𝜆
, an over-estimation of 𝑅𝑈𝐿 ∗ 

𝜆
leads to not stopping the system be-

ore failure. This does not entail any risk of missing stops. On the con-
rary, an under-estimation of the RUL could lead to component stop. In
he risk-averse setting we are dealing with, the anticipated maintenance
s beneficial for system reliability, as it avoids component failure. For
his, we conservatively assume that in this left-most region the PHM
ystem never stops the component. 

Finally, with respect to the in-between time horizon region, to rig-
rously derive the probability of not stopping the system, we have to
ive account to the fact that some extreme cases may occur, where even
f Π𝛼

𝜆
= 1 , the 1 − 𝛽 probability mass and, thus, the (1 − 𝛽) th percentile,

s positioned above h Δt . For example, Fig. 3 shows the situation where
 𝜆1 

= ( 𝑁 − ℎ )Δ𝑡 and all the 𝛽 mass is concentrated between 𝑅𝑈𝐿 ∗ 
𝜆
= ℎ Δ𝑡

nd 𝛼+ 
𝜆

. In this case, PHM will not advice to stop the component at 𝑡 𝜆1 .
hus, we conservatively assume that in this region the component does
ot undergo a maintenance action as long as Π𝛼

𝜆
= 1 . 

On the contrary, when Π𝛼
𝜆
= 0 , which occurs with probability (1 −

 

𝛼
𝜆
) , the following three possible situations can occur: 

• The (1 − 𝛽) th percentile, Y 𝜆, is smaller than (1 − 𝛼) 𝑅𝑈𝐿 ∗ 
𝜆
. In this situ-

ation, which occurs with probability (1 − 𝑃 𝛼
𝜆
) 𝐹 𝑃 𝜆, even if we conser-

vatively assume that the (1 − 𝛽) th percentile takes the largest possi-
ble value (i.e., Υ𝜆 = (1 − 𝛼) 𝑅𝑈𝐿 ∗ 

𝜆
), the component is stopped as this

time is smaller than h Δt . 
• With probability (1 − 𝑃 𝛼

𝜆
) 𝐹 𝑁 𝜆, Y 𝜆 will be above (1 + 𝛼) 𝑅𝑈𝐿 ∗ 

𝜆
. In this

situation, we will not stop the component. 
• With probability 1 − 𝐹 𝑁 𝜆 − 𝐹 𝑃 𝜆 we are in the situation in which

the predicted RUL value is between [ 𝛼− 
𝜆
𝛼+ 
𝜆
] . To be conservative, we

assume that also in this case we do not remove the component from
operation. 

To conclude, a conservative estimation of the stop probability in the
ime window [ 𝑇 𝑝𝑟 + 𝑘 ∗ Δ𝑡, 𝑇 𝑝𝑟 + ℎ ∗ Δ𝑡 ] is (1 − 𝑃 𝛼

𝜆
) 𝐹 𝑃 𝜆 ≃ (1 − 𝑝 𝛼

𝜆
) 𝑓𝑝 𝜆. 

Fig. 1 briefly summarizes the considerations proposed above. Two
ifferent trials of the same PHM-equipped component are plotted over
ime, which are indicated with superscript 1 (continuous line) and 2
dashed line). 𝑇 1 

𝑝𝑟 
and 𝑇 2 

𝑝𝑟 
indicate the corresponding first prediction

imes, whereas k ∗ 1 and k ∗ 2 represent the first time instants where the
ystem can be stopped with probabilities (1 − 𝑃 𝛼

𝜆
) 𝐹 𝑃 𝜆; h ∗ 1 and h ∗ 2 are

he first time indexes from which the system is stopped with probability
 

𝛼
𝑘 

𝑁 

+ (1 − 𝑃 𝛼
𝑘 

𝑁 

)(1 − 𝐹 𝑁 𝑘 

𝑁 

) . Finally, 𝑇 1 
𝑓 

and 𝑇 2 
𝑓 

represent the last possi-

le prediction instants before failure and are considered as failure times
ithin our framework. 

Based on the considerations above, it is now possible to compute the
nreliability U ( t ) at time t , which is here defined as the probability of
eaching the failure threshold before t : 

( 𝑡 ) = ℙ ( 𝑇 𝑓 ≤ 𝑡 ∩ system not stopped before 𝑡 ; 𝛼, 𝛽, Δ𝑡, ℎ, 𝑓𝑛, 𝑓𝑝, 𝑝 𝛼
𝜆
) 

= ℙ ( 𝑇 𝑓 ≤ 𝑡 | system not stopped before 𝑡 ; 𝛼, 𝛽, Δ𝑡, ℎ, 𝑓𝑛, 𝑓𝑝, 𝑝 𝛼
𝜆
) 

×ℙ ( system not stopped before 𝑡 ; 𝛼, 𝛽, Δ𝑡, ℎ, 𝑓𝑛, 𝑓𝑝, 𝑝 𝛼
𝜆
) 

here 𝛼, 𝛽, Δ𝑡, ℎ, 𝑓𝑛, 𝑓𝑝, 𝑝 𝛼
𝜆

explicitly indicate the dependence of the un-
eliability value on the parameters determining the performance of the
HM system. 

Notice that there are several definitions of reliability [21] . Differ-
ntly from the ‘traditional ’ definitions, in which the unreliability is the
DF of the failure time and, thus, it tends to one as t increases (i.e., the
omponent will always fail, [21,22] ), in this case we are compelled to
onsider 

lim 

 →∞
𝑈 ( 𝑡 ) = ℙ ( system not stopped before 𝑡 ; 𝛼, 𝛽, Δ𝑡, ℎ, 𝑓𝑛, 𝑓𝑝, 𝑝 𝛼

𝜆
) ≤ 1 

he difference is due to the fact that if the component is removed from
peration before failure, then its failure time will no-longer exist and
7 
he ‘traditional ’ definitions are no longer applicable. That is, the PHM-
quipped component can be framed as a three-state system, the possible
tates being: Working, Failed and Removed ( Fig. 4 ), in which U ( t ) repre-
ents the probability of having a transition from Working to Failed be-
ore time t . According to this view, we derive U ( t ) from the probabilistic
ransport kernel K ( t, Failed | t ′ , s ′ ), which is defined as the probability
ensity that the component makes the next transition between t and
 + 𝑑𝑡 toward state Failed [23] , provided that the previous transition has
ccurred at time t ′ and hat the system had entered in state s ′ . However,
n our case we assume that the component always starts at 𝑡 = 0 in state

orking . For this, we will indicate the kernel as K ( t, Failed ), without the
onditioning event. 

To calculate K ( t, Failed ), we first first calculate the failure transporta-
ion kernel given a realization 𝛿 from f DTD : 

( 𝑡, 𝐹 𝑎𝑖𝑙𝑒𝑑|𝛿; 𝛼, 𝛽, Δ𝑡, ℎ, 𝑓𝑛, 𝑓𝑝, 𝑝 𝛼
𝜆
) 

= ∫
𝑡 

𝑡 − 𝛿
𝑓 𝑇 𝑑 

( 𝜏) 𝑓 𝑇 𝜙 ( 𝑡 − 𝜏) 𝑑𝜏 + ∫
𝑡 − 𝛿

0 
𝑓 𝑇 𝑑 

( 𝜏) 𝑓 𝑇 𝜙 ( 𝑡 − 𝜏) 

ℎ ∗ −1 ∏
𝑘 = 𝑘 ∗ 

[1 − (1 − 𝑝 𝛼
𝑘 

𝑁 

) 𝑓𝑝 𝑘 
𝑁 

] 
𝑁−1 ∏
𝑘 = ℎ ∗ 

[(1 − 𝑝 𝛼
𝑘 

𝑁 

) 𝑓𝑛 𝑘 
𝑁 

] 𝑑𝜏 (4) 

n other words, it is assumed that a failure occurs when one out of the
ollowing conditions is satisfied, which are represented by the first and
he second addend of Eq. (4) , respectively: 

1. The component fails before PHM alerts the detection threshold
(detection error); this may happen in case the component fails
abruptly. 

2. PHM correctly detects, with detection delay 𝛿, that the degrada-
tion has reached the detection threshold but, then, over-estimates
the actual failure time T f (prognostic error); this happens after
𝑇 𝑝𝑟 + 𝑘 ∗ Δ𝑡 (i.e., the first prediction instant where the stopping
decision should be made), with probability 1 − (1 − 𝑝 𝛼

𝑘 

𝑁 

) 𝑓𝑝 𝑘 
𝑁 

and

with probability (1 − 𝑝 𝛼
𝑘 

𝑁 

) 𝑓𝑛 𝑘 
𝑁 

from 𝑇 𝑝𝑟 + ℎ ∗ Δ𝑡 on. 

To remove the dependence from 𝛿, we integrate Eq. (4) over the
istribution of DTD : 

( 𝑡, 𝐹 𝑎𝑖𝑙𝑒𝑑; 𝛼, 𝛽, Δ𝑡, ℎ, 𝑓𝑛, 𝑓𝑝, 𝑝 𝛼
𝜆
) 

= ∫
∞

0 
𝐾( 𝑡, 𝐹 𝑎𝑖𝑙𝑒𝑑|𝛿; 𝛼, 𝛽, Δ𝑡, ℎ, 𝑓𝑛, 𝑓𝑝, 𝑝 𝛼

𝜆
) 𝑓 𝐷𝑇𝐷 ( 𝛿) 𝑑𝛿 (5) 

Generally speaking, the integral of K ( t, Failed ) over the time interval
 t , t ] gives the probability of failure in that time span [23] . Then,
1 2 
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Fig. 5. Crack propagation process: example 
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q. (5) allows estimating the component unreliability as: 

( 𝑡 ) = ∫
𝑡 

0 
𝐾( 𝜏, 𝐹 𝑎𝑖𝑙𝑒𝑑; 𝛼, 𝛽, Δ𝑡, ℎ, 𝑓𝑛, 𝑓𝑝, 𝑝 𝛼

𝜆
) 𝑑𝜏 (6)

inally, notice that the developed model allows considering also the case
here there is no advantage in removing the component from operation

he last h instants: in this case, stopping the component in the third
egion (region 1 in Fig. 3 ) is equivalent to having a failure. 

. Case study 

In this Section, we illustrate the application of the modeling frame-
ork developed to a component affected by fatigue degradation, de-

cribed by the Paris Erdogan (PE) model ( [2,24] , Fig. 5 ): 

1. The crack length x i reaches the first threshold, 𝑥 = 1 mm, accord-
ing to the following equation: 

𝑥 𝑖 +1 = 𝑥 𝑖 + 𝑎 × 𝑒 𝜔 
1 
𝑖 

where 𝑎 = 0 . 003 is the growth speed parameter and 𝜔 1 
𝑖 
∼

 (−0 . 625 , 1 . 5) models the uncertainty in the speed values. The
uncertainty in the arrival time at 𝑥 = 1 is described by pdf 𝑓 𝑇 𝑑 ( 𝑡 ) .

2. The crack length reaches the failure threshold 𝑥 = 100 mm ac-
cording to the following equation: 

𝑥 𝑖 +1 = 𝑥 𝑖 + 𝐶 × 𝑒 𝜔 
2 
𝑖 ( 𝜂

√
𝑥 𝑖 ) 𝑛 

where 𝐶 = 0 . 005 and 𝑛 = 1 . 3 are parameters related to the com-
ponent material properties, and are determined by experimental
tests; 𝜂 = 1 is a constant related to the characteristics of the load
and the position of the crack and 𝜔 2 

𝑖 
∼  (0 , 1) describes the un-

certainty in the crack growth speed values. The uncertainty in
the arrival time at 𝑥 = 100 is described by pdf 𝑓 𝑇 𝑓 ( 𝑡 ) . 

The numerical values are taken from [2] . 

. Validation of the reliability model 

The aim of this Section is to validate the reliability model developed
n Section 3 by way of the case study presented above. To do this, we
arry out the following steps, which are detailed in the next Sections: 

• Choose the prognostic and detection algorithms that are assumed to
be implemented in the PHM system. 

• Estimate the performance values fp 𝜆, fn 𝜆 and 𝑝 𝛼
𝜆
. 

• Estimate the integral in Eq. (6) . 
• Estimate the unreliability in the ‘on-line ’ setting, in which the crack

propagation is simulated together with the selected prognostic and
detection algorithms, and with the decisions based on their outcomes

as well.  

8 
.1. Algorithms 

The prognostic algorithm we rely on is Particle Filtering (PF,
25,26] ), which has been established as the de-facto state of the art
n failure prognostics [27] . Briefly, at any time instant PF estimates the
df of the degradation state of the component (i.e., its crack depth in
ur case) with a set of weighted particles, which constitute a probabil-
ty mass function (pmf). When a measure of the crack depth is acquired,
uch pmf is adjusted in a Bayesian perspective, so that the weights re-
ated to particles which are near the acquired data are augmented. 

The PF algorithm chosen for our application is the same as that used
n [1] ; it relies on a simplified approach for predicting the evolution
f the crack, which does not give full account to the uncertainty in the
article evolution [1] . Certainly, more refined versions of PF could be
onsidered to improve the prognostic performance, but this is out of the
cope of this work: our aim is to check whether the model developed in
ection 3 provides conservative estimates of the component reliability
or a given set of performance values fp 𝜆, fn 𝜆, and 𝑝 𝛼

𝜆
, whichever the

rognostic algorithm is. 
As mentioned in Section 2 , our model mainly focuses on prognostics.

hus, we assume that the uncertainty in DTD is already known and it
s described by a normal distribution, which for the simulations that
ollows, is arbitrarily taken to have mean 5 and standard deviation 1,
n arbitrary units. Then, in the simulations, the degradation is detected
o reach the detection threshold at a time T pr , which is on average 5
ime units larger than T d and the variability of this delay is given by the
tandard deviation of 1 unit. Finally, with respect to the maintenance
olicy settings, we assume ℎ = 1 , 𝛽 = 40 and Δ𝑡 = 30 in arbitrary units:
arger values of h or smaller values of 𝛽 would result in reliability values
ery close to 1, which do not allow a fair validation of the proposed
odeling framework. 

.2. Performance estimation 

To estimate the values of the performance metrics FP 𝜆, FN 𝜆 and 𝑃 𝛼
𝜆
,

e implement the following MC procedure: 

1. Simulate the crack propagation mechanism to find T f , T d , the N
prediction instants at every Δt time and the corresponding crack
lengths. In particular, T pr is obtained by adding a sample from
 (5 , 1) to T d , whereas 𝑇 𝑓 = 𝑅𝑈𝐿 ∗ at 𝜆 = 0 . The gathered values
of T f and T d are also used to derive 𝑓 𝑇 𝜙 and 𝑓 𝑇 𝑑 , respectively, at
step 3. 

2. At every prediction instant t 𝜆, 𝜆 = 

𝑡 𝜆− 𝑇 𝑝𝑟 
𝑇 𝑓 − 𝑇 𝑝𝑟 

, run the PF algorithm to

estimate the current crack length and the pdf 𝑓 𝑅 𝜆 of the predicted
RUL R 𝜆. On this basis, use Eqs. (1) –(3) to calculate the values of
ΦP 𝜆, ΦN 𝜆 and Π𝛼

𝜆
using 𝑓 𝑅 𝜆 and 𝑅𝑈𝐿 ∗ 

𝜆
= 𝑇 𝑓 − 𝑡 𝜆. In this respect,

Fig. 6 , shows the histograms of 𝑘 
∗ 

𝑁 
and ℎ 

∗ 

𝑁 
over 𝜆 as derived from

the simulation of 15,000 Monte Carlo trials of crack degrada-
tion: it can be seen that in almost 90% of the trials, 𝑘 

∗ ≥ 0 . 9 and

𝑁 
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Fig. 6. 𝑘 ∗ 

𝑁 
and ℎ 

∗ 

𝑁 
vs 𝜆. 

Fig. 7. Example of degradation evolutions and computation of 𝜆 related to prediction instants. 
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Fig. 8. Computation of the performance metric values of Fig. 7 . 
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ℎ ∗ 

𝑁 
≥ 0 . 95 . This implies that we can avoid calculating ΦP 𝜆, ΦN 𝜆,

and Π𝛼
𝜆

for all values of 𝜆; rather, we can reduce the range of
interest at 𝜆 > 𝜆∗ , for some appropriate value of 𝜆∗ . 

3. Once steps 1 and 2 are simulated a large number of times and the
corresponding values of ΦP 𝜆, ΦN 𝜆, and Π𝛼

𝜆
are collected, divide

[ 𝜆∗ , 1) in I intervals of the same length [ 𝜆𝑖 , 𝜆𝑖 +1 ) , 𝜆0 = 𝜆∗ , 𝜆𝐼 = 1 ;
I should be small enough that intervals [ 𝜆𝑖 , 𝜆𝑖 +1 ) do not contain
multiple prediction instants of the same MC trial. Derive also 𝑓 𝑇 𝑑 
and 𝑓 𝑇 𝜙 . 

4. For each interval [ 𝜆𝑖 , 𝜆𝑖 +1 ) , compute the average of the values
of ΦP 𝜆, ΦN 𝜆, and Π𝛼

𝜆
gathered at the time instant 𝜆 ∈ [ 𝜆𝑖 , 𝜆𝑖 +1 ) ;

this provides the estimates fp 𝜆, fn 𝜆, and 𝑝 𝛼
𝜆
, which are step-wise

functions over the identified I intervals. 

Fig. 7 and 8 provide an example of the described procedure for 3 MC
rials, in which 𝜆∗ = 0 . 1 . The degradation paths are simulated over time
 Fig. 7 ) and the corresponding values of interest are collected. Fig. 7 also
eports for every degradation path the 𝜆 values corresponding to the
rediction instants, which depend on the duration of the component
ife. Then, Fig. 8 partitions the interval [0.1; 1) in intervals of length
.06, which contain at most one prediction instant of the same trial. In
his respect, a simple rule to select the maximum 𝜆 interval length is to
elect the maximum number N m 

of prediction instants in a single trial;
hen, the maximum 𝜆 interval length is 1 

𝑁 𝑚 
. 
9 
Fig. 9 shows the results of the procedure detailed above for the case
tudy illustrated in Section 4 , starting from 𝜆 ≥ 𝜆∗ = 0 . 45 . In particular,
wo different length values of the [ 𝜆𝑖 , 𝜆𝑖 +1 ) intervals have been consid-
red: 0.05 ( Fig. 9 a) and 0.005 ( Fig. 9 b). In both cases, we checked that
very interval contains at most one prediction instant of the same trial,
lthough for some simulated trial some intervals do not contain any
rediction (see Fig. 8 ). This causes the noisy behavior of the metrics
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Fig. 9. Experimental metrics values. 
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n Fig. 9 b, as the narrower the interval [ 𝜆𝑖 , 𝜆𝑖 +1 ) , the smaller the corre-
ponding number of gathered values of ΦP 𝜆, ΦN 𝜆 and Π𝛼

𝜆
over the Monte

arlo trials, the larger the MC error affecting the averaged values. 
From the analysis of Fig. 9 , we can notice that both the fp and fn

alues increase over 𝜆, except for 𝜆 ≥ 0.95. This is due to fact that when
≃ 1, 𝑅𝑈𝐿 ∗ = 𝑁(1 − 𝜆)Δ𝑡 ≃ 0 ; hence, on one side the chances of having
𝑝 = 1 reduces, whereas on the other side there is no possibility to have
𝑛 = 0 . This entails that fp 𝜆 and fn 𝜆 tend to converge to 0 and 1, respec-

ively as 𝜆 → 1. Moreover, fp is always larger than fn , except when 𝜆
 0.95. This can be easily explained remembering that we are tracing
 percentile of the RUL, which favors the false positive alarms. For the
ame reason, 𝑝 𝛼

𝜆
tends to converge to 0 in the last part of the component

ife cycle: when the component is approaching its failure time, the RUL
stimations become more precise; then, tracking a percentile instead of
he RUL median introduces a bias that impacts on the prediction ac-
uracy (see Fig. 2 ). Notice that this behavior does not contradict the
resented model: predictions done at failure time are not considered, as
he component is always assumed to fail at N Δt , which implies that the
argest possible value of 𝜆 = 

( 𝑁−1) 
𝑁 

< 1 . 

.3. Component unreliability estimation 

To estimate the component unreliability based on Eqs. (4) –(6) , the
ollowing procedure, derived from [23] , has been implemented: 

• Divide the time horizon in J time intervals of length Δt ,
[0 , 𝑡 1 ) , [ 𝑡 1 , 𝑡 2 ) , … , [ 𝑡 𝐽−1 , 𝑡 𝐽 ] , and associate a counter to every interval,
whose initial value is set to 0. 

• Sample 𝛿 ∼ f DTD ; this way, we can estimate the Kernel in Eq. (4) ,
which is conditional on DTD . 

• Compute the first addendum of Eq. (4) by Monte Carlo, evaluating
the integral corresponding to the undetected failure probability: for
each failure time t j , we sample T pr from  ( 𝑡 𝑗 − 𝛿, 𝑡 𝑗 ) , i.e., a uniform
distribution between 𝑡 𝑗 − 𝛿 and t j (see forced simulation in [23] ). 

• Compute the second integral of Eq. (4) , similarly to the previous one
except that T pr must be sampled from  (0 , 𝑡 𝑗 − 𝛿) . Then, k ∗ , h ∗ and
N are computed, and the values of the performance metrics obtained
are used to complete Eq. (4) . 

• Estimate k ( t j , Failed ) of the integral in Eq. (5) by applying MC method
[23] . 

• Estimate the unreliability at time t j ( Eq. (6) ), by summing all the
failure contributions on the right of t j : 

𝑢 ( 𝑡 𝑗 ) ≃ Δ𝑡 
𝑗 ∑
𝑖 =1 

[ 𝑘 ( 𝑡 𝑗 , 𝐹 𝑎𝑖𝑙𝑒𝑑)] 𝑗 = 1 , … , 𝐽 

.4. Estimation of the ‘on-line ’ unreliability 

The online unreliability is estimated through the MC procedure de-
eloped in [1] . Briefly, the time horizon is partitioned in time-channels
10 
f length Δt units of time. The crack growth process is simulated over
ime together with DTD to compute T d . If T pr ≥ T f , the unreliability
ounters associated to the channels from T f to the end of the time win-
ow are set to 1; otherwise, the empirical pdf 𝑓 𝑅 𝜆 is estimated every Δt

nits of time by means of the Particle Filtering. Then, at each predic-
ion time t 𝜆, if the predicted 𝛽th percentile of 𝑓 𝑅 𝜆 is before the next h th
nspection time, then the component is removed from operation, other-
ise it continues to work. The trial simulation continues until either the

omponent fails or is removed from operation: in the former case, the
nreliability counters associated to the channels from T f to the end of
he time window are set to 1; otherwise they are set to 0. Finally, the
nline unreliability at every Δt is estimated as the average over many
C simulation trials of the accumulated counter values. As mentioned

efore, we expect that the offline unreliability curve is always above the
nline one, as we have built a model which under-estimates the safety
enefit of a PHM system. 

.5. Results 

Fig. 10 shows the two unreliability curves obtained using the two
ethods described above. The bars in Fig. 10 represent the 68% two-

ided confidence interval of the MC simulation error, both in the on-line
nd off-line setting. From the analysis of the Figure, it seems fair to say
hat the proposed reliability model is accurate, as the two curves are
lose to each other. Notice that the difference between the two curves
ncreases with time, meaning that there are no prediction instants at
hich our model over-estimates the component stopping probability. 

. Conclusion 

In this work, we have presented a novel general framework to com-
ute the reliability of a PHM-equipped component. The modeling frame-
ork proposed applies to safety critical components and risk-averse con-

exts (e.g., applications of the nuclear, aerospace, oil and gas industries),
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here the main concern is to prevent the component from unexpected
ailures. 

The proposed framework is based on time-variant prognostic metrics
f literature ( FP, FN and 𝑃 𝛼

𝜆
) and allows deriving a conservative, analytic

odel to estimate the failure probability. Application to a mechanical
omponent subject to fatigue degradation has shown that the reliability
stimate is close to that obtained from real-time simulation and always
nder-estimating it. 

Further research work is ongoing to investigate the application of
he developed reliability model to other engineering applications and to
ropose further improvements in the reliability model, e.g., for relaxing
ome conservative assumptions or approximations. 

In particular, future research work will focus on the extension of
he proposed approach to multi-component systems [28,29] . This will
equire to encode the diagnostic performance metrics in the proposed
eliability model, so as to give due account to the possible system fail-
re paths corresponding to the different degradation evolutions of its
omponents. 
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