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It is generally believed that, when a linguistic item acquires a new meaning, its

overall frequency of use rises with time with an S-shaped growth curve. Yet, this

claim has only been supported by a limited number of case studies. In this paper,

we provide the first corpus-based large-scale confirmation of the S-curve in language

change. Moreover, we uncover another generic pattern, a latency phase preceding

the S-growth, during which the frequency remains close to constant. We propose a

usage-based model which predicts both phases, the latency and the S-growth. The

driving mechanism is a random walk in the space of frequency of use. The underlying

deterministic dynamics highlights the role of a control parameter which tunes the

system at the vicinity of a saddle-node bifurcation. In the neighborhood of the

critical point, the latency phase corresponds to the diffusion time over the critical

region, and the S-growth to the fast convergence that follows. The durations of

the two phases are computed as specific first passage times, leading to distributions

that fit well the ones extracted from our dataset. We argue that our results are not

specific to the studied corpus, but apply to semantic change in general.
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INTRODUCTION

Language can be approached through
three different, complementary perspectives.
Ultimately, it exists in the mind of language
users, so that it is a cognitive entity, rooted
in a neuro-psychological basis. But language
exists only because people interact with each
other: It corresponds to a convention among
a community of speakers, and answers to
their communicative needs. Thirdly, lan-
guage can be seen as something in itself:
An autonomous, emergent entity, obeying its
own inner logic. If it was not for this third
Dasein of language, it would be less obvious
to speak of language change as such.

The social and cognitive nature of lan-
guage informs and constrains this inner con-
sistency. Zipf’s law, for instance, may be seen
as resulting from a trade-off between the ease
of producing the utterance, and the ease of
processing it [1]. It relies thus both on the
cognitive grounding of the language, and on
its communicative nature. Those two exter-
nal facets of language, cognitive and socio-
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logical, are similarly expected to channel the
regularities of linguistic change. Modeling at-
tempts (see [2] for an overview) have explored
both how socio-linguistic factors can shape
the process of this change [3, 4] and how this
change arises through language learning by
new generations of users [5, 6]. Some mod-
els also consider mutations of language itself,
without providing further details on the so-
cial or cognitive mechanisms of change [7].
In this paper, we adopt the view that lan-
guage change is initiated by language use,
which is the repeated call to one’s linguis-
tic resources in order to express oneself or to
make sense of the linguistic productions of
others. This approach is in line with exem-
plar models [8] and related works, such as the
Utterance Selection Model [9] or the model
proposed by Victorri [10], which describes an
out-of-equilibrium shaping of semantic struc-
ture through repeated events of communica-
tion.

Leaving aside socio-linguistic factors, we
focus on a cognitive approach of linguistic
change, more precisely of semantic expan-
sion. Semantic expansion occurs when a new
meaning is gained by a word or a construc-
tion (we will henceforth refer more vaguely
to a linguistic ‘form’, so as to remain as gen-
eral as possible). For instance, way, in the
construction way too, has come to serve as
an intensifier (e.g. ‘The only other news-
paper in the history of Neopia is the Ugga
Ugg Times, which, of course, is way too
prehistoric to read.’ [11]). The fact that
polysemy is pervasive in any language [12]
suggests that semantic expansion is a com-
mon process of language change and happens
constantly throughout the history of a lan-
guage. Grammaticalization [13] — a process
by which forms acquire a (more) grammatical
status, like the example of way too above —
and other interesting phenomena of language
change [14, 15], fall within the scope of se-
mantic expansion.

Semantic change is known to be associated
with an increase of frequency of use of the

form whose meaning expands. This increase
is expected indeed: As the form comes to
carry more meanings, it is used in a broader
number of contexts, hence more often. This
implies that any instance of semantic change
should have its empirical counterpart in the
frequency rise of the use of the form. This rise
is furthermore believed to follow an S-curve.
The main reference on this phenomenon re-
mains undisputedly the work of Kroch [16],
which unfortunately grounds his claim on a
handful of examples only. It has nonetheless
became an established fact in the literature
of language change [17]. The origin of this
pattern largely remained undiscussed, until
recently: Blythe & Croft [18], in addition to
an up-to-date aggregate survey of attested
S-curves patterns in the literature (totaliz-
ing about forty cases of language change),
proposed a modeling account of the S-curve.
However, they show that, in their framework,
the novelty can rise only if it is deemed better
than the old variant, a claim which clearly
does not hold in all instances of language
change. Their attempt also suffers, as most
modeling works on the S-curve, from what
is known as the Threshold Problem, the fact
that a novelty will fail to take over an entire
community of speakers, because of the iso-
lated status of an exceptional deviation [19],
unless a significant fraction of spontaneous
adopters support it initially.

On the other hand, the S-curve is not
a universal pattern of frequency change in
language. From a recent survey of the fre-
quency evolution of 14 words relating to cli-
mate science [20], it appears that the S-
curve could not account for most of the fre-
quency changes, and that a more general
Bass curve would be appropriate instead.
Along the the same line, Ghanbarnejad et al.
[21] investigated thirty instances of language
change: 10 regarding the regularization of
tense in English verbs (e.g. cleave, clove,
cloven > cleave, cleaved, cleaved), 12 relat-
ing to the transliteration of Russian names in
English (e.g. Stroganoff > Stroganov), and



4

eight to spelling changes in German words
(ss > ß > ss) following two different orto-
graphic reforms (in 1901 and 1996). They
showed that the S-curve is not universal and
that, in some cases, the trajectory of change
rather obeys an exponential. This would
be due to the preponderance of an exter-
nal driving impetus over the other mecha-
nisms of change, among which social imita-
tion. The non-universality of the S-curve
contrasts with the survey in [18], and is prob-
ably due to the specific nature of the inves-
tigated changes (which, for the spelling ones,
relates mostly to academic conventions and
affects very little the language system). This
hypothesis would tend to be confirmed by
the observation that, for the regularization of
tense marking, an S-curve is observed most
of the time (7 out of 10). It must also be
stressed that none of these changes are se-
mantic changes.

In this paper, we provide a broad corpus-
based investigation of the frequency patterns
associated with about four hundred semantic
expansions (about tenfold the aggregate sur-
vey of Blythe & Croft [18]). It turns out that
the S-curve pattern is corroborated, but must
be completed by a preceding latency part, in
which the frequency of the form does not sig-
nificantly increase, even if the new meaning
is already present in the language. This sta-
tistical survey also allows to obtain statisti-
cal distributions for the relevant quantities
describing the S-curve pattern (the rate, the
width, and the length of the preceding la-
tency part).

Aside from this data foraging, we provide
a usage-based model of the process of se-
mantic expansion, implementing basic cogni-
tive hypotheses regarding language use. By
means of our model, we relate the micro-
process of language use at the individual
scale, to the observed macro-phenomenon of
a recurring frequency pattern occurring in se-
mantic expansion. The merit of this model
is to provide a unified theoretical picture of
both the latency and the S-curve, which are

understood in relation with Cognitive Lin-
guistics notions such as inference and seman-
tic organization. It also predicts that the sta-
tistical distributions for the latency time and
for the growth time should be of the same
family as the Inverse Gaussian distribution,
a claim which is in line with our data survey.

QUANTIFYING CHANGE FROM

CORPUS DATA

We worked on the French textual database
Frantext [22], to our knowledge the only tex-
tual database allowing for a reliable study
covering several centuries (see Material and
Methods and Appendix C 2). We studied
changes in frequency of use for 408 forms
which have undergone one or several semantic
expansions, on a time range going from 1321
up to nowadays. We choose forms so as to fo-
cus on semantic expansions leading to a func-
tional meaning — such as discursive, preposi-
tional, or procedural meanings. Semantic ex-
pansions whose outcome remains in the lexi-
cal realm (as the one undergone by sentence,
whose meaning evolved from ‘verdict, judg-
ment’ to ‘meaningful string of words’) have
been left out. Functional meanings indeed
present several advantages: They are often
accompanied by a change of syntagmatic con-
text, allowing to track the semantic expan-
sion more accurately (e.g. way in way too
+ adj.); they are also less sensitive to socio-
cultural and historical influences; finally, they
are less dependent on the specific content of
a text, be it literary or academic.

The profiles of frequency of use extracted
from the database are illustrated on Fig. 1
for nine forms. We find that 295 cases (which
makes up more than 70% of the total) display
at least one sigmoidal increase of frequency in
the course of their evolution, with a p-value
significance of 0.05 compared to a random
growth. We provide a small selection of the
observed frequency patterns (Fig. 2), whose
associated logit transforms (Fig. 3) follows a
linear behavior, indicative of the sigmoidal
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nature of the growth (see Material and Meth-
ods). We thus find a robust statistical valida-
tion of the sigmoidal pattern, confirming the
general claim made in the literature.

Furthermore, we find two major phenom-
ena besides this sigmoidal pattern. The first
one is that, in most cases, the final plateau
towards which the frequency is expected to
stabilize after its sigmoidal rise is not to be
found: The frequency immediately starts to
decrease after having reached a maximum
(Fig. 1). However, such a decrease process
is not symmetrical with the increase, in con-
trast with other cases of fashion-driven evo-
lution in language, e.g. first names distribu-
tion [23]. Though this decrease may be, in a
few handful of cases, imputable to the disap-
pearance of a form (ex: après ce, replaced in
Modern French by après quoi), in most cases
it is more likely to be the sign of a narrowing
of its uses (equivalent, then, to a semantic
depletion).

The second feature is that the fast growth
is most often (in 69 % of cases) preceded by
a long latency up to several centuries, dur-
ing which the new form is used, but with
a comparatively low and rather stable fre-
quency (Fig. 2). How the latency time is
extracted from data is explained in Materi-
als & Methods. One should note that the
latency times may be underestimated: If the
average frequency is very low during the la-
tency part, the word may not show up at all
in the corpus, especially in decades for which
the available texts are sparse. The pattern
of frequency increase is thus better conceived
of as a latency followed by a growth, as ex-
emplified by de toute façon (Fig. 4) — best
translated by anyway in English, since the
present meanings of these two terms are very
close, and remarkably, despite quite different
origins, the two have followed parallel paths
of change.

To our knowledge, this latency feature has
not been documented before, even though a
number of specific cases of sporadic use of the
novelty before the fast growth has been no-

ticed. For instance, it has been remarked in
the case of just because that the fast increase
is only one stage in the evolution [24]. Other
examples have been mentioned [25], but it
was described there as the slow start of the
sigmoid. On the other hand, the absence of
a stable plateau has been observed and theo-
rized as a ‘reversible change’ [26] or a ‘change
reversal’ [27], and was seen as an occasional
deviation from the usual S-curve, not as a
pervasive phenomenal feature of the evolu-
tion. We rather interpret it as an effect of the
constant interplay of forms in language, re-
sulting in ever-changing boundaries for most
of their respective semantic dominions.

In the following, we propose a model de-
scribing both the latency and the S-growth
periods. The study of this decrease of fre-
quency following the S-growth is left for fu-
ture work.

MODEL

A cognitive scenario

To account for the specific frequency pat-
tern evidenced by our data analysis, we pro-
pose a scenario focusing on cognitive aspects
of language use, leaving all socio-linguistic ef-
fects back-grounded by making use of a rep-
resentative agent, mean-field type, approach.
We limit ourselves to the case of a compe-
tition between two linguistic variants, given
that most cases of semantic expansion can
be understood as such, even if the two com-
peting variants cannot always be explicitly
identified. Indeed, the variants need not be
individual forms, and can be schematic con-
structions, paradigms of forms, or abstract
patterns. Furthermore, the competition is
more likely to be local, and to involve a spe-
cific and limited region of the semantic ter-
ritory. If the invaded form occupies a large
semantic dominion, then loosing a competi-
tion on its border will only affect its meaning
marginally, so that the competition can fail
to be perceptible from the point of view of
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FIG. 1. Frequency evolution on the whole time range (1321-2020) of nine different forms. Each

blue bar shows the frequency associated to a decade. Frequency has been multiplied by a 105 factor

for an easier reading.

the established form.

The idealized picture is therefore as such:
Initially, in some concept or context of use
C1, one of the two variants, henceforth noted
Y , is systematically chosen, so that it conven-
tionally expresses this concept. The question
we address is thus how a new variant, say X,
can be used in this context and eventually
evict the old variant Y ?

The main hypothesis we propose is that
the new variant almost never is a brand new
merging of phonemes whose meaning would
pop out of nowhere. As Haspelmath high-
lights [28], a new variant is almost always a
periphrastic construction, i.e., actual parts of
language, put together in a new, meaning-
ful way. Furthermore, such a construction,
though it may be exapted to a new use, may
have showed up from time to time in the time

course of the language history, in an entirely
compositional way; this is the case for par
ailleurs, which incidentally appears as early
as the xivth in our corpus, but arises as a con-
struction in its own right during the first part
of the xixth century only. In other words,
the use of a linguistic form X in a context
C1 may be entirely new, but the form X was
most probably already there in another con-
text of use C0, or equivalently, with another
meaning.

We make use of the well-grounded
idea [29] that there exists links between con-
cepts due to the intrinsic polysemy of lan-
guage: There are no isolated meanings, as
each concept is interwoven with many oth-
ers, in a complicated tapestry. These links
between concepts are asymmetrical, and they
can express both universal mappings between
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FIG. 2. Extracted pattern of frequency rise for nine selected forms. The latency period and the

S-growth are separated by a red vertical line.

concepts [30, 31] and cultural ones (e.g. en-
trenched metaphors [32]). As the concep-
tual texture of language is a complex network
of living relations rather than a collection of
isolated and self-sufficient monads, semantic
change is expected to happen as the natu-
ral course of language evolution and to occur
repetitively throughout its history, so that
at any point of time, there are always sev-
eral parts of language which are undergoing
changes. The simplest layout accounting for
this network structure in a competitive situa-
tion consists then in two sites, such that one
is influencing the other through a cognitive

connexion of some sort.

Model formalism

We now provide details on the modeling of
a competition between two variants X and Y
for a given context of use, or concept, C1, also
considering the effect exerted by the related
context or concept C0 on this evolution.
• Each concept Ci, i = 0, 1, is represented

by a set of exemplars of the different linguistic
forms. We note N i

µ(t) the number at time t of
encoded exemplars (or occurrences) of form
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FIG. 3. Logit transforms of the S-growth part of the preceding curves. Red dots correspond to

data points and the green line to the linear fit of this set of points. The r2 coefficient of the linear

fit is displayed as well.

µ ∈ {X, Y }, in context Ci, in the memory, of
the representative agent.

• The memory capacity of an individual
being finite, the population of exemplars at-
tached to each concept Ci has a finite size
Mi. For simplicity we assume that all mem-
ory sizes are equal (M0 = M1 = M). As we
consider only two forms X and Y , for each i
the relation N i

X(t)+N i
Y (t) = M always hold:

We can focus on one of the two forms, here

X, and drop out the form subscript, granted
that all quantities refer to X.

• The absolute frequency xit of form X at
time t in context Ci — the fraction of ‘balls’
of type X in the bag attached to Ci — is
thus given by the ratio N i(t)/M . In the ini-
tial situation, X and Y are assumed to be
established conventions for the expression of
C0 and C1 respectively, so that we start with
N0(t = 0) = M and N1(t = 0) = 0.
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FIG. 4. Overall evolution of the frequency of use of de toute façon (main panel), with focus on the

S-shape increase (left inner panel), whose logit transformation follows a linear fit (right inner panel)

with an r2 of 0.996. Preceding the S-growth, one observes a long period of very low frequency (up

to 35 decades).

• Finally, C0 exerts an influence on con-
text C1, but this influence is assumed to be
unilateral. Consequently, the content of C0

will not change in the course of the evolu-
tion and we can focus on C1. An absence
of explicit indication of context is thus to be
understood as referring to C1.

The dynamics of the system runs as fol-
lows. At each time t, one of the two lin-
guistic forms is chosen to express concept C1.
The form X is uttered with some probability
P (t), to be specified below, and Y with prob-
ability 1 − P (t). In order to keep constant
the memory size of the population of occur-
rences in C1, a past occurrence is randomly
chosen (with a uniform distribution) and the
new occurrence takes its place. This dynam-
ics is then repeated a large number of times.
Note that this model focuses on a speaker

perspective (for alternative variants, see Ap-
pendix B 1).

We want to explicit the way P (t) depends
on x(t), the absolute frequency of X in this
context at time t. The simplest choice would
be P (t) = x(t). However, we want to take
into account several facts. As context C0

exerts an influence on context C1, denoting
by γ the strength of this influence (see Ap-
pendix B 2 for an extended discussion on this
parameter), we assume the probability P to
rather depend on an effective frequency f(t)
(Fig. 5A),

f(t) =
N1(t) + γN0(t)

M + γM
=
x(t) + γ

1 + γ
. (1)

We now specify the probability P (f) to se-
lect X at time t as a function of f = f(t).
First, P (f) must be nonlinear. Otherwise,
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the change would occur with certainty as
soon as the effective frequency f of the nov-
elty is non-zero: That is, insofar two mean-
ings are related, the form expressing the for-
mer will also be recruited to express the lat-
ter. This change would also start in too
abrupt a way, while sudden, instantaneous
takeovers are not known to happen in lan-
guage change. Second, one should preserve
the symmetry between the two forms, that
is, P (f) = 1 − P (1 − f), as well as verify
P (0) = 0 and P (1) = 1. Note that this sym-
metry is stated in terms of the effective fre-
quency f instead of the actual frequency x,
as production in one context always accounts
for the contents of neighboring ones.

For the numerical simulations, we made
the following specific choice which satisfies
these constraints:

P (f) =
1

2

{
1 + tanh

(
β
f − (1− f)√
f(1− f)

)}
, (2)

where β is a parameter governing the non-
linearity of the curve. Replacing f in terms of
x, the probability to choose X is thus a func-
tion Pγ(x) of the current absolute frequency
x:

Pγ(x) =
1

2

{
1 + tanh

(
β

2x− 1 + γ√
(x+ γ)(1− x)

)}
(3)

Analysis: Bifurcation and latency time

The dynamics outlined above (Fig. 5B) is
equivalent to a random walk on the segment
[0; 1] with a reflecting boundary at 0 and an
absorbing one at 1, and with steps of size
1/M . The probability of going forward at site
x is equal to (1−x)Pγ(x), and the probability
of going backward to x(1− Pγ(x)).

For large M , a continuous, deterministic
approximation of this random walk leads, af-
ter a rescaling of the time M t → t, to a
first order differential equation for x(t):

ẋ = Pγ(x)− x . (4)

This dynamics admits either one or three
fixed points (Fig. 6A), x = 1 always being
one. Below a threshold value γc, which de-
pends on the non-linearity parameter β, a
saddle-node bifurcation occurs and two other
fixed points appear close to a critical fre-
quency xc. The system, starting from x = 0,
is then stuck at the smallest stable fixed
point. The transmission time, i.e. the time
required for the system to go from 0 to 1, be-
comes therefore infinite (Fig. 6B). Above the
threshold value γc, only the fixed point x = 1
remains, so that the new variant eventually
takes over the context for which it is com-
peting. Our model thus describes how the
strengthening of a cognitive link can trigger
a semantic expansion process.

Slightly above the transition, a strangle-
hold region appears where the speed almost
vanishes. Accordingly, the time spent in this
region diverges. The frequency of the new
variant will stick to low values for a long time,
in a way similar to the latent behavior evi-
denced by our dataset. This latency time in
the process of change can thus be understood
as a near-critical slowing down of the under-
lying dynamics.

Past this deterministic approximation,
there is no more clear-cut transition (Fig. 6B)
and the above explanation needs to be re-
fined. The deterministic speed can be un-
derstood as a drift velocity of the Brownian
motion on the [0; 1] segment, so that in the
region where the speed vanishes, the system
does not move in average. In this region of
vanishing drift, the frequency fluctuates over
a small set of values and does not evolve sig-
nificantly over time. Once it escapes this
region, the drift velocity drives the process
again, and the replacement process takes off.
Latency time can thus be understood as a
first-passage time out of a trapping region.
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FIG. 5. Schematic representation of model mechanisms. (A) Difference between absolute frequency

x and relative frequency f in context C1. Absolute frequency x is given by the ratio ofX occurrences

encoded in C1. Effective frequency f also takes into account the M occurrences contained in the

influential context C0, with a weight γ standing for the strength of this influence. (B) Schematic

view of the process. At each iteration, either X or Y is chosen to be produced and thus encoded

in memory, with respective probability Pγ(x) and 1 − Pγ(x); the produced occurrence is here

represented in the purple capsule. Another occurrence, already encoded in the memory, is uniformly

chosen to be erased (red circle) so as to keep the population size constant. Hence the number of

X occurrences, NX , either increases by 1 if X is produced and Y erased, decreases by 1 if Y

is produced and X erased, or remains constant if the erased occurrence is the same as the one

produced.

NUMERICAL RESULTS

Model simulations

We ran 10, 000 numerical simulations of
the process described above (Fig. 5B), with
the following choice of parameters: β =
0.808, δ = 0.0 and M = 5000, where δ =
(γ − γc)/γc is the distance to the threshold.
The specific value of β has been chosen to
maximize xc. Since xc is the frequency at
which the system gets stuck if γ is slightly
below the threshold, it corresponds to the
assumption that, even if the convention is
not replaced, there is room for synonymic

variation and the new variant can be used
marginally. We chose δ = 0.0 in order for the
system to be purely diffusive in the vicinity
of xc. The choice of M is arbitrary.

Even if this set of parameters remains
the same throughout the different simulation
runs, the quantities describing each of the
10, 000 S-curves generated that way, espe-
cially the rate and the width, will change.
It becomes then possible to obtain the statis-
tical distributions of these quantities. Thus,
while there is no one-to-one comparison be-
tween a single outcome of the numerical pro-
cess and a given instance of change, we can
discuss whether their statistical properties
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FIG. 6. Evidence of a near-critical behavior. (A) Speed ẋ of the deterministic process for each of

the sites, for different values of β and δ = (γ − γc)/γc, the distance to threshold. Depending on

the sign of δ, there is either one or three fixed points. (B) Inverse transmission time (time required

for the system to go from 0 to 1), for the deterministic process (blue dotted line), and for the

averaged stochastic process (green line), as a function of the control parameter δ. Deterministic

transmission time diverges at the transition while averaged stochastic transmission time remains

finite.

are the same.

From the model simulations, data is ex-
tracted and analyzed in two parallel ways.
On one side, simulations provide surrogate
data: We can mimic the corpus data anal-
ysis and count how many tokens of the new
variant are produced in a given timespan (set
equal to M), to be compared with the to-
tal number of tokens produced in this times-
pan. We then extract ’empirical’ latency and
growth times (Fig. 7A), applying the same
procedure as for the corpus data.

One the other side, for each run we track
down the position of the walker, which is the
frequency x(t) achieved by the new variant at
time t. This allows to compute first passage
times. We then alternatively compute ana-
lytical latency and growth times (‘analytical’
to distinguish them from the former ‘empir-
ical’ times) as follows. Latency time is here
defined as the difference between the first-
passage times at the exit and the entrance
of a ‘trap’ region (see Appendix A 2 for ad-
ditional details). Analytical growth time is
defined as the remaining time of the pro-
cess once this exit has been reached. Their

distribution over 10, 000 runs of the process
are fitted with an Inverse Gaussian distri-
bution, which would be the expected distri-
bution if the jump probabilities were homo-
geneous over the corresponding regions (an
approximation then better suited for latency
time than for growth time). Figure 7B shows
the remarkable agreement between the ‘em-
pirical’ and ‘analytical’ approaches, together
with their fits by an Inverse Gaussian distri-
bution.

Crucially, those two macroscopic phenom-
ena, latency and growth, are thus to be un-
derstood as of the same nature, which ex-
plains why their statistical distribution must
be of the same kind. Furthermore, the
boundaries of the trap region leading to
the best correspondence between first pas-
sage times and empirically determined la-
tency and growth times are meaningful, as
they correspond to the region where the un-
certainty on the transmission time signifi-
cantly decreases (Fig. 7C).
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FIG. 7. Numerical simulation of latency and growth times at the critical threshold. (A) Time

evolution of the frequency of produced occurrences (output of a single run). Growth part and

latency part are separated by a red dotted line. The logit transform (with linear fit) of the growth

is shown in the left inset, alongside with the sigmoidal fit of the rescaled frequency of the growth

part (right inset). (B) Distribution of latency times (top) and growth times (bottom) over 10k

processes, extracted from an empirical approach (blue wide histogram) and a first-passage time one

(magenta thin histogram), with their respective Inverse Gaussian fits (in red: Empirical approach;

in green: First-passage time approach). (C) Uncertainty on the transmission time given the position

of the walker. The entrance and the exit of the trap are shown, respectively, by green and magenta

lines. The red dotted line indicates the critical frequency xc. The trap corresponds to the region

where the uncertainty drops from a high value to a low value.

Confrontation with corpus data

Our model predicts that both latency and
growth times should be governed by the same
kind of statistics, Inverse Gaussian being a
suited approximation of those. Inverse Gaus-

sian distribution is governed by two parame-
ters, its mean µ and a parameter λ given by
the ratio µ3/σ2, σ2 being the variance. We
thus try to fit the corpus data with an Inverse
Gaussian distribution (Fig. 8). In both cases,
the Kullback-Leibler divergence between the
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data distribution and the Inverse Gaussian
fit is equal to 0.10. The rate h (slope of the
logit) also follows a non-trivial distribution,
as shown in Appendix A 3.

Although there are short growth times in
the frequency patterns of the forms we stud-
ied, below six decades they are not described
by enough data points to assess reliably the
specificity of the sigmoid fit. On Fig. 8 there
are therefore no data for these growth times.
The Inverse Gaussian fit is not perfect, and
is not expected to be: The model only pre-
dicts the distribution to be of the same fam-
ily as the Inverse Gaussian. Satisfyingly,
among a set of usual distributions (exponen-
tial, Poisson, Gaussian, Maxwellian), the In-
verse Gaussian proves to be the most ade-
quate for both the growth and the latency
(see Appendix A 3 for additional details).

The main quantitative features extracted
from the dataset are thus correctly mirrored
by the behavior of our model. We confronted
the model with the data on other quanti-
ties, such as the correlation between growth
time and latency time, two quantities which
our model predicts to be independent. There
again, the model proves to match appropri-
ately these quantitative aspects of semantic
expansion processes (see Appendix A 4).

DISCUSSION

Based on a corpus-based analysis of fre-
quency of use, we have established two robust
stylized facts of semantic change: An S-curve
of frequency growth, already evidenced in
the literature, and a preceding latency period
during which the frequency remains more or
less constant, typically at a low value. We
have proposed a model predicting that these
two features, albeit qualitatively quite differ-
ent, are two aspects of one and the same phe-
nomenon.

Our analysis is based on the a priori as-
sumption that a frequency rise is caused by
a semantic expansion. An alternative would
be the reverse mechanism, that semantic ex-

pansion is induced by an increase in the fre-
quency of use. Actually, it is not infrequent
to find unambiguous traces of the semantic
expansion throughout and even before the la-
tency phase. Also, we often looked for forms
in a syntactic context compatible only with
the new meaning — e.g. for j’imagine we
searched specific intransitive patterns, like “il
y a de quoi, j’imagine, les faire étrangler”
(1783) (“There’s good reason to have them
strangled, I suppose”) — so that, in such
cases, it leaves no doubt that the latency
phase and the frequency rise are posterior to
the semantic expansion. The model, how-
ever, does not exclude that both mechanisms
are at work, as discussed in Appendix B 2.

The detailed hypotheses on which our
model lies are well-grounded on claims from
Cognitive Linguistics: Language is resilient
to change (non-linearity of the P function);
language users have cognitive limitations; the
semantic territory is organized as a network
whose neighboring sites are asymmetrically
influencing each other. The overall agree-
ment with empirical data tends to suggest
that language change may indeed be cogni-
tively driven by semantic bridges of different
kinds between the concepts of the mind, and
constrained by the mnemonic limitations of
this very same mind.

According to our model, the onset of
change depends on the strength of the con-
ceptual link between the source context and
the target context: If the link is strong
enough, that is, above a given threshold, it
serves as a channel so that a form can ‘in-
vade’ the target context and then oust the
previously established form. In a sense, the
sole existence of this cognitive mapping is
already a semantic expansion of some sort,
yet not necessarily translated into linguistic
use. Latency is specifically understood as re-
sulting from a near-critical behavior: If the
link is barely strong enough for the change
to take off, then the channel becomes ex-
tremely tight and the invasion process slows
down drastically. These narrow channels are
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FIG. 8. Inverse Gaussian fit of the latency times TL (left) and the growth times w (right), extracted

from corpus data. Data points are shown by blue dots, the Inverse Gaussian fit being represented

as a full red curve with star-shaped marks. The dashed red lines represent the standard deviation

from the model. We detail in Materials & Methods how we extracted these growth times and

latency times from corpus data.

likely to be found between lexical and gram-
matical meanings [33, 34]. This would ex-
plain why the latency-growth pattern is much
more prominent in the processes of grammat-
icalization, positing latency as a phenomeno-
logical hint of this latter category.

As acknowledged by a few authors [35, 36],
it is interesting to note that, in the literature,
the S-growth is given two very different in-
terpretations. According to the first one, an
S-curve describes the spread of the novelty in
a community of speakers [4, 37–39], as for the
second one, it reflects the spread in language
itself, the new variant being used in an in-
creasing number of contexts [17, 40–42]. Ac-
cording to the interpretation we give to our
model, the diffusion chiefly happens over the
linguistic memory of the whole speech com-
munity. It does not involve some binary con-
version of individuals towards the new vari-
ant; it is a spread within the individuals
rather than a spread among them. On the
other hand, the S-curve arises in the taking
over a single context, and does not rely on a
further diffusion over additional contexts to
appear. Though the latter spread needs thus

not be responsible for the S-shape, it may
nonetheless influence the evolution in other
ways (e.g. the total duration). The interplay
between the specific features of an S-curve
and the structure of the conceptual network
remains to be investigated.

We note, however, that our model
may be given a different, purely socio-
linguistic interpretation, as discussed in Ap-
pendix B 3. Nevertheless, several arguments
argue against this interpretation. First,
the semantic evolution involves very long
timescales, up to several centuries [41]; sec-
ond, societal diffusion, of a new technological
device for instance, is associated to a specific
scaling law between the steep and duration
of the S-curve of -2/3 [43], which is very dif-
ferent from the behavior of the forms in our
dataset, where no scaling law is to be found
(the two parameters are related by a trivial
-1.0 exponent; see Appendix A 4).

Recently, the nature of linguistic change
has been investigated through different case
studies, separating internal (imitation be-
tween members of a community) and exter-
nal (e.g. linguistic reforms from language
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academies) factors of change [21]. While in-
ternal factors give rise to an S-curve, external
factors lead to an exponential growth of fre-
quency; hence, the S-curve is not the only
dynamics by which language change can oc-
cur. However, in this work, agents choose
between the two variants on a binary ba-
sis, and language-based mechanisms, such as
the network asymmetric links at the core of
our own model, would count as an external
mechanism. These strong differences make it
difficult to quantitatively compare their ap-
proach and ours, albeit it is to be agreed
that S-curves contain crucial information on
language change and need to be investigated
and quantified further on. Moreover, as se-
mantic change is seldom driven by external
forces such as linguistic reforms, the expo-
nential pattern is not to be expected in this
case, and indeed we have not found it in our
dataset.

Finally, we argue that our results, though
grounded on instances of semantic expansion
in French, apply to semantic expansion in
general. The time period covered is long
enough (700 years) to exclude the possibil-
ity that our results be ascribable to a spe-
cific historical, sociological, or cultural con-
text. The French language itself has evolved,
so that Middle French and contemporary
French could be considered as two different
languages, yet our analysis apply to both in-
distinctly. Besides, the latency-growth pat-
tern is to be found in other languages; for
instance, although Google Ngram cannot be
used here for a systematic quantitative study,
specific queries for constructions such as way
too, save for, no matter what, yield quali-
tative frequency profiles consistent with our
claims. Our model also tends to confirm the
genericity of this pattern, as it relies on cogni-
tive mechanisms whose universality has been
well evidenced [44, 45].

MATERIALS AND METHODS

Corpus data

We worked on the Frantext corpus [22],
which in 2016 contained 4674 texts and 232
millions of words for the chosen time range.
More details are given in Appendix C 2. It
would have been tempting to make use of the
large database Google Ngram, yet it was not
deemed appropriate for our study, as we ex-
plain in Appendix C 3.

We studied changes in frequency of use for
about 400 instances of semantic expansion
processes in French, on a time range going
from 1321 up to nowadays. See Appendix C 4
for a complete list of the studied forms.

Extracting patterns from corpus data

a. Measuring frequencies We divided
our corpus into 70 decades. Then, for each
form, we recorded the number of occurrences
per decade, dividing this number by the to-
tal number of occurrences in the database for
that decade. The output number is called
here the frequency of the form for the decade,
and is noted xi for decade i. In order to
smooth the obtained data, we replaced xi by
a moving average, that is, for i ≥ i0 + 4, i0
being the first decade of our corpus: xi ←
1
5

∑i
k=i−4 xk .

b. Sigmoids We looked for major in-
creases of frequency. When such a major
shift is encountered, we automatically (see
below) identify frequencies xmin and xmax, re-
spectively at the beginning and the end of
the increasing period. If we respectively note
istart and iend the decades for which xmin and
xmax are reached, then we define the width
(or growth time) w of the increasing period
as w = iend − istart + 1. To quantify the sig-
moidal nature of this growth pattern, we ap-
ply the logit transformation to the frequency
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points between xmin and xmax:

yi = log

(
xi − xmin
xmax − xi

)
. (5)

If the process follows a sigmoid x̃i of equa-
tion:

x̃i = xmin +
xmax − xmin
1 + e−hi−b

, (6)

then the logit transform of this sigmoid sat-
isfies: ỹi = h i+ b . We thus fit the yi’s given
by (5) with a linear function, which gives the
slope (or rate) h associated with it, the resid-
ual r2 quantifying the quality of the fit. The
boundaries istart and iend have been chosen
so as to maximize w, with the constraint that
the r2 of the linear fit should be at least equal
to a value depending on the number of points,
in order to insure that the criterion has a p-
value significance of less than 0.05 according
to a null model of frequency growth. Further
explanations are provided in Appendix A 1.

c. Latency period In most cases (69%
of sigmoidal growths), one observes that the
fast increasing part is preceded by a phase
during which the frequency remains constant
or nearly constant. The duration of this part,
denoted by TL (latency time) in this paper,
is identified automatically as follows. Start-
ing from the decade istart, previous decades j
are included in the latency period as long as
they verify |xj − xmin| < 0.15 ∗ (xmax− xmin)
and xj > 0, and cease to be included either
as soon as the first condition is not verified,
or if the second condition does not hold for a
period longer than 5 decades. Then the start
ilat of the latency point is defined as the low-
est j verifying both conditions, so that TL is
given by TL = istart − ilat.

DATA AVAILABILITY

The datasets supporting this article have
been uploaded as part of the supplementary
material (see Appendix C 1).
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Appendix A: Further data analysis

1. Null model of frequency growth and significance of the sigmoidal fit

To evaluate the significance of the sigmoidal fit, we need to compare it with a null model
of frequency growth. However, what would be the null hypothesis in this case is far from
obvious. Given that the frequency has risen from xmin to xmax in a time w, which model of
growth would be the closest to an assumption-free one? As the frequency can be rescaled
using the following formula:

x← x− xmin
xmax − xmin

, (A1)

the matter can be simplified by considering a growth from 0 to 1.

a. Stochastic null model

A simple choice is to consider the following random walk, with Gaussian jumps at each
time step:

xt+1 = xt +
1

w
(1 + ηt) , (A2)

where ηt is a random term drawn from a normal distribution of mean 0 and variance 1, with
the initial condition x0 = 0. The mean process would be a linear growth from 0 to 1 with w
steps of size 1/w.

In the main text, we extracted the S-curve according to the following procedure:

• search for all pairs tmin and tmax, with tmax − tmin > 5, so that the logit transform of
the data points xt in-between is associated with a linear fit of sufficiently good quality

• retain only the pairs associated with the greatest possible width w (w = tmax−tmin+1);

• select among those ones the pair with the best r2 coefficient of the linear fit of the
logit.

The question is then: what is a linear fit of sufficiently good quality? Now that we have
a null model, we can devise a criterion r2min(w) so that the fit is associated with a p-value
below 0.05: if the r2 of the fit is higher than this criterion, then the sigmoidal fit is deemed
significant.

To do so, for a given value of w, we generated 50, 000 growth processes and computed the
ratio p of processes obeying the criterion. This ratio gives thus the p-value associated with
the criterion. The criterion was then increased so as to pass below the threshold p < 0.05
(Fig. 9). The same can be done for any threshold of significance (e.g. p < 0.001). As can be
seen from Fig. 9, a very high criterion must be set to insure significance for low number of
points (a width of T is associated with T − 2 points). The criterion is non-monotonic and
increases for large number of points. Indeed, in these cases, the noise 1/w becomes weak and
the process tends to a linear curve, which can be easily compatible with a sigmoid. In our
data survey, we used the criterions associated with the p < 0.05 threshold of significance.
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b. Alternative null models

We could have used other null models. A possibility we investigated is the following. We
posit a saturating growth function G(x) given by :

G(x) =
[
1− (x− 1)2n

]1/2n
, (A3)

where n is a positive integer. This insures an infinite derivative at x = 0 and a null derivative
at x = 1: the process can start as quickly and end as slowly as one wishes. The outcome
weakly depends on this parameter n, which can be set to 1. Then, the null process of growth
would be as follows:

xt+1 = xt + ηt , (A4)

where ηt is drawn from the distribution :

P (ηt, xt, t)) =
1

Z
exp

{
− λ(ηt − xt)
G(t/w)− xt

}
, (A5)

with λ a parameter that we set to 5.
This model allows for a wider diversity of processes (there can be sudden jumps), but

can hardly be qualified as a null hypothesis. Also, it enforces a strict monotony, which is
frequent in the data, but not necessary. Nonetheless, it gave rise to criterions close to those

FIG. 9. Minimal quality of the linear fit of the logit transform so as to insure the significance of a

sigmoidal fit of the data as compared to a random null model of frequency growth.
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found in the preceding null model. As a conclusion, we can only stress that a null model
of growth is already an assumption of some sort, and it is unclear how much theoretical a
priori is feeding the null hypothesis.

c. Robustness of the sigmoidal fit

We can alternatively address the statistical robustness of the sigmoidal fit. To do so, we
compute, for each point, the expected fluctuation that the sigmoidal model would predict
for a finite sample size associated with the number of occurrences Ñt characterizing decade.
t We make use of the standard confidence interval of 95% probability:

ñt = x̃tÑt ± 1.96

√
x̃t(1− x̃t)Ñt , (A6)

where ñt is the expected number of occurrences, and x̃t the probability of the form to be
produced, according to the sigmoidal fit:

x̃t(h, b, xmin, xmax) = xmin +
xmax − xmin
1 + e−ht−b

. (A7)

Therefore, the actual number xt of occurrences must obey, for the sigmoidal fit x̃t to be
consistent with the data:

x̃t − 1.96

√
x̃t(1− x̃t)

Ñt

< xt < x̃t + 1.96

√
x̃t(1− x̃t)

Ñt

, ∀t ∈ [tstart : tend], (A8)

where tstart and tend are the time boundaries of the extracted pattern, respectively associated
with frequencies xmin and xmax.

Note that, as the data xt is a gliding average of the frequency, the number of occurrences
of decade t is not straightforwardly given by the number Nt of occurrences in the corpus.
This is why we made use in the above formulae of an ‘effective’ number of occurrences
associated with decade t, Ñt, given by:

Ñt =
1

W

∑
k = t−W + 1tNk . (A9)

Another remark to be made is that these expected fluctuations are due to the finite
size of the sample. Other sources of fluctuations are nonetheless to be expected, such as
inhomogeneities in the sample (e.g. if the linguistic data in the corpus is dominated by a
handful of authors). Therefore, fluctuations in equation (A6) should be considered as lower
bounds for the true fluctuations, which we cannot know precisely.

The robustness of all sigmoidal patterns extracted from our data have therefore been
checked through equation (A8). The result of this check, for each pattern, has been re-
ported on the Table of all studied forms (section C 4). For 292 patterns out of the 338
extracted (approximately 86% of the total), all data points lie within the confidence interval
(Fig. 10a), which proves that the data is consistent with the sigmoidal fit. For the remaining
46 patterns, one or several datapoints lied outside the confidence interval (Fig. 10b). As the
fluctuations are underestimated, we did not withdraw these patterns from the computation
of the statistical patterns. This test serves only to assess the consistency of at least 86 % of
the sigmoidal patterns, supporting our claim that the present statistical analysis confirms
the robustness of the S-curve agreed on in the literature.
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(a) (b)

FIG. 10. Frequency data (magenta dots) associated with the extracted pattern from (a) tout

de même and (b) en fait. The sigmoidal model is shown in cyan and the associated confidence

interval is shown in red dashed lines. All datapoints lie within this confidence interval in the first

case (tout de même). In the second case (en fait), datapoints associated with decades 1941-1950

and 1951-1960 lie outside the interval. Therefore, the S-curve may not be a reliable fit of the data.

2. Boundaries of the trap region

The analytical definitions, used to compute the latency and growth times in the model,
are based on first passage times. In this section we outline the procedure we followed to
compute these times.

a. Analytical computation of mean first passage times

Let us note Tn→m the first passage time at site m, starting at site n, 0 ≤ n, m ≤M . This
is a random variable for which one can write down a recursion equation for its generatrix
function:〈

eλTn→m
〉

= Rn

〈
eλ(Tn+1→m+1)

〉
+ Ln

〈
eλ(Tn−1→m+1)

〉
+ (1− Ln −Rn)

〈
eλ(Tn→m+1)

〉
, (A10)

where Rn and Ln are, respectively, the forward and backward jump probabilities, and 〈.〉
denotes the average. We recall that n = 0 is a reflecting boundary (L0 = 0, R0 > 0), and
n = M an absorbing boundary (RM = LM = 0). We have Tn→n = 0, and for the left
boundary condition, that is for n = 0:〈

eλT0→m
〉

= R0

〈
eλ(T1→m+1)

〉
+ (1−R0)

〈
eλ(T0→m+1)

〉
. (A11)

The first and second derivatives of equation (A10) with respect to λ leads for λ = 0 to
recurrence relations for the first and second moment of Tn→m, respectively.
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More specifically, we can compute the first two moments of the first passage time between
one site and its immediate successor, Ti→i+1:

〈Ti→i+1〉 = ti (A12)

And: 〈
T 2
i→i+1

〉
= ui , (A13)

Where the ti’s and ui’s are iteratively computed from:
t0 =

1

R0

u0 =
2t0 − 1

R0

(A14)

And: 
ti =

1

Ri

+
Li
Ri

ti−1

ui = 2t2i +
Li
Ri

ui−1

. (A15)

From this, we can easily compute the first two moments for any Tn→m:

µ (Tn→m) =
m−1∑
k=n

tk (A16)

And:

σ2 (Tn→m) =
m−1∑
k=n

(
uk − t2k

)
(A17)

b. Trap boundaries

In the main text, we explain latency time and growth time as first passage times. However,
these two quantities are both empirically extracted from the macroscopic pattern obtained
at the end of a run, in a procedure exactly transposed from the corpus data treatment. The
question is then: Which trap boundaries nin and nout should we set in order for the properly
defined time Tnin→nout to correspond statistically to the empirically defined latency time?

Besides, growth time can be seen as well as a first passage time between two sites. Though
the exit site should be M , it is more appropriate to define a cut-off nlast. Indeed, there is
a discrepancy between the fact that, close to the absorbing point, the walk gets slowed
down again, and that, in this region, the new variant is almost always produced anyway. In
other terms, growth time, as extracted from the time evolution of the ratio of produced new
variant occurrences, is not sensitive whether the end of the walk is reached or not.

Let us note µg and σ2
g , and µlat and σ2

lat, respectively the mean and the variance of the
growth and latency times (obtained from the distributions of those empirically extracted
quantities from ten thousand runs). Then, over a reasonable range of n, we look for m so
that µ (Tn→m) is as close as possible to µg; we then choose the pair (n;m) such that σ2 (Tn→m)
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TABLE I. Output of three statistical tests (Kullback-Leibler divergence (DKL), Akaike Information

Criterion (AIC) and Bayesian information Criterion (BIC), to compare different fits of the growth

times distribution.

Test Poisson Maxwellian Gaussian Inverse Gaussian

DKL 0.21 0.26 0.35 0.10

AIC 227 259 323 152

BIC 231 263 331 160

is as close as possible to σ2
g . This pair defines thus the region of growth, (nout;nlast). We

then choose nin so as to fit the mode of the empirical latency distribution, assuming that
first passage time is distributed according to an Inverse Gaussian (which entails that the
mode is a known function of µ and σ2).

3. Statistical distributions

In the main paper, we presented the statistical distributions of both the latency times and
the growth times obtained from corpus data, and proposed an Inverse Gaussian fit of the
result, following the theoretical prediction that the distribution should be of the same family
as the Inverse Gaussian. We can now consider whether other usual statistical distributions
could be suited as well to account for the statistical features of our dataset.

a. Growth time

We tried to fit the distribution of growth times with three different usual statistical distri-
butions: Poisson, Maxwellian, and Gaussian (Fig 11). Aside from the Poisson distribution,
the fit is qualitatively inadequate compared to an Inverse Gaussian fit.

We can further assess which of these four trials is to be favored by computing the
Kullback-Leibler divergence between these theoretical proposals and the corpus data. We
remind that the Kullback-Leibler divergence is closely related to the likelihood, and max-
imizing the likelihood is strictly equivalent to minimizing the Kullback-Leibler divergence.
We obtained Kullback-Leibler divergences of 0.21, 0.26, 0.35 and 0.10 for the Poisson,
Maxwellian, Gaussian and Inverse Gaussian distributions, respectively. Other statistical
tests have been performed to account for the difference in the number of parameters be-
tween these distributions (1 for Poisson vs. 2 for the three others) and reported on Table I.
Therefore, even if the Poisson distribution seems adequate, it does not perform much better
than the Maxwellian. This failure is imputable to the tail of the distribution, which is thicker
than what a Poisson distribution would predict. This tail is captured by the Maxwellian,
but the latter distribution fails to reproduce the peak of the distribution.

Comparatively, the Inverse Gaussian fit is significantly better than the other three. It is
adequate for both the peak and the tail. Therefore, albeit the data is not perfectly fit by
the Inverse Gaussian, this distribution displays the right behavior, as we predicted from our
model.
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FIG. 11. Several fits of the distribution of growth times as extracted from corpus data.

b. Latency time

We can do the same for the distribution of latency times. We tried, besides the Inverse
Gaussian, the exponential and the Gaussian distributions, as the Maxwellian and the Poisson
distributions were largely inadequate (Fig. 12).

The same statistical tests as before have been performed to select the best distribution
(Table II). Once more the Inverse Gaussian proves to be superior, even though the expo-
nential also displays the right qualitative behavior. Also, we can compare the parameters
obtained from an optimization fit with the actual mean of the data, which is 8.59. The
mean should be given by the parameter a of the exponential and the parameter µ of both
the Gaussian and the Inverse Gaussian. In this regard, it is clear that the Gaussian can be
ruled out (it predicts a mean of 4.29) while the exponential and the Inverse Gaussian are
consistent with the data (they respectively predict a mean of 7.06 and 9.72). An interesting
difference between the exponential distribution and the Inverse Gaussian one would be that
the mode of the distribution is zero in the former case, and non-zero in the latter. This
feature could be further investigated with a larger amount of data regarding the latency,
so as to clarify the behavior of the distribution in the region of lower values of the latency
time. A finer timescale would also allow to zoom in this region of low latency times, so as
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FIG. 12. Several fits of the distribution of latency times as extracted from corpus data.

TABLE II. Output of three statistical tests (Kullback-Leibler divergence (DKL), Akaike Informa-

tion Criterion (AIC) and Bayesian information Criterion (BIC), to compare different fits of the

latency times distribution.

Test Exponential Gaussian Inverse Gaussian

DKL 0.24 1.71 0.10

AIC 834 1393 717

BIC 837 1400 725

to investigate whether the behavior of the distribution is non-monotonic in this domain, as
would predict the Inverse Gaussian.

Here again, the Inverse Gaussian appears to capture more closely the corpus data than the
other usual statistical distributions, as predicted from the model. It is also worth noticing
that the model predicts that the Inverse Gaussian would be suited for both the growth and
the latency, while the other candidates are appropriate for only one of these quantities (the
growth time for the Poisson distribution, the latency time for the exponential).
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TABLE III. Output of three statistical tests (Kullback-Leibler divergence (DKL), Akaike Informa-

tion Criterion (AIC) and Bayesian information Criterion (BIC), to compare different fits of the

slopes distribution.

Test Maxwellian Gaussian Inverse Gaussian Scaling law fit

DKL 0.14 0.20 0.10 0.14

AIC 243 293 222 252

BIC 240 285 215 244

c. Statistical distribution of the slopes

From the empirical procedure, we can also extract, for both the corpus and numerical
datasets, the statistical distributions of the slopes of the logit transform of the sigmoidal
part. Corpus data (Fig. 13) is best fitted by the Inverse Gaussian, by comparison with
a Maxwellian and a Gaussian. Statistical tests favor consistently the Inverse Gaussian
(Table III). All these three fits have been done without optimization, using the mean and
the variance of the data to compute the parameters accordingly.

FIG. 13. Several fits of the distribution of the slopes as extracted from corpus data.
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Why the distribution of the slopes would follow an Inverse Gaussian is unclear though.
From the scaling relation between the slope and the width (see section A 4), we can derive
that the slopes h must be distributed according to the density ρh given by:

ρh(h) =
e2.10

h2
ρw

(
e2.10

h

)
. (A18)

Assuming for ρw an Inverse Gaussian with parameters obtained from the Inverse Gaussian
fit of the corpus data for the growth time, we can propose an estimate of the statistical
distribution for the slopes. As can be seen on Fig. 13, this curve is qualitatively appropriate,
hinting therefore at the consistency between our different results. The associated Kullback-
Leibler divergence is equal to 0.14, the same as for the Maxwellian, not far from an Inverse
Gaussian fit.

There is another prediction that we can make regarding this matter. If we assume that
the growth is Inverse Gaussian, then according to the scaling law relating the width w and
the slope h (see section A 4):

h ≈ e2,10

w
, (A19)

we can predict that, under the assumption that the width is Inverse Gaussian distributed:

〈h〉 ≈ e2.10
(

1

µw
+

1

λw

)
≈ e2,10

(
1

10.85
+

1

90.36

)
≈ 0.84

(A20)

which is close to what we find in the data (〈h〉 = 0.80).
On the other hand, the distribution of the slopes generated from numerical data is best

fitted by a Gaussian (Fig. 14), with a Kullback-Leibler divergence of 0.009 compared to
0.013 for the Inverse Gaussian.

This may be explained by the fact that an Inverse Gaussian distribution tends to a
Gaussian one whenever parameter λ tends to infinity. The fact that λ is much bigger
compared to µ in numerical data than in corpus data implies that there are more sources
of variation for the growth part of the process in the data than what we considered in the
model. We discuss this issue in the next subsection.

4. Further comparisons with corpus data

In our paper, we show that an Inverse Gaussian distribution is adequate to capture both
latency time and growth time distributions, indicating that these two quantities are of the
same nature, and result from the same mechanism of change. However, the agreement
between our model and the corpus data goes further, as we show in this section.

a. Péclet number

The parameters µ and λ of the Inverse Gaussian distribution scale with the time length
in the same way, so that is is relevant to consider their ratio, which is called the Péclet
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FIG. 14. Inverse Gaussian and Gaussian fits of the distribution of slopes as extracted from numer-

ical data.

number [46]. Note that, because the relation λ = µ3/σ2 holds, the Péclet number is but
the ratio between the squared mean and the variance.

The Péclet number for latency times from corpus data is equal to 2.3 while the model gives
back a Péclet number of 1.4, so they both are of the same order of magnitude. However, for
growth times, we get 10.4 for corpus data, and 63 in the model, so that there is no agreement
between the two.

Actually, this discrepancy is rather expected. Given the definition of the Péclet number,
it means that the variance of the growth time is comparatively greater in the data than it is
in our model. Yet, this can be understood in terms of the latter: Indeed, it has been stressed
that the conceptual network of language is organized as a small-world network [47], and we
have proposed that major semantic changes, characterized by the latency-growth pattern,
would correspond to a leap from a cluster to another. It means that latency involves only
one bridge, so that the set-up we explored should be enough to cover it. Growth, on the
other hand, depends on the cluster size, and on the inner organization of the cluster. It thus
involves a varying number of contexts, which explains why the variance of the growth would
be greater in actual data, leading to a smaller Péclet number.
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(a) (b)

FIG. 15. Pearson coefficient for the correlation between growth time and slope obtained from (a)

corpus data and (b) numerical simulations

Concerning the scale of the process, it could be tempting to compare mean latency
between model and data to find the value of M (size of the memory) which would correspond
to the data. However, the scale entangles both M and the size of the counting window. It
also depends on the total number of involved contexts. There is thus no obvious way to
compare the scales involved in the model and in the data.

b. Growth-Slope correlation and scaling law

Growth and slope are expected to be correlated. The two quantities are convincingly
negatively correlated, both in corpus data (Pearson coefficient of −0.69, Fig.15a) and in our
model (Pearson coefficient also equal to −0.69, Fig.15b).

It is also worthy to consider the possibility of a scaling law between these two quantities,
in line with what has been evidenced for other socio-cultural changes [43], where an exponent
α = −2/3 is found between the rate h and the width w (slope and growth time, respectively).
This exponent differs from the expected −1 exponent which would be expected for pure
sigmoids. Our model also predicts such a scaling behavior with an exponent of −2/3.
However, the corpus data is not characterized by any specific scaling law: The rate h and
the width w are related through a trivial −1 exponent (Fig. 16):

log h = −1.01 logw + 2.10 . (A21)

The discrepancy between the scaling behavior of corpus data and that of numerical data
is yet to be explained. Once more, it could be due to the difference between the model
set-up (one site competition) and the whole process of a semantic expansion (pervasion of a
cluster of the semantic network), but this is purely conjectural.
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FIG. 16. Scaling law between the slope h and the growth time w. The fit is performed on the

average values of the slope h for all different w. The associated r2 is equal to 0.994.

c. Latency-Growth correlation

It may be intuitively expected for latency and growth times to be correlated: The longer
the wait, the more momentum is gained. Yet, according to our model, there is no such
correlation: Latency and growth times, as seen as first passage times in different parts of
a Markov chain, are strictly independent quantities. However, in the empirical procedure,
these two parameters become correlated, for the latency is defined as the time spent in a
region comprised between xtout ± a(1 − xtout), where xtout is the frequency attained at the
beginning of the growth process and a is set to 0.17 (and 0.15 for corpus data). Thus,
the higher this xtout , the smaller the margin, so that a high xtout will be correlated with a
short latency, as well as a shorter growth on average. These two quantities are thus weakly
positively correlated, with a Pearson coefficient of 0.20 (Fig. 17b).

If we now turn to corpus data, we find a Pearson coefficient of 0.19 (Fig.17a). The
correlation between latency and growth is weak, and can be entirely imputed to the details
of the empirical procedure, as we have just seen for the numerical data. It thus means that
growth time and latency time are two independent quantities, so that positing a Markovian
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(a) (b)

FIG. 17. Pearson coefficient for the correlation between growth time and latency time obtained

from (a) corpus data and (b) numerical simulations

nature of language change is in line with findings from corpus data.
The latency and the slope are expected to be weakly negatively correlated as well, as a

result from the scaling relation between the slope and the width. In the data, we find a
Pearson coefficient of -0.16, to be compared with -0.23 in the model.

Appendix B: Model variants

1. Hearer mechanism

The model we propose in the paper describes a mechanism associated with language
production: It is solely based on a speaker perspective. Yet, language change may not come
only from innovation in producing language, but also in understanding it. Actually, these
two aspects cannot be separated: If an innovation is possible in a speaker perspective, it
must also be accessible from a hearer perspective. Be it a speaker or a hearer, a language user
relies on the same cognitive entity. It seems thus necessary to consider model variants where
the novelty can come from this complementary perspective, as well as from a combination
of the two.

a. Hearer variant

Let us consider the same situation as for the listener model: There are two meanings,
C0 and C1, to which are attached a pool of memories of linguistic tokens. Initially, C0 is
populated by X tokens only, while C1 is populated by Y tokens only. Just as context C1

is fed by the memory of C0 when it came to express C1, if a linguistic occurrence yields
meaning C0, it can elicit meaning C1 as well. Occurrences of X thus have a chance to
populate context C1, so that we will note x the proportion of X tokens in C1, just as we did
in the speaker-based model. If we ascribe to the inference C0 ⇒ C1 a probability equal to
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γ, then we can describe the dynamics as follows:

1. Either C0 or C1 are chosen to be expressed, with equal probabilities.

2. If C0 has been chosen, X is produced. If C1 has been chosen, X is produced with
probability P0(x), otherwise Y is produced. P0(x) is the same function as Pγ(x),
except that γ is now set to 0 (there is no such thing as an effective frequency in this
framework).

3. The produced occurrence is recorded in the chosen context. If C0 has been chosen,
an additional occurrence of the same kind as the previous one is recorded in C1 with
probability γ (C0 has elicited the meaning C1).

4. A past occurrence is deleted whenever needed, so as to keep both memory sizes con-
stant.

These dynamics correspond once more to a random walk where the jump probabilities,
forward and backward, respectively RH(x) and LH(x) (where H stand for ‘hearer’), are
given by: 

RH(x) =
1

2
[γ + P0(x)] (1− x)

LH(x) =
1

2
(1− P0(x))x

, (B1)

to be compared with the jump probabilities in the speaker perspective (respectively LS(x)
and RS(x) for the forward and backward jump probabilities):

RS(x) = Pγ(x)(1− x)

LS(x) = (1− Pγ(x))x

. (B2)

These modified jump probabilities lead to a new expression for the drift velocity:

ẋ =
1

2
[P0(x)− x+ γ(1− x)] . (B3)

A change of variable y = (1 +γ)x−γ leads to the same equation as equation 4 of the paper,
with a slightly different timescale accounting for the fact that two contexts are now being
called:

2

1 + γ
ẏ =

[
P0

(
y + γ

1 + γ

)
− y
]
. (B4)

Indeed, P0

(
y+γ
1+γ

)
is exactly Pγ(y), so that the fixed point in the hearer perspective xHc will

be given, as a function of the fixed point xSc of the speaker perspective, as:

xHc =
xSc + γ

1 + γ
, (B5)

which is higher than xSc . This means that, in the hearer pespective, the latency frequency
will also be higher. However, it does not entail that the change will be more or less likely to
happen, since what triggers the change is the fact that γ is equal to γc or higher, and this
parameter γc remains the same throughout the perspective shift.
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b. Combined model

We can now combine the Listener and Hearer perspectives, by taking into account the ef-
fective frequency f instead of the actual frequency x in step 2 of the dynamics outlined in the
previous subsection. Then, in the above formulae, all P0(x) become Pγ(x) (or equivalently,
P0(f)). The velocity is now set to:

ẋ =
1

2
[Pγ(x)− x+ γ(1− x)] . (B6)

Setting X = (x+ γ)/(1 + γ), we get:

2(1 + γ)ẋ = P0(X)−X + (1−X)γ(2 + γ) . (B7)

We can now define a renormalized parameter γ̃ = γ(2 + γ) to make this velocity similar to
the one given by (B3). Setting Y = (1 + γ̃)X − γ̃, we finally get:

2
1 + γ

1 + γ̃
Ẏ = Pγ̃(Y )− Y . (B8)

This implies that (YC , γ̃c) = (xSc , γ
S
c ), so that the critical point (xTc , γ

T
c ) in this combined

perspective is equal to:

(xTc , γ
T
c ) =

(
xSc + γSc
1 + γSc

,
√

1 + γSc − 1

)
. (B9)

In this case γTc is lower than its hearer and speaker perspectives counterparts. It entails that
the change would happen more easily. xTc is somewhere in between xSc and xHc .

c. Summary

All three variants of the model give rise to the same picture of sigmoidal growth preceded
by a period of latency. The data does not allow to discriminate between either one of
these three possibilities. Yet, the hypothesis that the change is driven by both hearer and
speaker mechanisms is the most probable, as all language users adopt the role of hearer
and speaker alternatively. An enthralling perspective of research would be to devise a
quantitative criterion so as to see which of the three mechanisms best account for real
language data. One could also investigate which features of language change speaker and
hearer perspectives are respectively able to account for independently, and if some features
need the conjunction of both to appear. Obviously, all those questions hinge upon available
data and the finding of relevant observable quantities to look at.

2. Interpretation of the cognitive strength γ

In the proposed model, we make the assumption that all memory sizes are equal in the
speaker perspective, and that all meanings Ci are expressed with equal probability in the
hearer perspective. Here we consider the alternative that the links in the network are not
weighted: They are either 1 or 0. The asymmetric structure between the two contexts C0

and C1 is however maintained (i.e. the graph is a directed graph and the link between sites
C0 and C1 is 1 while the link between sites C1 and C0 is 0).
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a. Heterogeneous memory sizes

Now let us assume different memory sizes for the two concepts, denoting by m and M
the memory sizes of C0 and C1, respectively. Then the effective frequency of X in C1 is
given by:

f =
N +m

M +m
=
x+m/M

1 +m/M
(B10)

By defining γ as the ratio of memories m/M , we recover the same effective frequency as
before.

This means that the strength γ of the cognitive link can be interpreted as a ratio be-
tween memory sizes. If all sites were connected to each other, the occurrences expressing
the contexts whose associated memory is the greatest would spread all over the network.
However, not all sites lead to all others: There are pathways in the conceptual organization,
which constrain possible semantic changes and allow for low-memory contexts to invade
higher-memory ones.

The main difference brought forth by this interpretation is that it allows for γ’s greater
than one. In general, there would be no critical behavior and thus no latency, except if the
conquering occurrence type comes from a very low memory context. This would suggest that,
as grammaticalizations are well-characterized by the latency-growth pattern with sigmoidal
increase, lexical meanings are allocated a much smaller memory than grammatical ones.
However, it would also be the case within the lexicon, when a word goes from a concrete
meaning to an abstract one.

It is not clear why functional and abstract meanings should be allocated a greater memory
than concrete meanings. There could be for instance some advantage in making the more
abstract and structural part of the conceptual realm more stable in their linguistic expression
than other parts of speech, especially because they serve to constrain the processing of
utterances and provide structure to the flow of speech. Were it the case, then we could
understand the strong asymmetry evidenced by grammaticalization — the fact that lexical
forms are recruited to express grammatical meanings overwhelmingly more frequently than
the reverse. Indeed, if the links were from the stable (i.e. supported by a large memory
size) to the unstable parts of the language, then all those links would be associated to a
very high γ parameter, so that all parts of language would soon come to be expressed by the
grammatical forms. This would right away lead to a complete communicative failure. There
would thus be an obvious advantage in preventing the links from grammatical concepts to
lexical ones, hence in the unidirectionality exhibited by grammaticalization.

b. Different probabilities of use

We now introduce different calling probabilities for C0 and C1 in the hearer perspective.
Let’s say that the probability to call C0 is α. Here again γ is set to 1 (i.e. C0 automatically
entails C1). The jump probabilities becomes thus:

RH(x) = [α + (1− α)P0(x)] (1− x) (B11)

and:

LH(x) = (1− α)(1− P0(x))x . (B12)
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We can factorize RH(x) by 1 − α. Then we recover the same computation as before, with
the ratio of calling probabilities α/(1 − α) playing the role of γ. Furthermore, if we set
the call probability to be proportional to memory size, then we recover the same γ as in
the preceding subsection. This assumption seems natural, since greater memory sizes would
help stabilizing the linguistic expressions of widely used meanings.

In such a case, the near-criticality associated to the latency-growth pattern is recovered
only if the links in the conceptual network are from the seldom called contexts to the often
called contexts (so as to insure low enough values of γ). This seems a natural assumption for
grammaticalization phenomena, since functional meanings are much more frequently called
than lexical ones. Such assumption remains of course to be carefully investigated.

These two interpretations of the cognitive link point in the same direction: In short, the
links of the conceptual network would be distributed so as to prevent highly frequent forms
from invading the less frequent ones, i.e., to ensure linguistic diversity. The asymmetry
evidenced by grammaticalization would thus be a consequence of the fact that the highly
pervasive functional forms must be kept away from the lexical, referential, more context-
specific forms. This puzzling unidirectionality could thus have been selected as a cognitive
structure able to guarantee a wide spectrum of possibilities in linguistic expression.

3. Sociolinguistic interpretation

We can give our model a completely different interpretation, taking a sociolinguistic
view point. Instead of sites C0 and C1, we consider two separate communities of speakers,
C0 and C1. Different tokens represent now different individuals, who make binary choices
between either variant X or variant Y . The different community sizes, m and M , are then
the analogous of the different memory sizes. The fact that C0 influences unilaterally C1

may be understood as the fact that community C0 has some prestige compared to C1, so
that C1 members listen to C0 members while the reverse does not hold. Similarly, different
call frequencies may represent different representations in society — people from prestige
communities being given media visibility to the exclusion of the other communities. With
this purely sociolinguistic interpretation, the model formalism thus remains exactly the
same. Note that this point of view is akin to the one in [18].

In this interpretation, however, the model does not explain why the prestige community
C0 adopted X in the first place; nor does it explain the regularities in semantic change.
Another point in which this interpretation weakens is the timescale. Linguistic change can
be very slow, taking up to several centuries, as shown in our corpus study. Is it reasonable to
presume that the social structure holds and remains the same throughout centuries? On the
contrary, some aspects of conceptual structure happen to be extremely stable, as they are
both deeply constitutive of a culture, e.g. through entrenched metaphors [32], and due to the
generic cognitive features of the mind (expressing time relations through spatial ones [30],
for instance). As it happens, metaphors prove to be very stable, even if the reasons for
this stability are still unclear. The astonishing persistence of myths schemata through the
ages [48] is another hint of the remarkable resilience of human cultural features.

A last remark is in order. Sociolinguistic explanation describes change as happening
through two successive steps [38]: ‘actuation’ of the change (the seemingly sudden ap-
pearence of a new variant in the speech of an individual), and propagation of the innovation
through social ties. Though Labov deemed actuation as irrelevant for the understanding of
language change, numerous efforts have been devoted to make sense of it [19, 40]. Recent
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modeling attemps, following Labov claim, have eluded the difficulty, positing a non-zero ini-
tial frequency of the new variant, or assuming that an influent agent is already making use
of the variant exclusively [4, 18]. Latency, in particular, cannot fit within this framework.

The actuation step, on the contrary, has received much attention in Cognitive Linguisitcs
and more specifically in the literature on grammaticalization. Indeed, in grammaticalization
phenomena, it appears that the actuation process is tightly constrain: not all innovations
are equally likely, and changes appear to follow a limited number semantic chains. Several
mechanisms of actuation have thus been proposed: invited inference [49], conventionalization
of an implicature [50], subjectivation [51]. They all bring forth the idea that a novel variant
is always rooted in language use, so that a new form, or a new meaning, always arises out of
a contigency from an existing speech practice. Actuation of the change is then an expected
result of a particular cognitive organization of language.

We showed that this process of cognitive actuation is sufficient to explain the S-curve. In
a sense, the cognitive interpretation is more economic, as it explains the S-curve (and the
latency) by the mechanism of actuation alone, instead of positing a prerequisite actuation,
and then explaining the S-curve (but not the latency) as social propagation, which is the
case in the sociolinguistic framework. Occam’s razor inclines therefore towards the cognitive
interpretation of our model and of language change in general.

Appendix C: Corpus data

1. Raw data

Raw data has been made available as part of a Supplementary Material on the Open
Science website,where the folder full data.zip can be downloaded. To each studied lin-
guistic form corresponds a file in this folder, named form.csv. This file contains a 70 rows
table specifying, for each decade starting with 1321-1330, the number of occurrences of the
form found in the corpus, the associated frequency, and the associated averaged frequency
(over five decades, as described in Materials and Methods). Two additional files, respec-
tively named corpus stats.csv and corpus complet.csv, encode all needed information
on our corpus. The former is a 70 rows table listing all decades, and giving the number
of occurrences associated with each (required to compute the frequency in the individual
forms files). The latter is a list of all documents included in the corpus, identified by their
Frantext ID. The corresponding date, the corresponding decade, and the associated number
of occurrences are also specified.

2. Frantext textual database

The data we collected for the present study have been extracted from the Frantext
database [22], one of the most extensive databases available in French, to which one has
access under subscription by the ATILF-CNRS laboratory. Frantext is an ever-expanding
gathering of 4,746 texts to this day (8th december 2016), updated every year. This cor-
pus presents various literary genres (epistolary, drama, poetry, essays, scientific books), but
mainly novels, almost exclusively from French literature (with a few translated works). The
publication year of the texts range from 950 to 2013. The allotment of the texts between the
different time periods is however far from being homogeneous, and most of them belong to

https://doi.org/10.6084/m9.figshare.c.3910621.v2
https://doi.org/10.6084/m9.figshare.c.3910621.v2
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the twentieth century: Indeed, the number of texts by decade roughly follows an exponential
increase (Fig. 18).

Frantext, while being much smaller than Google Ngram, provides much cleaner and more
controlled results (see C 3). We decided to start from the decade 1321-1330, as from this date
all decades are associated with at least seven texts. In our corpus, we retained most of the
texts, with a few exceptions, e.g. when the date provided by Frantext was unsatisfying (for
instance, the text referred to as 6205, Le Canarien, pièces justificatives is dated ‘between
1327 and 1470’), or when we knew that the text has been written over too long a time
period, as is the case for the text Chartes et documents de l’abbaye de Saint-Magloire (ref
8203), whose publication year (1330) is far from covering the time span during which the
document was compiled. Most interestingly, Frantext also provides the surrounding text on
which a token is to be found, so that it is possible to check if the different occurrences make
sense and truly correspond to the request.

Frantext is not flawless. Some parts of the scanned texts have been appended through pos-
terior editing. This is clearly the case for the text A017, Chroniques de Morée, where some
page notes from a contemporaneous edition of this medieval chronicle have been included, so
that the request for ‘dans’ may return an occurrence such as ‘Erreur dans la numérotation
de l’édition’ (‘error in the edition numbering’). Some decades are also strongly unbalanced
in the available texts. For instance, among the 2.7 million words of decade 1551-1560, more
than one third of them comes from the works of a single author, Jean Calvin (references
E198, B022, R849 to R852). Another bias comes from the fact that drama pieces, up to
the end of the Modern Era, were making use of represented orality [52] much more than
literary texts, so that many new constructions appear in them before spreading among the
other texts. This would not be a problem if the proportion of dramas were more or less
constant across the decades, which is not the case. This problem vanishes in more recent
times, when represented orality appears also frequently in novels, while drama becomes itself

FIG. 18. Number of millions of occurrences per decade in the Frantext database. Exponential fit

is shown by a red line.
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more sophisticated and shifts further away from daily language.
Frantext is not only a database. It comes also with built-in text-mining algorithms

which allow to submit very refined queries to the database. Such queries can make use
of booleans and a given number of blank words. For instance, the query (à|a) &q(1,2)
(insçu|insu|insceu) (&q(1,2) is a blank slot for any one or two words) will retrieve oc-
currences such as à l’insu, à leur insu, but also à son propre insu. This kind of flexible
requests are especially relevant when one is looking for specific constructions with a filling
slot, as the corresponding possibilities cannot be exhaustively predicted. We studied for
instance the construction d’une voix + ADJ. If we cannot list all adjectives, we can rule out
all the parasite occurrences with an elaborated request such as ˆ(tous|receus) d’une voix
ˆ(que|qui|qu’|et|ensemble|trestous|de|d’|vous|le|la|les|par|pour|dont|-|.|;|,|:), where
ˆ and | respectively stands for the booleans ‘not’ and ‘or’. Such a request makes it pos-
sible to capture unexpected adjectival constructs such as toute changée, si peu effroyée or
extraordinairement rauque et rouillée, while discarding all spurious occurrences. Frantext
also allows for special requests, for instance if one wishes to encompass several orthographic
variations in a single query, for instance souventes?f* captures all possible variants of sou-
ventesfois, such as souventeffoiz, souvente fois, souventez fois, souventefoys, etc. This kind
of elaborations prove to be all the more useful in the first stages of the evolution, where a
functional construction has not yet become entrenched into an idiomatic form and can still
be found in a large diversity of variants.

Once a request is submitted to the database, Frantext returns a datafile whose contents
may vary according to the needs of the user. Depending on the options one chooses, the
file displays, for each text, the text reference, the publication year, and the total number
of occurrences of the query in that text. Next to this automatized procedure, we can also
look across all individual occurrences in their context, as a sanity check. This was used
frequently to help refining our queries. Unfortunately, it was impossible to ask Frantext
for a file providing the statistics of the corpus itself, listing the number of occurrences per
text reference. We extracted this information from an HTML page which does display this
information (Corpus de travail > Visualiser). The data file provided by Frantext was then
directly treated by our own algorithm to compute average frequencies for each decade.

A note on French

We acknowledge that we restricted ourselves to instances of semantic expansions in
French, a choice which may appear to restrict the scope of our findings. As we argue
in the main text, we believe this is not the case. In the following, we stress, 1 - the neces-
sity to conduct the analysis on a long timescale (i.e. long enough so that we can consider
the language to have changed during that period, just as contemporary French has drifted
sufficiently away from Middle French (XIVth century) so that, without specific training, the
latter is only partially intelligible to speakers of the former), 2 - that few corpora are as
efficient as Frantext to achieve such a goal.

Given the issues addressed in this paper, it appears important to consider instances taken
from a large time period (seven centuries in our case). Indeed, a frequently asked question is
whether or not recent technological advances (radio, TV, the Internet) have had an influence
on the way language changes. Sociologically, this influence is obvious: Languages tend to
homogenize over greater geographical areas and dialects have constantly declined throughout
the twentieth century. Yet, the pattern of change of an established language is something
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entirely different. Our statistical survey shows that the pattern of change is the same, no
matter in which century it may happen. It is furthermore consistent with recent findings
establishing that the rate of change did not increase in the most recent decades [53]. It also
goes along our claim that the pattern we exhibit is cognitively driven by memory retrieval
and conceptual organization, two cognitive mechanisms that the most recent technological
evolutions could not have significantly altered.

Alas, finding appropriate corpora covering a long time period in a given language is not
obvious. As discussed in C 3, Google Ngram cannot be used for texts earlier than the nine-
teenth centuries, since the scanning procedure does not lead to reliable digital data. For
the English language, the reputed British National Corpus restricts itself to the twentieth
century. The Helsinki Corpus spans a time period suited for our purposes, but the texts are
too sparse (450 in total) for the corpus to be fitted for a statistical survey. The CORDE cor-
pus, in Spanish, spans several centuries (XIIIth to XXth), and gathers an impressive amount
of data as well (250 M words), but it covers different variants of Spanish (Argentinian,
Colombian, Castillan, etc.) which cannot be blended together when it comes to investigate
semantic expansions (note that CORDE dutifully offers to treat them apart, but then the
database is not extensive enough for each of the variant separately). The querying system
also suffers from serious limitations, and it is not possible to submit complex queries as is
the case with Frantext. This latter database is therefore truly remarkable in many aspects
and has to be considered an exception. We thus leave to further studies the case of other
languages.

A last remark is in order: We deliberately do not provide any translation of the studied
forms (C 4), however obscure they may appear to the reader. Indeed, these forms have all
undergone a semantic expansion, so that a translation would be most mistaking as it would
concern only one among several meanings adopted by the form. The only satisfying way of
glossing the items we studied would have been to find forms which not only have the same
meaning, but have also undergone (at least roughly) the same meaning shifts, as in the case
of anyway and de toute façon for the later stages of their respective semantic evolutions.
Obviously, this would have been possible only for a handful of cases, and we chose to leave
the items without translation.

3. Why not using Google Ngram?

Google Ngram (https:/books.google.com/ngrams) gathers an impressive quantity of
digitalized books from about the sixteenth century. It hosts about 800,000 texts in French
(about two hundred times more than Frantext). Nevertheless, it presents some major limi-
tations which make this database inappropriate for the present study, as we discuss in this
section.

Some biases of the Google Ngram database have already been stressed in the recent
past [54]. However, these concerns are specifically relevant for lexical changes, most sub-
ject to socio-historical contingencies, and they do not straightforwardly apply to our aims.
Functional words, unlike proper names like ‘Frodo’ or items like ‘computer’, are not that
sensitive to cultural shifts. However, there are other serious limitations, more crucially
relevant for our study, that we point out here. In the following, we use Google Books
(https://books.google.com/) as a probe to the contents of Google Ngram, though the
two algorithms are different (e.g. the former does not regognize ponctuation while the latter
does), and the exact overlapping between the contents of the two databases is unknown.

https:/books.google.com/ngrams
https://books.google.com/
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The first concern about Google Ngram regards quality of digitalization. Texts older
than the nineteenth century have been printed in fonts for which the character recognition
algorithm has clearly not been optimized. For instance, the following sentence from The
royal dictionary abridged, in two parts, by Abel Boyer, 1715: ‘Parler avantageusement de
quelqu’un, to speak well of one, to speak much to his advantage, to give a good character
of him, to speak honourably of him.’ has been transcribed as: ‘Parler avantageusement e
quelqu’un, 1◦ speak well of one, te steak much to his advant 1ge, to ive a gead characier
of him, to steak h2nourably of him.’ Some words, such as ‘steak’ and ‘rince’, consequently
appear much more frequently than they should, as they are mistaken for ‘speak’ and ‘Prince’.
Another example of this poor scanning quality can be seen in the comparison between: ‘I
found that the New-modelling of this Story, would force me sometimes on the difficult Task
of making the chiefest Persons speak something like their Characters, on Matter whereof I
had no Ground in my Author.’ and ‘I faura that the Ne: -we kling of this Story, troi’i fr e ve
{ ctives on the di ili 7 k of making ti e li fist Perffns steak { like their Carefiers, en -i/attro
sviereof. I had no Gréard in , Author.’, to be found in The History of King Lear, A Tragedy.
Acted as the King’s-Theatre. by Nahum Tate, 1736. The original text is admittedly hard
to decipher, yet any posterior check on the scan would immediately detect such nonsensical
concatenations of characters. By comparison, every text in the Frantext database has been
digitalized with great care and such blatant errors are not to be found.

The second point is the kind of available data. Google Ngram provides statistics on n-
grams, which are strings of n successive items (the so-called ‘grams’), with n ranging from
1 to 5. For each n-gram, it is provided, per year, the number of times it appears and in
how many texts. Thus one cannot identify in which texts it appears most; nor can one have
access to its context of use. The only way to probe the contents of Google Ngram is through
Google Books (which we used here for all the discussed examples), yet it seems impossible
to know the exact overlap between the two databases. This data structure based on n-
grams is furthermore limiting when it comes to slot constructions. For instance, the French
construction ‘à X reprises’, with X being a quantity, can hardly be tracked using Google
Ngram, as it corresponds to far too many n-grams, which would need to be listed one by
one: ‘à deux reprises’, ‘à deux ou trois reprises’, ‘à plusieurs reprises’, ‘à de nombreuses
reprises’, etc. This search is made all the more difficult by the fact that ‘à’ did not always
take an accent in older texts. In contrast, with Frantext, as we have seen in C 2, one can
work out an elaborate request using booleans and blank words to capture the diverse uses
of this construction and overcome the orthographic difficulties.

The third and final point we want to stress here is the choice of texts and their dating. In
Frantext, a text may appear in several editions, as is the case for Le Cid, by Pierre Corneille,
which appear thrice in the database, associated to the years 1637, 1637 and 1682. These
dates usually correspond to the first edition of a book, rather than to the edition which is
actually digitalized (such information being also provided). Google Ngram displays about
thirty versions of Le Cid, with publication ranging from 1775 to 2013, some of them being
ascribed to Jean Racine (as they are found in several editions of a book called Oeuvres de
J. Racine et de P. et T. Corneille). The case of Le Cid is, in Frantext, quite an exception,
while in Google Ngram, most famous classical novels from past centuries are found in a
dozen versions at least.

The contents of the database is problematic as well. As highlighted in [54], Google Ngram
over-represent academic literature. This also tends to bias the data. For instance, among
the fourteen results of the request ‘par ma barbe’ on the French Google Books subdatabase,
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for the years 1950-2000, only three of them are relevant, two being modern translations of
older texts (Don Quixote and a nineteenth century German play by Töpffer). The third one
comes from an anthology of French folktales. All other occurrences are academic quotes and
glosses of past works, or reprints of such works. In such a case, it means than only one fifth
of the occurrences would be reliable as a reflect of language use in this time period (two
of them being borderline cases). Frantext, on the other hand, has two occurrences of ‘par
ma barbe’, one of them from the song lyrics of singer Georges Brassens, the other from a
1988 translation of a Shakespeare play (and so more debatable). There is thus almost as
many relevant occurrences in Frantext and Google Ngram (two versus three), while none in
Frantext are completely irrelevant.

This being said, Google Ngram is a formidable tool, which can lead to interesting insights
and be of great use. It is not, however, fitted for the work that we performed, where we
need an accuracy and a reliability that this database is unable to provide.

4. Studied forms

Making use of the study of Frantext database and its retrieving tools, we looked at the
frequency of use of about 400 hundred semantic expansions in the functional realm (with
the exception of liberté and some lexical constructions such as á court terme, which we have
shown to suggest the further generality of the pattern). We selected these forms according
to several criteria: They must have undergone at least one semantic expansion towards a
functional use during the time period under consideration; they must be easily distinguished
from compositional uses (e.g. entre deux, in the meaning of ‘in between’, can be confused
with occurrences of literal meaning ‘between two’). The set of chosen forms is far from
exhausting the pool of possible examples.

On the table below, we provide the full list of studied forms. For each of those, we display:

• the length (in decades) of the latency part;

• the length (in decades) of the growth part;

• the slope of the logit transform of the growth part;

• the r2 parameter associated to the linear fit of this logit transform;

• the χ2 of the sigmoidal fit of the data (including the boundaries xmin and xmax);

• the associated Cramér’s V (which is the square root of the ratio between the χ2 and
the width, or the square root of the mean χ2 per data point; the smaller the Cramér’s
V, the better the fit)

• the result of the consistency check (either Xif successful or × if failed), as described
in section A 1 c;

• the total number of occurrences of the form in our corpus.

Some forms are listed several times; it corresponds to the case where a form under-
went several semantic expansion processes, each associated with the latency-growth pattern.
‘BUG’ corresponds to a flaw of Frantext, sometimes unable to build up the output file of
the query. This bug cannot be overriden through a manual manoeuvre, for it is caused by a
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faulty encoding of some parts of the texts. The data thus exist, but could not be retrieved.
An upper-case ‘NO’ indicates that no such pattern has been found in the time-evolution
of the frequency of that form. The fact that a form does not follow an S-curve during its
semantic expansion may spread doubt on the genericity of this pattern. In many cases how-
ever, the pattern was rejected because the data was too spurious, but its overall behavior
would not be incompatible with an S-curve.

It is nonetheless interesting to note that the robustness of the pattern does not depend
excessively on the scarcity of data. Indeed, instances associated to a very low number of
occurrences can lead to a very clean pattern (e.g. à plus d’un titre, whose growth lasts for
8 decades in total, scores as low as 59 occurrences, and still brings out a remarkable r2 of
0.995). What seems to be crucial is thus not the question of how much data we can get,
but of whether or not the change is isolated. Indeed, some changes are not independent
from one another. Many constructions beginning with the preposition par, for instance,
follow their own course of evolution, while the meaning of par itself also expands. Several
constructions can also compete for the same paradigm (e.g. il me semble, je pense, je
suppose). Their individual frequency pattern not following an S-curve of growth may thus
be seen as resulting from interferences between the different semantic expansion processes.
In these cases, only the refinement of linguistic queries can lead to better results. It thus
confirms, once again, the necessity to rely on a clean and easily manipulable database rather
than on giant databases where the sheer amount of data is of no help.
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LIST OF FORMS

Form Lat. Growth Slope r2 χ2 C.’s V Check # occ.

à base de 7 10 0.57 0.994 0.1097 0.1047 X 607

à bien des égards (i) 0 8 0.79 0.983 0.0602 0.0867 X 147

à bien des égards (ii) 2 7 1.27 0.984 0.0567 0.0900 X 147

à bord de NO NO NO NO NO NO NO 1728

acabit 0 7 1.20 0.992 0.0345 0.0702 X 148

à cause de NO NO NO NO NO NO NO 24840

à cause que NO NO NO NO NO NO NO 2516

à ce moment (i) 0 10 0.61 0.989 0.0777 0.0881 X 8861

à ce moment (ii) 7 7 0.69 0.992 0.0710 0.1007 × 8861

à ce propos (i) 2 7 2.22 0.988 0.0004 0.0076 X 1711

à ce propos (ii) 3 8 0.88 0.983 0.0623 0.0882 X 1711

à ce sujet 10 7 1.95 0.984 0.0217 0.0557 X 4001

à cet égard 0 8 1.56 0.992 0.1118 0.1182 X 4974

à cet instant 2 13 0.55 0.982 0.1123 0.0929 X 1198

à condition de 5 9 0.79 0.991 0.0427 0.0689 X 1151

à condition que (i) 11 6 1.19 0.997 0.0470 0.0885 X 1653

à condition que (ii) 6 8 0.83 0.971 0.0909 0.1066 X 1653

à contre-courant 0 16 0.59 0.971 0.0797 0.0706 X 171

à cté de 22 14 0.57 0.965 0.0603 0.0656 X 18065

à coup sûr (i) 0 14 0.63 0.971 0.0916 0.0809 X 2546

à coup sûr (ii) 7 7 1.70 0.996 0.0088 0.0355 X 2546

à court terme 13 7 2.19 0.997 0.0072 0.0321 X 751

à couvert NO NO NO NO NO NO NO 1144

actuellement 9 24 0.35 0.977 0.1300 0.0736 × 6618

à découvert 1 7 1.33 0.981 0.0390 0.0746 X 930

à défaut de NO NO NO NO NO NO NO 1725

afin de 4 6 0.81 0.995 0.1155 0.1387 × 21833

afin que BUG BUG BUG BUG BUG BUG BUG 19850

à fond de 0 6 1.31 0.994 0.0302 0.0709 X 486

à fond de train BUG BUG BUG BUG BUG BUG BUG 180

à force NO NO NO NO NO NO NO 294

à force de NO NO NO NO NO NO NO 8178

à grand renfort de NO NO NO NO NO NO NO 230

ainsi donc NO NO NO NO NO NO NO 1247

à la base NO NO NO NO NO NO NO 574
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LIST OF FORMS

Form Lat. Growth Slope r2 χ2 C.’s V Check # occ.

à l’accoutumée 0 8 0.99 0.988 0.0327 0.0639 X 196

à l’aide de 13 13 0.42 0.966 0.1952 0.1225 × 5247

à la limite 7 11 0.76 0.983 0.0448 0.0638 X 603

à la lisière de 5 13 0.57 0.976 0.0638 0.0701 X 527

à la longue 9 7 0.57 0.987 0.2092 0.1729 X 1245

à la lumière de 2 9 0.87 0.975 0.0823 0.0956 X 1141

à la mesure de (i) 0 7 0.75 0.994 0.0925 0.1150 X 819

à la mesure de (ii) 24 9 1.14 0.988 0.0376 0.0646 X 819

à la place 22 27 0.31 0.983 0.0918 0.0583 X 5638

à la rigueur 9 8 1.14 0.983 0.0697 0.0933 X 1717

à l’écart NO NO NO NO NO NO NO 2517

à l’écart de 24 19 0.30 0.970 0.1545 0.0902 X 854

à l’égard de (i) 4 13 1.01 0.968 0.1068 0.0906 × 13395

à l’égard de (ii) 2 7 0.98 0.978 0.0658 0.0970 X 13396

à l’encontre de 10 18 0.39 0.977 0.0946 0.0725 X 1272

à l’envi 0 9 0.88 0.991 0.0456 0.0712 X 817

à l’exception de 1 16 0.47 0.968 0.1093 0.0827 X 1883

à l’heure actuelle 0 11 0.95 0.981 0.0698 0.0797 X 858

à l’heure dite 3 9 0.83 0.969 0.0587 0.0808 X 234

à l’heure où 10 11 0.58 0.963 0.1015 0.0961 X 1779

à l’improviste 4 10 0.65 0.996 0.0549 0.0741 X 1024

à l’instant 0 6 1.02 0.993 0.1038 0.1315 X 1550

à l’instar de 7 19 0.36 0.969 0.1502 0.0889 X 663

à l’insu 0 22 0.36 0.982 0.1347 0.0782 X 2776

à l’inverse 8 10 1.06 0.988 0.023 0.0476 X 764

à l’occasion de 6 8 1.52 0.983 0.0469 0.0766 X 2032

à l’orée de 5 7 1.09 0.979 0.0793 0.1064 X 311

alors que (i) 3 7 1.01 0.983 0.0474 0.0823 X 28016

alors que (ii) 4 13 0.50 0.983 0.0700 0.0734 × 28016

à mesure de 4 8 0.71 0.990 0.1122 0.1184 × 774

à mesure que (i) 10 10 0.80 0.967 0.0850 0.0922 X 10183

à mesure que (ii) 1 11 0.50 0.965 0.1214 0.1051 X 10183

à moins que 0 13 0.96 0.964 0.0959 0.0859 X 5924

à mon avis NO NO NO NO NO NO NO 1989

à nouveau 7 14 0.51 0.977 0.0801 0.0756 × 6039

à outrance NO NO NO NO NO NO NO 552
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LIST OF FORMS

Form Lat. Growth Slope r2 χ2 C.’s V Check # occ.

à part 0 28 0.27 0.986 0.1034 0.0608 X 12506

à part entière 0 8 1.33 0.983 0.0467 0.0764 X 180

à partir de 13 12 0.56 0.965 0.1212 0.1005 X 10996

à peine (i) 0 6 1.73 0.994 0.0175 0.0540 X 40230

à peu de chose près 0 7 0.94 0.987 0.0693 0.0995 X 320

à plus d’un titre 1 7 1.02 0.995 0.0524 0.0865 X 59

à plusieurs reprises (i) 0 19 0.36 0.967 0.1261 0.0815 X 3873

à plusieurs reprises (ii) 9 7 1.22 0.994 0.0315 0.0671 X 3873

après ce NO NO NO NO NO NO NO 101

après que 6 6 2.34 0.997 0.0078 0.0361 X 8487

après quoi 10 16 0.53 0.982 0.0742 0.0681 X 3468

après tout NO NO NO NO NO NO NO 7741

a priori 3 9 1.21 0.985 0.0641 0.0844 X 1565

à propos NO NO NO NO NO NO NO 1255

à propos de 1 19 0.39 0.972 0.0848 0.0668 X 9414

à proprement parler 10 11 0.49 0.965 0.1065 0.0984 X 1204

à rebours (i) 2 6 1.09 0.994 0.0627 0.1022 X 640

à rebours (ii) 6 12 0.66 0.979 0.0767 0.0799 X 640

à qui mieux mieux NO NO NO NO NO NO NO 247

à sa guise 0 6 1.40 0.992 0.0503 0.0916 X 1079

à son terme 1 11 0.75 0.991 0.0518 0.0686 X 359

à tel point que (i) 0 7 0.75 0.996 0.1262 0.1343 X 555

à tel point que (ii) 4 9 0.73 0.975 0.1025 0.1067 X 555

à terme NO NO NO NO NO NO NO 470

à titre de 5 14 0.47 0.964 0.1234 0.0939 X 1481

à tous égards 0 6 1.91 0.998 0.0138 0.0480 X 556

à tout à l’heure 0 10 0.93 0.983 0.0655 0.0809 X 280

à tout instant 5 11 0.94 0.969 0.0846 0.0877 X 903

à tout moment 0 17 0.42 0.968 0.1608 0.0973 × 2262

à tout prendre NO NO NO NO NO NO NO 480

au bord de NO NO NO NO NO NO NO 11850

au bout de NO NO NO NO NO NO NO 23173

au bout du compte NO NO NO NO NO NO NO 469

au contraire 3 9 0.93 0.978 0.0606 0.0821 X 29571

au contraire de (i) 0 8 1.09 0.977 0.0475 0.0771 X 1429

au contraire de (ii) 1 8 1.14 0.989 0.0341 0.0653 X 1429
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LIST OF FORMS

Form Lat. Growth Slope r2 χ2 C.’s V Check # occ.

aucunefois NO NO NO NO NO NO NO 1248

au demeurant 0 12 0.68 0.983 0.0685 0.0756 X 1344

au dépourvu NO NO NO NO NO NO NO 402

au détriment de NO NO NO NO NO NO NO 798

au dernier moment NO NO NO NO NO NO NO 1370

au final NO NO NO NO NO NO NO 38

au fur et à mesure 6 12 0.72 0.987 0.0340 0.0532 × 1908

au jour d’aujourd’hui NO NO NO NO NO NO NO 87

au même moment 5 7 0.73 0.979 0.1091 0.1248 X 1437

au moment où 6 19 0.49 0.984 0.0403 0.0461 X 12729

à un moment donné 1 12 0.48 0.980 0.1249 0.1020 X 659

au passage 0 7 1.43 0.990 0.0492 0.0838 X 1754

au pire (i) 0 12 0.46 0.965 0.1424 0.1089 X 401

au pire (ii) 0 6 1.63 0.994 0.0315 0.0725 X 401

au reste 0 7 1.39 0.987 0.0350 0.0707 X 4375

au sujet de 1 12 0.75 0.981 0.0565 0.0686 X 4945

au terme de (i) 7 12 0.47 0.971 0.1214 0.1006 X 1492

au terme de (ii) 1 11 0.86 0.967 0.0984 0.0946 X 1492

aux trousses NO NO NO NO NO NO NO 419

avant tout 27 10 0.91 0.986 0.0565 0.0752 X 5342

avec force NO NO NO NO NO NO NO 324

bah 7 11 1.03 0.964 0.0579 0.0726 X 2681

bien entendu (i) 5 10 0.76 0.985 0.0555 0.0745 X 4476

bien entendu (ii) 2 19 0.40 0.979 0.1410 0.0861 × 4476

bien sûr 9 9 0.92 0.968 0.0839 0.0966 X 7997

bref 12 7 1.07 0.993 0.0353 0.0710 X 5536

brusquement 11 9 1.49 0.979 0.1103 0.1107 × 1783

carrément (i) 0 10 1.02 0.964 0.0640 0.0800 X 1207

carrément (ii) 1 7 1.55 0.982 0.0433 0.0786 X 1207

ce faisant (i) 0 6 1.88 0.992 0.0180 0.0548 X 781

ce faisant (ii) 19 8 0.64 0.994 0.0918 0.1071 X 781

ce par quoi 0 10 0.61 0.984 0.0707 0.0841 X 163

c’est alors que 5 11 0.69 0.967 0.0732 0.0816 X 3223

c’est pour le coup que 0 6 0.77 0.990 0.1309 0.1477 X 64

c’est pourquoi (i) 0 13 0.56 0.984 0.0380 0.0541 × 10994

c’est pourquoi (ii) 6 15 0.59 0.968 0.1755 0.1082 × 10994
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LIST OF FORMS

Form Lat. Growth Slope r2 χ2 C.’s V Check # occ.

chemin faisant 0 13 0.40 0.965 0.1220 0.0969 X 641

complètement NO NO NO NO NO NO NO 11560

compte tenu de 0 8 1.26 0.985 0.0291 0.0603 X 928

concernant 9 10 1.10 0.984 0.0615 0.0784 × 3477

considérant que NO NO NO NO NO NO NO 191

contre mon attente NO NO NO NO NO NO NO 102

contre toute attente
(i)

0 6 0.84 0.991 0.1103 0.1356 X 167

contre toute attente
(ii)

8 8 0.95 0.971 0.0979 0.1106 X 167

d’abord et avant tout NO NO NO NO NO NO NO 62

d’année en année NO NO NO NO NO NO NO 505

dans ce cas 0 18 0.57 0.974 0.1264 0.0838 × 4289

dans la mesure de 6 12 0.49 0.983 0.0723 0.0776 X 480

dans la mesure du pos-
sible

0 12 0.64 0.980 0.0465 0.0622 X 188

dans la mesure où 0 11 0.91 0.965 0.1322 0.1096 × 2753

dans le cadre de 11 8 1.16 0.971 0.0330 0.0642 X 1145

dans le même temps
(i)

0 9 1.02 0.986 0.0333 0.0608 X 1217

dans le même temps
(ii)

3 7 0.90 0.983 0.1137 0.1274 X 1217

dans l’ensemble (i) 0 9 0.74 0.967 0.0816 0.0952 X 1809

dans l’ensemble (ii) 10 9 0.93 0.969 0.0661 0.0857 X 1809

dans l’immédiat 10 9 1.10 0.984 0.0303 0.0580 X 329

dans quelque temps 0 6 0.76 0.991 0.1579 0.1622 X 234

dans son ensemble 1 9 0.67 0.979 0.0725 0.0898 X 835

dans un autre temps NO NO NO NO NO NO NO 143

dans un cas comme
dans l’autre

1 8 1.04 0.983 0.0373 0.0683 X 111

dans une large mesure 5 8 0.66 0.994 0.0870 0.1043 X 381

dans un instant 1 11 0.67 0.969 0.0690 0.0792 X 661

dans un moment 0 15 0.47 0.984 0.0673 0.0670 X 1473

dans un premier
temps

NO NO NO NO NO NO NO 229

dans tous les cas 5 14 0.71 0.978 0.1111 0.0891 X 1609

d’autant plus 1 10 0.74 0.976 0.0721 0.0849 X 11584

d’autant plus que 4 7 1.57 0.979 0.0446 0.0798 X 3339

d’autre part (i) 0 7 0.99 0.988 0.0697 0.0998 X 11012

d’autre part (ii) 12 12 0.64 0.982 0.0730 0.0780 × 11012

de ce cté NO NO NO NO NO NO NO 3665

décidément 0 15 0.44 0.976 0.0931 0.0788 × 4795

de ce fait 2 9 0.69 0.974 0.1142 0.1126 × 628
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LIST OF FORMS

Form Lat. Growth Slope r2 χ2 C.’s V Check # occ.

de façon que NO NO NO NO NO NO NO 1473

de fait 0 9 0.97 0.978 0.0569 0.0795 X 5018

de jour en jour NO NO NO NO NO NO NO 2217

de la part de NO NO NO NO NO NO NO 16400

de la sorte 8 13 0.61 0.965 0.0855 0.0811 X 3752

de l’aveu de 0 17 0.34 0.986 0.1072 0.0794 X 196

de l’avis de NO NO NO NO NO NO NO 146

de loin 16 10 0.73 0.994 0.0314 0.0560 X 1262

de loin en loin 0 20 0.35 0.975 0.1541 0.0878 X 1348

de long en large 3 9 0.76 0.983 0.0550 0.0782 X 734

d’emblée 3 10 0.72 0.986 0.0465 0.0682 X 1451

de mèche NO NO NO NO NO NO NO 98

de mieux en mieux 0 6 1.32 0.996 0.0519 0.0930 X 445

de moins en moins 6 21 0.28 0.980 0.1005 0.0692 X 1536

de mon cté 0 14 0.71 0.981 0.0836 0.0773 × 8788

de mon fait NO NO NO NO NO NO NO 467

de nulle part 24 13 0.32 0.978 0.1708 0.1146 X 289

de pair 12 7 1.04 0.983 0.0575 0.0906 X 578

de place en place 15 9 0.89 0.974 0.0463 0.0717 X 376

de point en point 0 6 0.75 0.988 0.1511 0.1587 X 247

de part en part (i) 0 7 1.49 0.995 0.0218 0.0558 X 498

de part en part (ii) 7 6 1.42 0.989 0.0386 0.0802 X 498

de part et d’autre NO NO NO NO NO NO NO 2505

de plus en plus 0 6 1.08 0.999 0.0587 0.0989 X 18226

de près ou de loin NO NO NO NO NO NO NO 221

de proche en proche 3 9 1.00 0.987 0.0273 0.0551 X 702

de quelque part NO NO NO NO NO NO NO 166

des fois 5 12 0.75 0.968 0.0770 0.0801 X 1423

des fois que 0 10 0.75 0.977 0.0673 0.0820 X 182

dès l’instant (i) 9 8 0.51 0.976 0.1873 0.1530 X 769

dès l’instant (ii) 1 8 0.96 0.988 0.0622 0.0882 X 769

dès lors que NO NO NO NO NO NO NO 994

de sorte que 6 6 0.85 0.997 0.1307 0.1476 X 11320

de surcrôıt 36 11 1.08 0.918 0.0811 0.0859 X 720

de temps à autre 15 15 0.52 0.969 0.1061 0.0841 X 3547

de temps en temps 1 14 0.40 0.977 0.1176 0.0917 X 8916
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Form Lat. Growth Slope r2 χ2 C.’s V Check # occ.

de toute façon 35 11 0.76 0.996 0.0224 0.0451 X 3595

de toute manière 25 9 0.66 0.973 0.0858 0.0976 X 727

de toutes façons 4 6 2.04 0.989 0.0306 0.0714 X 715

de toutes parts 13 10 0.81 0.972 0.0780 0.0883 X 4792

d’heure en heure NO NO NO NO NO NO NO 573

d’ici là 16 9 0.60 0.985 0.1554 0.1314 × 904

dorénavant NO NO NO NO NO NO NO 256

d’outre en outre NO NO NO NO NO NO NO 47

du fait de 24 8 0.73 0.986 0.0702 0.0937 X 1423

du même coup 14 17 0.47 0.991 0.0506 0.0546 X 1502

du moment que 2 8 0.84 0.979 0.0646 0.0899 X 1765

d’une manière ou
d’une autre

NO NO NO NO NO NO NO 320

d’une part (i) 0 8 1.13 0.985 0.0354 0.0665 X 5671

d’une part (ii) 3 7 0.80 0.982 0.0844 0.1098 × 5671

d’une voix claire (i) 6 10 0.66 0.993 0.0542 0.0736 X 13511

d’une voix claire (ii) 4 9 0.71 0.985 0.0594 0.0812 X 13511

du pareil au même NO NO NO NO NO NO NO 92

du point de vue de 7 8 0.80 0.995 0.0485 0.0779 X 899

du reste 1 6 1.82 0.994 0.0178 0.0545 X 5510

en attendant NO NO NO NO NO NO NO 3351

en attendant de 4 8 1.09 0.979 0.0641 0.0895 X 510

en attendant que NO NO NO NO NO NO NO 2270

en bordure de 0 11 0.83 0.983 0.0403 0.0605 X 434

en bref 1 6 1.06 0.996 0.0724 0.1098 X 339

en ce moment (i) 5 8 1.09 0.985 0.0624 0.0883 X 12751

en ce moment (ii) 1 11 0.53 0.970 0.1012 0.0959 × 12751

en ce que 0 8 1.24 0.972 0.0544 0.0825 X 3971

en ce qui concerne 28 14 0.47 0.973 0.1243 0.0942 × 3950

en ce qui me concerne 0 13 0.57 0.970 0.0922 0.0842 X 682

en considération de 0 10 0.74 0.967 0.0960 0.0980 X 409

en cours de 0 14 0.54 0.984 0.1289 0.0960 × 1110

en cours de route 0 8 0.91 0.986 0.0595 0.0862 X 301

en d’autres termes 0 10 0.70 0.971 0.0615 0.0784 X 1228

en définitive NO NO NO NO NO NO NO 1538

en dépit de NO NO NO NO NO NO NO 4016

en face de 18 17 0.39 0.982 0.1044 0.0784 × 10956
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Form Lat. Growth Slope r2 χ2 C.’s V Check # occ.

en façon que NO NO NO NO NO NO NO 48

en fait (i) 0 6 0.91 0.990 0.1372 0.1512 X 8871

en fait (ii) 44 12 0.61 0.968 0.0726 0.0778 × 8871

en fin de compte 27 14 0.43 0.972 0.0955 0.0826 X 1417

en gros 23 10 0.86 0.975 0.0461 0.0679 X 320

en guise de 7 10 0.93 0.982 0.0390 0.0624 X 1598

en instance de 1 9 0.80 0.967 0.1036 0.1073 X 77

en l’occurrence 0 11 0.58 0.993 0.0476 0.0658 X 525

en long et en large NO NO NO NO NO NO NO 108

en même temps 3 10 0.88 0.996 0.0242 0.0492 X 18370

en même temps que 0 18 0.47 0.968 0.1421 0.0889 X 8241

en mesure de NO NO NO NO NO NO NO 1470

en particulier (i) 2 6 1.26 0.993 0.0352 0.0766 X 8949

en particulier (ii) 17 15 0.39 0.984 0.1001 0.0817 X 8949

en particulier (iii) 4 7 0.80 0.987 0.0853 0.1104 × 8949

en partie NO NO NO NO NO NO NO 5645

en passe de NO NO NO NO NO NO NO 46

en plein NO NO NO NO NO NO NO 183

en plein qqch 31 11 0.94 0.968 0.0720 0.0809 × 15939

en quelque sorte NO NO NO NO NO NO NO 6422

en sorte que NO NO NO NO NO NO NO 4786

en suspens BUG BUG BUG BUG BUG BUG BUG 961

en tant que tel 8 6 0.91 0.997 0.0836 0.1180 X 314

entre autres NO NO NO NO NO NO NO 4402

en vérité (i) 0 6 0.93 0.988 0.1352 0.1501 X 8194

en vérité (ii) 5 8 0.65 0.971 0.1104 0.1175 X 8194

en voie de 0 24 0.36 0.970 0.1239 0.0719 X 1027

en vue de (i) 5 6 1.31 0.995 0.0348 0.0762 X 3625

en vue de (ii) 11 14 0.34 0.964 0.1586 0.1064 × 3625

époque 7 14 0.75 0.993 0.0340 0.0493 × 32290

essentiellement 3 7 0.80 0.976 0.0892 0.1129 × 5471

étant donné que 2 13 0.62 0.984 0.0474 0.0604 X 341

et après NO NO NO NO NO NO NO 7562

excepté 5 7 0.66 0.990 0.1250 0.1336 X 5042

faute de (i) 5 7 1.76 0.990 0.0133 0.0436 X 6725

faute de (ii) 7 12 0.78 0.978 0.0642 0.0731 X 6725
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Form Lat. Growth Slope r2 χ2 C.’s V Check # occ.

faute de quoi NO NO NO NO NO NO NO 262

force est de NO NO NO NO NO NO NO 84

fors BUG BUG BUG BUG BUG BUG BUG 4451

graduellement NO NO NO NO NO NO NO 827

hormis 4 11 0.83 0.964 0.0934 0.0921 X 1464

il me semble NO NO NO NO NO NO NO 1822

il s’agit de 3 17 0.33 0.978 0.1358 0.0894 X 11558

il y a moyen 8 8 1.31 0.979 0.0307 0.0619 X 1295

j’ai l’impression 0 9 0.57 0.983 0.1066 0.1088 X 74

ja soit ce que NO NO NO NO NO NO NO 268

je pense 5 6 1.48 0.989 0.0258 0.0656 X 4033

je suppose 0 8 1.00 0.995 0.0258 0.0568 X 1110

j’imagine NO NO NO NO NO NO NO 824

jusque là NO NO NO NO NO NO NO 6908

juste un 26 11 0.59 0.973 0.1148 0.1022 × 1366

l’autre jour NO NO NO NO NO NO NO 4438

lendemain NO NO NO NO NO NO NO 28780

le temps de 20 13 0.46 0.972 0.1007 0.0880 X 1195

liberté 2 9 0.87 0.990 0.0500 0.0745 X 46705

l’un dans l’autre NO NO NO NO NO NO NO 69

l’un après l’autre NO NO NO NO NO NO NO 2010

m’est avis NO NO NO NO NO NO NO 797

nettement 0 10 0.45 0.972 0.1682 0.1297 X 6109

nommément NO NO NO NO NO NO NO 453

non pas tant 3 6 1.25 1.000 0.0312 0.0721 X 855

non seulement 11 18 0.57 0.966 0.1195 0.0815 X 22599

non pas seulement 2 10 0.94 0.987 0.1166 0.1080 X 1605

notamment 28 9 0.52 0.976 0.1690 0.1370 × 7508

nulle part 5 12 0.57 0.980 0.0679 0.0752 X 5006

or donc NO NO NO NO NO NO NO 237

ouille 0 10 0.98 0.977 0.0399 0.0632 X 106

outre mesure 3 11 0.52 0.970 0.1227 0.1056 X 664

par à-coups 0 13 0.46 0.974 0.1224 0.0970 X 212

par ailleurs 27 13 0.99 0.971 0.0602 0.0680 × 2676

par amour 5 8 0.87 0.981 0.0718 0.0947 X 303

par avance 2 13 0.68 0.969 0.0555 0.0653 X 1265
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Form Lat. Growth Slope r2 χ2 C.’s V Check # occ.

par besoin de 7 9 1.05 0.990 0.0357 0.0630 X 156

par ce fait 0 9 1.05 0.990 0.0320 0.0596 X 101

par conséquent 6 6 1.30 0.998 0.0525 0.0935 X 12234

par contre 18 12 0.72 0.989 0.0501 0.0646 × 3014

par crainte de 19 12 0.53 0.981 0.0796 0.0814 X 534

par degrés 37 9 0.61 0.973 0.0960 0.1033 X 1447

par dessus tout 2 10 0.73 0.991 0.0463 0.0680 X 1433

pareil à 11 12 0.51 0.973 0.0964 0.0896 × 6787

par excellence NO NO NO NO NO NO NO 1749

par faute de 4 7 0.91 0.983 0.1526 0.1476 X 353

parfois 12 21 0.46 0.972 0.2241 0.1033 × 39445

par goût de 15 11 0.63 0.973 0.1203 0.1046 X 143

par hasard 3 10 0.98 0.971 0.0675 0.0822 X 7071

par instants 0 9 0.73 0.993 0.0462 0.0716 X 1357

par manque de 0 18 0.23 0.970 0.1972 0.1047 X 268

par mégarde NO NO NO NO NO NO NO 578

parmi d’autres 25 19 0.52 0.971 0.2387 0.1121 X 620

par moments 0 12 0.88 0.984 0.0467 0.0624 X 2774

par ordre de 8 12 0.69 0.968 0.0725 0.0777 X 877

par peur de 0 11 0.59 0.987 0.0564 0.0716 X 268

par précaution NO NO NO NO NO NO NO 241

par rapport à (i) 0 10 0.97 0.978 0.0422 0.0650 X 5290

par rapport à (ii) 2 9 0.81 0.970 0.0594 0.0812 X 5290

par souci de 4 10 1.12 0.967 0.0789 0.0888 X 186

par surcrôıt 19 12 0.59 0.982 0.0586 0.0699 X 498

particulièrement (i) 14 18 0.51 0.982 0.0753 0.0647 X 12784

particulièrement (ii) 3 7 1.18 0.978 0.0486 0.0833 X 12784

par voie de NO NO NO NO NO NO NO 976

par voie de
conséquence

0 10 0.47 0.968 0.1316 0.1147 X 130

petit à petit 3 10 0.77 0.985 0.0857 0.0926 X 1547

peu à peu (i) 11 8 0.94 0.970 0.0638 0.0893 X 16450

peu à peu (ii) 0 10 0.80 0.970 0.0736 0.0858 X 16450

peu s’en faut 0 9 0.92 0.982 0.0498 0.0744 X 221

pour ainsi dire 0 15 0.86 0.973 0.2276 0.1232 × 7704

pour autant 0 13 0.79 0.994 0.0116 0.0299 X 457

pour finir 23 15 0.63 0.982 0.0759 0.0711 X 838
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Form Lat. Growth Slope r2 χ2 C.’s V Check # occ.

pour le coup NO NO NO NO NO NO NO 464

pour l’essentiel 0 9 0.97 0.985 0.0282 0.0560 X 284

pour le moment 0 13 0.39 0.971 0.1255 0.0983 X 2986

pour l’heure NO NO NO NO NO NO NO 546

pour l’instant 11 14 0.63 0.988 0.0450 0.0567 X 1859

pour ma part 5 6 1.12 0.997 0.1018 0.1303 X 2744

pour peu que 0 10 0.74 0.977 0.0645 0.0803 X 2479

pour surcrôıt de NO NO NO NO NO NO NO 90

pourtant que (i) 0 6 1.05 0.989 0.1257 0.1447 X 4220

pourtant que (ii) 0 6 1.70 0.989 0.0385 0.0801 X 4220

pour tout dire 2 7 1.14 0.986 0.0781 0.1056 X 655

pour un temps NO NO NO NO NO NO NO 1333

présentement NO NO NO NO NO NO NO 2683

probablement (i) 2 8 1.22 0.981 0.0568 0.0843 X 8497

probablement (ii) 2 10 0.70 0.981 0.0700 0.0837 X 8497

proprement 4 6 1.05 0.989 0.0825 0.1173 X 9817

principalement 17 9 1.03 0.970 0.0497 0.0743 X 6695

progressivement 3 9 0.59 0.978 0.1325 0.1213 × 2235

quand même 0 18 0.43 0.972 0.1269 0.0840 X 12171

quant à 5 15 0.37 0.966 0.1417 0.0972 × 20878

quant à cela NO NO NO NO NO NO NO 91

quant à moi NO NO NO NO NO NO NO 4875

que dalle NO NO NO NO NO NO NO 163

quelquefois 11 9 1.11 0.967 0.0589 0.0809 X 34408

quelque part NO NO NO NO NO NO NO 6454

relatif à 12 10 0.57 0.980 0.1375 0.1173 × 2850

relativement à NO NO NO NO NO NO NO 1469

rien de plus NO NO NO NO NO NO NO 1537

sans ambages 1 13 0.46 0.969 0.1474 0.1065 X 130

sans commune mesure 2 9 1.12 0.986 0.0433 0.0694 X 112

sans crier gare 0 13 0.55 0.972 0.0651 0.0708 X 211

sans détour 6 15 0.51 0.970 0.1423 0.0974 X 467

sans façon NO NO NO NO NO NO NO 650

sans tenir compte de 5 8 0.85 0.983 0.0655 0.0905 X 143

sauf 5 10 0.82 0.965 0.0660 0.0812 X 11138

sauf si 3 12 0.74 0.994 0.0339 0.0532 X 247
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Form Lat. Growth Slope r2 χ2 C.’s V Check # occ.

sauf que 0 14 0.41 0.968 0.1141 0.0903 X 910

selon moi 1 13 0.39 0.982 0.1292 0.0997 X 1055

si besoin est (i) 5 6 2.30 0.992 0.0231 0.0620 X 106

si besoin est (ii) 3 6 2.27 0.995 0.0239 0.0631 X 106

si bien que 4 10 0.60 0.970 0.0905 0.0951 X 4831

si ça se trouve 0 8 0.94 0.974 0.0640 0.0894 X 144

s’il en est NO NO NO NO NO NO NO 88

si possible 22 13 0.72 0.965 0.0801 0.0785 X 760

soit dit en passant NO NO NO NO NO NO NO 276

soudain 22 20 0.47 0.970 0.1051 0.0725 × 3498

soudainement 1 9 1.08 0.968 0.0438 0.0698 X 94

sous peu 0 6 1.83 0.993 0.0165 0.0524 X 291

sous prétexte de 0 9 1.03 0.976 0.0486 0.0735 X 2341

sous prétexte que 6 10 0.64 0.977 0.0928 0.0963 X 1364

sous réserve que NO NO NO NO NO NO NO 89

souventes fois NO NO NO NO NO NO NO 530

spécialement NO NO NO NO NO NO NO 3764

sur ce thème NO NO NO NO NO NO NO 130

sur le champ 9 10 1.00 0.975 0.0834 0.0913 X 5152

sur le moment 8 16 0.38 0.992 0.0621 0.0623 X 715

sur le sujet de 0 10 0.98 0.969 0.0834 0.0913 X 292

sur le point de 13 18 0.28 0.967 0.1737 0.0982 X 3321

sur l’heure NO NO NO NO NO NO NO 720

sur l’instant 0 15 0.44 0.971 0.1206 0.0897 X 162

tandis que BUG BUG BUG BUG BUG BUG BUG 39303

tant et plus NO NO NO NO NO NO NO 155

tel quel 4 8 1.07 0.983 0.0405 0.0712 X 985

tour à tour 11 22 0.37 0.982 0.1513 0.0829 X 4480

tout à coup 3 9 1.11 0.983 0.0424 0.0686 X 20468

tout à fait 20 15 0.73 0.971 0.1452 0.0984 × 25611

tout à l’heure (i) 6 12 0.57 0.967 0.0822 0.0828 X 12853

tout à l’heure (ii) 4 13 0.71 0.977 0.0717 0.0743 X 12853

tout au long de 12 13 0.71 0.974 0.0842 0.0805 X 1363

tout au plus 6 23 0.33 0.971 0.1487 0.0804 X 2954

tout bien considéré 2 6 1.16 0.994 0.0453 0.0869 X 152

tout compte fait NO NO NO NO NO NO NO 390
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tout court NO NO NO NO NO NO NO 1149

tout de même (i) 8 8 0.85 0.979 0.0758 0.0973 X 13315

tout de même (ii) 26 13 0.74 0.991 0.0166 0.0357 X 13315

tout du long NO NO NO NO NO NO NO 302

toutefois NO NO NO NO NO NO NO 20576

tout juste 17 14 0.46 0.968 0.0894 0.0799 X 2055

tout juste de NO NO NO NO NO NO NO 197

tout plein de NO NO NO NO NO NO NO 1014

tout sauf 3 10 0.69 0.968 0.1026 0.1013 X 158

tout spécialement 0 12 0.63 0.969 0.0948 0.0889 X 164

tout un chacun 0 11 0.70 0.975 0.0812 0.0859 X 260

très très NO NO NO NO NO NO NO 356

un de ces jours 5 6 1.31 0.996 0.0442 0.0858 X 983

une espèce de 16 8 1.17 0.976 0.0501 0.0791 X 12365

une sorte de (i) 7 13 0.51 0.969 0.1208 0.0964 X 31306

une sorte de (ii) 2 8 1.29 0.991 0.0396 0.0704 X 31306

un lendemain 8 8 0.56 0.993 0.1277 0.1263 X 505

un petit peu 0 15 0.52 0.973 0.1000 0.0816 X 692

un surcrôıt de NO NO NO NO NO NO NO 454

un tas de 23 9 1.30 0.990 0.0243 0.0520 X 4352

venir de 20 20 0.38 0.973 0.1164 0.0763 × 35884

vis à vis de 4 17 0.37 0.978 0.0966 0.0754 X 3384

voilà 0 17 0.77 0.975 0.0470 0.0526 X 90090

vu que 0 11 1.00 0.973 0.0463 0.0649 X 1230

zut 0 10 0.99 0.987 0.0422 0.0650 X 525
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