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|. INTRODUCTION

The teaching of mathematical proof appears to be a failure in almost all countries, no matter how this teaching is
organized. One consequence has been to suppress proof as a content to be taught in most curricula; in France the
word “démonstration” has disappeared from the statement of the official programs, in USA mathematical proofs are
taught only to students who take the geometry course, etc.. In my opinion, such a consequence is drastic insofar as it
first of all empties mathematics of its essence, and second because the validity of the mathematical knowledge is
fundamentally based on the proof which establishes it.

An analysis of teaching materials indicates that there is too strong an emphasis on teaching the logical side of proof,
while its social and practical importance in the mathematical activity remains hidden. It is too often forgotten that
mathematical proofs are a means for communication among mathematicians; they play an essential role in
establishing the validity of a statement and also in enlightening its meaning. And, as Manin® recalls: “a proof
becomes a proof after the social act of ‘accepting it as a proof’.” This social nature of mathematical proofs is part of
their practical value; it leads to acknowledge them as efficient and reliable tools for the mathematicians.

But, mathematical proof is taught without taking into account that students have had criteria for judging the validity
and the relevance of their mathematical statements before being introduced to this new piece of knowledge. For
Most students mathematical proofs appear ultimately to be a kind of rhetoric specific to the mathematical classroom
(Balacheff 1982). They produce it because the teacher demands it, not because they recognize it as necessary in their
practice; as a British student told to an interviewer: "to prove something in maths means that you have worked it out
and it proves how good you are at working questions out and understanding them" (Galbraith 1979).

Then, the aim of our research is to identify the foundations of students' belief in the validity of a statement in their
mathematical activity: what they recognize in practice as a proof, and how they treat a refutation. We have focused
this study on the relationships among the students' proving process, the knowledge they have at their disposal, the
language they can use and the role of the situational context.

! Manin quoted by Hanna 1983, p.71
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Il. COGNITIVE AND SOCIAL ASPECTS OF PROOF

I1.1 PRECISION IN TERMINOLOGY

In English, as well as in French, two terms are used in mathematics in a synonymous way: "proof" (French preuve)
and "mathematical proof' (French démonstration). This custom presents an obstacle to our study, for it hides
different levels that should be differentiated. Thus, we propose starting with the following distinctions:

- We will use the term explanation to describe the discourse of an individual intending to establish for
somebody else the validity of a statement. The validity of an explanation is initially related to the speaker
who articulates it.

- We will use the term proof to refer to an explanation which is accepted by a community at a given time;

- We will designate as a mathematical proof a proof accepted by mathematicians. As a type of discourse,
mathematical proofs nowadays have a specific structure and follow well-defined rules that have been
formalized by logicians.

I1.2. COGNITIVE ASPECTS OF PROOF

In accordance with what cognitive psychology tells us, the most elementary type of proof consists in merely showing,
what Semadeni (1984) calls proof in action. Here is a classical example of such a proof of the property: “the sum of

”,

the n first odd numbers is n

Such proofs rely upon the capacity of the person observing the schema to reconstruct the reasons that are
embedded in it but not formulated.

At a higher level, reasons could be expressed but still strongly related to actions performed on some example. Insofar
as the example is viewed not as a particular case but as a representative of a class of objects, we will recognize this as
a proof by generic example. Such a proof requires the generality to be viewed beyond the particular. Let us give an
example taken from Bezout (Notes sur I'arithmétique, 1832 p.23, our free translation):

The remainder of the division of a number by 2x2 or by 5x5 is the same as the remainder of the division by
2x2 or by 5x5 of the number written with the two last digits on the right of this same number [ ... ] Let us
consider the number 43728 and the divisor 5x5. The number 43728 equals 47700+28. But 43700 is divisible
by 5x5, because 47700 is the product of 437 by 100, and 100 equaling 10x10, or 5x2x5x2, or 5x5x2x2, the
factor 100 is divisible by 5x5. The remainder of the division of 43728 by 5x5 or 25, is the same as the one of
28 by 25.

We call pragmatic proofs those proofs which rely upon action, and we call intellectual proofs those which use
verbalizations of the properties of objects and of their relationships. This step towards intellectual proof does not
consist in a mere translation of action into words; it requires a genuine construction of language means as an
operative tool. The problem-solver must be able to use language and symbols as means to compute on statements
and relations.
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At the highest level, in mathematics, mathematical proofs require a specific status of knowledge which must be
organized in a theory and recognized as such by a community: the validity of definitions, theorems, and deductive
rules is socially shared.

I1.3. SociAL ASPECTS OF PROOF

As Popper (1979, p.78) emphasizes it: “the 'certainty' of a belief is not so much a matter of its intensity, but of the
situation: of our expectation of its possible consequences. Everything depends on the importance attached to the
truth or falsity of the belief.” In other words, we will say that involvement at a given level of validation is a question
of economy of logic "which wants that one does not bring into play more logic than what is necessary for practical
needs" (Bourdieu 1980 p.145, our free translation).

Thus, the fact of presenting a problem to students does not guarantee that they will be committed to producing a
proof; this is due not to a fundamental lack of awareness but to the fact that their reading of the situation does not
call for producing a proof. In our research, therefore, we have paid much attention to providing students with a
context promoting awareness of the need for proof — i.e. a context which holds some risk linked to uncertainty, and
therefore something to gain by entering a proving process.

I1.4. THE DIALECTIC OF PROOFS AND REFUTATIONS

A well-known interpretation of a counterexample in the mathematics classroom is that of a sort of catastrophe which
implies the definitive rejection of what has been refuted. From this point of view the mathematics classroom
ideology is more Manichaean than dialectic. Analysis of the activity of the mathematician suggests a quite different
and, at least, less radical functioning. The decision on the validity of a proof depends on the quality of its critical
analysis, which finally guarantees the absence of logical mistakes and of counterexamples. In this regard the proving
process is based on the commitment of the problem-solver to take into account the possible existence of
contradictions: the proving process is fundamentally dialectic. That is even more obvious in the context of social
interactions, where tentative explanations, or refutations, of a given statement are elicited.

To take into account this dimension of the proving process, we have adopted the model of the dialectic of proofs and
refutations proposed by Lakatos (1976). We should mention here that this model is consonant with the theories
developed by the Piagetian school which has shown the central role played by contradiction in the genesis of
cognitive structures. Using this model we can differentiate the implications of a counterexample, depending on
whether we are considering the conjecture, its proof, or the related knowledge and rationality of the problem-solver
himself.

Rationality ——— Knowledge
D N
: \ :
| D Proof ;
{ 1 Conjecture E
B |
Counte re?amp]e

R
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This scheme showing the conjecture and its proof as the product of both the knowledge and rationality of a subject
summarizes the main possible consequences of a counterexample, Actually, it merely evokes the range of these
possible consequences, but it is sufficient to give an idea of what we call the openness of the treatment of a
refutation.

The nature of the development of the mathematical knowledge as described by Lakatos suggests a question which
Lakatos did not pose2 but which is nonetheless essential for the teacher or researcher in mathematics education:
what determines the appropriateness of a choice for overcoming the contradiction brought by a counter-example?
We have investigated this question together with the question of the nature of students' proving processes.

IIl. TYPES AND HIERARCHY OF STUDENTS' PROOFS

[11.1. AN EXPERIMENTAL APPROACH

In order to explore students' proving processes, we have used a situation of social interaction which encourages
confrontation of differing views on the solution of a problem and hence a verbal exchange which make those views
explicit.

Pairs of 13-14 year-old students were required to solve the following problem:

Give a way of calculating the number of diagonals of a
polygon once the number of vertices is known.

The answer to this question was to be expressed in a message addressed to, and to be used by, other 13-14 year-old
students. The two students have access to as much paper as they want but to only one pencil. This constraint
reinforces the co-operative nature of the situation; at the same time it gives us more direct access to the dynamic of
the two confronted knowledge systems, especially in cases of decision making. The observer intervenes only after
students claim that they have produced a final solution; at this stage he abandons his stance of neutrality and asks
the students to deal with counterexamples that he proposes.

The chosen problem refers to student knowledge that is more cultural than scholastic, for while polygons may have
been studied in the primary school (in activities related to geometric classification), they are no longer a part of the
curriculum at the level with which we are concerned. As in the case of solids in the eighteenth century, students'
conceptions about this mathematical content are not theorized. The context, therefore, is conducive to the
emergence of processes resembling those described by Lakatos, so it permits us to analyze the dynamic of proving,
the related treatment of refutations, and their relation to concept building.

In this experimental situation:

- The kind of communication encouraged structures the students' activity, and, more particularly, promotes a
verbal formulation of the counting procedure. This is something that students do not normally do straight
away, even if they are technically capable of it. At the same time, the desire to supply a reliable tool to the
other group is likely to lead the pair of students to pay more attention to the formulation and the validity of
its solution.

- The social interaction, through the exchanges it requires from the pair of students, helps elicit the students'
conceptions and plans, and the basis for their decisions independently of any observer's intervention. The

2 Actually, Lakatos gives examples which could lead to such a question. One of them is the case of Poinsot who, in
1809, considered some star-polyhedral as counterexamples to the Euler theorem. But about 50 years later, Poinsot
changed his mind considering these polyhedral as having only triangular faces; “now he sees only examples where he
previously saw counter-examples” (ibid p.31).
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constraints of using only one pencil oblige a permanent confrontation and the elicitation of the choice of
common criteria to accept or refuse any statement or strategy.

We have observed fourteen student pairs, each session lasting about 90 minutes. All sessions have been recorded.
From these data, we made the analysis underlying the results we present here (a complete report on this research is
presented in Balacheff 1988).

[11.2. HIERARCHY AND INTERRELATION OF THE TYPES OF PROOFS

[11.2.1. NAIVE EMPIRICISM

The origin of naive empiricism can be traced in two quite different phenomena: factual evidence and cognitive
belief’. “The term ‘belief’ expresses the direct, the sympathetic, form of knowledge, the feeling of the implicit validity
and reliability of the respective representations or interpretations and their extrapolative capacity." (Fishbein 1982,
p.l).

In the first case, the level of proof evidences a pragmatic empiricism which allows students to consider mere
observation as sufficient. Such behavior could come from conflict between students or from a reading of the
situation that leads them to prefer quickly submitting their solution to the observer instead of trying to enter a
proving process on their own. It is for example the case of two students we observed, Pierre and Mathieu4, who
proposed a solution to the observer but telling him that “it's a game... it's better to try something” (even if they also
claimed that it is of no use “to try anything”).

The second case is quite different, as it relies upon a real belief in the validity of the proposed solution. This belief is
strongly related to the students' conceptions which they are unable to express or analyze: “an intrinsic type of
conviction, directly imposed by the structure of the situation itself’ (Fishbein, 1982, p.ll, situation means here
mathematical situation). By way of illustration we offer the following excerpt of one of our case studies:

Pierre and Philippe’ induce from the observation of polygons with 6 and 8 vertices the
following numbers of diagonals: 6 x3 and 8x5 (despite the fact that this is contradicted by their
drawings). Their conjecture, then, is that the number of diagonals is equal to the number of
diagonals from one vertex multiplied by the number of vertices, but the students say, "we don't
know how to explain it". When the observer proposes the case of a polygon with nine vertices,
they compute 9x6 and say: "They are 54, it is the same procedure". Their belief in the validity of
this solution is based on the evidence that the number of diagonals from each vertex of a
polygon is the same. But they are unable to justify their solution, or the statement that it would
be sufficient to multiply this number by the number of vertices.

We should mention here that we have done the same experiment, but provided students with a document
presenting the definitions of polygon and diagonal together with some figures. This document was quite similar to
what they could encounter in a text book. In this situation students offered more correct solutions to the problem,
but in most cases, with a naive empiricist foundation. In the new context the examples used by students to check
their solutions were examples taken from the given document. The students understood them as prototypes, so that
no further testing appeared to be necessary, which is clearly stated by some of the students®: "We will look whether
it always work, on all the polygons ". This kind of naive empiricism, which we would like to call a prototypical effect, is
essential from the didactical point of view, as it calls under question the use of examples for teaching purposes.

3 This expression has been coined by Fishbein (1982); we render it in French by évidence de raison.
Balacheff 1988 p.108
> Balacheff 1988 p.109

Balacheff 1988 p.250. What is meant here is: all the polygons proposed by the document.
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Examples are indeed helpful for teaching purposes, but it appears that from the student point of view they can have
a status which is likely to tum into an obstacle to proving processes.

I11.2.2. THE CRUCIAL EXPERIMENT

The crucial experiment is an important step, as it identifies awareness of the problem of the validity of a
mathematical statement, taking into account the problem of generalization. Its origin could be in the awareness of
the insufficiency of a mere verification on few examples, but within cognitive and language limits which do not allow
the student to go beyond.

A good example is the case of the solutions of the type : f(n)=(n-3)+(n-3)+(n-4)+ ... +2+1 . This requires expressing an
iteration, which the students we observed were unable to do. Here is the solution formulated by Martine and Laura’:

Flrst vertex: number of dingonals = wumber of vertices -3
Second vertex: number of dingonals = the same
Frow the thivd vertex: number of diagonals just obtained - 1 diagonal

Forth vertex: number of diagonals just obtained -t diagonal

and so on
- at the end we add all the numbers of diagonal at each vertex to finol the
number of diagonals of the polygon

The two students decide “to draw a very large figure to verify”, which they do with a polygon
with ten vertices.

Let us take another example which gives clear evidence of this behavior, Nadine and Elisabeth® produced a solution
which consists in a recurrent formula:

They have found nine diagonals for a polygon with six vertices, then announced for a polygon
with seven vertices: “we should add five, normally ... if it works, then normally with seven we
will find fourteen diagonals”; which is confirmed by their experiment. But to accept the
solution definitively they relied on a crucial experiment. As they stated it: “try once with fifteen
vertices, then if it works that means that it works with any other number”. Actually, the
experiment was done with a polygon with ten vertices: “so normally... with ten sides we should
find thirty-five diagonals”. The conjecture is then accepted as true.

In contrast to the naive empiricism which disappears when students reach the level of intellectual proofs, the crucial
experiment remains as an ultimate means to ground the students' conviction, especially in the case of a proof relying
on a generic example. This is an example of the operative coexistence of empirical pragmatism and logical
rationalism. It confirms the thesis of Fishbein (1982), who claims that these are two types of rationality with different
practical value: «the two basic ways of proving — the empirical and the logical — are not symmetrical; they do not
have the same weight in our practical activity» (ibid. p.17).

The crucial experiment takes quite a different significance in social interactions when it becomes a means of defusing
a conflict about a statement between the two students. It is then no longer a genuine tool for proving. It supports
one position against another without effectively asserting its validity. We note that in such circumstances, there were
other explanations of the statement in the student pair. It is the case for Christophe and Bertrand’:

7 Balacheff 1988 pp.98. 121
® Balacheff 1988 pp.122-123
° Balacheff 1988 p.118
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Christophe does not accept the solution proposed by Bertrand. He claims that the number of
diagonals is twice the number of vertices, like for P; the example he considered. Instead of
explaining his solution (what he could have done, see this solution below) Bertrand proposed
to Christophe to try with Pg and see... after the observation of this case Christophe surrenders
and then accepts the solution of Bertrand. The example Pg played exactly the role of the Bacon
“crucial experiment” which result allow to make a choice between two possibilities.

I11.2.3. THE GENERIC EXAMPLE AND THE THOUGHT EXPERIMENT

The thought experiment can be seen in the linkage of proofs relying on a generic example, throughout a process of
de-contextualization which requires eliminating the particular. This process does not occur only at the level of
language; it requires cognitive constructions of great complexity to elicit the objects involved in the proof and their
relationships. This complexity is due to the fact that very often the thought experiment relies on intermediate steps
at a lower level of proving.

From the thought experiment the process of de-contextualization, together with de-temporalization (obliteration of
time, in a movement from dynamic to static) and that of de-personalization (obliteration of the actor), can develop
towards proofs which consist in a real computation on relations. This has been observed very seldom, since it
requires powerful language means and demands the knowledge to be theory-like.

The following example shows the transition from a proof by generic example to a thought experiment:

Christophe and Bertrand'® deduced from a close analysis of a polygon with seven vertices that
the number of diagonals to each vertex follows the pattern n-3. The following account they
produced shows they arrive at this:

If we have a polygon with 7 vertices, each point has two wneighbors, and from

this po’u/»t starts:
7 - (2 4+ 1) wedothat for all points.
Nummber number the polnt

of vertices  of nelghbors

Their formulation reflects the reasoning behind their solutions, but this occurs at the level of
action and not really at that of computation involving relations:

Kinowing the number of vertices of a polygon, it starts from each point the
number of vertices - (its two nelghbors + itself). What has been obtaineo then
should be multiplied by the number of vertices (from each vertex starts the
same number of diagonals).

BUt we count twice each diagonal: the obtained vaunber of dingonal is thus to
be divided by two to find the number of diagonals.

1% Balacheff 1988 p.138-141
1
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[11.3. THE TREATMENT OF REFUTATIONS™

The analysis of students' treatment of refutations reflects most of the possibilities described by the model of Lakatos.
The question on which we have focused is that of criteria of students' choice among all these possibilities.

Three types of analysis appear to determine the choice of treatment of a refutation:

- Analysis with reference to the problem itself. This type of analysis gives a central place to discussion of the
nature, and thus the definition, of the objects involved in the problem. Potentially, it may lead to any of the
possible types of treatment, none of which is privileged a priori. The choice students make can be
understood only through local analysis of the problem-solving process or of the specific characteristic of
each individual. The type of treatment can change in the course of the problem-solving process, for
example, the students decision to modify the definition can be followed by that of introducing a condition or
of modifying the initial conjecture when their conceptions have been stabilized. But the origins of the choice
to treat the counterexample by introducing a condition or searching for a specific solution, or modifying the
conjecture, cannot be traced with the data we have gathered. All we can suppose is that when a refutation
might eliminate a wide range of polygons (with respect to students' conceptions ), students prefer to modify
the conjecture by adding a specific solution for the objects referred to in the counterexample (extension to
odd polygons in case of f(n)=n/2, search for a solution for non-convex polygons, etc.).

- Analysis with reference to a global conception of the nature of mathematics. This could be a serious
obstacle to some responses to a refutation and could lead to refusal to treat the counterexample as an
exception, rejection of a solution which cannot be expressed by a unique formula, etc.

- Analysis with reference to the situation. This is essentially a question of the didactical contract' which

leads students to favor certain treatments of the counterexample (for ex ample the students' reading of the
situation as a «definition game» in which they shift from a definition to another to escape the
counterexample) while it raises obstacle to others (refusal to introduce a condition because it has not been
stated in the problem statement, cf. the example given below).

The following brief account of one of the case studies shows how these different analyses play a role in students'
decision:

Evelyne and Christine™ consider the solution “the number of diagonals of a polygon is half the
number of its vertices”, first on the basis of a naive empiricism, and then on that of a thought
experiment. The thought experiment is related to the conception of a diagonal they make
explicit after a refutation by a polygon with seven vertices: "a diagonal is a straight line which
belongs to a vertex of a polygon and which cuts its surface in two pieces ". But they hold
different points of view: one of them would like to introduce a condition in the statement of
the conjecture; the other would prefer to reconsider the definition. Finally, it is the latter that is
chosen after Evelyne argues that "it could not be that because there [in the statement of the
task] they don't tell that a polygon is... the number of vertices is even". In other words,
students have not the right to restrict the set of polygons which fit the conjecture; they have to
give a solution for all of them. Actually, the definition they choose restricts the set of the
polygons to those for which the conjecture is valid: "if we say that a polygon is... a thing whose

"' For a complete report on this aspect of the research see : N. Balacheff, "Treatment of refutations : aspects of the
complexity of a constructivist approach of mathematics learning". 10 appear in E. Von Glasersfeld (Eds.) :
"Constructivism in mathematics education", D. Reidel Publishing Company

" In our study, the experimental contract
B Balacheff 1988 p.182, pp.192-194, pp.221-223
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edges are always parallel two by two... then it is not necessary to be more precise. We need
only to divide by two ". But the case of a triangle is not treatable under this definition. The
triangle is rejected as a polygon because it has no diagonal. In the eyes of the students, it is a
kind of monster. Later on, a counter-example (a polygon with five vertices), produced by the
observer imposes itself as a polygon. Then the initial definition is rejected and a new one is
considered: "for sure a polygon can have any number of diagonals... but it should be regular".
So the only way to save the conjecture is to introduce a condition and to search for a solution
specific to the odd polygons.

This last solution starts from a student's conception of a diagonal as an “axis of symmetry”: a
diagonal is a line which passes through a vertex of a polygon and cuts it into two equal pieces.
In case of a polygon with five vertices it corresponds to the students' drawing given above. The
solution they conjecture is f(n)=n for odd polygons. They first envision proving it by means of a
crucial experiment with a polygon of eleven vertices, but as it appears to be too complex, they
prove it “by reasons”: "it is obvious that it is 11, as there is 1 in each vertex ". The uncertainty
which remains is an uncertainty in the students' premises: it involves the definition of a polygon
and of a diagonal. It is on the basis of these definitions that they then treat the
counterexamples produced by the observer.

These definitions are even formulated in their message:

If the number of vertices of the polygon is even: you divide the number by two
and you will obtain the number of its diagonals

If the number of vertices of the polygown is odd: the number of diagonals is
equal to the muuber of vertices

A polygon s a geometrical figure which can have any number of vertices but
whose edges must be equal

Finally, we have examined the question of a possible influence of the type of conjecture on the choice of treatment
of a refutation. An initial hypothesis is that if the conjecture is false, then its rejection or modification, or the revision
of the definition, should be dominant; on the other hand, if the conjecture is correct, then the rejection of the
counterexample should be dominant. Actually, we have observed that conjectures like f(n)=n or f(n)=2n are
abandoned after their refutation. But such conjectures are very fragile, insofar as they are verified only by one
polygon. It is quite different when the conjecture is verified by a large set of polygons, like the false conjecture
f(n)=n/2 whose strength comes from the fact that it is related (explicitly or not) to a conception of a polygon as a
regular polygon and a diagonal as a diameter. For these conjectures no type of treatment appears to be favored.
Even the type of foundation of the conjecture has no effective influence on the students' choice of treatment of the
counterexample. For example, an ad hoc modification of the conjecture (what is indeed at the same level as the
naive empiricism) can follow a counterexample whereas the foundation of this solution was at a higher level like that
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of the thought-experiment. It is the case of Lionel and Laurent™ who first established the solution f(n)=n(n-3), and
then modified it to f(n)=n(n-3)/2 only because they noticed dividing by two as a relationships between the number of
diagonals (5) of the counter-example they examined and the number they expected (10).

In the case of correct conjectures, whose construction refers to a “correct” conception of a polygon and a diagonal,
whether they have been constructed deductively or as the result of a dialectic between successive attempts and their
refutations, the treatment appears to be far less varied than in case of a false conjecture. One prevailing type of
response is rejecting the counterexample after its analysis with reference to students' conceptions; a second
dominant type of response entails considering the counterexample as an exception or introducing a condition
(actually, the latter appears to be a way to avoid recognizing exception).

V. CONCLUSIONS AND QUESTIONS ABOUT TEACHING

The type of proving processes students evidence do not intrinsically characterize what could be called their
“rationality”, in that different levels of proof could be observed in their problem-solving activity. The meaning of
proving processes cannot be understood without a careful analysis of students' conceptions of the mathematical
concepts involved and their reading of the situation within which they act. The characteristics of the situation appear
to determine the level of proving, while the image students have of mathematics also plays an important role,
particularly in their treatment of refutations.

The passage from pragmatic proofs to intellectual proofs requires a cognitive and linguistic base. Our disregard of the
complexity of this passage could be one of the main reasons for the failure of the teaching of mathematical proof,
since this passage is very often considered only at the logical level. In geometry in particular, this teaching takes place
in a conceptual field which for students is not yet constituted as a theory; we should not forget that geometry was
for them essentially restricted to observation and construction of geometrical objects with no requirement for proof.
So the teaching of proof is associated to what could be described as a cognitive break in the student activity, related
to the didactical break represented by new requirement for mathematical proofs.

Thus, we would like to say that the construction of the students' mathematical rationality should he considered at
the same time and with the same priority as the construction of their mathematical knowledge. It might be possible
to propose proving problems from the beginning of mathematics learning, provided that something other than strict
mathematical proofs were acceptable. For that, we must take into account students' reasoning skills and consider
the didactical conditions for their evolution. But when a proof has been accepted, the validity of the statement
concerned is difficult to question later ; therefore, the teacher acceptance of a proof which is not a mathematical
proof raises the problem of its eventual recurrence in a form which must appear reasonable to students.

The case of refutations raises specific didactical problems. We have shown the breadth of students' treatment of a
refutation and the variety of rational for this treatment. So how can we deal with the fact that when the teacher
produces a counterexample, students believe that it is a particular case, whereas what should actually be questioned
is the naive empiricism on which their conjecture is based or their understanding of the related mathematical
knowledge?

If there is no strict cognitive determinism involved in the way a contradiction shown by a counterexample could be
overcome, then what role should he played by the situation ? The interventions of the teacher — the way the
interactions with students are manage — will be essential to helping students realize that a major goal is examining
their knowledge, or the reasoning behind their conjecture, and not a mere ad hoc adaptation of their solution or
even its total rejection.

' Balacheff 1988 p.170
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