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1.FRAMEWORK
STDP: Thought to be responsible for memory, synaptic plasticity
is the change of strength of neuron’s links. Popular plasticity
models are based on Spike Timing Dependent Plasticity (STDP):

Hebb’s law (1949):
“When an axon of cell A[...] re-
peatedly or persistently takes part
in firing (a cell B), [...]A’s effi-
ciency, as one of the cells firing B,
is increased” [1]

Fig: In STDP, order of spikes is crucial

Problem: Current models use deterministic plasticity rules
whereas the biological mechanisms involved are mainly stochas-
tic ones. Moreover, there exists few mathematical studies [2]
taking into account the precise spikes timings. Finally, there is
a need to understand how to bridge the time scale gap at the
synapse level and how weights dynamics interplay with the
network one.
Novelty: Stochastic STDP rule with discrete synaptic weights
which allows a mathematical analysis of their dynamics.

2.MODEL CONSTRAINTS
• Rich enough to reproduce biological phenomena

• Simple enough to be analyzed mathematically and simulated

• Observe global properties of the network due to neurons firing

3.NEURONAL NETWORK MODEL

Individual neuron: Simple model for the membrane potential [3].

At time t, the neuron i is
{

at rest if V it =0

excited if V it =1

Dynamic of V it :

0
αi(Wt,Vt)−−−−−−−−⇀↽−−−−−−−−

β
1

Fig: 3 neurons, state in circle, weights on links• β=constant

• αi(Wt, Vt)=f
(∑N

j=1W
ji
t V

j
t

)
+αm with f(x)=

αM

1+e−σ(x−θ)

Remark: αi depends on current neurons states and weights

Dynamic of synaptic weightsWt:
Weights have probability to change only when a neuron jumps from 0 to 1:

Fig: Dynamic of neurons i and j in time

Remark: Need to have access to St in a Markovian manner

4.MATHEMATICAL RESULTS
Markov process (Vt,St,Wt)t≥0∈E from (v0, s0, w0):

• Wt∈E1=RN
2

: matrix of synaptic weights

• St∈RN+ : last spike of neuron i occured at time t− Sit

• Vt∈I={0, 1}N : neuron system state.

Hypothesis: plasticity is slow compared to the network dynamics.

Mathematically, this hypothesis enables us to consider the proba-
bility that the weight changes are really small. This probability is∑
∼
w
φε(s, w,

∼
w) = O(ε). Our process dynamic is then given by:

(v, s, w) → (v − ei, s, w) : δ1(v
i
)β

(v, s, w) → (v + ei, s− siei, w) : φε(s, w,w)δ0(v
i
)α(w, v)

(v, s, w) → (v + ei, s− siei,
∼
w) : φε(s, w,

∼
w)δ0(v

i
)α(w, v)

• (ei)i is the canonical basis of RN

• φε(s, w,
∼
w) gives the probability to jump in

∼
w knowing s

Results:
We derive an equation for the slow weight dynamic alone,
in which neurons dynamics are replaced by their stationary
distributions. We work on the time scale τε= t

ε when ε→0.

1.Invariant measure:
When Wt = w is fixed, there exists a unique invariant measure
πw for the process (Vt, St)t>0:

• Existence : Lyapunov function as in [4]

• Uniqueness: characterization of Laplace transform of πw

We didn’t find explicitly (v, s)7→πw(v, s) but we studied its
behavior near the diagonal si=sj . We prove that it is not
continuous in most cases at the diagonal:
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Fig: Invariant measure in neuron state (0,0), 2 neurons.

2.Slow fast analysis:
Let (Vt, St,Wt)t≥0 such that (Vt, St) ∼ πWt and (Wt) is the
solution of the martingale problem associated to the operator C:

Cf(w) =

∫
E2

Af(v, s, w)πw(ds, dv) (1)

Using [5], we prove that (Vτε , Sτε ,Wτε )t≥0 converges in law
to (Vt, St,Wt)t≥0 when ε→ 0.

Discussion:
This time scale separation gives the infinitesimal generator of the
weight dynamic on the slow time scale. However, we don’t know
explicitly πw but its Laplace transform. Under some simple as-
sumptions, we can get explicitly the dynamic of the weights which
is a Markov chain on {(wij)i,j , wij = wij0 + k∆w≥0, k∈Z}
with inhomogeneous jump rates depending on the Laplace trans-
form of πw . Thus, we don’t need to simulate the all network any
more, only the limit model. Moreover, we can analyze the weights
dynamics. An example is given in simulations.

5.SIMULATIONS
Biologically coherent parameters:
Even if simple, our model depends on many parameters. First,
let’s detail the probability to jump:

p
+

(s) = A+e
− s
τ+ and p

−
(s) = A−e

− s
τ−

Such functions enable to be close to biological experiments:
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Fig: Bi-Poo experiment on our model compare to the real one

Parameters for the figure are: A+=1, A−=0.4, τ−=2τ+=34ms
as in [6]. These parameters have to be added to the first ones:
β, αm, αM . Time of influence of a spike 1ms so β∼1. Firing rates
of neurons are bounded by αm∼0.01 and αM≤β. STDP param-
eters are in the following range: τ+/−∈[5, 40], A+/−∈[0, 1].
Finally, ε∈[0.1, 0.01].

Analytic versus Numeric:
First, we wanted to visually show our limit model is licit. In simu-
lations, an easy value to get is the sum of jump rates of weights:

Fig: Analytic (left) and numerical (right) total jump rate of weights, 2 neurons.

We get similar results in the case of 2 neurons. In higher dimension
it is hard to get equivalent analytic and numerical precision.

Weight divergence:
A big problem in plasticity models is the divergence of weights.
We could have put hard bounds or soft bounds but we wanted
to see in which limits weights diverged without them. We tested
some criteria of non divergence of weights in our model. In par-
ticular in the article [7], such a criteria is to have the integral of the
learning window negative. Nevertheless, it is not the case for our
model. In a really simple case, our limit model enabled us to find
parameters for which this criteria leads to a weight divergence.
One weight free and 2 neurons:
We get a birth and death process with w21 fixed, w=(w12, w21):

w12 → w12 + ∆w : r+(w)>0

w12 → w12 −∆w : r−(w)>0

In that particular case, limw→∞ r+/−(w)=R+/− exist and we
can prove the process converges to its unique invariant mea-
sure if R+−R−<0. We computed, thanks to (1), the difference
r+(w) − r−(w). It depends on (w12, w21). We found parame-
ters,A+=0.8, A−=0.7, w21<70, for whichw12 diverges when
the integral of the learning window is negative:
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Fig: Plot of r+(w)−r−(w).
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Fig: Plot of p+, p− on the same graph.
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Fig: Evolution of the weight.

10 neurons:
When depression is really higher than potentiation, weights seem
to converge to a stationary distribution and have such trajectories:

However, initial weights play an important role. With parameters
A+=0.8, A−=0.9, β=1, αm=0.01, αM= 0.5 and ε=0.1, we
have no divergence in short time with low initial weights and se-
lection of one weight from big initial ones, Wi1

0 = 50:

The selected weight is different from one trajectory to another.

6.CONCLUSION
We showed divergence of weights even when integral of

the learning window is negative. Additive terms, depending on
weights, seem necessary to avoid divergence in the context of bi-
ological parameters. However, our first mathematical results are
encouraging for deeper study and our model showed more in-
teresting behavior than those already presented: bidirectional as
unidirectional connections can be strong.

7.PERSPECTIVES
Maths:

• Weights dynamics

• Mean field
approximations

Modeling:

• Simulations to test other
plasticity rules

• Neurons states from
discrete to continuous
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