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Abstract

Viscoelastic materials follow a liquid-like elastic behavior whose characteristics depend on the excitation
frequency. Nowadays, this type of materials represent a high opportunity for vibration damping treatments
in the automotive and aeronautic industries, for instance. This work is devoted to the application of the
level-set method for topology optimization of viscoelastic structures. We look for the best distribution of
viscoelastic material within a reference domain for the design of purely viscoelastic 3D damping structures
and 2D viscoelastic damping treatments. In both cases one desires to maximize the structure capacity to
dissipate energy measured here by the modal loss factor of the first vibration mode.
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1. Introduction

Viscoelastic damping material behavior occurs in a wide variety of materials and can be characterized
by liquid-like elastic behavior. Materials that experience viscoelastic behavior include acrylics, rubber, and
adhesives. The characteristics of viscoelastic materials depend on temperature and frequency. Viscoelastic
materials have the property of absorbing vibrational energy which makes them very interesting for structural
damping applications. The vibrations can be caused by noises that radiate from a certain source as sound
or structure oscillations coming from dynamical wind loadings or earthquakes. Viscoelastic dampers can be
designed as independent 3D parts within a mechanism but also as 2D damping treatments which consist of
one or a combination of materials applied/bond to a component to increase its ability to dissipate mechanical
energy. For instance viscoelastic dampers are useful when structures are forced to vibrate at or near its
natural (resonant) frequencies, are subjected to impacts or other transient forces, or transmit vibration to
noise-radiating surfaces. The energy dissipation of a viscoelastic structure is typically quantified in terms
of a loss factor, a dimensionless quantity that can be measured or predicted from a modal analysis or
frequency response curves. Two categories of treatments for structural damping exist, the unconstrained
layer damping (UCLD), where the material is simply attached with a strong bonding agent to the surface of
a structure, and Constrained-layer damping (CLD) where the material is sandwiched between a base layer
and a third constraining layer. The CLD treatment provides considerably more damping effect than the
free viscoelastic treatment in spite of its relative complexity. Energy dissipation is achieved in this case by
shearing a viscoelastic polymer between a base structure and a constraining layer. Both types of damping
structure are depicted in Figures 1 and 2.

Topology optimization is essentially an iterative numerical process that seeks to find the best material
layout (within a prescribed design domain) according to a given objective function and a set of design
constraints, providing valuable help in problems where mechanical intuition is limited. Topology optimiza-
tion of viscoelastic UCLD and CLD has been performed by many authors in the literature using different
methods. Zheng et al. [1] used the Solid Isotropic Material with Penalization (SIMP) method with the
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Figure 1: Unconstrained-layer damping treatment.
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Figure 2: Constrained-layer damping treatment.

Method of Moving Asymptote (MMA) to perform topology optimization of a CLD cantilever plate treated
with DYAD606 where a sum of modal loss factors is maximized. Kim [2] applied SIMP and Evolutionary
Structural Optimization (ESO) methods to design damping treatments for unconstrained-layer plate and
shell structures. Zheng et al. [3] used the same methodology to perform topology optimization of CLD
with partial coverage, showing interesting performances of the optimized structure in terms of damping and
mass savings. Kim et al. [4] used the rational approximation for material properties (RAMP) with the
optimality criteria method (OC) to perform topology optimization of UCLD shell structures to maximize
modal loss factors. El-Sabbagh et al. [5] used the method presented in [6] along with the MMA method to
perform optimization of periodic and non-periodic plates. Zhanpeng et al. [7] used evolutionary structural
optimization (ESO) to minimize viscoelastic CLD plate response. James et al. [8] used a time dependent
adjoint method along with the MMA method to perform topology optimization of viscoelastically damped
beams for minimum mass under time dependent loadings. Yun et al. [9] performed multimaterial topology
optimization to maximize energy dissipation of viscoelastically damped structures subjected to unsteady
loads using SIMP and MMA. Ansari et al. [10] used a level set method to perform topology optimization
of viscoelastic UCLD plate whereas van der Kolk et al. [11] used a parametrized level set based method for
multi-material topology optimization of beams.

The present work addresses the structural optimization of 3D fully viscoelastic structures and 2D UCLD
treatments by means of the level-set method for topology optimization. For this purpose we rely on the
level-set approach for multi-phase optimization detailed by Allaire et al. [12]. First introduced by Osher
and Sethian [13], the level-set method has the advantage of tracking the interfaces on a fixed mesh, easily
managing topological changes without remeshing. Combined to the Hadamard method of shape differentia-
tion [14, 15, 16] in the framework of structural optimization, the level-set approach is an efficient shape and
topology optimization algorithm, which gives a better description and control of the geometrical properties
of the interface, avoiding typical drawbacks such as intermediate density penalization and possible spurious
physical behavior during the optimization process [17, 18]. Moreover, as remarked by Allaire et al. [19],
the level-set method is especially well suited for vibration problems involving eigenfrequency optimization,
since small holes or material islands cannot suddenly appear or disappear between two successive iterations
as they do with the homogenization or SIMP methods, thus avoiding spurious modes in low density regions.
Indeed, the “ersatz material approach” used within the framework of the above mentioned methods is known
to produce fictitious eigenmodes localized in the weak phase which pollute the optimization process (see e.g.
[20], [6], [21]).

This article is organized as follows. Section 2 is devoted to the mathematical description of viscoelastic
materials and the vibration problem arising for purely 3D viscoelastic structures and 2D unconstrained layer
damping plates. Both cases are associated to two different models involving viscoelasticity and are dealt
with in parallel inasmuch as possible. Section 3 is concerned with the study of the non-linear eigenvalue
problem that stems from the aforementioned models. We provide a theoretical result characterizing the
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eigenvalues of such problems for a general class of viscoelastic materials. Section 4 details the sensitivity
analysis of the first eigenfrequency of the structure with respect to the viscoelastic shape, and Section 5
recalls the use of the level-set method in the framework of topology optimization. Finally Section 6 outlines
the numerical solution of the underlying non-linear eigenvalue problem and illustrates it with two concrete
applications.

2. Setting of the problem

Let f̂ be the Laplace transform of a real valued function f(t) defined by

f̂(µ) =

∫ ∞
0

e−µtf(t)dt, µ ∈ C. (1)

Also let ω ∈ C be the complex pulsation describing an oscillating damped signal with angular frequency
Re(ω) and relaxation time Im(ω)−1. Set µ = iω in (1) and write f̂ as a function of ω.

From now on, we will assume a time-harmonic regime at fixed ω. For viscoelastic materials, a linear elastic
constitutive relationship using Hooke’s law is not an accurate model and a complex modulus is extensively
used to describe the dynamic characteristics of viscoelastic materials [22]. The stress-strain relationship of
a linear viscoelastic damping material subjected to steady-state oscillatory loads thus reads:

σ̂(ω) = Â(ω)ε̂(ω), (2)

where ω is the complex pulsation, Â is the complex (or dynamic) elastic tensor and σ̂ and ε̂ are the Laplace
transforms of stress and the strain, respectively. This relation stems from the Laplace transform of the stress
history given by

σ(t) =

∫ t

0

Y (t− τ)
dε(τ)

dτ
dτ, (3)

with Y the relaxation function (or relaxation modulus) and

Â = iωŶ (ω). (4)

The relaxation function Y accounts for the material stress behavior in a relaxation test (gradual disappear-
ance of stresses from a viscoelastic medium after it has been deformed) and the Boltzmann superposition
principle (the state of stress or deformation of a viscoelastic body is a function of all the stresses applied to
the material) [23]. In other words, the relaxation function Y governs the decrease of the stress towards an
asymptotical limit in time when the viscoelastic material is subjected to an instantaneous constant strain
at t = 0. Then for a sequence dε(t) of applied strains in time, the stress is simply equal to the “sum of
products” of the delayed relaxation function and the constant applied strains. This integral is later expressed
rather as a convolution.

For the sake of simplicity, we will henceforth write (A, σ, ε) instead of (Â, σ̂, ε̂) unless we want to explicitly
emphasize the Laplace transform.

Let (Ω,O) be two bounded open sets with Ω ⊂ O ⊂ Rd (d ∈ {2, 3}).
• If d = 3, we will say that Ω is occupied by a viscoelastic material with complex elastic tensor A

and density ρ > 0 within a reference (or working) domain O. We will call this configuration the 3D
viscoelastic structure. The boundary of Ω is made of two disjoint parts

∂Ω = ΓN ∪ ΓD,

with Dirichlet boundary conditions on ΓD and Neumann boundary conditions on ΓN .

• If d = 2, O will be the reference configuration for a plate in the xy-plane and Ω the surface occupied
by the viscoelastic coating. We will call this configuration the composite sandwich structure. By abuse
of notation, we split the boundary of O (∂O = ΓN ∪ ΓD) instead of Ω since no boundary conditions
are imposed on ∂Ω.
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2.1. 3D viscoelastic structure

We denote by ω ∈ C the complex pulsation and by û ∈ H1(Ω;C)3 the associated mode, i.e. the
corresponding displacement field in Ω. For the sake of simplicity, we will generally write u unless we want
to explicitly emphasize the Laplace transform. The pair (ω, u) is a solution of the non-linear eigenvalue
problem  −div(A(ω)e(u)) = ω2ρ u in Ω,

u = 0 on ΓD,
A(ω)e(u) · n = 0 on ΓN ,

(5)

where

e(u) =
∇u+∇uT

2

is the symmetrized strain tensor. The state equation in (5) stems from applying the constitutive equation
(2) and the Laplace transform to the evolution (wave) equation of linear elasticity

ρutt − div(σ) = 0 in Ω. (6)

We remark that the eigenvalue problem (5) is non-linear since the complex elastic (or stiffness) tensor A
also depends on ω.

2.2. Composite sandwich structure

For modeling vibration damping treatments we use a plate model approximation of (5). Consider the
small transverse vibration of a uniform plate with thickness h(x), density ρ(x) and reference configuration
for the plate O with d = 2. The transverse displacement of x at time t is denoted as w(x, t) but for the
sake of simplicity, we rather denote as w (instead of ŵ) the vertical displacement mode associated with the
complex pulsation ω ∈ C. Unconstrained-layer damping (UCLD) is one of the simplest forms of material
application. The material is simply attached with a strong bonding agent to the surface of a structure.
Energy is dissipated as a result of extension and compression of the damping material under flexural stress
from the base structure. From now on, for every general quantity ξ defined either on the viscoelastic coating,
the base plate or the global composite (viscoelastic coating plus base plate), we will use the notations ξc, ξp, ξg
respectively. The following assumptions are made:

• Transverse shear and rotational and in-plane inertia effects in both the plate and the coating are
negligible for the lower modes of vibration,

• There are no applied in-plane loads,

• Displacements are small and changes in thickness are negligible,

• The viscoelastic coating is applied to only one side of the plate

• The plate and the coating are homogeneous and isotropic, and subjected to a state of plane stress,

• Displacements are continuous across the interface between the plate and the coating,

• Poisson’s ratio of the coating is a real constant and the coating is incompressible (ν = 0.5).

Under these assumptions, classical Kirchhoff-Love plate theory can be used [24]. Let w ∈ H2(O;C).
Then the pair (ω,w) is solution of the non-linear eigenvalue problem −∇

2 : (D(ω)∇2w) = ω2ρ w in O,
w = 0,∇w = 0 on ΓD,

(D(ω)∇2w)nn = 0 on ΓN .
(7)
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Figure 3: Slice of the 3d plate. The shape O belongs to the xy−plane, being x the outward axis in the figure.

The aforementioned state equation follows from the virtual work principle applied to the total energy of the
plate (bending strain energy plus kinetic energy) and the Laplace transform. As mentioned before, let Ω be
the region of O where the coating is applied. Then the function ρ(x) is piecewise constant and corresponds
to the surface density

ρ(x) =

{
ρp := ρVp hp if x ∈ O\Ω,
ρg := (ρVp hp + ρVc hc) if x ∈ Ω,

with ρVp , ρ
V
c and hp, hc the volumetric densities and thicknesses of the plate and the viscoelastic coating,

respectively. The equivalent bending stiffness tensor D for an isotropic base and coating material reads [25]

D(ω, x) =


Dp :=

h3
p

12Ap if x ∈ O\Ω,

Dg :=
(
h3
p

12 + hph
2
n

)
Ap +

(
h3
c

12 + hc(hpc − hn)2
)
Ac(ω) if x ∈ Ω,

(8)

where the tensors Ap, Ac(ω) stand for the extensional stiffness tensors of the base and viscoelastic ma-
terials respectively (we remark that only the coating material depends on ω, more specifically its Young
modulus),

Al =
El

(1− ν2
l )

 1 νl 0
νl 1 0
0 0 0.5(1− νl)

 , with the index l = p, c,

hpc represents the distance between the neutral planes of the base plate and the viscoelastic layer material
and hn (see Figure 3) represents the distance between the composite neutral axis and the base plate neutral
plane which can be approximated as

hn =
Echchpc

Ephp + Echc
. (9)

The structure of the tensor D ensues from the integration of the laminate through the thickness moment
resultants meanwhile the correction terms hn, hpc arise when hp 6= hc in order to compensate the shift of the
neutral fiber of the laminate, i.e. the place in the plate where the thickness-averaged stresses vanish [25].

2.3. Optimization problem

For the sake of clarity, we detail the optimization problem only within the damping optimization con-
text exposed in Section 2.1. The same notions however remain valid for viscoelastic damping treatments.
Supposing that (5) admits a countable infinite family of solutions (ωk, uk)k≥1 in C ×H1(Ω;C)3 (see more
details in the next section), with the eigenfunctions or modes normalized by imposing that

∫
Ω
ρ|uk|2dx = 1,

we are interested in solving the optimization problem

sup
Ω∈Uad

η(Ω), (10)
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where
Uad = {Ω ⊂ D such that |Ω| = V} (11)

is the set of admissible shapes with fixed volume V, D is the working domain (a bounded subset of R3) and
η(Ω) is the modal loss factor of the structure for its first eigenvalue:

η(Ω) :=
Im(ω2

1)

Re(ω2
1)

=

Im

(∫
Ω

Ae(u1) : e(u1)dx

)
Re

(∫
Ω

Ae(u1) : e(u1)dx

) , (12)

where u is the complex conjugate of u. The value of η represents the ratio between dissipated and stored
energy or in other words, the structure capacity to dissipate energy.

Remark 2.1. It is well known that (10) is usually not well posed on the set of admissible shapes (11)
(i.e. it has no solution). In order to obtain existence of optimal shapes, some smoothness or geometrical
or topological constraints are required (see for instance [26, 27, 28] ). Note that, even if existence is not an
issue of the present article, we shall work with a smoother subset of (11), i.e. we consider smooth shapes in
order to define properly a notion of shape derivative (consult Section 4).

Similarly to the notion of material loss factor of a viscoelastic material, which allows to express the
dissipative behavior of the complex Young and shear moduli E(ω), G(ω) via the Young and shear moduli
factors ηE , ηG:

E = Re(E)(1 + iηE) and G = Re(G)(1 + iηG), (13)

the concept of modal loss factor accounts for the dissipative behavior of the structure first resonant frequency

ω2
1 = Re(ω2

1)(1 + iη).

Since the eigenvalues of (5) cannot be naturally ordered in C, ω1 will be defined as the closest eigenvalue
of (5) to ω`1 (in the sens of modulus |ω1 − ω`1|), where (ω`k, u

`
k)k≥1 in R×H1(Ω;R)3 and ω`k ≤ ω`k+1 for all

k ≥ 1, is the countable infinite family of solutions of the purely elastic problem associated with (5):

− div(A(0)e(u)) = ω2ρ u in Ω. (14)

3. The non-linear eigenvalue problem

Problem (5) can be cast as a generalized eigenvalue problem

T (ω)u = 0 (15)

where T (ω) is a linear operator depending (non-linearly) on a parameter ω. In particular for (5)

T (ω) = −div(A(ω)e(·))− ω2ρ Id(·),

where Id() is the identity operator. A solution u 6= 0 will exist only for some particular values of ω (also
called eigenvalues).

We devote this section to the study of the characterization of the solutions of (5) and (7). We prove
in particular that the underlying spectrum of the aforementioned problems is discrete. This feature is of
paramount importance since a continuous spectrum or an accumulation point in the spectrum may lead to
spurious eigenvalues in numerical applications.
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3.1. Preliminary results

Let V and W be two complex Hilbert spaces with V compactly embedded in W. Let also {Eω}ω∈D, with
D ⊂ C open bounded, be a family of complex mappings Eω : V× V→ C.

Definition 3.1 (Sesquilinear form). We say that {Eω}ω∈D is a family of sesquilinear forms if for each ω

1. Eω(u1 + u2, v1 + v2) = Eω(u1, v1) + Eω(u1, v2) + Eω(u2, v1) + Eω(u2, v2),

2. Eω(αv1, βv2) = αβEω(v1, v2),

for all u1, u2, v1, v2 ∈ V and all α, β ∈ C.

Definition 3.2 (Continuous form). We say that {Eω}ω∈D is a family of continuous forms if there exists a
function d : D→ R+ such that

|Eω(v1, v2)| ≤ d(ω) ‖v1‖V ‖v2‖V ,∀v1, v2 ∈ V. (16)

We will suppose additionally that the function d(ω) is continuous in D (thus bounded).

Definition 3.3 (Coercive form). We say that {Eω}ω∈D is a family of coercive forms if there exists a function
c : D→ R+ such that

|Eω(v, v)| ≥ c(ω) ‖v‖2V ,∀v ∈ V. (17)

We will suppose additionally that the function c(ω) is continuous in D (thus bounded).

Definition 3.4 (Holomorphic form). We say that {Eω}ω∈D is a family of holomorphic forms if for every
fixed pair v1, v2 ∈ V the mapping

ω ∈ C→ Eω(v1, v2) ∈ C

is differentiable at ω for every point ω in D.

From now on, we will assume that {Eω}ω∈D is a family of continuous coercive sesquilinear forms with
continuous bounds.

Proposition 3.1. For each ω ∈ D, define the operators Gω,G†ω : W→W such that given g ∈W, Gω(g) and
G†ω(g) are respectively the solutions of

Eω(Gω(g), v) = 〈g, v〉W , ∀v ∈ V, (18a)

Eω(v,G†ω(g)) = 〈g, v〉W , ∀v ∈ V. (18b)

Then for each ω ∈ D, the operators Gω,G†ω are well-defined and compact.

Proof. We only give the proof for Gω as the argument is analogous for G†ω. Since the embedding V ↪→W is
compact, all we have to prove is that Gω : W→ V is continuous and well-defined.

According to (16) and (17), we can apply the Lax-Milgram theorem to (18a) so for a given g ∈W, there
exists a unique solution Gω(g) ∈ V ⊂W. Furthermore, since V is compactly embedded in W, there exists a
constant b > 0 such that

b ‖Gω(g)‖W ≤ ‖Gω(g)‖V ,
so the operator Gω is continuous with

‖Gω(g)‖W ≤
d(ω)

b c(ω)
‖g‖W , (19)

thanks to the Lax-Milgram estimate of (18a).
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Proposition 3.2. Assume that {Eω}ω∈D is a family of holomorphic forms and for ω fixed, the first and
second derivative mappings of Eω, denoted respectively as

∂ωEω : V× V→ C, ∂2
ωEω : V× V→ C,

are continuous sesquilinear forms with continuous bounds. For every ω ∈ D, define the complex mapping
Fω : W×W→ C as

Fω(v1, v2) = 〈Gω(v1), v2〉W , v1, v2 ∈W, (20)

where the operator Gω is defined in (18a). Then {Fω}ω∈D is a family of holomorphic forms.

Proof. We will prove that for an arbitrary fixed pair v1, v2 ∈W, the mapping

ω ∈ C→ Fω(v1, v2) = 〈Gω(v1), v2〉W ∈ C (21)

is differentiable at ω0 for every ω0 ∈ D. Let pω0 ∈ V be the solution of

Eω0
(pω0

, v) = −∂ωEω0
(Gω0

(v1), v), ∀v ∈ V (22)

for a given v1 ∈ V. The existence and uniqueness of pω0
stems from the Lax-Milgram theorem according to

(16), (17) and the continuity of the operator ∂ωEω0
. Let ∆ω ∈ C be small enough so ω0 + ∆ω ∈ D. Then

(21) is differentiable at ω0 with

lim
∆ω→0

∣∣∣∣∣∣
〈
Gω0+∆ω(v1), v2

〉
W
−
〈
Gω0

(v1), v2

〉
W

∆ω
−
〈
pω0

(v1), v2

〉
W

∣∣∣∣∣∣ = 0. (23)

Indeed ∣∣∣∣∣∣
〈
Gω0+∆ω(v1), v2

〉
W
−
〈
Gω0

(v1), v2

〉
W

∆ω
−
〈
pω0

(v1), v2

〉
W

∣∣∣∣∣∣
=

1

|∆ω|
∣∣∣〈Gω0+∆ω(v1)− Gω0(v1)−∆ω pω0(v1), v2

〉
W

∣∣∣
=

1

|∆ω|
∣∣∣〈v2,Gω0+∆ω(v1)− Gω0(v1)−∆ω pω0(v1)

〉
W

∣∣∣
=

1

|∆ω|
∣∣∣Eω0+∆ω

(
Gω0+∆ω(v1)︸ ︷︷ ︸
first member

−Gω0
(v1)−∆ω pω0

(v1)︸ ︷︷ ︸
second member

,G†ω0+∆ω(v2)
)∣∣∣. (24)

Then developing each member of (24):

Eω0+∆ω

(
Gω0+∆ω(v1),G†ω0+∆ω(v2)

)
=
〈
v1,G†ω0+∆ω(v2)

〉
W

(25)

according to (18a) and

−Eω0+∆ω

(
Gω0(v1) + ∆ω pω0(v1),G†ω0+∆ω(v2)

)
= −Eω0

(
Gω0(v1) + ∆ω pω0(v1),G†ω0+∆ω(v2)

)
(26)

− ∆ω∂ωEω0

(
Gω0(v1) + ∆ω pω0(v1),G†ω0+∆ω(v2)

)
(27)

− (∆ω)2∂2
ωEω0

(
Gω0(v1) + ∆ω pω0(v1),G†ω0+∆ω(v2)

)
(28)

+ O((∆ω)3)
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according to the second order Taylor expansion of Eω with respect to ω (by hypothesis we assume the
mapping ω → Eω(v1, v2) holomorphic for ω ∈ D). In virtue of (18a) and (22), (26) satisfies

−Eω0

(
Gω0(v1) + ∆ω pω0(v1),G†ω0+∆ω(v2)

)
= −

〈
v1,G†ω0+∆ω(v2)

〉
W

+ ∆ω∂ωEω0(Gω0(v1),G†ω0+∆ω(v2)),

so adding (25), (26), (27) and (28), a few terms cancel and we deduce that (24) is equal to

=
1

|∆ω|
∣∣∣−(∆ω)2

{
∂ωEω0

(
pω0

(v1),G†ω0+∆ω(v2)
)

+ ∂2
ωEω0

(
Gω0

(v1),G†ω0+∆ω(v2)
)}

+O((∆ω)3)
∣∣∣

≤ O(|∆ω| ‖v1‖V ‖v2‖V),

where the last inequality stems from boundedness in D of the continuity bounds of ∂ωEω, ∂2
ωEω and the

Lax-Milgram bounds derived in the proof of Proposition 3.1 (reasoning by analogy, the same bounds can be
applied to (22)). Finally taking the limit when ∆ω → 0 yields (23).

3.2. Main result

The main conclusion of this section corresponds to the application of a result of standard analytical
perturbation theory of compact operators. This theorem describes locally the eigenvalues of a general
non-linear eigenvalue problem

Theorem 3.1 ([29], chapter VII, Th. 1.9). Let S(ω) be a family of compact operators (for each ω fixed)
and holomorphic with respect to ω ∈ D ⊂ C bounded. Define ω as a singular point if 1 is an eigenvalue of
S(ω). Then either all ω ∈ D are singular points or there are only a finite number of singular points in each
compact subset of D.

Theorem 3.2. Suppose that the weak formulation of (15) has the following structure on ω

Eω(u, v)− ω2 〈u, v〉W = 0, ∀v ∈ V, (29)

and assume the same hypotheses as Proposition 3.1 and Proposition 3.2. Furthermore suppose that 0 ∈ D
and E0 hermitian, i.e.

E0(u, v) = E0(v, u),∀u, v ∈ V.

Then there are only a finite number of eigenvalues of (29) in D (i.e. values of ω for which there exist u 6= 0
solution of (29)).

Proof. Define the operator Sω : W→W as
Sω = ω2Gω

Then according to Proposition 3.1 and Proposition 3.2, {Sω}ω∈C is a family of compact operators and Sω
is holomorphic with respect to ω in D. Furthermore, ω 6= 0 is an eigenvalue of (29) if and only if 1 is an
eigenvalue of Sω according to (18a). If every ω ∈ D\{0} fulfilled the aforementioned condition, then since D
is open, there would be a sequence {zj}j∈N ∈ D and {vj}j∈N ∈ V with ‖vj‖W = 1, such that zj → 0 when
j →∞ and

|Ezj (vj , vj)| = |z2
j 〈vj , vj〉W | ≤ |z2

j |, ∀j ∈ N. (30)

Now since E0 is hermitian and coercive (the family of operators {Eω}ω∈D was supposed coercive from the
beginning), all its eigenvalues are real positive. In particular, its first eigenvalue (that we denote as λ1)
satisfies the Rayleigh quotient

min
v∈V,‖v‖V 6=0

E0(v, v)

‖v‖V
= λ1 > 0,

so
0 < λ1 = λ1 ‖vj‖2W ≤ λ1 ‖vj‖2V ≤ E0(vj , vj),∀j, (31)

9



since V is embedded in W. But then, using the fact that Eω is holomorphic and (30)

E0(vj , vj) ≤ |E0(vj , vj)− Ezj (vj , vj)|+ |Ezj (vj , vj)| = O(|zj |)

and we obtain a contradiction with (31) for j large enough. The desired result finally stems from Theorem
3.1.

We give an application of the above theorem to the 3D viscoelastic and UCLD plate vibration problems

Corollary 3.1. Suppose that the complex elastic tensors A(ω) and D(ω) in (5) and (7) respectively, are
holomorphic with respect to ω for ω ∈ D ⊂ C bounded. Suppose also that 0 ∈ D and A(0), D(0) are hermitian
positive definite. Then problems (5) and (7) possesses only a finite number of eigenvalues in each compact
subset of D.

Proof. The result derives from Theorem 3.2 by considering

Eω(u, v) =

∫
Ω

A(ω)e(u) : e(v)dx,V =
{
v ∈ H1(Ω;C)3 : v = 0 on ΓD

}
,W = L2(Ω;C)3

in problem (5) and

Eω(w, ζ) =

∫
O
D(ω)∇2w : ∇2ζdx,V =

{
ζ ∈ H2(O;C) : ζ = 0,∇ζ = 0 on ΓD

}
,W = L2(O;C)

in problem (7).

4. Sensitivity analysis of ω1 with respect the shape Ω

In order to apply a gradient method to the minimization of (10), we dedicate this section to the study of
the shape differentiability of ω1 and eigenvectors (u1,w1), solutions of (5) and (7) respectively. Nevertheless
all results remain valid for k ≥ 2 by replacing (ω1, u1,w1) with (ωk, uk,wk).

Before going any further, we recall the classical notion of shape derivative which goes back, at least, to
Hadamard (see the modern reference books [16], [30] ). Here, we follow the approach of Murat and Simon
[31], [32] . Starting from a smooth reference open set , we consider domains of the type

Ωθ = (Id + θ)(Ω),

where Id is the identity mapping from Rd into Rd, and θ ∈ W 1,∞(Rd;Rd). It is well known that, for
sufficiently small θ, (Id + θ) is a diffeomorphism in Rd.

Definition 4.1 (Shape derivative). The shape derivative of J(Ω) at Ω is defined as the Fréchet derivative
in W 1,∞(Rd;Rd) at 0 of the application θ → J((Id + θ)(Ω)), i.e.,

J((Id + θ)(Ω)) = J(Ω) + J ′(Ω)(θ) + o(θ) with lim
θ→0

|o(θ)|
|θ| = 0, (32)

where J ′(Ω) is a continuous linear form on W 1,∞(Rd;Rd).

To fix ideas, we give two examples of shape derivative.

Lemma 4.1. Let Ω be a smooth bounded open set and φ(x) ∈W 1,1(Rd). Define

J1(Ω) =

∫
Ω

φ(x)dx.

10



Then J1 is differentiable at Ω and

J ′1(Ω)(θ) =

∫
∂Ω

θ(x) · n(x)φ(x)ds

for any θ ∈W 1,∞(Rd;Rd). For φ(x) ∈W 2,1(Rd) define

J2(Ω) =

∫
∂Ω

φ(x)ds.

Then J2 is differentiable at Ω and

J ′2(Ω)(θ) =

∫
∂Ω

θ(x) · n(x)

(
∂φ

∂n
+Hφ

)
ds,

for any θ ∈W 1,∞(Rd;Rd), where H is the mean curvature of ∂Ω defined by H = divn

4.1. Differentiability of ω1

Theorem 4.1. Suppose Ω measurable and bounded and ω1(Ω) simple. Then the first eigenfrequency ω1(Ω),
u1(Ω) (for d = 3) and w1(Ω) (for d = 2) are shape differentiable.

Proof. We give a sketch of proof since it corresponds to an adaptation of the result exhibited in [14] chapter
5, page 210. Also, as a matter of simplicity, we detail the proof argument only for d = 3.

Define uθ and ω(θ) as the solutions of the problem (5) within Ωθ = (Id + θ)Ω, where θ ∈W 1,∞(R3;R3).
In other words, { −div(A(ω)e(uθ))− ω2ρuθ = 0 in Ωθ,∫

Ωθ
ρ|uθ|2dx− 1 = 0.

(33)

Let us consider the operator F : W 1,∞(R3;R3) × V × C → H−1(Ω;C3) × R, with V defined by (34), such
that F(θ, u, ω) = 0 represents the transported problem (33) on Ω. The main idea of the proof is to apply the
implicit function theorem to F in order to show that there exist differentiable functions ω1(θ) and u1(θ) at
θ = 0, solutions of (33). For that purpose, we need to prove that the differential operator Dv,ωF (0, u1, ω1)
given by

Dv,µF(0, u1, ω1)(ṽ, µ̃) =
(
− div(A(ω1)e(ṽ))− ω2

1ρṽ − µ̃(div(∂ωA(ω1)e(u1)) + 2ω1ρu1), 2

∫
Ω

ρṽ · ū1dx
)
,

for every (ṽ, µ̃) ∈ V × C is an isomorphism (by virtue of the inverse function theorem in Banach spaces)
from V ×C on H−1(Ω;C3)×C. Since Dv,µF(0, u1, ω1) is continuous, according to the Banach theorem, to
prove that Dv,µF(0, u1, ω1) is an isomorphism one simply needs to show that Dv,µF(0, u1, ω1) is a bijection.
Thus, given (Z,Λ) ∈ H−1(Ω;C3)× C, we need to establish that the problem{

−div(A(ω1)e(ṽ))− ω2
1ρṽ − µ̃(div(∂ωA(ω1)e(u1)) + 2ω1ρu1) = Z in Ω,

2
∫

Ω
ρṽ · ū1dx = Λ

has an unique solution (ṽ, µ̃) ∈ V × C. This is true thanks to the fact that for a fixed ω ∈ C (in our case
ω = ω1), the same argument given in [14] can be applied, namely in a variational sens the operator

(−div(A(ω)e(·)))−1 : V ′ → V ⊂ V ′,

with V ′ the dual of V , is compact and thus the Fredholm alternative theorem can be applied to the operator

−div(A(ω1)e(·))− ω2
1ρ Id(·)

whose kernel is of dimension one since we assume ω1 simple.
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4.2. Shape derivative in the case of a 3D viscoelastic structure

Theorem 4.2. Define the space

V =
{
v ∈ H1(Ω;C)3 : v = 0 on ΓD

}
. (34)

Let (ω1, u1) ∈ C×V be the solution of the eigenvalue problem (5) and ω1 simple. Also let AH(ω1) = A(ω1)T

be the conjugate transpose tensor of A(ω1) and introduce the adjoint eigenvector p1 ∈ V solution of∫
Ω

AH(ω1)e(p1) : e(v̄)dx = ω̃2

∫
Ω

ρ(p1 · v̄)dx, ∀v ∈ V, (35)

with
∫

Ω
ρ|p1|2dx = 1 and ω̃2

1 = ω2
1. Then:

ω′1(Ω)(θ) = −

∫
∂Ω

θ · n
(
ω2

1ρ (u1 · p1)−A(ω1)e(u1) : e(p1)
)
ds∫

Ω

(
2ω1ρ (u1 · p1)− ∂ωA(ω1)e(u1) : e(p1)

)
dx

. (36)

Proof. As mentioned in the previous section, the fact that ω1 is simple ensures that ω1(Ω) and u1(Ω) are
shape-differentiable. Thus we can differentiate with respect to the domain both sides of the variational
formulation of (5) ∫

Ω

A(ω1)e(u1) : e(v̄)dx = ω2
1

∫
Ω

ρ(u1 · v̄)dx, ∀v ∈ V (37)

Taking θ ∈W 1,∞(R3,R3) with θ = 0 on ΓN ∪ ΓD:∫
∂Ω

A(ω1)e(u1) : e(v̄)(θ · n)ds+ ω′1(Ω)(θ)

∫
Ω

(∂ωA)e(u1) : e(v̄)dx+

∫
Ω

A(ω1)e(u′1(Ω)(θ)) : e(v̄)dx

= 2ω1ω
′
1(Ω)(θ)

∫
Ω

ρ(u1 · v̄)dx+ ω2
1

∫
Ω

ρ(u′1(Ω)(θ) · v̄)dx+ ω2
1

∫
∂Ω

ρ(u1 · v̄)(θ · n)ds (38)

Applying the conjugate on both sides of equation (35) one gets∫
Ω

A(ω1)e(v) : e(p̄1)dx = ω2
1

∫
Ω

ρ(v · p̄1)dx, ∀v ∈ V, (39)

so taking v = p1 in (38) and v = u′1(Ω)(θ) in (39), one realizes that all the terms containing u′1(Ω)(θ) in
(38) cancel. Thus (38) yields∫

∂Ω

A(ω1)e(u1) : e(p1)(θ · n)ds+ ω′1(Ω)(θ)

∫
Ω

(∂ωA)e(u1) : e(p1)dx

= 2ω1ω
′
1(Ω)(θ)

∫
Ω

ρ(u1 · p1)dx+ ω2
1

∫
∂Ω

ρ(u1 · p1)(θ · n)ds,

from which (36) follows.

Remark 4.1. When the tensor A is independent from the frequency ω, we recover the well-known formula
[19] for the derivative:

ω′1(Ω)(θ) = −

∫
∂Ω

θ · n
(
ω2

1ρ (u1 · p1)−A(ω1)e(u1) : e(p1)
)
ds∫

Ω

2ω1ρ (u1 · p1)dx

Furthermore if A is real then the problem becomes self-adjoint (i.e. p1 = u1).
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4.3. Shape derivative of a composite sandwich structure

We refer to the notations given in Section 2.2. Define a bounded working domain O ⊂ R2 and an
admissible shape Ω ⊂ O occupied by a viscoelastic damping treatment. Within this framework, (7) can be
formulated as a multi-phase problem. As mentioned in [12], a sharp interface between the different phases
leads to numerical difficulties that can be avoided by considering a smeared or diffuse interface approach.
We follow herein this smoothed formulation. Let D and ρ be the smooth interpolations between Dg, Dp,
(with respective surface densities ρg, ρp) occupying Ω and O\Ω respectively, defined by

D = Dg −Hε(dΩ)∆D, ∆D := (Dg −Dp),
ρ = ρg −Hε(dΩ)∆ρ, ∆ρ := (ρg − ρp), (40)

where Hε(r) : R→ [0, 1] is a smooth approximation of the Heaviside function

Hε(r) =

 0 if r < −ε,
1
2 (1 + r

ε + 1
π sin

(
πr
ε

)
) if −ε ≤ r ≤ ε,

1 if r > ε,
(41)

and dΩ(x) : Rd → R the signed distance function at x associated with Ω

dΩ(x) =


0 if x ∈ ∂Ω,

− min
xI∈∂Ω

|x− xI | if x ∈ Ω,

min
xI∈∂Ω

|x− xI | if x ∈ O\Ω.

Before giving the shape derivative of ω1 in the context of Section 2.2, we collect some general definitions
and results related to the signed distance function dΩ in Rd (for more details consult [12]).

Definition 4.2. Let Ω ⊂ Rd be a Lipschitz bounded open set.

• For any x ∈ Rd we define the set of projections of x on ∂Ω as

Π∂Ω(x) = {y0 ∈ ∂Ω such that |x− y0| = inf
y∈∂Ω

|x− y|}.

When Π∂Ω(x) reduces to a single point, we will call it the projection P∂Ω(x) of x onto ∂Ω.

• The skeleton Σ of ∂Ω is defined as

Σ := {x ∈ Rd such that (dΩ)2 is not differentiable at x}.

Lemma 4.2. Let Ω ⊂ Rd be a Lipschitz bounded open set.

• A point x /∈ ∂Ω has a unique projection P∂Ω(x) on ∂Ω if and only if x /∈ Σ.

• Σ has zero Lebesgue measure in Rd.

The signed distance function is not, strictly speaking, shape differentiable in the sense of 32. One reason
is the lack of smoothness of the gradient of dΩ at the skeleton Σ. However, its pointwise values dΩ(x) are
shape differentiable for x ∈ O\Σ. In particular for d = 2 (the result also holds for d = 3)

Proposition 4.1. Assume Ω ⊂ O is an open set of class C1, and fix a point x /∈ Σ. Then θ → d(Id+θ)Ω(x)
is Gâteaux-differentiable at θ = 0, as a mapping from W 1,∞(O;R2) into R, and its derivative is

d′Ω(θ)(x) = −θ(P∂Ω(x)) · n(P∂Ω(x)). (42)
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Theorem 4.3. Define the space W =
{
ζ ∈ H2(O;C) : ζ = 0,∇ζ = 0 on ΓD

}
. Let (ω1,w1) ∈ C ×W be

the solutions of the eigenvalue problem (7) and ω1 simple. Also let DH(ω1) = D(ω1)T be the conjugate
transpose tensor of D and introduce the adjoint eigenvector q1 ∈W solution of∫

O
DH(ω1)∇2q : ∇2ζdx = ω̃2

∫
O
ρ(q · ζ)dx, ∀ζ ∈W, (43)

with
∫
O ρ|q1|2dx = 1 and ω̃2

1 = ω2
1. Then:

ω′1(Ω)(θ) = −

∫
O
∂rHε(dΩ)

(
ω2

1∆ρ(w1 · q1)−∆D(ω1)∇2w1 : ∇2q1

)
θ(P∂Ω(x)) · n(P∂Ω(x))dx∫

O

(
2ω1ρ (w1 · q1)− ∂ωD(ω1)∇2w1 : ∇2q1

)
dx

, (44)

where P∂Ω(x) is the projection of x onto ∂Ω.

Proof. In the same way as Theorem 4.2, we differentiate with respect to the domain both sides of the
variational formulation of (5) but this time within the fixed domain O∫

O
D(ω1)∇2w1 : ∇2ζdx = ω2

1

∫
O
ρ(w1 · ζ)dx, ∀ζ ∈W.

Taking θ ∈W 1,∞(R3,R3) with θ = 0 on ∂O∫
O
D′(Ω)(θ)(ω1)∇2w1 : ∇2ζ̄dx+ ω′1(Ω)(θ)

∫
O
∂ωD∇2w1 : ∇2ζ̄dx+

∫
O
D(ω1)∇2w′1(Ω)(θ) : ∇2ζ̄dx

= 2ω1ω
′
1(Ω)(θ)

∫
O
ρ(w1 · ζ̄)dx+ ω2

1

∫
O
ρ(w′1(Ω)(θ) · ζ̄)dx+ ω2

1

∫
O
ρ′(Ω)(θ)(w1 · ζ̄)dx. (45)

Applying the same argument given in the proof of Theorem 4.2, by choosing the right test functions in (45)
(ζ = q1) and (43) (ζ = w′1(Ω)(θ)), (45) yields

∫
O
D′(Ω)(θ)(ω1)∇2w1 : ∇2q1dx+ ω′1(Ω)(θ)

∫
O
∂ωD∇2w1 : ∇2q1dx

= 2ω1ω
′
1(Ω)(θ)

∫
O
ρ(w1 · q1)dx+ ω2

1

∫
O
ρ′(Ω)(θ)(w1 · q1)dx,

so

ω′1(Ω)(θ) = −

∫
O

(
ω2

1ρ
′(Ω)(θ)(w1 · q1)−D′(Ω)(θ)(ω1)∇2w1 : ∇2q1

)
dx∫

O

(
2ω1ρ (w1 · q1)− ∂ωD(ω1)∇2w1 : ∇2q1

)
dx

. (46)

According to (40), the shape derivatives ρ′(Ω)(θ) and D′(Ω)(θ) read

ρ′(Ω)(θ)(x) = −∂rHε(dΩ) d′Ω(θ)(x) ∆ρ,
D′(Ω)(θ)(x, ω1) = −∂rHε(dΩ) d′Ω(θ)(x) ∆D(ω1),

where d′Ω(θ)(x) is given by equation (42).

Obtaining a descent direction from (44) is not necessarily easy and we would prefer to recover the classical
shape derivative structure of a surface integral on the interface.
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Corollary 4.1. Suppose that the interface is roughly plane (i.e. the principal curvatures can be neglected)
and the thickness parameter ε of the diffuse interface is small. Then a good approximation of (44) is

ω′1(Ω)(θ) ≈ −

∫
Γ

θ · n
(
ω2

1∆ρ(w1 · q1)−∆D(ω1)∇2w1 : ∇2q1

)
ds∫

O

(
2ω1ρ (w1 · q1)− ∂ωD(ω1)∇2w1 : ∇2q1

)
dx

, (47)

where Γ = ∂Ω ∩ int(O).

For the proof consult [12].

5. Level-set method for topology optimization

From the previous sections we have all the necessary theoretical ingredients to introduce a gradient
method for the minimization of an objective function J(Ω) (see in particular 32 for the definition of shape
derivative). As stated for instance in [33], the general form of its shape derivative is

J ′(Ω)(θ) =

∫
∂Ω

(θ · n)Vds,

where the function V(x) is given in (36) and (47). Supposing V regular enough so it can be naturally
extended to Rd, a descent direction is found by defining the vector field

θ = −Vn

where n is a natural extension of the normal (which we implicitly assume for the moment that exists). Then
we update the shape Ω as

Ωt = (Id+ tθ)Ω,

where t > 0 is a small descent step. Formally we obtain

J(Ωt) = J(Ω)− t
∫
∂Ω

V2ds+O(t2)

which guarantees the decrease of the objective function. We remark that if V turns out to be not regular
enough (as it is the case for some objective functions) there are other possible choices for the definition of
the descent direction [34].

First introduced in [13], the level-set method is a technique for capturing interfaces which are implicitly
defined by the zero level-set of an auxiliary function. In particular, this method has been successfully applied
to topology optimization problems [35, 18, 17]. Let the bounded domain O ⊂ Rd be the working domain in
which all admissible shapes Ω are included. In numerical practice, the domain O will be meshed once and
for all. We parametrize the boundary of Ω by means of a level-set function ψ defined over O such that

ψ(x) = 0 if x ∈ ∂Ω,
ψ(x) < 0 if x ∈ Ω,
ψ(x) > 0 if x ∈ (O\Ω).

(48)

Under the action of a normal vector field V(t, x)n(x), where n(x) is a natural extension of the normal given
by [36]

n(x) =
∇ψ
|∇ψ| ,

the shape Ω evolves according to the Hamilton-Jacobi equation

∂ψ

∂t
(t, x) + V(t, x)|∇ψ(t, x)| = 0, ∀t, ∀x ∈ O. (49)
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Equation (49) is posed in the whole reference domain O, and not only on the boundary ∂Ω, if the velocity
V is known everywhere (as will be the case in the sequel). Transporting ψ by (49) is analogous to moving
the boundary of ∂Ω (the zero level-set of ψ) along the direction V.

A common choice of boundary condition for (49) is

∂ψ

∂n
= 0 on ∂O.

As mentioned in [19], this boundary condition is easy to implement since there is no fixed value to assign for
ψ at the boundary, and it also allows the solution of (49) to satisfy a maximum principle. More precisely,
new inclusions (or holes) in Ω can appear only by advecting the zero level-set of ψ which changes its topology
and cannot come from outside the domain O because of spurious negative values created by the boundary
conditions.

The numerical solution of (49) is computed with a second order explicit upwind scheme [37] on a Cartesian
grid. Since this scheme is explicit in time, the time stepping must satisfy a CFL condition.

Because of the advection process or numerical diffusion, the level-set function may become too flat or
too steep leading to large errors either in the location of its zero level set or in the evaluation of its gradient
by finite differences. Therefore, it is usual to regularize it periodically by solving the following problem{

∂ψ
∂t (t, x) + sign(ψ0)(|∇ψ(t, x)| − 1) = 0, ∀t, ∀x ∈ O

ψ(t = 0, x) = ψ0(x) ∀x ∈ O, (50)

which admits as a stationary solution the signed distance to the initial interface {ψ0(x) = 0} [17].

6. Numerical analysis

6.1. Material properties

In order to extend the state equation (5) to the whole domain O, we use the same “ersatz material”
approach as [17]. This approach amounts to filling the holes O\Ω by a weak phase mimicking void but
avoiding the singularity of the rigidity matrix. We define an elasticity tensor A?(x), which is a mixture of
A in Ω and of the weak material mimicking holes in O\Ω, as

A?(x) = χA(x)A, χA(x) =

{
1, if x ∈ Ω,
δA, if x ∈ O\Ω. (51)

We also need to apply the same procedure for the material density by introducing a mixture density

ρ?(x) = χρ(x)ρ, χρ(x) =

{
1 if x ∈ Ω,
δρ if x ∈ O\Ω. (52)

For eigenfrequency optimization making a correct choice for the threshold parameters δA and δρ is always
delicate since a bad combination can yield spurious eigenmodes localized in the ersatz material [19].

In the case of the composite sandwich structure equation (7), the tensor D and the density ρ are evaluated
according to the smooth multi-phase approximation (40) considering dΩ = ψ, i.e. the current level-set
function. Indeed the level-set function ψ is periodically reinitialized through (50). We set ε = 1.5∆x
in (41) where ∆x is the characteristic size of the computation mesh. We remark that in the multi-phase
framework we do not need an ersatz material since the whole domain O is covered by the base plate material
which makes the rigidity matrix of the composite sandwich always non-singular, no matter the shape of the
damping layer.
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6.2. Solving the discrete non-linear eigenvalue problem

Denote as
Th(ω) · uh = 0, uh ∈ Vh (53)

the matrix representation of the discretization of problem (15) that stems from the weak (or variational)
formulation of (5) (the space Vh represents the finite element approximation space of (34)). Numerous
numerical methods such as the modal strain energy method [38] and the asymptotic numerical method [39]
have been developed to solve the resulting nonlinear problem. An overview of the different methods of
resolution can be found in [40, 41, 42]. In our case we simply opt for applying the Newton’s method to the
extended system

Fz(ω, uh) =

(
Th(ω) · uh
z̄ · uh − 1

)
= 0, (54)

where z ∈ Vh is an arbitrary vector, fixed once and for all, such that ‖z‖ = 1 and z̄ · u∗h 6= 0, being u∗h the
exact eigenvector of (53). Hence the second equation in (54) represents a normalization condition on uh.
The numerical solution (ω`1, u

`
1) obtained by FEM discretization of the problem (14) is chosen as the initial

value (ω0, u0
h) and z = u0

h. The Newton equation of (54)

Fz(ω
n, unh) + ∂Fz(ω

n, unh)

(
ωn+1 − ωn
un+1
h − unh

)
= 0

gives the following update rules:

ωn+1 = ωn − 1

z̄ · T −1
h (ωn) · T ′h(ωn) · unh

,

un+1
h = (ωn − ωn+1)T −1

h (ωn) · T ′h(ωn) · unh,
where the matrices T −1

h (ωn) and T ′h(ωn) respectively stand for the inverse and the derivative with respect
to ω of the FEM matrix Th(ωn). We iterate until |ωn+1 − ωn|/|ωn| < tol with tol << 1.

6.3. Computing a descent direction

The gradient of the loss factor

η(Ω) =
Im(ω2

1)

Re(ω2
1)
,

can be derived from the formulas given in Sections 4.2 and 4.3. Applying the product rule

η′(Ω)(θ) = 2
Re(ω2

1)Im(ω1ω
′
1(θ)(Ω)(θ))− Im(ω2

1)Re(ω1ω
′
1(Ω)(θ))

Re(ω2
1)2

= 2
Im(ω2

1ω1ω
′
1(Ω)(θ))

Re(ω2
1)2

= 2(1−η)
Im(ω1ω

′
1(Ω)(θ))

Re(ω2
1)

.

(55)

6.3.1. 3D viscoelastic structure

For a given ω1, define the constant

β(ω1) :=

∫
Ω

(
2ω1ρ (u1 · p1)− ∂ωA(ω1)e(u1) : e(p1)

)
dx

and the function
γ(ω1)(x) := ω2

1ρ(u1 · p1)−A(ω1)e(u1) : e(p1).
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Write (36) as

ω′1(Ω)(θ) = −

∫
∂Ω

θ · n
(
β(ω1)γ(ω1)

)
ds

|β(ω1)|2 .

Then since θ and the normal n are real-valued, (55) reads

η′(Ω)(θ) = − 2(1− η)

Re(ω2
1)|β(ω1)|2

∫
∂Ω

(θ · n) Im
(
ω1β(ω1)γ(ω1)

)
ds. (56)

The above expression provides directly a normal descent direction θ = V n, with

V =
2(1− η)

Re(ω2
1)|β(ω1)|2 Im

(
ω1β(ω1)γ(ω1)

)
.

6.3.2. Composite sandwich structure

Following the same development, with the definitions

β(ω1) :=

∫
O

(
2ω1ρ (w1 · q1)− ∂ωD(ω1)∇2w1 : ∇2q1

)
dx

and
γ(ω1)(x) := ω2

1(ρg − ρc)(w1 · q1)− (Dg −Dc)(ω1)∇2w1 : ∇2q1,

the same shape derivative (56) applies.

6.4. Test cases

Numerical test cases involving the structure eigenvalues in topology optimization are usually not well-
posed since less structure implies a higher eigenfrequency as a result of the ersatz material. Hence the
optimizer converges to a trivial solution without any material. Typical remedies to solve this classical issue
are including non-structural masses, defining the problem as a reinforcement problem or imposing a mass
equality constraint (consult for instance [21]). For the following test cases we apply the first two solutions.

The 3D and 2D eigenvalue computations are performed using Freefem++ [43] and the 3D results are
rendered with XD3D [44].

The chosen viscoelastic properties for the 3D and 2D cases satisfy the holomorphic condition stated in
Section 3 (except on a finite number of poles). That being said, the optimization process remains valid
for any other viscoelastic material for which we can assume that the spectrum is discrete. Otherwise, as
explained earlier, numerical difficulties, such as spurious eigenvalues, arise when dealing with a continuous
spectrum or an accumulation point in the spectrum.

Remark 6.1. Given a certain operator S : V → V (where V is an adequate function space) and a sequence
of discretized operators Sn : Vn → Vn with Sn → S in the operator norm when n→∞ (Vn is for instance a
finite element subspace of V ), we say that the eigenvalues ωn are spurious in the sense that

ωn ∈ Spectrum(Sn), ωn → ω∞ /∈ Spectrum(S).
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6.4.1. 3D viscoelastic structure

We optimize a three-dimensional cantilever. The working domain O is of size 1m× 2m× 1m (discretized
with a 20 × 20 × 40 mesh). A zero displacement boundary condition is imposed on the left side and four
cubic cells on the middle of the right side (heavy tip mass) are not subject to optimization and a material
density 100 times heavier (see Figures 4 and 5). The viscoelastic material corresponds to 3M ISD112 with
complex Young modulus

Ec(ω) = (1 + νc)G0

(
1 +

3∑
k=1

∆k ω

ω − i zk

)
, G0 = 0.5MPa, (57)

density ρVc = 1600 kg/m
3

and Poisson coefficient νc = 0.5 (consult [45] for the values of the not listed
constants zk and ∆k). The ersatz material is characterized by the same Poisson’s ratio as the viscoelastic
material, a smaller Young’s modulus by a factor δA = 10−2 and a smaller density by a factor δρ = 10−4 (see
(51) and (52)). The objective function is given as a linear combination of the negative loss factor (since we
minimize) and the volume of the structure

J(Ω) = −η + `
|Ω|
|O| , (58)

where ` = 0.01 is a fixed Lagrange multiplier for the volume constraint. The heavy tip mass is positioned
on the rectangular (and not the square) face of the design domain in order to avoid the symmetric bending
modes on the X and Y axis. This condition is not necessarily sufficient to enforce the first eigenvalue ω1 to
be simple (our computations are based on this assumption) so we check at each iteration the existence of
multiple eigenvectors. The modal loss factors η of the initial and optimal shapes are respectively 0.025 and
0.041.

Remark 6.2. In this case Ω corresponds to a uniform isotropic viscoelastic structure such that

A(ω) = f(ω)A0,

where f is a scalar function and A0 is a real isotropic material independent of ω (both defined accordingly
to equation (57)). Hence solving the problem (5) is equivalent to solving the equation:

− div(A0e(u)) = λρ u in Ω, (59)

which has a countable infinite family of solutions (λk, uk)k≥1, labeled by increasing order of the eigenfre-
quency. The eigenmodes uk coincide with the eigenmodes of the original viscoelastic problem and we can
easily check that pk = uk, so the optimization problem is self-adjoint. In order to compute the modal loss
factor η, we determine the original eigenvalue ω1 as the solution of the non-linear scalar equation:

ω2 − f(ω)λ1 = 0,

via Newton’s method with the initial value ω0
1 = λ

1/2
1 .

6.4.2. Composite sandwich structure

Now we optimize a square plate O with all edges clamped (w = ∂w/∂n = 0 on ∂O). The width and
the length of the working domain are both 400mm, discretized with a 40 × 40 mesh. The thickness of
the base plate and the damping layer are 8.75mm and 1.25mm, respectively. The base layer is made of
aluminum whose Young modulus is Ep = 69GPa, Poisson’s coefficient νp = 0.3 and volumetric density

ρVp = 2760 kg/m
3
. The viscoelastic coating corresponds to LD-400, a fractional derivative model material

depending on the temperature T with complex Young modulus

Ec(ω) =
a0 + a1(iωα(T ))β

1 + c1(iωα(T ))β
MPa, (60)
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Figure 4: Initial (with a cavity inside) and optimized shapes of a 3D cantilever.

Figure 5: The optimized shape possesses a small inner cavity. If the hole is filled with the viscoelastic material, the value
of η remains almost constant (actually it slightly diminishes) so the value of the composite objective function (58) increases.
The authors verified that the inner cavity is not present when the whole working domain O is used as initial shape in the
optimization process.
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Figure 6: Convergence history for the optimization of the 3D cantilever.

density ρVc = 1524 kg/m
3

and Poisson coefficient νc = 0.5. The four parameters a0 = 332.2, a1 = 2485.2, c1 =
0.12, β = 0.47 and the shift factor α(T ) are available in [22]. In our case we will consider the temperature
T to be constant and equal to 27◦C.

The objective function J(Ω) is the same as (58) but this time with ` = 10−1. The modal loss factors
of the initial and optimized shapes are respectively 1.5× 10−2 and 2.31× 10−2 (see Figure 7). We remark
that the optimized shape of the viscoelastic treatment coincides with the one obtained in [2] using the SIMP
method. The result may not be completely intuitive at first since a significant portion of the damping
reinforcement material lays outside the eigenmode largest deflection zone (Figure 8). However, as explained
in Section 2.2, the sandwich energy is mainly dissipated as a result of in-plane compression and extension of
the damping material under the flexural stress of the base plate. Hence the optimal damping reinforcement
material layout and the area with the largest extensional strain energy density overlap (see Figure 9).

Figure 7: Initial and optimized shapes of the composite plate. The aluminum phase is shown in gray and the (superposed)
viscoelastic one in black.
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Figure 8: Real part of the eigenmode w1 for the final shape.

2.0× 103 6.0× 1034.0× 103 8.0× 1031.6× 10−1

Figure 9: In-plane extensional strain energy density (J/m2).
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Figure 10: Convergence history for the optimization of the 2D composite sandwich plate.
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