
HAL Id: hal-01651913
https://hal.science/hal-01651913v1

Preprint submitted on 29 Nov 2017 (v1), last revised 3 Dec 2018 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Topology optimization of frequency dependent
viscoelastic structures via a level-set method

G Delgado, M Hamdaoui

To cite this version:
G Delgado, M Hamdaoui. Topology optimization of frequency dependent viscoelastic structures via a
level-set method. 2017. �hal-01651913v1�

https://hal.science/hal-01651913v1
https://hal.archives-ouvertes.fr


Topology optimization of frequency dependent viscoelastic

structures via a level-set method

G. Delgado (IRT SystemX, Paris-Saclay, France)
M. Hamdaoui (LEM3, Université de Lorraine, France)
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Abstract

Viscoelastic materials follow a liquid-like elastic behavior whose characteristics depend on the ex-
citation frequency. Nowadays, these type of materials represent a high interest for vibration damping
treatments in the automotive and aeronautic industries, for instance. This work is devoted to the
application of the level-set method for topology optimization of viscoelastic structures. We look for
the best distribution of viscoelastic material within a reference domain for the design of purely vis-
coelastic 3D damping structures and 2D viscoelastic damping treatments. In both cases one desires
to maximize the structure capacity to dissipate energy measured here by the modal loss factor of the
first vibration mode.

Keywords: Topology optimization, Level-set method, Viscoelastic dumping, Non-linear eigenvalue prob-
lem.

1 Introduction

Viscoelastic damping material behavior occurs in a wide variety of materials and can be characterized
by liquid-like elastic behavior. Materials that experience viscoelastic behavior include acrylics, rubber,
and adhesives. The characteristics of viscoelastic materials depend on temperature and frequency. Vis-
coelastic materials have the property of absorbing vibrational energy which makes them very interesting
for structural damping applications. The vibrations can be caused by noises that radiate from a certain
source as sound or structure oscillations coming from dynamical wind loadings or earthquakes. Vis-
coelastic dampers can be designed as 3D parts of a structure but also as damping treatments which
consist of any material (or combination of materials) applied to a component to increase its ability to
dissipate mechanical energy. They are most often useful when applied to a structure that is forced to
vibrate at or near its natural (resonant) frequencies, is acted on by forces made up of many frequency
components, is subjected to impacts or other transient forces, or transmits vibration to noise-radiating
surfaces. The energy dissipation of a viscoelastic structure is typically quantified in terms of a loss factor,
a dimensionless quantity that can be measured or predicted from a modal analysis or frequency response
curves. Two categories of treatments for structural damping exist, the unconstrained layer damping
(UCLD), where the material is simply attached with a strong bonding agent to the surface of a structure,
and Constrained-layer damping (CLD) where the material is sandwiched between a base layer and a
third constraining layer. The CLD treatment provides considerably more damping effect than the free
viscoelastic treatment in spite of its relative complexity. Energy dissipation is achieved in this case by
shearing a viscoelastic polymer between a base structure and a constraining layer. Both types of damping
structure are depicted in Figures 1 and 2.

Topology optimization is essentially an iterative numerical process that seeks to find the best ma-
terial layout (within a prescribed design domain) according to a given objective function and a set of
design constraints, providing valuable help in problems where mechanical intuition is limited. Topol-
ogy optimization of viscoelastic UCLD and CLD has been performed by many authors in the literature
using different methods. Zheng et al. [18] used the Solid Isotropic Material with Penalization (SIMP)
method with the Method of Moving Asymptote (MMA) to perform topology optimization of a CLD
cantilever plate treated with DYAD606 where a sum of modal loss factors is maximized. Kim [16] ap-
plied SIMP and Evolutionary Structural Optimization (ESO) methods to design damping treatments for
unconstrained-layer plate and shell structures. Zheng et al. [27] used the same methodology to perform
topology optimization of CLD with partial coverage, showing interesting performances of the optimized

1



Base plate

Viscoelastic coating

Extensional strain

Figure 1: Unconstrained-layer damping treatment.
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Figure 2: Constrained-layer damping treatment.

structure in terms of damping and mass savings. Kim et al. [17] used the rational approximation for
material properties (RAMP) with the optimality criteria method (OC) to perform topology optimization
of UCLD shell structures to maximize modal loss factors. El-Sabbagh et al. [7] used the method pre-
sented in [5] along with the MMA method to perform optimization of periodic and non-periodic plates.
Zhanpeng et al. [8] used evolutionary structural optimization (ESO) to minimize viscoelastic CLD plate
response. James et al. [12] used a time dependent adjoint method along with the MMA method to per-
form topology optimization of viscoelastically damped beams for minimum mass under time dependent
loadings. Yun et al. [26] performed multimaterial topology optimization to maximize energy dissipation
of viscoelastically damped structures subjected to unsteady loads using SIMP and MMA. Ansari et al.
[4] used a level set method to perform topology optimization of viscoelastic UCLD plate whereas van der
Kolk et al. [23] used a parametrized level set based method for multi-material topology optimization of
beams.

The present work addresses the structural optimization of fully viscoelastic structures and UCLD
treatments by means of the level-set method for topology optimization. For that purpose we rely on
the level-set approach for multi-phase optimization detailed by Allaire et al. [1]. First introduced by
Osher and Sethian [19], the level-set method has the advantage of tracking the interfaces on a fixed
mesh, easily managing topological changes without remeshing. Combined to the Hadamard method
of shape differentiation in the framework of structural optimization [3, 24], the level-set approach is
an efficient shape and topology optimization algorithm, which gives a better description and control
of the geometrical properties of the interface, avoiding typical drawbacks such as intermediate density
penalization and possible spurious physical behavior during the optimization process. Moreover, as
remarked by Allaire et al. [2], the level-set method is especially well suited for vibration problems
involving eigenfrequency optimization, since small holes or material islands cannot suddenly appear or
disappear between two successive iterations as they do with the homogenization or SIMP methods, thus
avoiding spurious modes in low density regions.

This article is organized as follows. Section 2 is devoted to the mathematical description of viscoelastic
materials and the vibration problem arising for purely viscoelastic structures and unconstrained layer
damping plates. Section 3 is concerned with the study of the non-linear eigenvalue problem that stems
from the aforementioned models. We provide a theoretical result characterizing the eigenvalues of such
problems for a general class of viscoelastic materials. Section 4 details the sensitivity analysis of the first
eigenfrequency of the structure with respect to the viscoelastic shape, and Section 5 recalls the use of
the level-set method in the framework of topology optimization. Finally Section 6 outlines the numerical
solution of the underlying non-linear eigenvalue problem and illustrates it with two concrete applications.
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2 Setting of the problem

Let f̂ be the Laplace transform of a real valued function f(t) defined as

f̂ =

∫ ∞
0

e−µtf(t)dt, µ ∈ C. (1)

Also let ω ∈ C be the complex pulsation describing an oscillating damped signal with angular frequency
Re(ω) and relaxation time Im(ω)−1. Set µ = iω in (1).

For viscoelastic materials, a linear elastic constitutive relationship using Hooke’s law is not an accurate
model and a complex modulus is extensively used to describe the dynamic characteristics of viscoelastic
materials [13]. The stress-strain relationship of a linear viscoelastic damping material subjected to steady-
state oscillatory conditions thus reads:

σ̂(ω) = A(ω)ε̂(ω), (2)

where ω is the complex pulsation, A is the complex (or dynamic) elastic tensor and σ̂ and ε̂ are the
Laplace transforms of stress and the strain, respectively. This relation stems from the Laplace transform
of the stress history given by

σ(t) =

∫ t

0

Y (t− τ)
dε(τ)

dτ
dτ, (3)

with Y the relaxation function (or relaxation modulus) and

A = iωŶ (ω).

The relaxation function Y accounts for the material stress behavior in a relaxation test (gradual disappear-
ance of stresses from a viscoelastic medium after it has been deformed) and the Boltzmann superposition
principle (the state of stress or deformation of a viscoelastic body is a function of all the stresses applied
to the material) [9].

Let (Ω,O) be two bounded open sets with Ω ⊂ O ⊂ Rd (d ∈ {2, 3}).

• If d = 3, we will say that Ω is occupied by a viscoelastic material with complex elastic tensor A
and density ρ > 0 within a reference (or working) domain O. The boundary of Ω is made of two
disjoint parts

∂Ω = ΓN ∪ ΓD,

with Dirichlet boundary conditions on ΓD and Neumann boundary conditions on ΓN .

• If d = 2, O will be the reference configuration for a plate in the xy-plane and Ω the surface occupied
by the viscoelastic coating. By abuse of notation, we split the boundary of O (∂O = ΓN ∪ ΓD)
instead of Ω since no boundary conditions are imposed on ∂Ω.

2.1 3D viscoelastic structure

We denote by ω ∈ C the complex pulsation and by û ∈ H1(Ω;C)3 the associated mode, i.e. the
corresponding displacement field in Ω. For the sake of simplicity, we will generally write u unless we want
to explicitly emphasize the Laplace transform. The pair (ω, u) is a solution of the non-linear eigenvalue
problem  −div(A(ω)e(u)) = ω2ρ u in Ω,

u = 0 on ΓD,
A(ω)e(u) · n = 0 on ΓN .

(4)

The state equation in (4) stems from applying the constitutive equation (2) and the Laplace transform
to the evolution (wave) equation of linear elasticity

ρutt − div(σ) = 0 in Ω. (5)

We remark that the eigenvalue problem (4) is non-linear since the complex elastic (or stiffness) tensor A
also depends on ω.

3



2.2 Composite sandwich structure

For modeling vibration damping treatments we use a plate model approximation of (4). Consider the
small transverse vibration of a uniform plate with thickness h(x), density ρ(x) and reference configuration
for the plate O with d = 2. The transverse displacement of x at time t is denoted as w(x, t) but for the
sake of simplicity, we rather denote as w (instead of ŵ) the vertical displacement mode associated with
the complex pulsation ω ∈ C.

2.2.1 Unconstrained-layer damping (UCLD) modeling

UCLD is one of the simplest forms of material application. The material is simply attached with a strong
bonding agent to the surface of a structure. Energy is dissipated as a result of extension and compression
of the damping material under flexural stress from the base structure. From now on, for every general
quantity ξ defined either on the viscoelastic coating, the base plate or the global composite (viscoelastic
coating plus base plate), we will use the notations ξc, ξp, ξg respectively. The following assumptions are
made:

• Transverse shear and rotatory and in-plane inertia effects in both the plate and the coating are
negligible for the lower modes of vibration,

• There are no applied in-plane loads,

• Displacements are small and changes in thickness are negligible,

• The viscoelastic coating is applied to only one side of the plate

• The plate and the coating are homogeneous and isotropic, and subjected to a state of plane stress,

• Displacements are continuous across the interface between the plate and the coating,

• Poisson’s ratio of the coating is a real constant and the coating is incompressible (ν = 0.5).

Under these assumptions, classical Kirchhoff-Love plate theory can be used. Let w ∈ H2(O;C). Then
the pair (ω,w) is solution of the non-linear eigenvalue problem −∇

2 : (D(ω)∇2w) = ω2ρ w in O,
w = 0,∇w = 0 on ΓD,

(D(ω)∇2w)nn = 0 on ΓN .
(6)

The aforementioned state equation follows from the virtual work principle applied to the total energy of
the plate (bending strain energy plus kinetic energy) and the Laplace transform. The function ρ(x) is
piece-wise constant and corresponds to the surface density

ρ(x) =

{
ρp := ρVp hp if x ∈ O\Ω,
ρg := (ρVp hp + ρVc hc) if x ∈ Ω,

with ρVp , ρ
V
c and hp, hc the volumetric densities and thickness of the plate and the viscoelastic coating,

respectively. The equivalent bending stiffness tensor D for an isotropic base and coating material reads
[20]

D(ω, x) =


Dp :=

h3
p

12Ap if x ∈ O\Ω,

Dg :=
(
h3
p

12 + hph
2
n

)
Ap +

(
h3
c

12 + hc(hpc − hn)2
)
Ac(ω) if x ∈ Ω,

(7)

where the tensors Ap, Ac(ω) stand for the extensional stiffness tensors of the base and viscoelastic
materials respectively (we remark that only the coating material depends on ω),

Al =
El

(1− ν2
l )

 1 νl 0
νl 1 0
0 0 0.5(1− νl)

 , with the index l = p, c,

hpc represents the distance between the neutral planes of the base plate and the viscoelastic layer material
and hn (see Figure 3) represents the distance between the composite neutral axis and the base plate
neutral plane which can be approximated as

hn =
Echchpc

Ephp + Echc
. (8)
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Figure 3: Neutral plane of the composite plate.

The structure of the tensor D ensues from the integration of the laminate through the thickness
moment resultants meanwhile the correction terms hn, hpc arise when hp 6= hc in order to compensate
the shift of the neutral fiber of the laminate, i.e. the place in the plate where the thickness-averaged
stresses vanish.

2.3 Objective function

For the sake of clarity, we detail the objective function only within the damping optimization context
exposed in Section 2.1. The same notions however remain valid for viscoelastic damping treatments.
Supposing that (4) admits a countable infinite family of solutions (ωk, uk)k≥1 in C×H1(Ω;C)3 (see more
details in the next section), with the eigenfunctions or modes normalized by imposing that

∫
Ω
ρ|uk|2dx =

1, the objective function η(Ω) to be maximized is the modal loss factor of the structure for its first
eigenvalue:

η(Ω) :=
Im(ω2

1)

Re(ω2
1)

=

Im

(∫
Ω

Ae(u) : e(u)dx

)
Re

(∫
Ω

Ae(u) : e(u)dx

) , (9)

where u is the complex conjugate of u and η represents the ratio between dissipated and stored energy,
in other words, the structure capacity to dissipate energy. We recall that we focus only on the loss factor
associated with the first resonant frequency within this work. The concept of modal loss factor, which
fulfills the relation

ω2
1 = Re(ω2

1)(1 + iη),

derives from the notion of material loss factors of a viscoelastic material, which allows to express for
instance the complex Young and shear moduli E(ω), G(ω) via the Young and shear moduli factors ηE , ηG
as:

E = Re(E)(1 + iηE) and G = Re(G)(1 + iηG). (10)

Since the eigenvalues of (4) cannot be naturally ordered in C, ω1 will be defined as the closest
eigenvalue of (4) to ω`1 (in the sens of modulus |ω1 − ω`1|), where (ω`k, u

`
k)k≥1 in R × H1(Ω;R)3 and

ω`k ≤ ω`k+1 for all k ≥ 1, is a countable infinite family of solutions of the purely elastic problem associated
with (4):

−div(A(0)e(u)) = ω2ρ u in Ω. (11)

3 The non-linear eigenvalue problem

Problem (4) can be cast as a generalized eigenvalue problem

T (ω)u = 0 (12)

where T (ω) is a linear operator depending (non-linearly) on a parameter ω. A solution u 6= 0 will exist
only for some particular values of ω (also called eigenvalues).

We devote this section to the study of the characterization of the solutions of (4) and (6). We prove
in particular that the underlying spectrum of the aforementioned problems is discrete. This feature is of
paramount importance since a continuous spectrum or an accumulation point in the spectrum may lead
to spurious eigenvalues in numerical applications.
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3.1 Preliminary results

Let V and W be two complex Hilbert spaces with V compactly embedded in W. Let also {Eω}ω∈D, with
D ⊂ C open bounded, be a family of complex applications Eω : V× V→ C.

Definition 3.1 (Sesquilinear form). We say that {Eω}ω∈D is a family of sesquilinear forms if for each ω

1. Eω(u1 + u2, v1 + v2) = Eω(u1, v1) + Eω(u1, v2) + Eω(u2, v1) + Eω(u2, v2),

2. Eω(αv1, βv2) = αβEω(v1, v2),

for all u1, u2, v1, v2 ∈ V and all α, β ∈ C. β is the complex conjugate of β.

Definition 3.2 (Continuous form). We say that {Eω}ω∈D is a family of continuous forms if there exists
a function d : D→ R+ such that

|Eω(v1, v2)| ≤ d(ω) ‖v1‖V ‖v2‖V ,∀v1, v2 ∈ V. (13)

We will suppose additionally that the function d(ω) is continuous in D (thus bounded).

Definition 3.3 (Coercive form). We say that {Eω}ω∈D is a family of coercive forms if there exists a
function c : D→ R+ such that

|Eω(v, v)| ≥ c(ω) ‖v‖2V ,∀v ∈ V. (14)

We will suppose additionally that the function c(ω) is continuous in D (thus bounded).
From now on, we will assume that {Eω}ω∈D is a family of continuous coercive sesquilinear forms with

continuous bounds.

Proposition 3.1. For each ω ∈ D, define the operators Gω,G†ω : W → W such that given g ∈ W, Gω(g)
and G†ω(g) are respectively the solutions of

Eω(Gω(g), v) = 〈g, v〉W , ∀v ∈ V, (15a)

Eω(v,G†ω(g)) = 〈g, v〉W , ∀v ∈ V. (15b)

Then for each ω ∈ D, the operators Gω,G†ω are well-defined and compact.

Proof. We only give the proof for Gω since the argument is analogous for G†ω. According to (13) and (14),
we can apply the Lax-Milgram theorem to (15a) so for a given g ∈ W, there exists a unique solution
Gω(g) ∈ V ⊂ W. Furthermore, since V is compactly embedded in W, there exists a constant b > 0 such
that

b ‖Gω(g)‖W ≤ ‖Gω(g)‖V ,
so the operator Gω is continuous with

‖Gω(g)‖W ≤
d(ω)

b c(ω)
‖g‖W , (16)

thanks to the Lax-Milgram estimate of (15a). The compactness of the operator Gω : W → W is finally
achieved invoking the compactness of the embedding V ↪→W.

Proposition 3.2. Assume that for every v1, v2 ∈ V, the application ω ∈ C → Eω(v1, v2) ∈ C is holo-
morphic in D and for ω fixed, the first and second derivative applications of Eω, denoted respectively
as

∂ωEω : V× V→ C, ∂2
ωEω : V× V→ C,

are continuous sesquilinear forms with continuous bounds. Then the set of operators {Gω}ω∈D defined in
(15a) is holomorphic in the sens that for every v1, v2 ∈W the application

ω ∈ C→ 〈Gω(v1), v2〉W ∈ C (17)

is holomorphic within D.
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Proof. We will prove that for every fixed ω0 ∈ D, the application (17) is differentiable at ω0. Let pω0
∈ V

be the solution of
Eω0

(pω0
, v) = −∂ωEω0

(Gω0
(v1), v), ∀v ∈ V (18)

for a given v1 ∈ V. The existence and uniqueness of pω0
stems from the Lax-Milgram theorem according

to (13), (14) and the continuity of the operator ∂ωEω0
. Let ∆ω ∈ C be small enough so ω0 + ∆ω ∈ D.

Then (17) is differentiable with

lim
∆ω→0

∣∣∣〈Gω0+∆ω(v1), v2

〉
W
−
〈
Gω0

(v1), v2

〉
W
−∆ω

〈
pω0

(v1), v2

〉
W

∣∣∣ = 0. (19)

Indeed ∣∣∣〈Gω0+∆ω(v1), v2

〉
W
−
〈
Gω0

(v1), v2

〉
W
−∆ω

〈
pω0

(v1), v2

〉
W

∣∣∣
=

∣∣∣〈Gω0+∆ω(v1)− Gω0(v1)−∆ω pω0(v1), v2

〉
W

∣∣∣
=

∣∣∣〈v2,Gω0+∆ω(v1)− Gω0(v1)−∆ω pω0(v1)
〉
W

∣∣∣
=

∣∣∣Eω0+∆ω

(
Gω0+∆ω(v1)− Gω0

(v1)−∆ω pω0
(v1),G†ω0+∆ω(v2)

)∣∣∣ (20)

≤ O(|∆ω2| ‖v1‖V ‖v2‖V), (21)

so taking the limit of the aforementioned inequality when ∆ω → 0 yields (19). The equality (20) derives
from (15b). Since we assume that the application ω → Eω(v1, v2) is holomorphic for ω ∈ D and the
continuity and coercivity bounds of Eω, ∂ωEω, ∂2

ωEω, are bounded in D, the inequality (21) results from
developing Eω+∆ω as a Taylor expansion of order two around ω = ω0 and applying (15a), (16) and
(18).

3.2 Main result

The main conclusion of this section corresponds to the application of a result of standard analytical
perturbation theory of compact operators. This theorem describes locally the eigenvalues of a general
non-linear eigenvalue problem

Theorem 3.1 ([15], chapter VII, Th. 1.9). Let S(ω) be a family of compact operators (for each ω fixed)
and holomorphic with respect to ω ∈ D ⊂ C bounded. Define ω as a singular point if 1 is an eigenvalue
of S(ω). Then either all ω ∈ D are singular points or there are only a finite number of singular points in
each compact subset of D.

Theorem 3.2. Suppose that the weak formulation of (12) has the following structure on ω

Eω(u, v)− ω2 〈u, v〉W = 0, ∀v ∈ V, (22)

and assume the same hypothesis as Proposition 3.1 and Proposition 3.2. Furthermore suppose that 0 ∈ D
and E0 hermitian positive definite. Then there are only a finite number of eigenvalues of (22) in D.

Proof. Define the operator Sω : W→W as

Sω = ω2Gω

Then according to Proposition 3.1 and Proposition 3.2, {Sω}ω∈C is a family of compact operators and
Sω is holomorphic with respect to ω in D. Furthermore, if a given ω 6= 0 is an eigenvalue of (22), then
1 is an eigenvalue of Sω according to (15a). If every ω ∈ D\{0} fulfilled the aforementioned condition,
then since D is open, there would be a sequence {zj}j∈N ∈ D and {vj}j∈N ∈ V with ‖vj‖V = 1, such that
zj → 0 when j →∞ and

|Ezj (vj , vj)| = |z2
j 〈vj , vj〉W | ≤ |z2

j |, ∀j ∈ N. (23)

Now since E0 is hermitian positive definite, all its eigenvalues are real positive. In particular, its first
eigenvalue (that we denote as λ1) satisifes the Rayleigh quotient

min
v∈V,‖v‖V=1

E0(v, v) = λ1 > 0.
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Then, since Eω is holomorphic and (23)

E0(vj , vj) ≤ |E0(vj , vj)− Ezj (vj , vj)|+ |Ezj (vj , vj)| = O(|zj |)

and we obtain a contradiction for j large enough. The desired result finally stems from Theorem 3.1.

We give an application of the above theorem to the 3D viscoelastic and UCLD plate vibration problems

Corollary 3.1. Suppose that the complex elastic tensors A(ω) and D(ω) in (4) and (6) respectively,
are holomorphic with respect to ω for ω ∈ D ⊂ C bounded. Suppose also that 0 ∈ D and A(0), D(0) are
hermitian positive definite. Then problems (4) and (6) posses only a finite number of eigenvalues in D.

Proof. The result derives from Theorem 3.2 by considering

Eω(u, v) =

∫
Ω

A(ω)e(u) : e(v)dx,V =
{
v ∈ H1(Ω;C)3 : v = 0 on ΓD

}
,W = L2(Ω;C)3

in problem (4) and

Eω(w, ζ) =

∫
O
D(ω)∇2w : ∇2ζdx,V =

{
ζ ∈ H2(O;C) : ζ = 0,∇ζ = 0 on ΓD

}
,W = L2(O;C)

in problem (6).

4 Sensitivity analysis of ω1 with respect the shape Ω

We dedicate this section to the study of the shape differentiability of ω1 and eigenvectors (u1,w1), solutions
of (4) and (6) respectively. Nevertheless all results remain valid for k ≥ 2 by replacing (ω1, u1,w1) with
(ωk, uk,wk).

4.1 Differentiability of ω1

Theorem 4.1. Suppose Ω measurable and bounded and ω1(Ω) simple. Then the first eigenfrequency
ω1(Ω), u1(Ω) (for d = 3) and w1(Ω) (for d = 2) are shape differentiable at 0.

We omit the proof since it corresponds to an adaptation of the result exhibited in [11] chapter 5, page
210.

4.2 Shape derivative of a 3D viscoelastic structure

Define the space V =
{
v ∈ H1(Ω;C)3 : v = 0 on ΓD

}
.

Theorem 4.2. Let (ω1, u1) ∈ C× V be the solutions of the eigenvalue problem (4) and ω1 simple. Also

let AH(ω1) = A(ω1)T be the conjugate transpose tensor of A and introduce the adjoint eigenvector p1 ∈ V
solution of ∫

Ω

AH(ω1)e(p) : e(v̄)dx = ω2

∫
Ω

ρ(p · v̄)dx, ∀v ∈ V, (24)

with
∫

Ω
ρ|p1|2dx = 1 and ω2 = ω2

1. Then:

ω′1 = −

∫
∂Ω

θ · n
(
ω2

1ρ (u1 · p1)−A(ω1)e(u1) : e(p1)
)
ds∫

Ω

(
2ω1ρ (u1 · p1)− ∂ωA(ω1)e(u1) : e(p1)

)
dx

. (25)

Proof. As mentioned in the previous section, the fact that ω1 is simple ensures that ω1(Ω) and u1(Ω) are
shape-differentiable. Thus we can directly derive both sides of the variational formulation of (4)∫

Ω

A(ω1)e(u1) : e(v̄)dx = ω2
1

∫
Ω

ρ(u1 · v̄)dx, ∀v ∈ V (26)
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Taking θ ∈W 1,∞(R3,R3) with θ = 0 on ΓN ∪ ΓD:∫
∂Ω

A(ω1)e(u1) : e(v̄)(θ · n)ds+ ω′1(θ)

∫
Ω

(∂ωA)e(u1) : e(v̄)dx+

∫
Ω

A(ω1)e(u′1(θ)) : e(v̄)dx

= 2ω1ω
′
1(θ)

∫
Ω

ρ(u1 · v̄)dx+ ω2
1

∫
Ω

ρ(u′1 · v̄)dx+ ω2
1

∫
∂Ω

ρ(u1 · v̄)(θ · n)ds (27)

Then taking v = p1 in (27) yields

∫
∂Ω

A(ω1)e(u1) : e(p1)(θ · n)ds+ ω′1(θ)

∫
Ω

(∂ωA)e(u1) : e(p1)dx

= 2ω1ω
′
1(θ)

∫
Ω

ρ(u1 · p1)dx+ ω2
1

∫
∂Ω

ρ(u1 · p1)(θ · n)ds,

from which (25) follows.

Remark 4.1. When the tensor A is independent from the frequency ω, we recover the well-known formula
[2] for the derivative:

ω′1 = −

∫
∂Ω

θ · n
(
ω2

1ρ (u1 · p1)−A(ω1)e(u1) : e(p1)
)
ds∫

Ω

2ω1ρ (u1 · p1)dx

Furthermore if A is real then the problem becomes self-adjoint (i.e. p1 = u1).

4.3 Shape derivative of a composite sandwich structure

We refer to the notations given in Section 2.2. Define a bounded working domain O ⊂ R2 and an
admissible shape Ω ⊂ O occupied by a viscoelastic damping treatment. Within this framework, (6) can
be formulated as a multi-phase problem. As mentioned in [1], a sharp interface between the different
phases leads to numerical difficulties that can be avoided by considering a smeared or diffuse interface
approach. We follow herein this smoothed formulation. Let D and ρ be the smooth interpolations
between Dg, Dp, (with respective surface densities ρg, ρp) occupying each one Ω and O\Ω respectively,
defined as

D = Dg −Hε(dΩ)∆D, ∆D := (Dg −Dp),
ρ = ρg −Hε(dΩ)∆ρ, ∆ρ := (ρg − ρp), (28)

where Hε(r) : R→ [0, 1] is a smooth approximation of the Heaviside function

Hε(r) =

 0 if r < −ε,
1
2 (1 + r

ε + 1
π sin

(
πr
ε

)
) if −ε ≤ r ≤ ε,

1 if r > ε,
(29)

and dΩ(x) : Rd → R the signed distance function associated with Ω

dΩ(x) =


0 if x ∈ ∂Ω,

− min
xI∈∂Ω

|x− xI | if x ∈ Ω,

min
xI∈∂Ω

|x− xI | if x ∈ O\Ω.

Define the space W =
{
ζ ∈ H2(O;C) : ζ = 0,∇ζ = 0 on ΓD

}
.

Theorem 4.3. Let (ω1,w1) ∈ C × W be the solutions of the eigenvalue problem (6) and ω1 simple.

Also let DH(ω1) = D(ω1)T be the conjugate transpose tensor of D and introduce the adjoint eigenvector
q1 ∈W solution of ∫

O
DH(ω1)∇2q : ∇2ζdx = ω2

∫
O
ρ(q · ζ)dx, ∀ζ ∈W, (30)
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with
∫
O ρ|q1|2dx = 1 and ω2 = ω2

1. Then:

ω′1 = −

∫
O
∂rHε(dΩ)

(
ω2

1∆ρ(w1 · q1)−∆D(ω1)∇2w1 : ∇2q1

)
θ(P∂Ω(x)) · n(P∂Ω(x))dx∫

O

(
2ω1ρ (w1 · q1)− ∂ωD(ω1)∇2w1 : ∇2q1

)
dx

, (31)

where P∂Ω(x) is the projection of x onto ∂Ω.

Proof. In the same way as Theorem 4.2, we derive both sides of the variational formulation of (4) but
this time within the fixed domain O∫

O
D(ω1)∇2w1 : ∇2ζdx = ω2

1

∫
O
ρ(w1 · ζ)dx, ∀ζ ∈W.

Taking θ ∈W 1,∞(R3,R3) with θ = 0 on ∂O∫
O
D′(θ)(ω1)∇2w1 : ∇2ζ̄dx+ ω′1(θ)

∫
O
∂ωD∇2w1 : ∇2ζ̄dx+

∫
O
D(ω1)∇2w′1(θ) : ∇2ζ̄dx

= 2ω1ω
′
1(θ)

∫
O
ρ(w1 · ζ̄)dx+ ω2

1

∫
O
ρ(w′1 · ζ̄)dx+ ω2

1

∫
O
ρ′(w1 · ζ̄)dx.

Then taking ζ = q1 in the above equation yields∫
O
D′(θ)(ω1)∇2w1 : ∇2q1dx+ ω′1(θ)

∫
O
∂ωD∇2w1 : ∇2q1dx

= 2ω1ω
′
1(θ)

∫
O
ρ(w1 · q1)dx+ ω2

1

∫
O
ρ′(w1 · q1)dx,

so

ω′1 = −

∫
O

(
ω2

1ρ
′(θ)(w1 · q1)−D′(θ)(ω1)∇2w1 : ∇2q1

)
dx∫

O

(
2ω1ρ (w1 · q1)− ∂ωD(ω1)∇2w1 : ∇2q1

)
dx

. (32)

According to (28), the shape derivatives ρ′ and D′ read

ρ′(θ)(x) = −∂rHε(dΩ) d′Ω(θ)(x) ∆ρ,
D′(θ)(x, ω1) = −∂rHε(dΩ) d′Ω(θ)(x) ∆D(ω1),

where d′Ω(θ)(x) = −θ(P∂Ω(x)) · n(P∂Ω(x)) is the shape derivative of the signed distance function at x
(Proposition 3.5. [1]).

Obtaining a descent direction from (31) is not necessarily easy and we would prefer to recover the
classical shape derivative structure of a surface integral on the interface.

Corollary 4.1. Suppose that the interface is roughly plane (i.e. the principal curvatures can be neglected)
and the thickness parameter ε of the diffuse interface is small. Then a good approximation of (31) is

ω′1 ≈ −

∫
Γ

θ · n
(
ω2

1∆ρ(w1 · q1)−∆D(ω1)∇2w1 : ∇2q1

)
ds∫

O

(
2ω1ρ (w1 · q1)− ∂ωD(ω1)∇2w1 : ∇2q1

)
dx

, (33)

where Γ = ∂Ω ∩ int(O).

For the proof consult [1].
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5 Level-set method for topology optimization

From the previous sections we have all the necessary theoretical ingredients to introduce a gradient
method for the minimization of an objective function J(Ω). The general form of its shape derivative is

J ′(Ω)(θ) =

∫
∂Ω

(θ · n)V ds,

where the function V (x) is given in (25) and (33). Supposing V regular enough so it can be naturally
extended to Rd, a descent direction is found by defining the vector field

θ = −V n

and we update the shape Ω as
Ωt = (Id+ tθ)Ω,

where t > 0 is a small descent step. Formally we obtain

J(Ωt) = J(Ω)− t
∫
∂Ω

V 2ds+O(t2)

which guarantees the decrease of the objective function. We remark that if V turns out to be not regular
enough (as it is the case for some objective functions) there are other possible choices for the definition
of the descent direction [6].

First introduced in [19], the level-set method is a technique for capturing interfaces which are implicitly
defined via the zero level-set of an auxiliary function. In particular, this method has been successfully
applied to topology optimization problems. Let the bounded domain O ⊂ Rd be the working domain in
which all admissible shapes Ω are included. In numerical practice, the domain O will be meshed once
and for all. We parametrize the boundary of Ω by means of a level-set function ψ defined over O such
that 

ψ(x) = 0 if x ∈ ∂Ω,
ψ(x) < 0 if x ∈ Ω,
ψ(x) > 0 if x ∈ (O\Ω).

(34)

Under the action of a normal vector field V (t, x)n(x), the shape Ω evolves according to the Hamilton-
Jacobi equation

∂ψ

∂t
(t, x) + V (t, x)|∇ψ(t, x)| = 0, ∀t, ∀x ∈ O. (35)

Equation (35) is posed in the whole reference domain O, and not only on the boundary ∂Ω, if the
velocity V is known everywhere (as will be the case in the sequel). Transporting ψ by (35) is analogous
to moving the boundary of ∂Ω (the zero level-set of ψ) along the direction V .

A common choice of boundary condition for (35) is

∂ψ

∂n
= 0 on ∂O.

As mentioned in [2], this boundary condition is easy to implement since there is no fixed value to assign for
ψ at the boundary, and it also allows the solution of (35) to satisfy a maximum principle. More precisely,
new inclusions (or holes) in Ω can appear only by advecting the zero level-set of ψ which changes its
topology and cannot come from outside the domain O because of spurious negative values created by the
boundary conditions.

The numerical solution of (35) is computed with a second order explicit upwind scheme [22] on a
Cartesian grid. Since this scheme is explicit in time, the time stepping must satisfy a CFL condition.

Because of the advection process or numerical diffusion, the level-set function may become too flat
or too steep leading to large errors either in the location of its zero level set or in the evaluation of its
gradient by finite differences. Therefore, it is usual to regularize it periodically by solving the following
problem {

∂ψ
∂t (t, x) + sign(ψ0)(|∇ψ(t, x)| − 1) = 0, ∀t, ∀x ∈ O

ψ(t = 0, x) = ψ0(x) ∀x ∈ O, (36)

which admits as a stationary solution the signed distance to the initial interface ψ0(x) = 0.
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6 Numerical analysis

6.1 Material properties

In order to extend the state equation (4) to the whole domain O, we use the same “ersatz material”
approach as [3]. This approach amounts to filling the holes O\Ω by a weak phase mimicking void but
avoiding the singularity of the rigidity matrix. We define an elasticity tensor A?(x), which is a mixture
of A in Ω and of the weak material mimicking holes in O\Ω, as

A?(x) = χA(x)A, χA(x) =

{
1, if x ∈ Ω,
δA, if x ∈ O\Ω. (37)

We also need to apply the same procedure for the material density by introducing a mixture density

ρ?(x) = χρ(x)ρ, χρ(x) =

{
1 if x ∈ Ω,
δρ if x ∈ O\Ω. (38)

For eigenfrequency optimization making a correct choice for the threshold parameters δA and δρ is always
delicate since a bad combination can yield spurious eigenmodes localized in the ersatz material.

In the case of the composite sandwich structure equation (6), the tensor D and the density ρ are
evaluated according to the smooth multi-phase approximation (28) considering dΩ = ψ, i.e. the current
level-set function. Indeed the level-set function ψ is periodically reinitialized through (36). We set
ε = 1.5∆x in (29) where ∆x is the characteristic size of the computation mesh. We remark that in the
multi-phase framework we do not need an ersatz material since the whole domain O is covered by the
base plate material which makes the rigidity matrix of the composite sandwich always non-singular, no
matter the shape of the damping layer.

6.2 Solving the discrete non-linear eigenvalue problem

Denote as
Th(ω) · uh = 0, uh ∈ Vh (39)

the matrix representation of the discretization of problem (12) that stems from the weak (or variational)
formulation of (4) (for the functional space notation Vh refer to (26)). Among the various methods to
solve (39) (consult for instance [21]), we simply elect to apply Newton’s method to the extended system

Fz(ω, uh) =

(
Th(ω) · uh
z̄ · uh − 1

)
= 0, (40)

where z ∈ Vh is an arbitrary vector, fixed once and for all, such that ‖z‖ = 1 and z̄ · u∗h 6= 0, being u∗h
the exact eigenvector of (39). Hence the second equation in (40) represents a normalization condition on
uh. The numerical solution (ω`1, u

`
1) obtained by FEM discretization of the problem (11) is chosen as the

initial value (ω0, u0
h) and z = u0

h. The Newton equation of (40)

Fz(ω
n, unh) + ∂Fz(ω

n, unh)

(
ωn+1 − ωn
un+1
h − unh

)
= 0

gives the following update rules:

ωn+1 = ωn − 1

z̄ · T −1
h (ωn) · T ′h(ωn) · unh

,

un+1
h = (ωn − ωn+1)T −1

h (ωn) · T ′h(ωn) · unh,
where the matrices T −1

h (ωn) and T ′h(ωn) respectively stand for the inverse and the derivative with respect
to ω of the FEM matrix Th(ωn). We iterate until |ωn+1 − ωn|/|ωn| < tol with tol << 1.

6.3 Computing a descent direction

The gradient of the loss factor

η(Ω) =
Im(ω2

1)

Re(ω2
1)
,

can be derived from the formulas given in Sections 4.2 and 4.3. Applying the product rule

η′ = 2
Re(ω2

1)Im(ω1ω
′
1)− Im(ω2

1)Re(ω1ω
′
1)

Re(ω2
1)2

= 2
Im(ω2

1ω1ω
′
1)

Re(ω2
1)2

= 2(1− η)
Im(ω1ω

′
1)

Re(ω2
1)

. (41)
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6.3.1 3D viscoelastic structure

For a given ω1, define the constant

β(ω1) :=

∫
Ω

(
2ω1ρ (u1 · p1)− ∂ωA(ω1)e(u1) : e(p1)

)
dx

and the function
γ(ω1)(x) := ω2

1ρ(u1 · p1)−A(ω1)e(u1) : e(p1).

Write (25) as

ω′1 = −

∫
∂Ω

θ · n
(
β(ω1)γ(ω1)

)
ds

|β(ω1)|2 .

Then since θ and the normal n are real-valued, (41) reads

η′ = − 2(1− η)

Re(ω2
1)|β(ω1)|2

∫
∂Ω

(θ · n) Im
(
ω1β(ω1)γ(ω1)

)
ds. (42)

The above expression provides directly a normal ascent direction θ = V n, with

V = − 2(1− η)

Re(ω2
1)|β(ω1)|2 Im

(
ω1β(ω1)γ(ω1)

)
.

6.3.2 Composite sandwich structure

Following the same development, with the definitions

β(ω1) :=

∫
O

(
2ω1ρ (w1 · q1)− ∂ωD(ω1)∇2w1 : ∇2q1

)
dx

and
γ(ω1)(x) := ω2

1(ρg − ρc)(w1 · q1)− (Dg −Dc)(ω1)∇2w1 : ∇2q1,

the same descent direction (42) applies.

6.4 Test cases

Numerical test cases involving the structure eigenvalues in topology optimization are usually not well-
posed since less structure implies a higher eigenfrequency as a result of the ersatz material. Typical
remedies are including non-structural masses, defining the problem as a reinforcement problem or impos-
ing a mass equality constraint. For the following test cases we apply the first two solutions.

The 3D and 2D eigenvalue computations are performed using Freefem++ [10] and the 3D results are
rendered with XD3D [14].

The chosen viscoelastic properties for the 3D and 2D cases satisfy the holomorphic condition stated
in Section 3 (except on a finite number of poles). That being said, the optimization process remains valid
for any other viscoelastic material.

6.4.1 3D viscoelastic structure

We optimize a three-dimensional cantilever. The working domain O is of size 1m× 2m× 1m (discretized
with a 20× 20× 40 mesh). A zero displacement boundary condition is imposed on the left side and four
cubic cells on the middle of the right side (heavy tip mass) are not subject to optimization and a material
density 100 times heavier (see Figures 4 and 5). The viscoelastic material corresponds to 3M ISD112
with complex Young modulus

Ec(ω) = (1 + νc)G0

(
1 +

3∑
k=1

∆kω

ω − iΩk

)
, G0 = 0.5MPa, (43)

density ρVc = 1600 kg/m
3

and Poisson coefficient νc = 0.5 (consult [25] for the values of the not listed
constants Ωk and ∆k). The ersatz material is characterized by the same Poisson’s ratio as the viscoelastic
material, a smaller Young’s modulus by a factor δA = 10−2 and a smaller density by a factor δρ = 10−4
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(see (37) and (38)). The objective function is given as a linear combination of the negative loss factor
(since we minimize) and the volume of the structure

J(Ω) = −η + `
|Ω|
|O| , (44)

where ` = 0.01 is a fixed Lagrange multiplier for the volume constraint. The heavy tip mass is positioned
on the rectangular (and not the square) face of the design domain in order to avoid the symmetric bending
modes on the X and Y axis. This condition is not necessarily sufficient to enforce the first eigenvalue ω1

to be simple (our computations are based on this assumption) so we check at each iteration the existence
of multiple eigenvectors. The modal loss factors η of the initial and optimal shapes are respectively 0.025
and 0.041.

Remark 6.1. In this case Ω corresponds to a uniform isotropic viscoelastic structure such that

A(ω) = f(ω)A0,

where f is a scalar function and A0 is a real isotropic material independent of ω (both defined accordingly
to equation (43)). Hence solving the problem (4) is equivalent to solving the equation:

−div(A0e(u)) = λρ u in Ω, (45)

which has a countable infinite family of solutions (λk, uk)k≥1. The eigenmodes uk coincide with the
eigenmodes of the original viscoelastic problem and we can easily check that pk = uk, so the optimization
problem is self-adjoint. In order to compute the modal loss factor η, we determine the original eigenvalue
ω1 as the solution of the non-linear scalar equation:

ω2 − f(ω)λ1 = 0,

via Newton’s method with the initial value ω0
1 = λ

1/2
1 .

Figure 4: Initial (with a cavity inside) and optimized shapes of a 3D cantilever.

6.4.2 Composite sandwich structure

Now we optimize a square plate O with all edges clamped (w = ∂w/∂n = 0 on ∂O). The width and
the length of the working domain are both 400mm, discretized with a 40 × 40 mesh. The thickness of
the base plate and the damping layer are 8.75mm and 1.25mm, respectively. The base layer is made of
aluminum whose Young modulus is Ep = 69GPa, Poisson’s coefficient νp = 0.3 and volumetric density
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Figure 5: The optimized shape possesses a small inner cavity. If the hole is filled with the viscoelastic
material, the value of η remains almost constant (actually it slightly diminishes) so the value of the
composite objective function (44) increases. The authors verified that the inner cavity is not present
when the whole working domain O is used as initial shape in the optimization process.

Figure 6: Convergence history for the optimization of the 3D cantilever.

ρVp = 2760 kg/m
3
. The viscoelastic coating corresponds to LD-400, a fractional derivative model material

depending on the temperature T with complex Young modulus

Ec(ω) =
a0 + a1(iωα(T ))β

1 + c1(iωα(T ))β
MPa, (46)

density ρVc = 1524 kg/m
3

and Poisson coefficient νc = 0.5. The four parameters a0 = 332.2, a1 =
2485.2, c1 = 0.12, β = 0.47 and the shift factor α(T ) are available in [13]. In our case we will consider the
temperature T to be constant and equal to 27◦C.

The objective function J(Ω) is the same that (44) but this time with ` = 10−1. The modal loss factors
of the initial and optimized shapes are respectively 1.5×10−2 and 2.31×10−2 (see Figure 7). We remark
that the optimized shape of the viscoelastic treatment coincides with the one obtained in [16] using the
SIMP method. The result may not be completely intuitive at first since a significant portion of the
damping reinforcement material lays outside the eigenmode largest deflection zone (Figure 8). However,
as explained in Section 2.2, the sandwich energy is mainly dissipated as a result of in-plane compression
and extension of the damping material under the flexural stress of the base plate. Hence the optimal
damping reinforcement material lay-out and the area with the largest extensional strain energy density
overlap (see Figure 9).
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Figure 7: Initial and optimized shapes of the composite plate. The aluminum phase is shown in gray and
the (superposed) viscoelastic one in black.

Figure 8: Real part of the eigenmode w1 for the final shape.
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Figure 9: In-plane extensional strain energy density (J/m
2
).

Figure 10: Convergence history for the optimization of the 2D composite sandwich plate.
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