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DISJOINTNESS OF THE MÖBIUS TRANSFORMATION

AND MÖBIUS FUNCTION

EL HOUCEIN EL ABDALAOUI AND IGOR E. SHPARLINSKI

Abstract. We study the distribution of the sequence of elements
of the discrete dynamical system generated by the Möbius transfor-
mation x 7→ (ax+b)/(cx+d) over a finite field of p elements at the
moments of time that correspond to prime numbers. Motivated by
a recent conjecture of P. Sarnak, we obtain nontrivial estimates of
exponential sums with such sequences that imply that trajectories
of this dynamical system are disjoined with the Möbius function.
We also obtain an equidistribution result for such trajectories at
prime moments of time.

1. Introduction

1.1. Motivation and background. Let, as usual µ(n) denote the
Möbius function, that is, µ(n) = 0 if n is not squarefree and µ(n) =
(−1)s if n is a product of s distinct primes. Furthermore, given a
compact topological space X and a homeomorphism T : X → X , we
consider the flow X = (T,X). The Möbius disjointness conjecture of
Sarnak [34] asserts that for any flow X = (T,X) of topological entropy
zero, we have

(1.1)
∑

n≤N

µ(n)f (T nx) = o(N), N → ∞,

for any x ∈ X and a continuous complex-valued function f on X . This
conjecture has recently attracted very active interest and has actually
been established for several classes of flows, see [2,10,11,13,16,19,20,23,
26,28,33] and references therein. Moreover, for the connection between
the Sarnak and Chowla conjectures, we refer to very recent works of el
Abdalaoui [1], Gomilko, Kwietniak and Lemańczyk [22], Tao [36] and
Tao and Teräväinen [37].
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Here we consider a discrete analogue of this conjecture for the flow
M = (A,Fp) formed by the Möbius map

(1.2) A : x 7→ ax+ b

cx+ d

over a finite field Fp of p elements, where p is a sufficiently large prime.
For c 6= 0 also extend the definition (1.2) by setting

(1.3) A(−d/c) = a/c.

It is now easy to check that this extended map x 7→ A(x) induces a
permutation of Fp.

In fact, we always identify the map (1.2) with a nonsingular matrix

A =

(

a b
c d

)

∈ GL2(Fp),

and we also always assume that c 6= 0 (so A is not a linear map).

Moreover, after an appropriate scaling of the coefficient of A we can
always assume that

(1.4) A =

(

a b
c d

)

∈ SL2(Fp).

Furthermore, for ξ0 ∈ Fp we consider the trajectory

(1.5) ξn = A (ξn−1) = An (ξ0) , n = 1, 2, . . . ,

generated by iterations of A.

It is easy to see that each sequence of the form (1.5) either terminates
after finitely many steps (if cξn−1 + d = 0) of is eventually periodic,
and then, as A is a permutation it is purely periodic.

It is known that showing (1.1) can be reduced to estimating expo-
nentials sums along trajectories of X twisted by the Möbius function.
In our case, we are interested in the sums

(1.6) Sψ(N) =
∑

n≤N

µ(n)ψ (ξn)

twisted by the Möbius function along the trajectory (1.5) with a non-
trivial additive character ψ of Fp.

We remark, that similar sums, however associated with a linear map
x 7→ gx over Fp, that is, of the sequence ξ0g

n, have been estimated in [5,
Theorem 5.1]. In fact, using the ideas of [7] it is possible to improve [5,
Theorem 5.1], see also [9]. Furthermore, exponential sums over primes,
associated with similar dynamical systems on elliptic curves over Fp
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have been estimated in [6] (see also [31, Section 4]), and can easily be
extended to sums with the Möbius function.

Exponential sums with the Möbius function are closely related to
sums over primes, which is associated with the behaviour of dynamical
systems at “prime” times, see [35] for a general point of view and
also specific results for dynamical systems on SL2(R). We note that
the study of ergodic dynamical system along the primes, initiated by
Bourgain [8] and Wierdl [40] has been studied quite extensively; we
refer also to the results of Nair [29,30] and to the surveys by Rosenblatt
andWierdl [32] and by Thouvenot [38]. For several results on the Prime
Ergodic Theorem and Ergodic Theorem with Arithmetical Weight, we
refer to [3, 12, 15–17, 29, 30], see also the references therein and also to
a very recent survey by Eisner and Lin [17].

For the orbits of the dynamical system x 7→ gx over Fp such results
are given in [5,7,9,21]. We have already mentioned bounds from [6,31]
on exponential sums over primes, associated with similar dynamical
systems on elliptic curves over Fp.

Thus, motivated by these results, together with the sums (1.6) we
also obtain nontrivial bounds on the sums

(1.7) Tψ(N) =
∑

ℓ≤N
ℓ prime

ψ (ξℓ) .

Now, due to the finite nature of our dynamical systems instead the
asymptotic relations of the typs (1.1), we are interested in obtaining
upper bound on the sums (1.6) and (1.7) with an explicit saving de-
pending on N and other parameters.

1.2. Main results. Throughout the paper, the implied constants in
the symbols ‘O’, ‘≪’ and ‘≫’ may occasionally, where obvious, depend
on the real positive parameter ε, and are absolute otherwise (we recall
that U ≪ V and V ≫ U are both equivalent to U = O(V )).

In all our bounds we have to assume that

(1.8) t ≥ p1/2+ε,

which is not a severe restriction as it is satisfied by the majority of the
sequences, see, for example, [14].

Our main result is the following bound:
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Theorem 1.1. Let ε > 0 be sufficiently small. If the period length t of
the sequence (1.5) satisfies (1.8) then, for any real

α ≥ p−ε/2 log p

and integer

N ≥ t exp
(

5α−1 (log(1/α))6
)

.

uniformly over all nontrivial additive character ψ of Fp, we have

|Sψ(N)| ≪ αN.

We remark that Theorem 1.1 yields a power saving, that is allows
to take α = p−η with some fixed positive η < ε/2, only to very large
values of N , much larger that in the case of the linear transformation
x 7→ gx and a similar map on elliptic curves, see [5, 7, 9, 21] and [6, 31]
respectively. This is because in the case of the Möbius transforma-
tion we have not been able to use a canonical way via a version of the
Vaughan identity for the Möbius function, see, for example, [5, Sec-
tion 5]. Instead we use a much more robust approach due to Kátai [25]
in the form given by Bourgain, Sarnak and Ziegler [11, Theorem 2].

To estimate the sums (1.7) we first estimate the sums

(1.9) Rψ(N) =
∑

n≤N

Λ(n)ψ (ξn)

with the von Mangoldt function, which is given by

Λ(n) =

{

log ℓ if n is a power of a prime ℓ,

0 if n is not a prime power.

We notice that the sums (1.9) are technically easier to work with.

As usual, we reduce the problem of estimating the sums Rψ(N) to
bounding some single sums (Type I sums) and bilinear character sums
(Type II sums). However, a direct application of the Vaughan identity,
see [24, Section 13.4], does not seem to work. We circumvent this by
applying a slightly different approach, which is based on the work of
Bourgain, Sarnak and Ziegler [11, Theorem 2].

Theorem 1.2. Let ε > 0 be sufficiently small. If the period length t of
the sequence (1.5) satisfies (1.8) then, for any real α

(1.10) α ≥ p−ε/6 log p

and integer

(1.11) exp
(

pε/4
)

≥ N ≥ tpε exp
(

5α−1 (log(1/α))6
)

.
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uniformly over all nontrivial additive character ψ of Fp, we have

|Rψ(N)| ≪ αN

As usual, we use π(N) to denote the number of primes ℓ ≤ N . Then,
by appealing to a classical argument, based on partial summation (see
for example [4, Section 4.3]) we then derive:

Corollary 1.3. Let ε > 0 be sufficiently small. If the period length

t of the sequence (1.5) satisfies (1.8) then, for any real α and integer

N satisfying (1.10) and (1.11) uniformly over all nontrivial additive

character ψ of Fp, we have

|Tψ(N)| ≪ απ(N).

1.3. Further perspectives. We also note that our results behind the
estimates of Theorem 1.1 and 1.2, in particular Lemma 2.6 below can
be applied to estimating exponential sum along sequences with other
arithmetic constraints such as square-freeness (in which case one can
expect stronger results) and smoothness .

One can also apply our approach to other dynamical systems such as
polynomial dynamical systems x 7→ f(x) for a polynomial f ∈ Fp[X ]
of a fixed degree d ≥ 2 or to monomial dynamical systems x 7→ xe for
an integer e ≥ 1 with gcd(e, p − 1) = 1, which however can be rather
large in terms of p.

2. Preliminaries

2.1. Möbius transformation and binary recurrences.

Lemma 2.1. Let f(Z) = Z2 − eZ − 1 ∈ Fp[Z], where e = a + d, be
the characteristic polynomial of the matrix A of the form (1.4). Then

there are two binary recurrence sequences un and vn satisfying

un+2 = eun+1 + un and vn+2 = evn+1 + vn

with the initial values

(u0, u1) = (ξ0, aξ0 + b) and (v0, v1) = (1, cξ0 + d)

such that

ξn = un/vn

for n = 0, 1, . . ..
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Proof. It is easy to check that the recursive definition of un and vn can
be rewritten as

(

un+1

vn+1

)

= A

(

un
vn

)

, n = 0, 1, . . . .

with the initial values

(u0, u1) = (ξ0, aξ0 + b) and (v0, v1) = (1, cξ0 + d)

Then one verifies that the desired statement by induction on n. ⊓⊔

Using the well known expression of linear recurrence sequences via
the roots of characteristic polynomials, see, for example, [18], we im-
mediately derive from Lemma 2.1, in a straightforward fashion, the
following explicit formula:

Lemma 2.2. Let f(Z) = Z2 − eZ − 1 ∈ Fp[Z], where e = a + d, be
the characteristic polynomial of the matrix A of the form (1.4), which
has two distinct roots ϑ and ϑ−1 in Fp. Then there exist elements

α, β, γ ∈ Fp such that

ξn = α +
β

ϑ2n + γ
, n = 0, 1, . . . .

2.2. Bounds on single character sums. Let p be the characteristic
of Fp and let Fp denote the algebraic closure of Fp.

One of our main tools is the bound on hybrid sums of multiplicative
and additive characters, which in its classical form is given by Weil [39,
Example 12 of Appendix 5]; see also [27, Theorem 3 of Chapter 6].

Lemma 2.3. For any polynomials g(X), h(X) ∈ Fp[X ] such that the

rational function F (X) = h(X)/g(X) is not of the form G(X)p −
G(X) with G(X) ∈ Fp(X), and any nontrivial additive character ψ
and arbitrary multiplicative character χ of Fp we have

∣

∣

∣

∣

∣

∣

∣

∣

∑

x∈Fp

g(x)6=0

ψ (F (x))χ(x)

∣

∣

∣

∣

∣

∣

∣

∣

≪ max{deg g , deg h}p1/2.

We now need a bound on the character sums

Qψ(u, v; k,m,N) =
∑

n≤N

ψ (uξkn + vξmn)

with u, v ∈ Fp and non-negative integers k and m, along consecutive
values of the trajectory (1.5).
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Lemma 2.4. Assume that the characteristic polynomial of the matrix

A of the form (1.4) has two distinct roots in Fp. If t is the period length

of the sequence (1.5), then, for any u, v ∈ Fp with (u, v) 6= (0, 0) and

integers 0 ≤ k < m, for any N ≤ t we have

Qψ(u, v; k,m,N) ≪ mp1/2 log p.

Proof. Let ϑ be as in Lemma 2.1. It is clear that t is the multiplicative
order of ϑ2. For every integer h, We now define the sums

Qh,ψ(u, v; k,m) =
t
∑

n=1

ψ (uξkn + vξmn) e(hn/t),

where
e(z) = exp(2πiz).

Since ϑ2 is of order t it can be written as ϑ2 = gs for s = (p − 1)/t
and some primitive root g of F∗

p. For x ∈ F
∗
p, we define ind x by the

conditions
gindx = x and 0 ≤ ind x ≤ p− 2.

Hence, using Lemma 2.2 and the additivity of ψ, we write

Qh,ψ(u, v; k,m)

= ψ (α (u+ v))
t
∑

n=1

ψ

(

βu

gkns + γ
+

βv

gmns + γ

)

e(hn/t)

= ψ (α (u+ v))
t
∑

n=1

ψ

(

βu

gkns + γ
+

βv

gmns + γ

)

e(hsn/(p− 1))

=
1

s
ψ (α (u+ v))

p−1
∑

n=1

ψ

(

βu

gkns + γ
+

βv

gmns + γ

)

e(hsn/(p− 1)).

Now, denote x = gn and using that g is a primitive root, we obtain

Qψ(h, u, v; k,m)

=
1

s
ψ (α (u+ v))

∑

x∈F∗

p

ψ

(

βu

xks + γ
+

βv

xms + γ

)

e(hs ind x/(p− 1)).

Since the function x 7→ e(hs ind x/(p−1)) is a multiplicative character
of F∗

p, recalling Lemma 2.3, we obtain

Qh,ψ(u, v; k,m) ≪ 1

s
smp1/2 = mp1/2.

Using the standard reduction between complete and incomplete sums,
see [24, Section 12.2], we conclude the proof. ⊓⊔
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For sums with one term

Rψ(u;m,N) =
∑

n≤N

ψ (uξmn)

with u ∈ Fp and a non-negative integer m, we have a slightly more
precise statement.

Lemma 2.5. Assume that the characteristic polynomial of the matrix

A of the form (1.4) has two distinct roots in Fp. If t is the period length

of the sequence (1.5), then, for any u ∈ F
∗
p and an integers m > 0, for

any N ≤ t we have

Rψ(u;m,N) ≪ gcd(m, t)p1/2 log p.

Proof. Let d = gcd(m, t). We set

k = m/d and s = t/d.

Let B = Ak. We also consider the sequences ζn = ξkn then instead
of (1.5), we can write

ζn = B (ζn−1) = Bn (ξ0) , n = 1, 2, . . . .

Hence, by the standard arguments as before, we see that the period of
the sequence ζn n = 1, 2, . . ., is t. Using a special case (with only one
term) applied to ζdn = ξmn instead of ξn, we obtain the result. ⊓⊔

2.3. Double sums and correlations with multiplicative func-

tions. Now, by applying the machinery in the proof of the criterion of
Bourgain, Sarnak and Ziegler [11, Theorem 2] (which in turn improves
the result of Kátai [25]), we obtain our main technical result.

We present it in a form which is more general and flexible than we
need here, since we believe it may find other applications.

Lemma 2.6. Let ν be a multiplicative function and F an arbitrary

periodic arithmetic function with period t. Assume

|ν(n)| ≤ 1 and |F (n)| ≤ 1, n ∈ N.

We further assume that for any primes r 6= s, and for any positive

integer h ≤ t we have
∣

∣

∣

∣

∣

∑

n≤h

F (nr)F (ns)

∣

∣

∣

∣

∣

≤ max{r, s}tρ

for some real ρ < 1. Then for any real

(2.1) α ≥
√

ρ log(1/ρ)
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and integer

(2.2) N ≥ t exp
(

4α−1 (log(1/α))6
)

.

we have
∣

∣

∣

∣

∣

∑

n≤N

ν(n)F (n)

∣

∣

∣

∣

∣

≪ αN.

Proof. We follow the proof of [11, Theorem 2]. In particular, let 1 >
α > 0 be some sufficiently small parameter, to be chosen later. As
in [11, Equation (2.1)] we define

(2.3) j0 =
(log(1/α))3

α
and j1 = j20 .

For every integer j ∈ [j0, j1 + 1] we also define

Rj = (1 + α)j and Mj = N/Rj+1.

We note that we do not assume that these quantities are integer num-
bers.

Furthermore, for every integer j ∈ [j0, j1] we define Pj as the set of
primes in the interval [Rj, Rj+1] and then we also define the set

Qj =

{

m ∈ [1,Mj ] : m has no prime factors in
⋃

i≤j

Pj
}

.

We note that, by the prime number theorem (with an explicit bound
on the error term, we do not however need the full power of the current
knowledge such as [24, Corollary 8.30]), we have the following bound
on the cardinality of Pj , for every j ∈ [j0, j1]:

(2.4) #Pj ≤ Rj

(

1

j
+

1

αj2
+O

(

exp
(

−
√

αj
))

)

≪ 1

j
Rj ,

see [11, Equation (2.8)], where have also used that αj ≥ αj0 ≫ 1.

As in the proof of [11, Theorem 2] we notice that the products of the
mr with r ∈ Pj, m ∈ Qj for some j ∈ [j0, j1] are pairwise distinct and
obviously belong the interval [1, N ], so we conclude

(2.5)
∑

j0≤j≤j1

#Pj#Qj ≤ N

which is also used in the derivation of [11, Equations (2.20) and (2.21)].



10 E. H. EL ABDALAOUI AND IGOR E. SHPARLINSKI

Furthermore, using (2.4) and recalling choice of the parameters (2.3),
we obtain

∑

j0≤j≤j1

#Pj ≪
∑

j0≤j≤j1

1

j
(1 + α)j ≤ (1 + α)j1

∑

j0≤j≤j1

1

j

≤ (1 + α)j1 log(j1/j0) ≤ exp (αj1) log j0.

Hence

(2.6)
∑

j0≤j≤j1

#Pj ≪ exp
(

1.5α−1 (log(1/α))6
)

,

provided that α is sufficiently small.

Now to establish the desired result, we recall that by [11, Equa-
tion (2.16)]

(2.7)
∑

n≤N

ν(n)F (n) ≪
∑

j0≤j≤j1

Wj + αN,

where

Wj =
∑

m∈Qj

∣

∣

∣

∣

∣

∣

∑

r∈Pj

ν(r)F (mr)

∣

∣

∣

∣

∣

∣

, j0 ≤ j ≤ j1.

Using the Cauchy–Schwarz inequality, extending the range of sum-
mation over m to all positive integers up to Mj , changing the order of
summation and recalling that |ν(n)| ≤ 1, we obtain

(2.8) W 2
j ≤ #Qj

∑

r,s∈Pj

∣

∣

∣

∣

∣

∣

∑

m≤Mj

F (mr)F (ms)

∣

∣

∣

∣

∣

∣

, j0 ≤ j ≤ j1,

see [11, Equation (2.17)].

The contribution T1,j to the right hand side of (2.8) from the diagonal
terms can estimated as in [11, Equation (2.20)] by

(2.9) T1,j ≪Mj#Pj .

To estimate the remaining contribution T2,j from the off-diagonal
terms we recall our assumption on bilinear sums with the function
F . More precisely, splitting the interval of summation into at most
Mj/t intervals of length t and at most 1 interval of length h ≤ t, we
obtain

∣

∣

∣

∣

∣

∣

∑

n≤Mj

F (nr)F (ns)

∣

∣

∣

∣

∣

∣

≤ max{r, s}(Mj/t+ 1)tρ.
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Hence, using (for simplicity) that r, s ≤ Rj+1 ≤ 2Rj and MjRj ≤ N ,
we derive

(2.10) T2,j ≤ 2 (#Pj)2Rj (Mj + t) ρ≪ (#Pj)2 (N +Rjt) ρ.

Substituting the bound (2.9) and (2.10) in (2.8), we obtain

W 2
j ≪ Mj#Pj#Qj + (#Pj)2 (N/t +Rj) tρ#Qj

≤ Mj#Pj#Qj +N (#Pj)2#Qjρ+ (#Pj)2#QjRjtρ,

which after the substitution in (2.7) implies

(2.11)
∑

n≤N

ν(n)F (n) ≪ S1 + S2

√

Nρ+ S3

√
tρ+ αN,

where

S1 =
∑

j0≤j≤j1

(Mj#Pj#Qj)
1/2 ,

S2 =
∑

j0≤j≤j1

#Pj (#Qj)
1/2 ,

S3 =
∑

j0≤j≤j1

#Pj (#QjRj)
1/2 .

To bound the sum S1, we use the Cauchy–Schwarz inequality and
write

S1 ≪
(

∑

j0≤j≤j1

#Pj#Qj

)1/2(
∑

j0≤j≤j1

Mj

)1/2

.

We estimate the first sum using (2.5), while the second sums is easily
estimated as

∑

j0≤j≤j1

Mj = N
∑

j0≤j≤j1

(1 + α)−j−1 ≤ N(1 + α)−j0−1
∞
∑

j=0

(1 + α)−j

= N
1 + α

α
(1 + α)−j0−1 ≪ N

1

α
exp(−j0 log(1 + α)).

Therefore, by the definition of j0 in (2.3) combined with the inequality
log(1 + x) ≥ x/2 for x ∈ [0, 1], we obtain

(2.12) S1 ≪ N exp
(

−0.25 (log(1/α))3
)

.

Note that (2.12) is stronger that the bound recorded in [11, Equa-
tion (2.20)], however this does not affect the final result as it is domi-
nated by the term αN , which is already present in (2.11).
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For the sum S2, writing

#Pj (#Qj)
1/2 = (#Pj#Qj)

1/2 (#Pj)1/2 ,
and applying again the Cauchy–Schwarz inequality, we obtain

S2 ≤
(

∑

j0≤j≤j1

#Pj#Qj

)1/2(
∑

j0≤j≤j1

#Pj
)1/2

.

Now, we see from (2.4) and (2.5) that

(2.13) S2 ≪ N1/2 (log(1/α))1/2 .

Therefore, it remains to estimate the sum S3. We notice that the
trivial innequality #QjRj ≤ N yields

S3 ≤ N1/2
∑

j0≤j≤j1

#Pj ,

which together with (2.6) implies

(2.14) S3 ≪ N1/2 exp
(

1.5α−1 (log(1/α))6
)

.

Substituting the bounds (2.12), (2.13) and (2.14) in (2.11), we derive
∑

n≤N

ν(n)F (n) ≪ N
(

α +
√

ρ log(1/α)
)

+N1/2t1/2ρ1/2 exp
(

1.5α−1 (log(1/α))6
)

.

Under the condition (2.1), we have
√

ρ log(1/α) ≪ α,

while the condition (2.2) implies

N1/2t1/2ρ1/2 exp
(

1.5α−1 (log(1/α))6
)

≤ Nρ1/2 exp
(

−0.5α−1 (log(1/α))6
)

≪ αN,

and the result now follows. ⊓⊔

3. Proofs of Main Results

3.1. Proof of Theorem 1.1. We see from Lemma 2.4 and since we
can take some

ρ≪ t−1p1/2 log p

in Lemma 2.6 we have ρ≪ p−ε log p, by (1.8). We thus get
√

ρ log(1/ρ) ≤ p−ε/2 log p
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provided that ε is sufficiently small. Now, after simple calculations, we
conclude the proof.

3.2. Proof of Theorem 1.2. We recall the following classical identity,
see [24, Section 13.4]

Λ(n) =
∑

d|n

µ(n/d) log d.

from which we derive

Rψ(N) =
∑

d,m≥1
dm≤N

µ(m)ψ (ξdm) log d.

We now set

(3.1) D =
t1/2τ(t)1/2

p1/4(log p)1/2

where τ(k) is the divisor function, and note that by the classical bound

(3.2) τ(k) = ko(1),

(see, for example, [24, Equation (1.81)]) and the inequality (1.8), we
have

(3.3) D ≥ pε/2+o(1).

We now write

(3.4) Rψ(N) = RI +RII ,

where

RI =
∑

d≤t

log d





∑

m≤N/d

µ(m)ψ (ξdm)



 ,

RII =
∑

m≤N/t

µ(m)





∑

t<d≤N/m

ψ (ξdm) log d



 .

We thus need to estimate the sums RI (a Type I sum) and RII (a
Type II sum).

To estimate RI , similarly to the proof of Lemma 2.5, if we define
B = Ad, then instead of (1.5), we can write

ξdm = B
(

ξd(m−1)

)

= Bm (ξ0) , m = 1, 2, . . . .
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Hence for d with gcd(t, d) ≤ D, we see from (1.8) that the period of
the sequence ξdm, m = 1, 2, . . ., is

t

gcd(t, d)
≥ t/D =

t1/2p1/4(log p)1/2

τ(t)1/2
≥ p1/2+ε/3.

Thus, recalling (1.10), we see that we can apply the bound of Theo-
rem 1.1 for every d with gcd(t, d) ≤ D.

For d with gcd(t, d) > D, we estimate the inner sum trivially as N/d.
Thus, we can write

(3.5) RI ≪ S + T,

where

S = αN
∑

d≤t
gcd(d,t)≤D

log d

d
and T = N

∑

d≤t
gcd(d,t)>D

log d

d
.

To estimate S, we discard the condition gcd(d, t) ≤ D and thus obtain

(3.6) S ≪ αN(log t)2 ≪ αN(log p)2.

To estimate T , for each divisor s | t collecting together the values of
d with s | d and writing then as es, with e ≤ t/s, we obtain

(3.7) T ≤ N
∑

s|t
s≥D

∑

e≤t/s

log(es)

es
≪ τ(t)ND−1(log p)2.

Substituting (3.6) and (3.7) in (3.5), we obtain

(3.8) RI ≤ αN(log p)2 + τ(t)ND−1(log p)2 ≪ αN(log p)2

as by (3.2) and (3.3) the first term dominates for the above choice of
parameters.

We now proceed to estimate the sum RII for which by the triangle
inequality, we write

(3.9) |RII | ≤
∑

m≤N/t

∣

∣

∣

∣

∣

∣

∑

t<d≤N/m

ψ (ξdm) log d

∣

∣

∣

∣

∣

∣

.
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Furthermore, by Abel summation, we have
∑

t<d≤N/m

ψ (ξdm) log d

=
∑

n≤N/m

ψ (ξdm) log (N/m)−
∑

n≤t

ψ (ξdm) logD

−
∫ N/m

t

1

z

∑

n≤z

ψ (ξmn) dz.

We thus obtain

∑

t<d≤N/m

ψ (ξdm) log d≪ sup
z≤N/m

∣

∣

∣

∣

∣

∑

n≤z

ψ (ξmn)

∣

∣

∣

∣

∣

log (N/m)

≤ sup
z≤N/m

∣

∣

∣

∣

∣

∑

n≤z

ψ (ξmn)

∣

∣

∣

∣

∣

logN.

This, combined with Lemma 2.5, yields

∑

t<d≤N/m

ψ (ξdm) ≪
(

N

mt
+ 1

)

gcd(m, t)p1/2(log p)

≪ N gcd(m, t)p1/2(log p)

mt

(as m ≤ N/t). We use this bound for gcd(m, t) ≤ D and m ≤ N/t and
use the trivial bound N/m otherwise. Hence, splitting the sum over m
in (3.9) accordingly, we obtain

(3.10) RII ≪ U + V,

where

U =
∑

m≤N/t
gcd(m,t)≤D

(

N

mt
+ 1

)

gcd(m, t)p1/2 log p,

V = N
∑

m≤N/t
gcd(m,t)>D

1

m
.

We first estimate U as

(3.11) U ≤ Dp1/2 log p
∑

m≤N/t

(

N

mt
+ 1

)

≤ 2NDp1/2(logN)(log p)

t
.
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To estimate V , for each divisor s | t collecting together the values of
m with s | m and writing then as ks, with k ≤ N/(dt) we obtain

V ≤ N
∑

s|t
s≥D

∑

k≤N/(st)

1

ks

≪ ND−1
∑

s|t

∑

k≤N/(st)

1

k
≪ τ(t)ND−1 logN.

(3.12)

Substituting (3.11) and (3.12) in (3.10) and recalling (3.1), we obtain

RII ≪ Nt−1Dp1/2(logN)(log p) + τ(t)ND−1 logN

≪ N
τ(t)1/2p1/4(log p)1/2 logN

t1/2
,

(3.13)

as by appealing to (3.1) and (3.2), we conclude that the first term
dominates again for the above choice of parameters.

Substituting (3.8) and (3.13) in (3.4), we see that

Rψ(N) ≪ αN(log p)2 +N
τ(t)1/2p1/4(log p)1/2 logN

t1/2
.

Using that (1.8) implies p1/4t−1/2 ≤ p−ε/2, while (1.11) implies logN ≤
pε/4, and recalling (1.10), we conclude that the first term dominates
and the result follows.
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Normandie, F76801 Saint-Étienne-du-Rouvray, France
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