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We study the distribution of the sequence of elements of the discrete dynamical system generated by the Möbius transformation x → (ax + b)/(cx + d) over a finite field of p elements at the moments of time that correspond to prime numbers. Motivated by a recent conjecture of P. Sarnak, we obtain nontrivial estimates of exponential sums with such sequences that imply that trajectories of this dynamical system are disjoined with the Möbius function. We also obtain an equidistribution result for such trajectories at prime moments of time.

1. Introduction 1.1. Motivation and background. Let, as usual µ(n) denote the Möbius function, that is, µ(n) = 0 if n is not squarefree and µ(n) = (-1) s if n is a product of s distinct primes. Furthermore, given a compact topological space X and a homeomorphism T : X → X, we consider the flow X = (T, X). The Möbius disjointness conjecture of Sarnak [START_REF] Sarnak | Möbius randomness and dynamics[END_REF] asserts that for any flow X = (T, X) of topological entropy zero, we have

(1.1) n≤N µ(n)f (T n x) = o(N), N → ∞,
for any x ∈ X and a continuous complex-valued function f on X. This conjecture has recently attracted very active interest and has actually been established for several classes of flows, see [START_REF] El Abdalaoui | On spectral disjointness of powers for rank-one transformations and Möbius orthogonality[END_REF][START_REF] Bourgain | On the correlation of the Möbius function with rank-one systems[END_REF][START_REF] Bourgain | From Fourier Analysis and Number Theory to Radon Transforms and Geometry[END_REF][START_REF] Carmon | The autocorrelation of the Möbius function and Chowla's conjecture for the rational function field[END_REF][START_REF] Eisner | A polynomial version of Sarnak's conjecture[END_REF][START_REF] Ferenczi | Sarnak's conjecture -What's new[END_REF][START_REF] Fouvry | Strong orthogonality between the Möbius function, additive characters and Fourier coefficients of cusp forms[END_REF][START_REF] Green | The Möbius function is strongly orthogonal to nilsequences[END_REF][START_REF] Ku Laga-Przymus | The Möbius function and continuous extensions of rotations[END_REF][START_REF] Liu | The Möbius disjointness conjecture for distal flows[END_REF][START_REF] Ryzhikov | Bounded ergodic constructions, disjointness, and weak limits of powers[END_REF] and references therein. Moreover, for the connection between the Sarnak and Chowla conjectures, we refer to very recent works of el Abdalaoui [START_REF] El Abdalaoui | On Veech's proof of Sarnak's theorem on the Möbius flow[END_REF], Gomilko, Kwietniak and Lemańczyk [START_REF] Gomilko | Sarnak's conjecture implies the Chowla conjecture along a subsequence[END_REF], Tao [START_REF] Tao | Number Theory -Diophantine problems, Uniform Distribution and Applications[END_REF] and Tao and Teräväinen [START_REF] Tao | The structure of logarithmically averaged correlations of multiplicative functions, with applications to the Chowla and Elliott conjectures[END_REF].

Here we consider a discrete analogue of this conjecture for the flow M = (A, F p ) formed by the Möbius map (1.2) A : x → ax + b cx + d over a finite field F p of p elements, where p is a sufficiently large prime. For c = 0 also extend the definition (1.2) by setting (1.3) A(-d/c) = a/c.

It is now easy to check that this extended map x → A(x) induces a permutation of F p .

In fact, we always identify the map (1.2) with a nonsingular matrix

A = a b c d ∈ GL 2 (F p ),
and we also always assume that c = 0 (so A is not a linear map).

Moreover, after an appropriate scaling of the coefficient of A we can always assume that

(1.4) A = a b c d ∈ SL 2 (F p ).
Furthermore, for ξ 0 ∈ F p we consider the trajectory (1.5) ξ n = A (ξ n-1 ) = A n (ξ 0 ) , n = 1, 2, . . . , generated by iterations of A.

It is easy to see that each sequence of the form (1.5) either terminates after finitely many steps (if cξ n-1 + d = 0) of is eventually periodic, and then, as A is a permutation it is purely periodic.

It is known that showing (1.1) can be reduced to estimating exponentials sums along trajectories of X twisted by the Möbius function. In our case, we are interested in the sums

(1.6) S ψ (N) = n≤N µ(n)ψ (ξ n )
twisted by the Möbius function along the trajectory (1.5) with a nontrivial additive character ψ of F p .

We remark, that similar sums, however associated with a linear map x → gx over F p , that is, of the sequence ξ 0 g n , have been estimated in [START_REF] Banks | Exponential sums over Mersenne numbers[END_REF]Theorem 5.1]. In fact, using the ideas of [START_REF] Banks | Exponential and character sums Mersenne numbers[END_REF] it is possible to improve [5, Theorem 5.1], see also [START_REF] Bourgain | Estimates on exponential sums related to Diffie-Hellman distributions[END_REF]. Furthermore, exponential sums over primes, associated with similar dynamical systems on elliptic curves over F p have been estimated in [START_REF] Banks | Double character sums over elliptic curves and finite fields[END_REF] (see also [START_REF] Ostafe | Exponential sums over points of elliptic curves with reciprocals of primes[END_REF]Section 4]), and can easily be extended to sums with the Möbius function.

Exponential sums with the Möbius function are closely related to sums over primes, which is associated with the behaviour of dynamical systems at "prime" times, see [START_REF] Sarnak | The horocycle flow at prime times[END_REF] for a general point of view and also specific results for dynamical systems on SL 2 (R). We note that the study of ergodic dynamical system along the primes, initiated by Bourgain [START_REF] Bourgain | On the pointwise ergodic theorem on L p for arithmetic sets[END_REF] and Wierdl [START_REF] Wierdl | Pointwise ergodic theorem along the prime numbers[END_REF] has been studied quite extensively; we refer also to the results of Nair [START_REF] Nair | On polynomials in primes and J. Bourgain's circle method approach to ergodic theorems[END_REF][START_REF] Nair | On polynomials in primes and J. Bourgain's circle method approach to ergodic theorems II[END_REF] and to the surveys by Rosenblatt and Wierdl [START_REF] Rosenblatt | Pointwise ergodic theorems via harmonic analysis[END_REF] and by Thouvenot [START_REF] Thouvenot | La convergence presque sûre des moyennes ergodiques suivant certaines sous-suites d'entiers (d'après Jean Bourgain)[END_REF]. For several results on the Prime Ergodic Theorem and Ergodic Theorem with Arithmetical Weight, we refer to [3, 12, 15-17, 29, 30], see also the references therein and also to a very recent survey by Eisner and Lin [START_REF] Eisner | On modulated ergodic theorems[END_REF].

For the orbits of the dynamical system x → gx over F p such results are given in [START_REF] Banks | Exponential sums over Mersenne numbers[END_REF][START_REF] Banks | Exponential and character sums Mersenne numbers[END_REF][START_REF] Bourgain | Estimates on exponential sums related to Diffie-Hellman distributions[END_REF][START_REF] Garaev | The large sieve inequality with exponential functions and the distribution of Mersenne numbers modulo primes[END_REF]. We have already mentioned bounds from [START_REF] Banks | Double character sums over elliptic curves and finite fields[END_REF][START_REF] Ostafe | Exponential sums over points of elliptic curves with reciprocals of primes[END_REF] on exponential sums over primes, associated with similar dynamical systems on elliptic curves over F p . Thus, motivated by these results, together with the sums (1.6) we also obtain nontrivial bounds on the sums

(1.7) T ψ (N) = ℓ≤N ℓ prime ψ (ξ ℓ ) .
Now, due to the finite nature of our dynamical systems instead the asymptotic relations of the typs (1.1), we are interested in obtaining upper bound on the sums (1.6) and (1.7) with an explicit saving depending on N and other parameters.

1.2. Main results. Throughout the paper, the implied constants in the symbols 'O', '≪' and '≫' may occasionally, where obvious, depend on the real positive parameter ε, and are absolute otherwise (we recall that U ≪ V and V ≫ U are both equivalent to U = O(V )).

In all our bounds we have to assume that (1.8) t ≥ p 1/2+ε , which is not a severe restriction as it is satisfied by the majority of the sequences, see, for example, [START_REF] Chou | On inversive maximal period polynomials over finite fields[END_REF].

Our main result is the following bound:

Theorem 1.1. Let ε > 0 be sufficiently small. If the period length t of the sequence (1.5) satisfies (1.8) then, for any real α ≥ p -ε/2 log p and integer N ≥ t exp 5α -1 (log(1/α)) 6 .

uniformly over all nontrivial additive character ψ of F p , we have

|S ψ (N)| ≪ αN.
We remark that Theorem 1.1 yields a power saving, that is allows to take α = p -η with some fixed positive η < ε/2, only to very large values of N, much larger that in the case of the linear transformation x → gx and a similar map on elliptic curves, see [START_REF] Banks | Exponential sums over Mersenne numbers[END_REF][START_REF] Banks | Exponential and character sums Mersenne numbers[END_REF][START_REF] Bourgain | Estimates on exponential sums related to Diffie-Hellman distributions[END_REF][START_REF] Garaev | The large sieve inequality with exponential functions and the distribution of Mersenne numbers modulo primes[END_REF] and [START_REF] Banks | Double character sums over elliptic curves and finite fields[END_REF][START_REF] Ostafe | Exponential sums over points of elliptic curves with reciprocals of primes[END_REF] respectively. This is because in the case of the Möbius transformation we have not been able to use a canonical way via a version of the Vaughan identity for the Möbius function, see, for example, [5, Section 5]. Instead we use a much more robust approach due to Kátai [START_REF] Kátai | A remark on a theorem of H. Daboussi[END_REF] in the form given by Bourgain, Sarnak and Ziegler [START_REF] Bourgain | From Fourier Analysis and Number Theory to Radon Transforms and Geometry[END_REF]Theorem 2].

To estimate the sums (1.7) we first estimate the sums

(1.9) R ψ (N) = n≤N Λ(n)ψ (ξ n )
with the von Mangoldt function, which is given by

Λ(n) = log ℓ if n is a power of a prime ℓ, 0 if n is not a prime power.
We notice that the sums (1.9) are technically easier to work with.

As usual, we reduce the problem of estimating the sums R ψ (N) to bounding some single sums (Type I sums) and bilinear character sums (Type II sums). However, a direct application of the Vaughan identity, see [START_REF] Iwaniec | Analytic number theory[END_REF]Section 13.4], does not seem to work. We circumvent this by applying a slightly different approach, which is based on the work of Bourgain, Sarnak and Ziegler [START_REF] Bourgain | From Fourier Analysis and Number Theory to Radon Transforms and Geometry[END_REF]Theorem 2]. Theorem 1.2. Let ε > 0 be sufficiently small. If the period length t of the sequence (1.5) satisfies (1.8) then, for any real α (1.10) α ≥ p -ε/6 log p and integer

(1.11) exp p ε/4 ≥ N ≥ tp ε exp 5α -1 (log(1/α)) 6 .
uniformly over all nontrivial additive character ψ of F p , we have

|R ψ (N)| ≪ αN
As usual, we use π(N) to denote the number of primes ℓ ≤ N. Then, by appealing to a classical argument, based on partial summation (see for example [4, Section 4.3]) we then derive: Corollary 1.3. Let ε > 0 be sufficiently small. If the period length t of the sequence (1.5) satisfies (1.8) then, for any real α and integer N satisfying (1.10) and (1.11) uniformly over all nontrivial additive character ψ of F p , we have

|T ψ (N)| ≪ απ(N).
1.3. Further perspectives. We also note that our results behind the estimates of Theorem 1.1 and 1.2, in particular Lemma 2.6 below can be applied to estimating exponential sum along sequences with other arithmetic constraints such as square-freeness (in which case one can expect stronger results) and smoothness.

One can also apply our approach to other dynamical systems such as polynomial dynamical systems x → f (x) for a polynomial f ∈ F p [X] of a fixed degree d ≥ 2 or to monomial dynamical systems x → x e for an integer e ≥ 1 with gcd(e, p -1) = 1, which however can be rather large in terms of p.

Preliminaries

Möbius transformation and binary recurrences

. Lemma 2.1. Let f (Z) = Z 2 -eZ -1 ∈ F p [Z]
, where e = a + d, be the characteristic polynomial of the matrix A of the form (1.4). Then there are two binary recurrence sequences u n and v n satisfying

u n+2 = eu n+1 + u n and v n+2 = ev n+1 + v n
with the initial values

(u 0 , u 1 ) = (ξ 0 , aξ 0 + b) and (v 0 , v 1 ) = (1, cξ 0 + d) such that ξ n = u n /v n for n = 0, 1, . . ..
Proof. It is easy to check that the recursive definition of u n and v n can be rewritten as

u n+1 v n+1 = A u n v n , n = 0, 1, . . . .
with the initial values

(u 0 , u 1 ) = (ξ 0 , aξ 0 + b) and (v 0 , v 1 ) = (1, cξ 0 + d)
Then one verifies that the desired statement by induction on n.

⊓ ⊔

Using the well known expression of linear recurrence sequences via the roots of characteristic polynomials, see, for example, [START_REF] Everest | Recurrence sequences[END_REF], we immediately derive from Lemma 2.1, in a straightforward fashion, the following explicit formula:

Lemma 2.2. Let f (Z) = Z 2 -eZ -1 ∈ F p [Z]
, where e = a + d, be the characteristic polynomial of the matrix A of the form (1.4), which has two distinct roots ϑ and ϑ -1 in F p . Then there exist elements α, β, γ ∈ F p such that

ξ n = α + β ϑ 2n + γ , n = 0, 1, . . . .

2.2.

Bounds on single character sums. Let p be the characteristic of F p and let F p denote the algebraic closure of F p .

One of our main tools is the bound on hybrid sums of multiplicative and additive characters, which in its classical form is given by Weil [ Lemma 2.3. For any polynomials g(X), h(X) ∈ F p [X] such that the rational function F (X) = h(X)/g(X) is not of the form G(X) p -G(X) with G(X) ∈ F p (X), and any nontrivial additive character ψ and arbitrary multiplicative character χ of F p we have

x∈Fp g(x) =0 ψ (F (x)) χ(x) ≪ max{deg g , deg h}p 1/2 .
We now need a bound on the character sums

Q ψ (u, v; k, m, N) = n≤N ψ (uξ kn + vξ mn )
with u, v ∈ F p and non-negative integers k and m, along consecutive values of the trajectory (1.5).

Lemma 2.4. Assume that the characteristic polynomial of the matrix A of the form (1.4) has two distinct roots in F p . If t is the period length of the sequence (1.5), then, for any u, v ∈ F p with (u, v) = (0, 0) and integers 0 ≤ k < m, for any N ≤ t we have

Q ψ (u, v; k, m, N) ≪ mp 1/2 log p.
Proof. Let ϑ be as in Lemma 2.1. It is clear that t is the multiplicative order of ϑ 2 . For every integer h, We now define the sums

Q h,ψ (u, v; k, m) = t n=1 ψ (uξ kn + vξ mn ) e(hn/t),
where e(z) = exp(2πiz). Since ϑ 2 is of order t it can be written as ϑ 2 = g s for s = (p -1)/t and some primitive root g of F * p . For x ∈ F * p , we define ind x by the conditions g ind x = x and 0 ≤ ind x ≤ p -2. Hence, using Lemma 2.2 and the additivity of ψ, we write Now, denote x = g n and using that g is a primitive root, we obtain

Q h,ψ (u, v; k, m) = ψ (α (u + v))
Q ψ (h, u, v; k, m) = 1 s ψ (α (u + v)) x∈F * p ψ βu x ks + γ + βv x ms + γ e(hs ind x/(p -1)).
Since the function x → e(hs ind x/(p -1)) is a multiplicative character of F * p , recalling Lemma 2.3, we obtain

Q h,ψ (u, v; k, m) ≪ 1 s smp 1/2 = mp 1/2 .
Using the standard reduction between complete and incomplete sums, see [24, Section 12.2], we conclude the proof.

⊓ ⊔

For sums with one term

R ψ (u; m, N) = n≤N ψ (uξ mn )
with u ∈ F p and a non-negative integer m, we have a slightly more precise statement. Let B = A k . We also consider the sequences ζ n = ξ kn then instead of (1.5), we can write

ζ n = B (ζ n-1 ) = B n (ξ 0 ) , n = 1, 2, . . . .
Hence, by the standard arguments as before, we see that the period of the sequence ζ n n = 1, 2, . . ., is t. Using a special case (with only one term) applied to ζ dn = ξ mn instead of ξ n , we obtain the result. ⊓ ⊔ 2.3. Double sums and correlations with multiplicative functions. Now, by applying the machinery in the proof of the criterion of Bourgain, Sarnak and Ziegler [11, Theorem 2] (which in turn improves the result of Kátai [START_REF] Kátai | A remark on a theorem of H. Daboussi[END_REF]), we obtain our main technical result.

We present it in a form which is more general and flexible than we need here, since we believe it may find other applications. Lemma 2.6. Let ν be a multiplicative function and F an arbitrary periodic arithmetic function with period t. Assume

|ν(n)| ≤ 1 and |F (n)| ≤ 1, n ∈ N.
We further assume that for any primes r = s, and for any positive integer h ≤ t we have n≤h F (nr)F (ns) ≤ max{r, s}tρ for some real ρ < 1. Then for any real

(2.1) α ≥ ρ log(1/ρ)
and integer

(2.2) N ≥ t exp 4α -1 (log(1/α)) 6 .

we have

n≤N ν(n)F (n) ≪ αN.
Proof. We follow the proof of [START_REF] Bourgain | From Fourier Analysis and Number Theory to Radon Transforms and Geometry[END_REF]Theorem 2]. In particular, let 1 > α > 0 be some sufficiently small parameter, to be chosen later. As in [11, Equation (2.1)] we define

(2.3) j 0 = (log(1/α)) 3 α and j 1 = j 2 0 .
For every integer j ∈ [j 0 , j 1 + 1] we also define

R j = (1 + α) j and M j = N/R j+1 .
We note that we do not assume that these quantities are integer numbers.

Furthermore, for every integer j ∈ [j 0 , j 1 ] we define P j as the set of primes in the interval [R j , R j+1 ] and then we also define the set

Q j = m ∈ [1, M j ] : m has no prime factors in i≤j P j .
We note that, by the prime number theorem (with an explicit bound on the error term, we do not however need the full power of the current knowledge such as [START_REF] Iwaniec | Analytic number theory[END_REF]Corollary 8.30]), we have the following bound on the cardinality of P j , for every j ∈ [j 0 , j 1 ]:

(2.4) #P j ≤ R j 1 j + 1 αj 2 + O exp -αj ≪ 1 j R j , see [11, Equation (2.8)],
where have also used that αj ≥ αj 0 ≫ 1.

As in the proof of [START_REF] Bourgain | From Fourier Analysis and Number Theory to Radon Transforms and Geometry[END_REF]Theorem 2] we notice that the products of the mr with r ∈ P j , m ∈ Q j for some j ∈ [j 0 , j 1 ] are pairwise distinct and obviously belong the interval [1, N], so we conclude (2.5)

j 0 ≤j≤j 1 #P j #Q j ≤ N
which is also used in the derivation of [START_REF] Bourgain | From Fourier Analysis and Number Theory to Radon Transforms and Geometry[END_REF]Equations (2.20) and (2.21)]. Furthermore, using (2.4) and recalling choice of the parameters (2.3), we obtain

j 0 ≤j≤j 1 #P j ≪ j 0 ≤j≤j 1 1 j (1 + α) j ≤ (1 + α) j 1 j 0 ≤j≤j 1 1 j ≤ (1 + α) j 1 log(j 1 /j 0 ) ≤ exp (αj 1 ) log j 0 .
Hence (2.6)

j 0 ≤j≤j 1 #P j ≪ exp 1.5α -1 (log(1/α)) 6 ,
provided that α is sufficiently small. Now to establish the desired result, we recall that by [11, Equation (2.16)]

(2.7) n≤N ν(n)F (n) ≪ j 0 ≤j≤j 1 W j + αN,
where

W j = m∈Q j r∈P j ν(r)F (mr) , j 0 ≤ j ≤ j 1 .
Using the Cauchy-Schwarz inequality, extending the range of summation over m to all positive integers up to M j , changing the order of summation and recalling that |ν(n)| ≤ 1, we obtain

(2.8) W 2 j ≤ #Q j r,s∈P j m≤M j F (mr)F (ms) , j 0 ≤ j ≤ j 1 , see [11, Equation (2.17)]. 
The contribution T 1,j to the right hand side of (2.8) from the diagonal terms can estimated as in [START_REF] Bourgain | From Fourier Analysis and Number Theory to Radon Transforms and Geometry[END_REF]Equation (2.20)] by (2.9)

T 1,j ≪ M j #P j .

To estimate the remaining contribution T 2,j from the off-diagonal terms we recall our assumption on bilinear sums with the function F . More precisely, splitting the interval of summation into at most M j /t intervals of length t and at most 1 interval of length h ≤ t, we obtain n≤M j F (nr)F (ns) ≤ max{r, s}(M j /t + 1)tρ.

Hence, using (for simplicity) that r, s ≤ R j+1 ≤ 2R j and M j R j ≤ N, we derive (2.10) T 2,j ≤ 2 (#P j ) 2 R j (M j + t) ρ ≪ (#P j ) 2 (N + R j t) ρ.

Substituting the bound (2.9) and (2.10) in (2.8), we obtain

W 2 j ≪ M j #P j #Q j + (#P j ) 2 (N/t + R j ) tρ#Q j ≤ M j #P j #Q j + N (#P j ) 2 #Q j ρ + (#P j ) 2 #Q j R j tρ,
which after the substitution in (2.7) implies

(2.11) n≤N ν(n)F (n) ≪ S 1 + S 2 Nρ + S 3 √ tρ + αN,
where

S 1 = j 0 ≤j≤j 1 (M j #P j #Q j ) 1/2 , S 2 = j 0 ≤j≤j 1 #P j (#Q j ) 1/2 , S 3 = j 0 ≤j≤j 1 #P j (#Q j R j ) 1/2 .
To bound the sum S 1 , we use the Cauchy-Schwarz inequality and write

S 1 ≪ j 0 ≤j≤j 1 #P j #Q j 1/2 j 0 ≤j≤j 1 M j 1/2 .
We estimate the first sum using (2.5), while the second sums is easily estimated as

j 0 ≤j≤j 1 M j = N j 0 ≤j≤j 1 (1 + α) -j-1 ≤ N(1 + α) -j 0 -1 ∞ j=0 (1 + α) -j = N 1 + α α (1 + α) -j 0 -1 ≪ N 1 α exp(-j 0 log(1 + α)).
Therefore, by the definition of j 0 in (2.3) combined with the inequality log(1 + x) ≥ x/2 for x ∈ [0, 1], we obtain (2.12) S 1 ≪ N exp -0.25 (log(1/α)) 3 .

Note that (2.12) is stronger that the bound recorded in [START_REF] Bourgain | From Fourier Analysis and Number Theory to Radon Transforms and Geometry[END_REF]Equation (2.20)], however this does not affect the final result as it is dominated by the term αN, which is already present in (2.11).

For the sum S 2 , writing

#P j (#Q j ) 1/2 = (#P j #Q j ) 1/2 (#P j ) 1/2 ,
and applying again the Cauchy-Schwarz inequality, we obtain

S 2 ≤ j 0 ≤j≤j 1 #P j #Q j 1/2 j 0 ≤j≤j 1 #P j 1/2
. Now, we see from (2.4) and (2.5) that (2.13)

S 2 ≪ N 1/2 (log(1/α)) 1/2 .
Therefore, it remains to estimate the sum S 3 . We notice that the trivial innequality #Q j R j ≤ N yields

S 3 ≤ N 1/2 j 0 ≤j≤j 1 #P j , which together with (2.6) implies (2.14) S 3 ≪ N 1/2 exp 1.5α -1 (log(1/α)) 6 .
Substituting the bounds (2.12), (2.13) and (2.14) in (2.11), we derive

n≤N ν(n)F (n) ≪ N α + ρ log(1/α) +N 1/2 t 1/2 ρ 1/2 exp 1.5α -1 (log(1/α)) 6 .
Under the condition (2.1), we have

ρ log(1/α) ≪ α, while the condition (2.2) implies N 1/2 t 1/2 ρ 1/2 exp 1.5α -1 (log(1/α)) 6 ≤ Nρ 1/2 exp -0.5α -1 (log(1/α)) 6 ≪ αN,
and the result now follows. ⊓ ⊔

Proofs of Main Results

3.1. Proof of Theorem 1.1. We see from Lemma 2.4 and since we can take some ρ ≪ t -1 p 1/2 log p in Lemma 2.6 we have ρ ≪ p -ε log p, by (1.8). We thus get ρ log(1/ρ) ≤ p -ε/2 log p provided that ε is sufficiently small. Now, after simple calculations, we conclude the proof.

3.2. Proof of Theorem 1.2. We recall the following classical identity, see [START_REF] Iwaniec | Analytic number theory[END_REF]Section 13.4]

Λ(n) = d|n µ(n/d) log d. from which we derive R ψ (N) = d,m≥1 dm≤N µ(m)ψ (ξ dm ) log d. We now set (3.1) D = t 1/2 τ (t) 1/2 p 1/4 (log p) 1/2
where τ (k) is the divisor function, and note that by the classical bound 1) , (see, for example, [24, Equation (1.81)]) and the inequality (1.8), we have (1) .

(3.2) τ (k) = k o(
(3.3) D ≥ p ε/2+o
We now write

(3.4) R ψ (N) = R I + R II ,
where

R I = d≤t log d   m≤N/d µ(m)ψ (ξ dm )   , R II = m≤N/t µ(m)   t<d≤N/m ψ (ξ dm ) log d   .
We thus need to estimate the sums R I (a Type I sum) and R II (a Type II sum).

To estimate R I , similarly to the proof of Lemma 2.5, if we define B = A d , then instead of (1.5), we can write 

ξ dm = B ξ d(m-1) = B m (ξ 0 ) , m = 

  39, Example 12 of Appendix 5]; see also [27, Theorem 3 of Chapter 6].

Lemma 2 . 5 .

 25 Assume that the characteristic polynomial of the matrix A of the form (1.4) has two distinct roots in F p . If t is the period length of the sequence (1.5), then, for any u ∈ F * p and an integers m > 0, for any N ≤ t we have R ψ (u; m, N) ≪ gcd(m, t)p 1/2 log p. Proof. Let d = gcd(m, t). We set k = m/d and s = t/d.

  Thus, recalling(1.10), we see that we can apply the bound of Theorem 1.1 for every d with gcd(t, d) ≤ D. For d with gcd(t, d) > D, we estimate the inner sum trivially as N/d. To estimate T , for each divisor s | t collecting together the values of d with s | d and writing then as es, with e ≤ t/s, we obtain R I ≤ αN(log p) 2 + τ (t)ND -1 (log p) 2 ≪ αN(log p) 2 as by (3.2) and (3.3) the first term dominates for the above choice of parameters.We now proceed to estimate the sum R II for which by the triangle inequality, we write (3.9)|R II | ≤

	Furthermore, by Abel summation, we have
		ψ (ξ dm ) log d			
	t<d≤N/m						
		=	n≤N/m	ψ (ξ dm ) log (N/m) -	n≤t	ψ (ξ dm ) log D
									-	t	N/m	1 z n≤z	ψ (ξ mn ) dz.
	Thus, we can write We thus obtain				
	(3.5)							R I ≪ S + T,
	where	t<d≤N/m					
		S = αN	d≤t		log d d	and	T = N	d≤t	log d d	.
			gcd(d,t)≤D			gcd(d,t)>D
	(3.7)		T ≤ N	s|t	e≤t/s	log(es) es	≪ τ (t)ND -1 (log p) 2 .
					s≥D		
	where Substituting (3.6) and (3.7) in (3.5), we obtain (3.8) U = m≤N/t N mt + 1 gcd(m, t)p 1/2 log p,
				gcd(m,t)≤D	
			V = N	m≤N/t		1 m	.
					gcd(m,t)>D
	We first estimate U as	
							m≤N/t	N mt	+ 1 ≤	2NDp 1/2 (log N)(log p) t	.

1, 2, . . . . To estimate S, we discard the condition gcd(d, t) ≤ D and thus obtain (3.6) S ≪ αN(log t) 2 ≪ αN(log p) 2 . m≤N/t t<d≤N/m ψ (ξ dm ) log d . ψ (ξ dm ) log d ≪ sup z≤N/m n≤z ψ (ξ mn ) log (N/m) ≤ sup z≤N/m n≤z ψ (ξ mn ) log N. This, combined with Lemma 2.5, yields t<d≤N/m ψ (ξ dm ) ≪ N mt + 1 gcd(m, t)p 1/2 (log p) ≪ N gcd(m, t)p 1/2 (log p) mt (as m ≤ N/t). We use this bound for gcd(m, t) ≤ D and m ≤ N/t and use the trivial bound N/m otherwise. Hence, splitting the sum over m in (3.9) accordingly, we obtain (3.10) R II ≪ U + V, (3.11) U ≤ Dp 1/2 log p
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Hence for d with gcd(t, d) ≤ D, we see from (1.8) that the period of the sequence ξ dm , m = 1, 2, . . ., is

To estimate V , for each divisor s | t collecting together the values of m with s | m and writing then as ks, with k ≤ N/(dt) we obtain

(3.12) Substituting (3.11) and (3.12) in (3.10) and recalling (3.1), we obtain

as by appealing to (3.1) and (3.2), we conclude that the first term dominates again for the above choice of parameters.

Substituting (

, we see that

Using that (1.8) implies p 1/4 t -1/2 ≤ p -ε/2 , while (1.11) implies log N ≤ p ε/4 , and recalling (1.10), we conclude that the first term dominates and the result follows.