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Abstract. In this invited paper, we are going to present an ongoing
collaboration with a local artist, Aurélie Mourier. The artist works with
voxel shapes and this led our digital geometry team to develop new shape
modeling tools and explore a particular class of unfolding problems.

1 Introduction and Context of the Artistic work

In this paper, we are going to present the results of an ongoing collaboration
of our Digital Geometry Research team with a local graphical artist, Aurélie
Mourier, that happens to be working with cubes. Let us present the motivations
behind her work and then we’ll present some examples of our research that were
partly or completely driven by the artists demands and questions.

An artist typically tries to understand the world around him by proposing his
own reproduction and/or by dissecting specific elements of it in order to propose
an original point of view. The artist will embody his unique and personal point
of view in an art work so that his experience of the world can be shared with
the public. Art is not meant to be didactic but singular. The inspiration for
his work may come from many different sources and points of view including
scientific ones. There are many similarities in the approach used by artists and
scientists in particular in the attempts to propose an abstract representation of
the world. The artist will use his art form while the scientist will use mathematics
as common shared language.

In A. Mourier’s case, she focuses on shapes. Those shapes can be extracted
from reality or invented. In order to study only the shape of things, she willingly
discards parameters such as color, texture and size: a planet, a ball and a mar-
ble have all the same shape. It is interesting here to make a parallel with the
ideas behind the invention of topology. In her case however, the geometric shape
(although in a digital abstract form) still plays an important role. She proceeds
by injecting the object she wants to reproduce into a 3D cubic grid similar to
what happens when one pizelizes a shape in 2D. A resolution was chosen: the
grid size of 25 x 25 x 25. This sizes was chosen arbitrarily so that the shapes
are just big enough to be recognizable and allow some expressibility. A shape is
well formed for A. Mourier if it is in one piece, with each cube touching another
one by face and touches at least two opposite sides of the grid. She orders the
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shapes according to their volume (their number of voxels). She did not know,
in the beginning of her artistic work, that her process was called digitization
and her one piece, face-connected constraint translates in topology as a single
6-connected component.

Her inspiration came from the observation that when we look at the world
through computer screens, our world view is formed of digital images with a
finite fixed resolution. There exists only finite, although very big, number of
possible images. If we could create a catalog of all the possible images, it would,
for instance, include all the images of all the people in the world, dead, alive and
yet to be born. Let us note here that our biological eye has also a finite number
of cones and that our brain has a limit on the number of different colors it is able
to distinguish. A. Mourier works on a shape repository but more importantly,
on how a shape can be represented or coded and how such shapes can then lead
to sculptures that reinstate a size and a material with physical properties. This
idea of repository is inspired by the novel written in 1941 by J.-L. Borges, "La
biblioteca de Babel” [6]. The story of Borges describes a library with all the
possible books of 410 pages, each made of 40 lines of about 80 characters each in
a alphabet composed of 22 regular letters, and the characters space, coma and
point (check out https://libraryofbabel.info/ for a virtual example of this library).
Of course, just as for the Library of Babel, and even though well formed objects
represent only a fraction of the 225° ~ 3.9 x 104703 possible digital objets that
can be represented in her grid, it gives a setting for shape exploration.

Before we met, A. Mourier used to model her voxel objects with generic
modeling softwares. She then printed and cut the result by hand to obtain either
the unfolded pattern of the shape or its slices. An example of a stereo microscope
shape is presented Fig. 1. The number in the name of the shape corresponds to
its number of voxels (797) and the order of the object among all the shapes
having the same number of voxels. Once a shape has been defined, A. Mourier
is interested in all the ways such a shape can be represented: as a set of voxels
in 3D, as a set of 2D slices, unfolded as a net, etc.

2 Creating Digital Shapes for an artist

As an artist working on her shape depository, A. Mourier used to design her
digital objects by hand. Coming from a completely different background, terms
like digitization, 6-connectivity or digital geometry were unknown to her, on the
other hand she had manipulated such shapes and representation forms for a
couple of years and often has a better intuition than we could possibly have on
how to do certain operations. For her, it was interesting to put scientific words
on notions she was manipulating intuitively. For us, it was interesting to discover
new classes of problems with specific applicative constraints.

The starting point of our collaboration was through a student
project that created a simple voxel modeling software that lets
you freely create voxel objects. This tool can be found online at
http://www. aureliemourier.net/logiciel /25aucube.html. However, with this
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Fig. 1. A. Mourier stereo microscope shape 00797.001: the unfolded net, the slices in
the z axis and the 3D numeric object.

tool, shapes still had to be constructed by hand. We proposed to design
algorithms to help create specific classes of voxel objects. For this, several
constraints had to be met so that our client, A. Mourier, could use these objects:
one of the main constraints was to incorporate a manual design possibility
so that the artist may express herself. As a first proposal, we developed a
online software to generate digital surfaces of revolution based on a hand-drawn
generatrix and hand-drawn curves of revolution. This work will be presented in
section 2.1. We then proposed a method for creating tubes where the 3D curve
and the section of the tube can be designed freely. This will be presented in
section 2.2. More recently, we looked into the problem of unfolding the surface
of a voxel object. This was motivated by the nets created, by the artist, by
hand. This will be presented in subsection 2.3.

2.1 Digital Surface of Revolution with hand-drawn generatrix and
curve of revolution

Working with a visual art artist, our goal was to propose flexible, intuitive to
use tools for designing 3D voxel surfaces. For this we considered 2D (hand)
drawings which are a natural shape representation form for most artists. A recent
paper proposed a digitization method for surfaces of revolution [3] based on a
very simple and straightforward method for digitizing almost any implicit nD
surfaces [16]. It is based on a morphological type digitization method called
flake digitization. The flake digitization allows to define digital surfaces with a
controlled topology (control on tunnels of the digital surface). The paper [16]
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can be seen as an extension to all tunnel connectivities and dimensions of the
paper of S. Laine [14].

A surface of revolution is defined by two 2D curves: the curve of revolution
and the generatrix. We propose three ways of defining a curve of revolution
and three ways of defining a generatrix in order to allow maximum flexibility.
A curve of revolution can be defined by an implicit curve (that separates space
into positive and negative valued regions), by a closed hand-drawn curve or by
a binary pixel image that serves as look-up matrix. The curve of revolution
is not limited to the traditional circle and not limited to a unique connected
component, which offers a great liberty in designing complex shapes. Contrary
to the curve of revolution, the generatrix is not necessarily a closed curve. Three
similar ways of defining generatrix curves are proposed: as an explicit function,
as hand-drawn curves or as contour curves extracted from a binary image. This
leads to nine different ways of defining digital surfaces of revolution. Two of those
methods have already been published by Andres et al. respectively in [3] and [4].

Let us detail a bit the overall method. A curve of revolution can be basically
defined in any way as long as we are able, slice by slice, to define regions with
an interior and an exterior. The curve(s) of revolution are then defined as the
boundaries between those regions. For the digitization, we determine if a digital
point belongs to the digital surface of revolution by considering the vertices of
the three dimensional structuring element (k-Flakes [16]) centered on this point
and computing their position relatively to the curve of revolution. If some of
the vertices are inside and some outside then the corresponding voxel is cut by
the surface and therefore belongs to the Digital Surface of Revolution. When the
curve of revolution is implicitly defined the vertex localisation is straightforward.
When the curve of revolution is given as a hand-drawn curve, which is more
natural for an artist, we record the sequence of Euclidean points, while the
artist draws the curve of revolution. We ensure that this curve is a closed one
(to define one or several interior(s) and exterior(s)) by adding the first point at
the end of the list. This list of point is then treated as a closed polygon and the
critical localisation information can be obtained using a Point In Polygon (PIP)
algorithm [12].

The other curve, the generatrix g, typically plays the role of an homothetic
factor for the curve of revolution. A slice z = zy of the surface of revolution is
the curve of revolution scaled by a factor g(zo) for a generatrix that is defined
by an explicit function y = ¢g(z). When the generatrix is drawn and repre-
sented by a list of points, there are two main issues: firstly, there can be more
than one value g(z) per z and secondly, the curve may not be closed. To han-
dle the multiplicity of g(z) values, the point sequence is divided into strictly
monotonic (in z, increasing or decreasing) or horizontal subsequences. The end
point of one subsequence is duplicated as the starting point of the next one.
Each subsequence can be digitized completely independently because the flake
digitization method we use is a morphological type digitization (i.e. consistant
with the union operator). One last problem had to be addressed: the generatrix
may be an open curve and therefore it may have extremities. This case needs
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Fig. 2. Examples of 3D surfaces of revolution (HD: hand-drawn, BMP: bitmap image).
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Fig. 3. Spinning top sculptor

to be handled specifically because the digitization of the surface of revolution
supposes that we are able, for all points, to compute its localisation relatively
to the surface. At the generatrix extremities, some of the vertices of the voxels’
flake are outside the domain of definition of the generatrix. There can be, in this
case, a defined localisation for some vertices and not for others. In this case, we
consider only the parts of the flake that are inside the domain and therefore we
take, as substitute for the undefined vertices, the endpoints of a cropped flake
line segments. See [4] for more details. See http://imgur.com/a/eDFbY for some
examples of swept digital tubes and digital surfaces of revolution. The method is
not limited to curves of revolution of dimension two. You can see an example at
http://imgur.com/a/eDFbY of a four-dimensional torus defined by a 3D surface
of revolution (a sphere) and a 2D generatrix (a circle).

The software that implements these methods is available at http://zlim-
sic.labo.univ-poitiers.fr/demonstrateurs/DSoR_ Generator/. This software has
been used by A.Mourier to build chess pieces that have been 3D printed (See
Figure 4 for an example), and a sculptor representing a spinning top (Figure 3).

2.2 Swept Tubular Surfaces

As a complement to surfaces of revolution, we designed a tool that allows to
create Swept Tubular surfaces. Such tubes can also be defined as digital implicit
surfaces [16]. These digital surfaces have applications well beyond our visual art
interest: modeling of body parts [13], medicine [7], etc.

Formally, a swept tube is defined by a 3D curve, the spine curve, and a
2D closed curve, the profile. The profile (sometimes called cross-section in the
literature) is swept out in a plane normal to the 3D spine curve (or trajectory).
Using a mapping of the profile on the spine together with the implicit surface
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Fig. 4. The 3D printed chess white queen. This piece was built using an implicit curve
of revolution and a hand-drawn generatrix.

digitization method [16], it is actually quite easy to build digitized swept tubes.
In Figure 5, one can see three interlaced digital swept tubes generated by a
parametric 3D spine curve and a bitmap image of three disks that served as
profile (please check http://imgur.com/a/eDFbY for an animated version). For
the mapping, we chose the Frenet-Serret formulas [10] which describes the motion
of a particle along a 3D continuous curve (any other mapping intended to define
a moving frame like the Darbouz frame for instance could also be used). The
Serret-Frenet frame is defined by the tangent, the normal and the binormal unit
vectors in any point of the 3D curve.

Fig.5. An example of a swept tube defined by a parametric closed 3D spine curve (on
the upper right side) and a bitmap image of three disks as profile (lower right side)

For the animations that we created or that the artist created, the idea was
simply to rotate the profile (see http://imgur.com/a/eDFbY for some examples).
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2.3 Unfolding voxel surfaces

A central question in graphical arts has always been the representation of 3D
so-called reality in 2D. For a long time Hierarchical representation (where impor-
tant personae tended to be painted in big and in the middle of a painting while
others where painted in small and in the periphery) or perspective representa-
tion was the norm. Let us note that hierarchical representation, although less
realistic, contained information with an added, otherwise abstract, social and
political dimension. Cubists, at the beginning of the twentieth century, proposed
a new form of representation that tried to incorporate multiple view points in
an abstract recomposition. One of the motivations was to represent elements
that would otherwise be hidden. The abtract nature of such recomposition make
the paintings sometimes difficult to understand while at the same time they po-
tentially represent a more complete representation of the reality than a more
classical representation with only one point of view. That was the starting point
of A. Mouriers’ interest in nets and the problem of unfolding voxel surfaces. A
net shows the complete 3D object in 2D with the whole surface visible although
the net makes it difficult to imagine what the corresponding 3D object looks
like. Representing a complete 3D reality comes with a price.

The unfolding problem is an old problem already discussed by A. Durer
[11]. Since then, unfolding problems have been extensively studied with a wide
range of applications ranging from industrial manufacturing, storage problems,
to texture mapping, etc. The unfolding problem can be stated as follows: can
the surface of a 3D closed object be unfolded flat to a single component without
overlap? [5]. There are two main type of unfoldings: edge-following unfolding
and general unfoldings. In edge-unfoldings, one can only make cuts along the
edges of the polyhedra while for general unfoldings, one can cut through faces.

D3 D2
D3 F3 Die=M-210 F& D12

D5 D8
1

D3 o8
02 F1 D1=fM=D1 F5 D7

D4 o1

Fig. 6. General unfolding net and edge unfolding net of a cube.
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2.4 state of the art

It has been shown that a non convex polyhedra can not always be edge unfolded
[5] and that a convex polyhedra has always a general unfolding [1]. To our best
knowledge, it is not known if a convex polyhedra always has an edge unfolding
or if a non convex polyhedra always has a general unfolding. There is however a
subclass of unfolding problems that does not deal with an arbitrary polyhedra
but with what is called orthogonal polyhedra. An Orthogonal polyhedron is a
polyhedron whose faces meet only with a 0 angle (both faces are coplanar), a 7/2
angle (both faces have a so-called valley fold) or a 37/2 angle (both faces have
a so-called mountain fold). The terms valley and mountain fold comes originally
from the origami community. In 2007, it has been shown that arbitrary genus 0
orthogonal polyhedra always have a general unfolding [9]. More recently, in 2016,
an algorithm for genus 2 orthogonal orthogonal polyhedra has been proposed [8]
as well as a one layer general genus method [15]. A particular case of general
unfoldings that are considered are so called grid-unfoldings where cuts across
orthogonal faces are only allowed along the edges of a subgrid that may be
arbitrarily small in some cases.

2.5 Our unfolding problem

Our work on these problems have been driven by the questions and needs as
presented to us by A. Mourier. An art-and-science project funded by the regional
direction of Art and Culture (DRAC Nouvelle Aquitaine) was proposed with
the question of peeling (unfolding) genus 0 egg shaped objects (not necessarily
convex). For this, we proposed, firstly, a new way of generating digital objects
based on Focus points which is presented at DGCI 2017 [2]. Once we had a
way of generating such objects, we were asked if it was possible to generate nets
randomly. The problem, for A. Mourier, is the question of having different nets
that represent the same final 3D object.

In our case, we consider a 6-connected voxel object whose surface is divided
into square voxel faces. We are therefore looking into an edge unfolding problem
of orthogonal polyhedra that bears some resemblance with the general grid-
unfolding of orthogonal polyhedra class of problems. The key difference here is
that the voxel faces can not be subdivided. The classical counterexamples, to
prove that edge-unfolding for orthogonal polyhedra is not always possible, have
nets in our case. The question of the existence of an edge-unfolding solution for
all such voxel surface object remains open. And if such a solution always exists,
what algorithm could be proposed in the general case ?

For the problem on hand, with the demand of the artist to not propose a
deterministic solution, we developed an algorithm based on the following basis:

1. we start with an empty 2D grid in which the voxel faces will be set in order
to define a net.

2. First we extract a list of the surface faces of the 6-connected voxel object.

3. for each face we numerotate the edges. An edge is of course shared by two
and only two faces.
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4. We start with a random face and put it in the center of our grid.

5. We compute all the faces that can be put down next as neighbors for the
already settled faces. The key point is that you can put down a new face
next to a face in the grid if the edge corresponds. Of course it may happen
that a grid square next to a settled face can not be filled because the face
that corresponds to this edge has already been put down elsewhere in the
grid for another edge.

6. we choose randomly, among those faces, the next face that can be put down
as long as not all the faces have been put down or that we are not blocked.

7. if we are not blocked or haven’t finished we go to step 5.

This method of building a net does not always provide a solution. It can be
blocked simply because all the (four) grid places where we could put down a face
are already occupied by other faces.

There are however several ways to improve the convergence: If we are blocked
and have several faces left, we can try to correct our net. For the faces that we
could not put down, we can determine where we could have put them. If the
location where we could have put down the face is an isolated face or a face
in a cycle such that it is not the place where the cycle is linked to the other
faces of the net, then we can remove the isolated or cycle face and put down our
blocked face. We have now swapped one face for another. The idea is that, may
be, this new face will find a free grid spot to put it down. The reason why we
can only swap with isolated or non splitting cycle faces is that otherwise the face
represents the root of a tree of faces that would be disconnected from the net.
Since the aim is to create a net in one piece, that can not be allowed. In some
cases, a face can not be placed at any spot where we would have isolated faces.
We have then the choice, either to abandon and start over or to extract all the
faces of the smallest sub-tree and start over with trying to place all those new
faces.

A last method we have implemented to get out of a blocking situation, with-
out starting all over, is to remove all the isolated and non splitting cycle faces
from the blocked net and start over at step 6.

2.6 results

To our surprise, the algorithm we have developed works surprisingly well with
what we thought would be topologically complicated voxel objects. Figure 7
shows the net for a voxel object formed of a 5% voxel cube with 4 traversing
tunnels on each side. There are 270 faces and the algorithm takes only a couple
of seconds to find a net for such an object with very often only a couple of
attempts. The algorithm has also found a solution for the much more complex
digital object shown below in the figure. We didn’t include here the image of the
net because it is simply too big to distinguish any details. It can take usually up
to a couple of hours to find a solution for such an object. There are 1350 faces
in this case. The other surprise was that the method works not very well with
topologically simple objects. The algorithm struggles with simple objects such as
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digital spheres of relatively small radii. It is however not completely surprising,
all things considered. Our net generator is based on random choices which tends
to produce relatively compact nets. The algorithm will typically not stretch the
net in one direction to provide more space to put down faces.

\
i

)

2

7 1350 faces

Fig. 7. Voxel cube with 4 holes by face and one of the resulting nets. Below Cube with
16 holes where a solution was found as well.

3 Conclusion and Perspectives

In this paper we have presented some of the scientific work that has resulted from
the collaboration between a scientific team working in digital geometry and a
visual art artist. As an artist, A. Mourier explores shapes in a voxel form. Several
modeling tools for digital objects have been developed with a focus on giving the
artist the possibility to express herself graphically. This has led to develop new
methods for generating digital surfaces of revolution and digital tubular swept
objects. A more recent collaboration has focused on the unfolding problem for
voxel surface objects. A new algorithm for generating nets has been proposed.
There are several open questions that have been raised in these different works:
we have developed a method where the generatrix may be an open curve. what
about open curves of revolution? The same question can be asked for digital
swept tubes. Can they be defined with open profile curves? Lastly, we have
considered a particular type of unfolding problem: orthogonal edge based grid
unfoldings. Is there always a solution for this particular case? Right now we
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have developed a random search algorithm to generate nets that are different
each time. This method may need several attempts before it proposes a result.
Is there a way to create deterministic algorithms for the general case of convex,
non-convex voxel surface unfoldings?
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