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EXISTENCE AND ASYMPTOTIC RESULTS FOR AN INTRINSIC MODEL

OF SMALL-STRAIN INCOMPATIBLE ELASTICITY

SAMUEL AMSTUTZ AND NICOLAS VAN GOETHEM

Abstract. A general model of incompatible small-strain elasticity is presented and analyzed,

based on the linearized strain and its associated incompatibility tensor field. Strain incompat-

ibility accounts for the presence of dislocations, whose motion is ultimately responsible for the
plastic behaviour of solids. The specific functional setting is built up, on which existence results

are proved. Our solution strategy is essentially based on the projection of the governing equations

on appropriate subspaces in the spirit of the Leray decomposition of solenoidal square-integrable
velocity fields in hydrodynamics. It is also strongly related with the Beltrami decomposition of

symmetric tensor fields in the wake of previous works by the authors. Moreover a novel model
parameter is introduced, the incompatibility modulus, that measures the resistance of the elas-

tic material to incompatible deformations. An important result of our study is that classical

linearized elasticity is recovered as the limit case when the incompatibility modulus goes to in-
finity. Several examples are provided to illustrate this property and the physical meaning of

the incompatibility modulus in connection with the dissipative nature of the processes under

consideration.

1. Introduction

1.1. The intrinsic approach to elasticity. An intrinsic approach to elasticity simply means that
the main and primal variable is the strain, together with its derivatives, and that the displacement
and rotation fields are possibly recovered in a second step, in case they are needed. This approach
is most probably the first historically, being the strain indeed considered to measure deformation,
that is, variation in length and in mutual orientation of infinitesimal fibers within a solid body. As a
matter of fact, for the geometer the strain is a metric from which all other geometric concepts (such
as curvature, torsion and other sophisticated tensors, see [4, 11]) are retrieved. Specifically, given
a smooth strain tensor field ε, the classical Kirchhoff-Saint Venant construction (for a historical
review, see [4, 28,36]) in linearized elasticity basically consists in

• introducing the Frank tensor1 F = Curlt ε, where Curlt ε stands for the transpose of the
curl of the symmetric tensor ε (computed row-wise);

• defining the rotation field as ω(x) = ω(x0) +
∫ x
x0
F(ξ)dl(ξ), on a smooth curve joining the

endpoints x0 and x;
• defining the displacement field as u(x) = u(x0) +

∫ x
x0

(ε− ε(ω)) (ξ)dl(ξ), where ε(ω) stands

for the skew-symmetric rotation tensor constructed from ω, namely ε(ω)il := εilkωk, with
εilk standing for the Levi-Civita symbol.

Obviously such definitions are a priori path-dependent. In order for u and ω to be well-defined,
i.e., to be path-independent, it is immediately seen that a sufficient and necessary condition in a
simply connected domain be that

inc ε := Curl Curlt ε = Curl F = 0,

where inc ε denotes the strain incompatibility tensor defined index-wise by

2010 Mathematics Subject Classification. 35J48,35J58,49S05,49K20,74C05,74G99,74A05,74A15, 80A17.
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dissipation.
1This terminology was introduced in [42] simply because its integral on a closed loop yields the so-called Frank

tensor attached to a disclination singularity.
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( inc ε)ij = εikmεjln∂k∂lεmn,

that is easily seen to be symmetric. When inc ε = 0 one retrieves the well-known expressions

∇Su = ε and ∇u = ε− ε(ω),

where ∇Su = (∇u + ∇tu)/2 stands for the symmetrized gradient of the displacement field u.
On the contrary, if the tensor inc ε is not vanishing, this means exactly that the rotation and/or
displacement fields exhibit a jump around what is classically called a Burgers circuit (to this respect
an important role is played by the choice of the origin x0 as shown in [42]). So far, it appears clear
that the important geometric quantities are

ε, Curlt ε, and inc ε.

This is the seminal motivation for our model which is precisely designed from these variables. In
particular, this choice makes the model of gradient-type. Note that it appears natural to consider
the curl instead of the full gradient, and the inc instead of the full Hessian.

Let us also stress that this approach, despite rarely seen today, has a long history: we date the
origin of the intrinsic view to Riemann with ground-breaking applications in general relativity and
later in mechanics (in particular see the Hodge and Prager approach in perfect plasticity [34]).
In general, as explained in [4], Riemann’s view is in contrast with Gauss’ standpoint of immer-
sions, that is a displacement or velocity-based formulation. Furthermore, as far as dislocations
are involved, this geometric approach was very much developed and enhanced by the physicist E.
Kröner in the second half of last century [27]. It should however be mentioned that in finite as
well as in linearized elasticity the intrinsic approach was recently considered and developed during
the last decades in a systematic way by Ciarlet and co-authors [2, 3, 12–15], and Geymonat and
co-authors [20–22] (see also [47] for a geometric approach). In particular, their aim was to write,
for the elasticity system, the homogeneous boundary condition on the displacement in terms of the
elastic strain only.

Although the incompatibility operator has been used in the engineering literature for a long
time, the mathematical study of spaces of square integrable tensor-valued functions with square
integrable incompatibility was not yet considered and thus our first step was to dedicate a paper
to the subject [5].

1.2. A model of incompatible elasticity. The approach we propose was introduced in [6] from
a physical standpoint. It aims at accounting for the macroscopic effect of the motion of dislocations,
since it is known from the works of E. Kröner that elastic strain incompatibility is related to the
dislocation density tensor [27]. The proposed model is expected to ultimately provide an original
framework to the modeling of elasto-plastic behaviors. At the current stage of development, it
can be termed generalized elasticity or incompatible elasticity, since one important feature is that
classical linearized elasticity is recovered as a limit case. The main point of our approach is that
the strain is a symmetric tensor, but not necessarily a symmetric gradient. Moreover, our theory
relies on the following rationales.

(1) Strain rate is preferred to strain and is given the following, primordial definition. The
medium is considered as a collection of infinitesimal cells that individually deform smoothly,
so that within each cell one can identify and follow fibers. Denote by a1, a2, a3 three such
fibers, which at time t originate from point x and are oriented along the axes of a Cartesian
coordinate system and scaled to be of unit lengths. Then the strain rate is defined at x as
(see, e.g., [18])

dij(t) =
1

2

(
d

dt
(ai · aj)

)
t

. (1.1)

Having fixed an initial time t0 = 0, the time integral of the objective tensor d, called the

strain or deformation tensor, reads ε(t) =
∫ t

0
d(s)ds. Note that this latter expression is

only valid in the small strain setting, while (1.1) is general.
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(2) The strain rate defined in this way admits a mathematical decomposition: it is the sum of
a compatible part and an incompatible part, that is given by a structure theorem called
Beltrami decomposition [28]:

d = ∇Sv + E0. (1.2)

This decomposition is unique once boundary conditions for v, which can be seen as a
velocity field, are prescribed. Therefore, while d is an objective field by definition, neither
∇Sv nor E0 are objective, see the discussion in [6]. For this reason the model will be
constructed upon the full strain rate d (or ε if small strain is considered) and its space
derivatives.

(3) The governing equations should generalize those of classical linear elasticity in the sense
that they must take into account the possible strain incompatibility. The idea behind
this is to represent the macroscopic effect of dislocations in the micro-structure, as strain
incompatibility is related to the density of dislocations [27,39,41–43].

Our model can be briefly described as follows in the simplified case of a homogeneous material
(see [6] for details). One considers linearized gradient elasticity in the sense of Mindlin [31]. One

assumes that the virtual strain rate d̂ and its gradient produce intrinsic work, and by the virtual
power principle we write ∫

Ω

(σ · d̂+ τ · ∇d̂)dx =

∫
Ω

K · d̂ dx,

where σ, τ are the Cauchy stress and hyperstress tensors, respectively, and K is a tensor representing
external efforts. Assuming first a natural initial configuration (at t = 0), constitutive relations are
taken as σ = Cε and τ = D∇ε, where C,D are the isotropic Lamé and Mindlin tensors, respectively

(see [31]). Next, we require that the intrinsic power induced by the hyperstress
∫

Ω
τ ·∇d̂ dx vanishes

as soon as the deformation is compatible, i.e., that it is only due to micro-structural defects in
the form of dislocations. Then it was shown in [6] (see also [4] for different arguments) that the
components of D are related through a scalar `, called incompatibility modulus, which eventually
yields that −div τ = ` inc ε. Therefore the virtual power principle leads to the weak form∫

Ω

(Cε+ ` inc ε) · d̂ dx =

∫
Ω

K · d̂ dx, ∀d̂ ∈ E , (1.3)

where E is the set of admissible virtual strain rates.
To see that this equation generalizes linearized elasticity, take d̂ = ∇S v̂ with v̂ = 0 on ΓD ⊂ ∂Ω

and take K such that −divK = f in Ω and KN = g on ΓN := ∂Ω \ ΓD. Then, plugging this into
(1.3) immediately yields {

−div (Cε+ ` inc ε) = f in Ω,
(Cε+ ` inc ε)N = g on ΓN ,

(1.4)

which is exactly the system of linearized elasticity in case of compatible strain, i.e. with ε = ∇Su
with u = u0 on ΓD, since for such strains inc ε = 0.

More generally, we believe that our model of incompatible linearized elasticity is able to represent
inhomogeneous material properties and finite deformations through an incremental formulation.
Indeed, nonlinear problems in continuum mechanics are classically solved through the finite ele-
ment method used in conjunction with an incremental solution procedure. In this way, nonlinear
problems are reduced to a sequence of iterations consisting of linearized problems. Therefore, in
our model we will rather consider the strain increment (later denoted by E) in place of ε, together
with the generalized tangent parameters (C, `). We emphasize that the procedure we suggest is
Eulerian by essence, with all coordinates related to the deformed configuration, and is not to be
confounded with Lagrangian incremental methods (as described e.g. in [10]). In case coordinates
in a fixed reference configuration are needed for practical purposes, standard transformation rules
might be applied. Of course, the evolution of the tangent moduli between increments should be
driven by constitutive laws in order to account, for instance, for hardening phenomena. A possible
thermodynamic approach is to relate changes in these coefficients with dissipation. In order to
reach this aim, as a first step, a sensitivity analysis of the dissipation functional with respect to a
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variation of ` within a small inclusion was conducted in [6] for a simplified model. The extension
to the full model and the numerical implementation, for which the existence results of the present
work constitute a mandatory preliminary step, is an ongoing work. Our approach and model have
been put in a historical perspective of intrinsic views in geometry in the survey paper [4]. For
philosophical thoughts about modeling in physics, we refer to [29].

1.3. Summary of our results. Set E = L2(Ω,S3). Subsequently the model variable will be
denoted by E, and can represent either a strain, a strain increment or a strain rate by time
derivation. The main purpose of this work is to prove that (1.3), or equivalently the associated
strong form

CE + ` incE = K in Ω,

has a unique solution in the space of square integrable functions with square integrable incom-
patibility, with the additional condition on the dislocation flux at the boundary incEN = h on
∂Ω. The main ingredients to achieve the proof are (i) an orthogonal decomposition of L2(Ω,S3)
related to the Beltrami decomposition, and (ii) Fredholm’s alternative. It is also to be stressed
that our model has no internal variational structure in the sense that the solution is not seen as the
minimizer of some energy. Moreover we analyze the limit case |`| → ∞, showing that our model
reduces to classical linearized elasticity. We conclude by three explicit computations to illustrate
our approach.

2. The incompatibility operator: generalities and preliminary results

Let Ω be a sufficiently regular bounded domain of R3. We denote by ∂Ω its boundary and by
N its outward unit normal. For simplicity we will assume that ∂Ω is C∞, but weaker assumptions
could be considered for each specific result, depending on the traces and liftings involved. We
recall the definition of the incompatibility of a symmetric second order tensor E:

incE := Curl Curlt E, ( incE)ij = εikmεjln∂k∂lEmn,

with the operator Curl intended row-wise, and with Curlt denoting its transpose. In a Cartesian
frame, the incompatibility of a symmetric tensor is obtained by taking its curl column-wise then
row-wise, or vice-versa by symmetry. Note that some authors define the operator ”curl” as our
Curlt , then what they call curl-curl coincides with our inc operator, since by symmetry one has
incE = ( incE)t = Curlt Curlt E.

2.1. The curvilinear frame. For all x ∈ ∂Ω, the system (τA(x), τB(x)) is an orthonormal basis
of the tangent plane to ∂Ω, that can be naturally extended along N(x) in a tubular neighborhood
W of ∂Ω (see [5]). The curvatures along τA and τB are denoted by κA and κB , respectively.
Define the normal derivative as ∂N := N · ∇ and the tangential derivatives as ∂R := τR · ∇, for
R ∈ {A,B}. We will also use the notation R∗ = B if R = A, R∗ = A if R = B. The following
results are proved in [5].

Theorem 2.1. There exist smooth scalar fields ξ, γA, γB in W such that

∂NN = ∂Nτ
R = 0, (2.1)

∂RN = κRτR + ξτR
∗
, (2.2)

∂Rτ
R = −κRN − γR

∗
τR
∗
, (2.3)

∂R∗τ
R = γRτR

∗
− ξN. (2.4)

If (τA(x), τB(x)) are oriented along the principal directions of curvature then ξ(x) = 0.

Lemma 2.2. If f is twice differentiable in W then it holds

∂R∂Nf = ∂N∂Rf + κR∂Rf + ξ∂R∗f. (2.5)
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2.2. Basic function spaces. Let M3 be the set of 3 × 3 real matrices and S3 be the subset of
symmetric matrices. We define

Hcurl(Ω,M3) := {E ∈ L2(Ω,M3) : Curl E ∈ L2(Ω,M3)},
Hdiv(Ω,S3) := {E ∈ L2(Ω,S3) : divE ∈ L2(Ω,R3)},
H inc(Ω,S3) :=

{
E ∈ L2(Ω,S3) : incE ∈ L2(Ω,S3)

}
.

These spaces, endowed with the norms defined by ‖E‖2Hcurl = ‖E‖2L2 + ‖Curl E‖2L2 , ‖E‖2Hdiv =

‖E‖2L2 + ‖ divE‖2L2 , ‖E‖2Hinc = ‖E‖2L2 + ‖ incE‖2L2 , respectively, and the corresponding inner
products are obviously Hilbert spaces. Also, by classical regularization arguments (see e.g. [9, 16,
37]), C∞(Ω̄,M3) [resp. C∞(Ω̄,S3)] is dense in each of these spaces. We also define

H inc
0 (Ω,S3) = the closure of D(Ω,S3) in H inc(Ω,S3),

where the notation D stands for compactly supported C∞ functions, as well as the trace space

H̃3/2(∂Ω,S3) =

{
E ∈ H3/2(∂Ω,S3) :

∫
∂Ω

ENdS(x) = 0

}
.

Theorem 2.3 (Lifting [5]). Let E ∈ H̃3/2(∂Ω,S3), and G ∈ H1/2(∂Ω,S3). There exists E ∈
H2(Ω,S3) such that  E = E on ∂Ω,

(∂NE)T = GT on ∂Ω,
divE = 0 in Ω,

where the subscript T stands for the tangential part given by the components (GT )RR′ = GτR · τR′ ,
R,R′ ∈ {A,B}. In addition, such a lifting can be obtained through a linear continuous operator

L∂Ω : (E,G) ∈ H̃3/2(∂Ω,S3)×H1/2(∂Ω,S3) 7→ E ∈ H2(Ω,S3).

Define the subset of C∞(∂Ω,S3)

G = {V �N,V ∈ R3},
with the notation U � V := (U ⊗ V + V ⊗ U)/2.

Lemma 2.4 (Dual trace space [5]). Every E ∈ H−3/2(∂Ω,S3)/G admits a unique representative

Ẽ such that ∫
∂Ω

ẼNdS(x) = 0. (2.6)

Moreover, the dual space of H̃3/2(∂Ω,S3) is canonically identified with H−3/2(∂Ω,S3)/G.

Here and in the sequel, for the sake of readability, duality pairings are denoted by integrals.

2.3. Green formula and applications. Recall that the Green formula for the divergence allows
us to define, for any E ∈ Hdiv(Ω,S3), its normal trace EN ∈ H−1/2(∂Ω,R3) by∫

∂Ω

(EN) · ϕdS(x) :=

∫
Ω

( divE · ϕ̃+ E · ∇Sϕ̃)dx ∀ϕ ∈ H1/2(∂Ω,R3),

with ϕ̃ ∈ H1(Ω,R3) an arbitrary lifting of ϕ, see e.g. [23,37]. For the incompatibility operator one
has the following counterpart.

Lemma 2.5 (Green formula for the incompatibility [5]). Suppose that E ∈ C2(Ω,S3) and η ∈
H2(Ω,S3). Then∫

Ω

E · inc ηdx =

∫
Ω

incE · ηdx+

∫
∂Ω

T1(E) · η dS(x) +

∫
∂Ω

T0(E) · ∂Nη dS(x) (2.7)

with the trace operators defined as

T0(E) := (E ×N)
t ×N, (2.8)

T1(E) :=
(

Curl (E ×N)t
)S

+ ((∂N + k)E ×N)
t ×N +

(
Curlt E ×N

)S
, (2.9)
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where k := κA + κB is twice the mean curvature of ∂Ω, ES := (E + Et)/2 is the symmetric part
of E, and cross products are computed row-wise. In addition, it holds∫

∂Ω

T1(E)NdS(x) = 0. (2.10)

Alternative expressions for T1(E) are given in [5], like

T1(E) = −
∑
R

κR(E × τR)t × τR −
∑
R

ξ(E × τR)t × τR
∗

+ ((−∂N + k)E ×N)
t ×N

− 2

(∑
R

(∂RE ×N)t × τR
)S

. (2.11)

For a general symmetric tensor E, with components ERR′ := EτR
′ · τR in the curvilinear frame,

one has:

E =

EAA EAB EAN
EBA EBB EBN
ENA ENB ENN

 , (E ×N)t ×N =

 EBB −EAB 0
−EAB EAA 0

0 0 0

 , (2.12)

(E × τA)t × τA =

0 0 0
0 ENN −EBN
0 −EBN EBB

 , (E × τB)t × τB =

 ENN 0 −EAN
0 0 0

−EAN 0 EAA

 , (2.13)

(E ×N)t × τA =

0 EBN −EBB
0 −EAN EAB
0 0 0

 , (E ×N)t × τB =

−EBN 0 EAB
EAN 0 −EAA

0 0 0

 . (2.14)

As shown in [5], we can define the traces T0(E) ∈ H−1/2(∂Ω,S3) and T1(E) ∈ H−3/2(∂Ω,S3)/G
for every E ∈ H inc(Ω,S3) by∫

∂Ω

T0(E) · ϕ0 dS(x) =

∫
Ω

E · inc η0dx−
∫

Ω

incE · η0dx, ∀ϕ0 ∈ H1/2(∂Ω,S3),∫
∂Ω

T1(E) · ϕ1 dS(x) =

∫
Ω

E · inc η1dx−
∫

Ω

incE · η1dx, ∀ϕ1 ∈ H̃3/2(∂Ω,S3),

with η0 = L∂Ω(0, ϕ0) and η1 = L∂Ω(ϕ1, 0) (recall that L∂Ω is the lifting operator defined in
Theorem 2.3, and observe that, by Lemma 2.5 and density of C∞(Ω̄,S3) in H inc(Ω,S3), these
definitions are independent of the choices of liftings). In addition, by Lemma 2.4, T1(E) admits
a unique representative satisfying (2.10). By linearity of L∂Ω, this extends formula (2.7) to any
functions E ∈ H inc(Ω,S3) and η ∈ H2(Ω,S3).

Remark 2.1. We have defined T1(E) against test functions which admit divergence-free liftings,
because spaces of divergence-free tensors arise naturally in problems involving the incompatibility,
see the Beltrami decomposition and its consequences in the next sections. But we could also have
defined T1(E) ∈ H−3/2(∂Ω,S3) by using a classical lifting in H2(Ω,S3). Upon adopting the con-
vention that representatives in H−3/2(∂Ω,S3)/G satisfying the gauge condition (2.10) are chosen,
the two definitions are equivalent.

3. Properties of trace operators in H inc(Ω,S3)

In this section, homogeneous displacement-like boundary conditions are analyzed in terms of
traces of the symmetric strain. These results should be put in perspective with previous results
about this problem obtained by Ciarlet and co-authors by means of change-of-metric and change-of-
curvature tensors (see [14,15]). Though our characterization is different, the objective of expressing
Dirichlet boundary conditions in terms of intrinsic quantities is the same.

To begin with, as particular cases of the two Green formulae recalled in the previous section,
one readily obtains the following.
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Lemma 3.1. 1. For all v ∈ H1(Ω,R3), one has inc∇Sv = 0 in the sense of distributions.
2. For all E ∈ H inc(Ω,S3), one has div incE = 0 in the sense of distributions.

Consequently, if E ∈ H inc(Ω,S3), then incEN is defined in H−1/2(∂Ω,R3) by∫
∂Ω

( incEN) · ϕdS(x) =

∫
Ω

incE · ∇Sϕdx ∀ϕ ∈ H1(Ω,R3).

Hereafter, we consider an open and sufficiently regular (C∞ for simplicity) subset ω ⊂⊂ Ω. If u is
a vector or tensor field defined over Ω with well-defined traces on each side of ∂ω, we denote by
JuK the jump of u across ∂ω with inner term counted positively.

Lemma 3.2. If E ∈ H inc(Ω,S3), then J incENK = 0 across ∂ω.

Proof. Let ϕ ∈ D(Ω,R3). By definition and Lemma 3.1, one has∫
∂ω

J incENK · ϕdx =

∫
Ω

incE · ∇Sϕdx = 0.

By density this is also true for any ϕ ∈ H1
0 (Ω,R3), and subsequently for any trace of ϕ in

H1/2(∂ω,R3). �

Lemma 3.3. Let E ∈ L2(Ω,S3) be such that E|ω ∈ H inc(ω,S3) and E|Ω\ω̄ ∈ H inc(Ω\ ω̄,S3). Then

JT0(E)K = JT1(E)K = 0 across ∂ω if and only if E ∈ H inc(Ω,S3).

Proof. Let Φ ∈ D(Ω,S3). We have in the sense of distributions 〈 incE,Φ〉 =
∫

Ω
E · inc Φdx, and

the Green formula yields

〈 incE,Φ〉 =

∫
ω

incE · Φdx+

∫
Ω\ω̄

incE · Φdx+

∫
∂ω

JT0(E)K · ∂NΦdS(x) +

∫
∂ω

JT1(E)K · ΦdS(x).

In the forward implication the last two integrals vanish by assumption, hence the distribution
incE ∈ D′(Ω,S3) is actually an L2 function. In the converse implication the distribution incE
identifies with an L2 function, whereby the last two integrals must vanish. �

If E ∈ H inc(Ω,S3) and T0(E) = T1(E) = 0 on ∂Ω, then extending E by 0 and applying Lemmas
3.3 and 3.2 yields incEN = 0 on ∂Ω. If v ∈ H1

0 (Ω,R3), then by density of D(Ω,R3) and continuity
of the trace operators in H inc(Ω,S3), it follows T0(∇Sv) = T1(∇Sv) = 0 on ∂Ω. These two remarks
admit the following local versions.

Considering a relatively open subset Γ of ∂Ω and given E ∈ H inc(Ω,S3), we say that T0(E) =
T1(E) = 0 on Γ if the corresponding distributions vanish on Γ, namely∫
∂Ω

T0(E) · ϕ0 dS(x) =

∫
∂Ω

T1(E) · ϕ1 dS(x) = 0 ∀ϕ0, ϕ1 ∈ C∞(∂Ω,S3), spt ϕ0 ⊂ Γ, spt ϕ1 ⊂ Γ,

(3.1)
and similarly that incEN = 0 on Γ if∫

∂Ω

( incEN) · ϕdS(x) = 0 ∀ϕ ∈ C∞(∂Ω,R3), spt ϕ ⊂ Γ. (3.2)

Lemma 3.4. If E ∈ H inc(Ω,S3) satisfies T0(E) = T1(E) = 0 on Γ then incEN = 0 on Γ.

Proof. Let z ∈ Γ and B be an open ball of center z such that ∂Ω∩B = Γ∩B and Ω∩B is on one
side of Γ ∩B. Let v ∈ C∞(Ω̄,R3) with spt v ⊂ B. We have by the Green formulae∫

∂Ω

( incEN) · vdS(x) =

∫
Ω

incE · ∇Svdx = −
∫
∂Ω

(
T0(E) · ∂N∇Sv + T1(E) · ∇Sv

)
dS(x) = 0.

By lifting, this holds true for any v ∈ C∞(∂Ω,R3) with support in B. By linearity, covering and
partition of unity this extends to any v ∈ C∞(∂Ω,R3) with support in Γ. �

Lemma 3.5. If v ∈ H1(Ω,R3) satisfies v = 0 on Γ in the sense of traces, then T0(∇Sv) =
T1(∇Sv) = 0 on Γ.
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Proof. Let z ∈ Γ and B be an open ball of center z such that ∂Ω∩B = Γ∩B and Ω∩B is on one
side of Γ ∩B. Let ϕ ∈ C∞(Ω̄,S3) with spt ϕ ⊂ B. We have

〈T0(∇Sv), ∂Nϕ〉+ 〈T1(∇Sv), ϕ〉 =

∫
Ω

∇Sv · incϕdx =

∫
∂Ω

( incϕN) · vdS(x) = 0.

We conclude as in Lemma 3.4. �

Corollary 3.6. Let v ∈ H1(Ω,R3) be such that v = r on Γ in the sense of traces, with r a rigid
displacement field. Then T0(∇Sv) = T1(∇Sv) = 0 on Γ.

Proof. On Γ it holds

Ti(∇Sv) = Ti(∇S(v − r)) = 0, i = 0, 1,

by Lemma 3.5. �

Lemma 3.7. Let E ∈ H2(Ω,S3) such that E = 0 on Γ. Then T1(E) = 0 on Γ if and only if
T0(∂NE) = 0 on Γ.

Proof. Using (2.11) and (2.12)-(2.14) one obtains the expression of T1(E) in the basis of principal
curvatures for simplicity (ξ = 0), as follows:

T1(E) =

 −∂NEBB + 2(∂BE)BN + kEBB − κBENN ∂NEAB − kEAB − (∂BE)AN − (∂AE)BN
∂NEAB − kEAB − (∂BE)AN − (∂AE)BN −∂NEAA + 2(∂AE)AN + kEAA − κAENN

κBEAN + (∂AE)BB − (∂BE)AB κAEBN − (∂AE)AB + (∂BE)AA

κBEAN + (∂AE)BB − (∂BE)AB
κAEBN − (∂AE)AB + (∂BE)AA

−κAEBB − κBEAA

 . (3.3)

From E = 0 on Γ one infers that ∂RE = 0 on Γ, with R = A,B. Thus, by (3.3), one obtains

T1(E) =

−∂NEBB ∂NEAB 0
∂NEAB −∂NEAA 0

0 0 0

 = −T0(∂NE)

on Γ, achieving the proof. �

We remark that the condition T0(∂NE) = 0 is equivalent to (∂NE ×N)
t×N = Curlt E×N = 0

on Γ. In particular one sees the role of the boundary condition expressed in terms of the Frank
tensor Curlt E, namely E = 0 and Curlt E ×N = 0 is equivalent to E = 0 and T1(E) = 0.

Lemma 3.8. We have the characterization

H inc
0 (Ω,S3) =

{
E ∈ H inc(Ω,S3) : T0(E) = T1(E) = 0 on ∂Ω

}
.

Proof. Suppose En ∈ D(Ω,S3), E ∈ H inc(Ω,S3), En → E in H inc(Ω,S3). Of course, T0(En) =
T1(En) = 0 on ∂Ω. Then by continuity T0(E) = T1(E) = 0 on ∂Ω.

Suppose now E ∈ H inc(Ω,S3) with T0(E) = T1(E) = 0 on ∂Ω. Extend E by 0 to get Ẽ ∈
H inc(R3,S3). By local charts, shifting and convolution with mollifiers, we can define through a

standard construction En ∈ D(R3,S3) such that En → Ẽ in H inc(R3,S3) and spt En ⊂ Ω. Hence
En → E in H inc(Ω,S3), which yields E ∈ H inc

0 (Ω,S3). �

4. Compatibility conditions and Beltrami decomposition

In this section we first recall the Beltrami decomposition of symmetric tensor fields, stated here
in an Lp version for the sake of generality. A specific proof of the L2 version, which in fact is
our main concern, can be found in, e.g., [21, 22]. This structure theorem is named after Eugenio
Beltrami (1835-1900), an Italian physicist and mathematician known in particular for his works
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on elasticity, in particular by stating the equilibrium equations of a body in terms of the stress in
place of the strain [8]2, but also in non-Euclidean geometries in the wake of Gauss and Riemann3.

We need to introduce first the so-called Saint-Venant-Beltrami condition, originally considered
by Saint-Venant in [7], then extended by Donati [17], Ting [38], Moreau [32], Ciarlet and Ciarlet
in [13], Geymonat and Krasucki [20], and eventually by Amrouche at al. [3]. Below we give the
version found in [28] (originally from [3]).

Theorem 4.1 (Saint-Venant-Beltrami compatibility conditions). Assume that Ω is simply-connected.
Let p ∈ (1,+∞) be a real number and let E ∈ Lp(Ω,S3). Then,

incE = 0 in W−2,p(Ω,S3)⇐⇒ E = ∇Sv
for some v ∈W 1,p(Ω,R3). Moreover, v is unique up to rigid displacements.

Let us also refer to [25] and [33] for more details and references on this topic. The following
decomposition will show crucial in our model. Pioneer version of this result can be found in [22]
for p = 2.

Theorem 4.2 (Beltrami decomposition [28]). Assume that Ω is simply-connected. Let p ∈ (1,+∞)
be a real number and let E ∈ Lp(Ω,S3). Then, for any v0 ∈ W 1/p,p(∂Ω), there exists a unique
v ∈ W 1,p(Ω,R3) with v = v0 on ∂Ω and a unique F ∈ Lp(Ω,S3) with Curl F ∈ Lp(Ω,R3×3),
incF ∈ Lp(Ω,S3), divF = 0 and FN = 0 on ∂Ω such that

E = ∇Sv + incF. (4.1)

We call v and F the velocity and incompatibility fields, respectively, associated with E. The
following result is the dual counterpart of Saint-Venant’s conditions.

Corollary 4.3 (Representation of solenoidal symmetric tensors). Assume that Ω is simply-connected.
If E ∈ L2(Ω,S3) satisfies divE = 0 in H−1(Ω,R3), then there exists a unique F ∈ L2(Ω,S3) with
Curl F ∈ L2(Ω,S3), divF = 0 and FN = 0 on ∂Ω such that E = incF .

Proof. Theorem 4.2 yields
E = ∇Sv + incF,

with the appropriate F and v ∈ H1
0 (Ω,S3). The condition 0 = divE = div∇Sv entails v = 0. �

We now specialize Saint-Venant’s decomposition in the case of homogeneous boundary condi-
tions.

Proposition 4.4 (Saint-Venant with boundary conditions). Assume that Ω is simply-connected.
If E ∈ L2(Ω,S3) satisfies {

incE = 0 in Ω,
T0(E) = T1(E) = 0 on ∂Ω,

(4.2)

then there exists v ∈ H1
0 (Ω,R3) such that ∇Sv = E. Moreover, the map E ∈ L2(Ω,S3) 7→ v ∈

H1
0 (Ω,R3) is linear and continuous.

Proof. Let A : H−1(Ω,R3)→ L2(Ω,S3) be the linear map defined by Aϕ = ∇Su with{
−div∇Su = ϕ in Ω,
u = 0 on ∂Ω.

Let A∗ : L2(Ω,S3) → H1
0 (Ω,R3) be the adjoint operator of A. Let v = A∗E ∈ H1

0 (Ω,R3). Let
Φ ∈ D(Ω,S3). By definition we have

−
∫

Ω

A∗E div Φdx = −
∫

Ω

E ·A( div Φ)dx.

2Here, Beltrami also showed a new proof of the conditions when six given functions are the components of an
elastic deformation.

3Beltrami was indeed a friend of Riemann whom he met at Pisa university where he had a chair. Moreover,
he was later professor in Rome, and his position was transmitted to Volterra in 1900. Vito Volterra (1860-1940) is

presumably the first who gave a correct definition of dislocations and disclinations in [44].
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Set Ψ = A( div Φ). We have −div Ψ = div Φ. By Corollary 4.3, Ψ = −Φ + inc ζ for some
ζ ∈ H inc(Ω,S3). We obtain

−
∫

Ω

A∗E · div Φdx =

∫
Ω

E · Φdx−
∫

Ω

E · inc ζdx.

By the Green formula and the assumptions it holds∫
Ω

E · inc ζdx = 0.

We arrive at

−
∫

Ω

A∗E div Φdx =

∫
Ω

E · Φdx,

thus

∇S(A∗E) = E

in the sense of distributions. �

We can now state a converse to Lemma 3.5.

Proposition 4.5. Assume that Ω is simply connected. If v ∈ H1(Ω,R3) is such that T0(∇Sv) =
T1(∇Sv) = 0 on ∂Ω then there exists a rigid displacement field r such that v = r on ∂Ω.

Proof. By Proposition 4.4, there exists w ∈ H1
0 (Ω,R3) such that ∇Sv = ∇Sw. Hence there exists

a rigid displacement field r such that v = w + r. On ∂Ω this reduces to v = r. �

5. Orthogonal decompositions of symmetric tensors in L2

We assume in this section that Ω is simply-connected.

5.1. Orthogonal decomposition of L2(Ω,S3). In this section we obtain a decomposition of
L2(Ω,S3) into orthogonal subspaces, in the same spirit as in [22], but to account for more general
boundary conditions. We define the spaces

V =
{
E ∈ L2(Ω,S3) : incE = 0

}
,

W =
{
E ∈ L2(Ω,S3) : divE = 0

}
,

and, given a subset Γ of ∂Ω,

V0
Γ = {E ∈ V : T0(E) = T1(E) = 0 on Γ} ,
V00

Γ =
{
∇Sv : v ∈ H1(Ω,R3), v = 0 on Γ

}
,

W0
Γ = {E ∈ W : EN=0 on Γ} .

Recall that V0
Γ is well-defined by (3.1) if Γ is a relatively open subset of ∂Ω. In the definition of

W0
Γ, EN ≡ 0 on Γ means∫

∂Ω

EN · ϕdS(x) = 0 ∀ϕ ∈ H1/2(∂Ω,R3), ϕ|∂Ω\Γ = 0.

This is usually stronger than vanishing in the sense of distributions, see e.g. [24] for density and
extension properties in fractional Sobolev spaces.

Remark 5.1. By Theorem 4.1 and Corollary 4.3 we have

V =
{
∇Sv, v ∈ H1(Ω,R3)

}
, (5.1)

W =
{

incF, F ∈ L2(Ω,S3), Curl F ∈ L2(Ω,S3), divF = 0 in Ω, FN = 0 on ∂Ω
}
. (5.2)

Moreover, the velocity field v in (5.1) is unique up to a rigid displacement field. The incompatibility
field F in (5.2) is unique.

Remark 5.2. If |Γ| > 0 then the velocity field v in the definition of V00
Γ is unique.
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Theorem 5.1 (Orthogonal decomposition of L2). Assume that ∂Ω admits the partition ∂Ω =
Γ1 ∪ Γ2 with Γ1 ∩ Γ2 = ∅. We have the orthogonal decomposition

L2(Ω,S3) = V00
Γ1
⊕W0

Γ2
.

Proof. i) Let Ê ∈ V00
Γ1

, E ∈ W0
Γ2

. We have Ê = ∇S v̂ for some v̂ ∈ H1(Ω), v̂ = 0 on Γ1. The Green
formula entails∫

Ω

Ê · Edx =

∫
Ω

∇S v̂ · Edx = −
∫

Ω

v̂ · divEdx+

∫
∂Ω

v̂ · ENdS(x) = 0.

ii) Let E ∈ L2(Ω,S3). Write the Beltrami decomposition of Theorem 4.2 as E = ∇Sv+ incF with
v = 0 on ∂Ω. Let w ∈ H1(Ω,R3) be the solution of −div∇Sw = 0 in Ω,

w = 0 on Γ1,
∇SwN = incFN on Γ2,

that is, w ∈ H1
Γ1

(Ω,R3) := {ϕ ∈ H1(Ω,R3) : ϕ|Γ1
= 0},∫

Ω

∇Sw · ∇Sϕdx =

∫
Ω

incF · ∇Sϕdx ∀ϕ ∈ H1
Γ1

(Ω,R3).

We infer

E = ∇S(v + w) + ( incF −∇Sw) ∈ V00
Γ1

+W0
Γ2
,

since by definition∫
∂Ω

( incF −∇Sw)N · ϕdS(x) =

∫
Ω

( incF −∇Sw) · ∇Sϕdx= 0 ∀ϕ ∈ H1
Γ1

(Ω,R3).

This completes the proof. �

Remark 5.3. By Lemma 3.5 we have

V00
Γ ⊂ V0

Γ,

whenever Γ is a relatively open subset of ∂Ω, and we infer from Proposition 4.4 that

V00
∂Ω = V0

∂Ω.

In this case the decomposition of Theorem 5.1 is the same as in [22, Theorem 2.1.].

We have the following additional property.

Lemma 5.2. If K ∈ V00
Γ1

and inc F̂ ∈ W0
Γ2

then it holds∫
∂Ω

(
T1(K) · F̂ + T0(K) · ∂N F̂

)
dS(x) = 0.

Proof. By the Green formula, we obtain∫
∂Ω

(
T1(K) · F̂ + T0(K) · ∂N F̂

)
dS(x) =

∫
Ω

(
K · inc F̂ − incK · F̂

)
dx =

∫
Ω

K · inc F̂ dx.

Writing K = ∇Sw and applying the Green formula for the divergence yields∫
∂Ω

(
T1(K) · F̂ + T0(K) · ∂N F̂

)
dS(x) =

∫
∂Ω

inc F̂N · wdS(x).

However, we have w = 0 on Γ1 while inc F̂N = 0 on Γ2, achieving the proof. �
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5.2. Orthogonal decomposition of H inc(Ω,S3) and related results. Define

Z = {E ∈ H inc(Ω,S3) : divE = 0 in Ω, EN = 0 on ∂Ω},
Z0 = {E ∈ Z : incEN = 0 on ∂Ω},
F = {E ∈ H inc(Ω,S3) : incEN = 0 on ∂Ω}. (5.3)

These spaces are endowed with the norm of H inc(Ω,S3). By virtue of Theorem 5.1 we infer the
following decompositions.

Proposition 5.3 (Orthogonal decomposition of H inc). We have the orthogonal decompositions

H inc(Ω,S3) = V ⊕ Z,
F = V ⊕ Z0. (5.4)

We now gather some properties of the spaces Z and Z0.

Proposition 5.4. If E ∈ Z then Curl E ∈ L2(Ω,S3). Moreover there exists c > 0 such that

‖E‖L2 + ‖Curl E‖L2 ≤ c‖ incE‖L2 ∀E ∈ Z.

Proof. Let

X =
{
F ∈ L2(Ω,S3), Curl F ∈ L2, incF ∈ L2, divF = 0, FN = 0 on ∂Ω

}
,

Y =
{
F ∈ L2(Ω,S3), divF = 0

}
and define the linear map Φ : X → Y by Φ(E) = incE. Equip X and Y with the norms

‖F‖X = ‖F‖L2 + ‖Curl F‖L2 + ‖ incF‖L2 ,

‖F‖Y = ‖F‖L2 .

Clearly, X and Y are Banach spaces and Φ is continuous. If E ∈ X and Φ(E) = 0 then incE = 0
and E is a symmetric gradient by Theorem 4.1. From divE = 0 and EN = 0 on ∂Ω, one obtains
E = 0. Hence Φ is injective. By Corollary 4.3, Φ is also surjective. The open mapping theorem
entails that Φ−1 is continuous. Hence there exists c > 0 such that

‖Φ−1(F )‖X ≤ c‖F‖L2 ∀F ∈ Y.
Let E ∈ Z. Then incE ∈ Y . Set F = Φ−1( incE). From incF = incE, divF = divE = 0 and
FN = EN = 0 on ∂Ω we infer F = E. From E = Φ−1( incE) ∈ X we obtain

‖E‖L2 + ‖Curl E‖L2 + ‖ incE‖L2 = ‖E‖X = ‖Φ−1( incE)‖X ≤ c‖ incE‖L2 (5.5)

and the result follows. �

The following result is proved in [23, Theorem 3.8.], see [26,35,45] for Lp versions, generalizations
and extensions to non simply connected domains.

Theorem 5.5. There exists a constant c > 0 such that

‖u‖H1 ≤ c(‖ div u‖L2 + ‖Curl u‖L2)

for all u ∈ L2(Ω,R3) such that div u ∈ L2, Curl u ∈ L2 and u ·N = 0 on ∂Ω.

Proposition 5.6 (Poincaré’s inequality in Z). There exists cP > 0 such that for all E ∈ Z
‖E‖H1 ≤ cP ‖ incE‖L2 .

Proof. Let E ∈ Z. By Proposition 5.4 we already have

‖E‖L2 + ‖Curl E‖L2 ≤ c‖ incE‖L2 .

Then Theorem 5.5 yields
‖∇E‖L2 ≤ c‖Curl E‖L2

for some other constant c. This completes the proof. �

We infer in particular that Z is imbedded in H1(Ω,S3) and compactly imbedded in L2(Ω,S3).



SMALL-STRAIN INCOMPATIBLE ELASTICITY 13

Proposition 5.7. We have the representation

W0
∂Ω = incZ0.

Proof. Of course, if F ∈ Z0, then incF ∈ W0
∂Ω. Take E ∈ W0

∂Ω. By Corollary 4.3 there exists
F ∈ H inc(Ω,S3) with divF = 0 and FN = 0 on ∂Ω such that E = incF . The condition EN = 0
on ∂Ω yields F ∈ Z0. �

Lemma 5.8. Given a symmetric uniformly positive definite fourth order tensor field B (i.e. B(x)T ·
T > α|T |2 ∀T ∈ S3 for some α > 0 independent of x) such that |B| ∈ L∞(Ω), define the linear
map LB : Z → Z ′ by

〈LBE,Φ〉 =

∫
Ω

B incE · inc Φdx ∀E,Φ ∈ Z.

Then LB is an isomorphism from Z into Z ′.

Proof. By Proposition 5.4, 〈LBE,E〉 defines a norm in Z equivalent to the H inc-norm. Let T ∈ Z ′.
By the Riesz representation theorem, there exists T ∈ Z such that 〈T ,Φ〉 = 〈LBT,Φ〉 for all Φ ∈ Z.
Therefore LB is an isomorphism. �

We define the inverse map L−1
B : Z ′ → Z, that is continuous by Banach’s continuous inverse

theorem. Since Z ⊂ L2(Ω,S3) ⊂ Z ′, the restriction L−1
B : L2(Ω,S3) → L2(Ω,S3) is also well-

defined.

Lemma 5.9. The operator L−1
B : L2(Ω,S3) → L2(Ω,S3) is self-adjoint positive definite and com-

pact.

Proof. The compactness stems from the compact embedding Z ↪→ L2(Ω,S3), consequence of
Proposition 5.6. One has for all E,F ∈ L2(Ω,S3)∫

Ω

L−1
B E · Fdx = 〈F,L−1

B E〉 = 〈LBL
−1
B F,L−1

B E〉 =

∫
Ω

B inc (L−1
B E) · inc (L−1

B F )dx.

It follows that L−1
B is self-adjoint and positive definite, achieving the proof. �

6. Two elliptic boundary value problems for the incompatibility

Lemmas 5.8 and 5.9 yield the following proposition.

Proposition 6.1 (Weak form in Z). Let K ∈ L2(Ω,S3) and B a symmetric uniformly positive
definite fourth order tensor field. There exists a unique E ∈ Z such that∫

Ω

B incE · inc Êdx =

∫
Ω

K · Êdx ∀Ê ∈ Z. (6.1)

Moreover, the solution map Φ : K ∈ L2(Ω,S3)→ E ∈ L2(Ω,S3) is linear and compact.

Similarly we have the following.

Proposition 6.2 (Weak form in Z0). Let K ∈ L2(Ω,S3) and B a symmetric uniformly positive
definite fourth order tensor field. There exists a unique E ∈ Z0 such that∫

Ω

B incE · inc Êdx =

∫
Ω

K · Êdx ∀Ê ∈ Z0. (6.2)

Moreover, the solution map Φ0 : K ∈ L2(Ω,S3)→ E ∈ L2(Ω,S3) is linear and compact.

Proposition 6.3 (Strong form in Z). Let K be such that divK = 0 in Ω and KN = 0 on ∂Ω.
Then, the strong form of (6.1) reads

inc (B incE) = K in Ω,
divE = 0 in Ω,
EN = 0 on ∂Ω,

T0(B incE) = T1(B incE) = 0 on ∂Ω,

(6.3)
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whose solution coincides with the solution of the weak form.

Proof. Eq. (6.1) holds actually true for all Ê ∈ Z+V = H inc(Ω,S3), in particular for Ê ∈ D(Ω,S3)

and for Ê with arbitrary traces T0(∂N Ê) and Ê on ∂Ω, by Theorem 2.3. Then the Green formula
provides the strong form, which is seen to be equivalent to the weak form. �

Remark 6.1 (Strong form in Z0). The solution of (6.2) satisfies the strong form
inc (B incE) = K in Ω,

divE = 0 in Ω,
EN = 0 on ∂Ω,

( incE)N = 0 on ∂Ω.

(6.4)

In fact, one can take any test function Ê ∈ D(Ω,S3) ⊂ F = V + Z0. One obtains the strong form
in Ω. The boundary conditions are given by the essential condition of the space.

7. A model of incompatible small-strain elasticity

7.1. Internal efforts and incompatibility modulus. We recall the main steps of the construc-
tion of the model introduced in [6].
Assumption 1. The power of the internal efforts within the solid body against the virtual strain
rate Ê is is a continuous linear function of Ê ∈ L2(Ω,S3). By the Riesz representation theorem we
infer the existence of Σ ∈ L2(Ω,S3) such that

Wint(Ê) =

∫
Ω

Σ · Êdx ∀Ê ∈ L2(Ω,S3).

Assumption 2. There exists a partition of Ω as Ω =
⋃

Ωp such that

Wint(Ê) =

∫
Ωp

(
σ · Ê + τ · ∇Ê

)
dx ∀Ê ∈ D(Ωp,S3).

The second and third order tensor fields σ and τ are called the (Cauchy) stress and hyperstress
tensors, respectively. Moreover, the material is supposed to be linear, homogeneous and isotropic
within each Ωp, which is represented by the constitutive laws

σ = CpE, τ = Dp∇E (7.1)

where E is the strain, Cp is standard Hooke’s tensor and Dp is Mindlin’s tensor [31]. These
constitutive laws read componentwise

σij = λδijEkk + 2µEij , (7.2)

τijk = c1(δki∂lElj + δkj∂lEli) +
c2
2

(δki∂jEll + δkj∂iEll + 2δij∂lElk) + 2c3δij∂kEll

+ 2c4∂kEij + c5(∂iEjk + ∂jEik), (7.3)

where λ, µ, c1, ..., c5 are constants assigned to each Ωp (index p is dropped for readability). As-
sumption 1 yields Σ = σ − div τ ∈ L2(Ω,S3).
Assumption 4. The hyperstress τ does not produce any virtual intrinsic power as soon as the strain
E is compatible. This means

incE = 0⇒
∫

Ω

τ · ∇Ê dx = 0 ∀Ê ∈ D(Ω,S3),

or equivalently incE = 0 ⇒ −div τ = 0 in Ω. From expression (7.3) we derive the existence
within each Ωp of a constant `p such that c1 + c5 = −`p, c2 = `p, c3 = −`p/2, c4 = `p/2, leading
to − div τ = `p incE (see details in [6]).
Conclusion. We denote ` =

∑
`pχΩp and C =

∑
CpχΩp , whereby σ = CE and −div τ = ` incE

in Ω. The expression of the internal virtual power is

Wint(Ê) =

∫
Ω

(CE + ` incE) · Êdx ∀Ê ∈ L2(Ω,S3).
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The scalar field ` is called incompatibility modulus, as it expresses the resistance of the material
against incompatible deformations. Subsequently we will extend the model to the case where ` is
a sufficiently regular function of x ∈ Ω.

7.2. Power of external efforts. The power of external efforts is assumed to be a linear functional
on L2(Ω,S3). By Riesz representation, there exists K ∈ L2(Ω,S3) such that

Wext(Ê) =

∫
Ω

K · Êdx.

We emphasize that the power of external efforts may be at first expressed in terms of the non-
objective fields v̂ and F̂ of the Beltrami decomposition of Ê. However, provided attention is paid
to the uniqueness of the decomposition, these fields are themeselves linear functions of Ê. This
will specified in Section 10.1.

7.3. Virtual power principle. The virtual power principle in the absence of inertia reads

Wint(Ê) = Wext(Ê),

that is ∫
Ω

(CE + ` incE) · Êdx =

∫
Ω

K · Êdx, (7.4)

for all Ê ∈ L2(Ω,S3) satisfying possible kinematical constraints. In the absence of kinematical
constraints, (7.4) is obviously equivalent to

CE + ` incE = K. (7.5)

7.4. Time-evolution of a nonlinear incremental model in generalized elasticity. Within
an incremental formulation, C and ` are generalized elastic tangent moduli. They need to be
updated at each increment as soon as nonlinear phenomena occur. The stress-strain relation is
therefore piecewise linear. Typically, in a region with plastic deformations, the Lamé coefficients
and the incompatibility modulus ` are expected to be less than in purely elastic regions. The way
these coefficients evolve is driven by nonlinear constitutive laws that substitute to flow rules and
hardening models.

8. Solution of elasto-plasticity equations with natural boundary condition

The main problem we address is the following: given K ∈ L2(Ω,S3), find E solution of (7.4).

8.1. Kinematical setting. We will limit ourselves to the case where no kinematical constraint
is assumed on the virtual strain Ê. Therefore, the problem reduces to (7.5). However, we will see
that the absence of constraint on E leads to nonunique solutions, and that uniqueness is obtained
by prescribing the incompatibility flux incEN on ∂Ω. The homogeneous case incEN = 0 is
studied first. However prescribing a given value, either 0 or not, for the incompatibility flux may
seem artificial from a modeling point of view. This issue is related to the characterization of the
behavior of dislocations at interfaces, whose difficulty is emphasized in [30] in the case of grain
boundaries for polycrystals. An attempt to determine the incompatibility flux through a domain
extension technique is proposed in Section 10.3.

Remark 8.1. A particular kinematical setting is to require K ∈ V, and a very special case occurs
when K = ∇Sv with div v = tr K constant. Then for C constant a solution to CE + ` incE = K
is E = C−1K. Indeed by the structure of C−1 one has E proportional to K plus a constant tensor
hence incE = 0.
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8.2. Well-posedness with vanishing incompatibility flux. For the subsequent mathematical
analysis it is not required that C be an isotropic Hooke tensor. We denote by S3×3 the set of
symmetric fourth order tensors acting on 3× 3 matrices. Our main result is the following.

Theorem 8.1 (First existence result). Assume Ω is simply connected. Let K ∈ L2(Ω,S3), C ∈
L∞(Ω,S3×3), ` ∈ L∞(Ω). Let cP be the Poincaré constant of Proposition 5.6. If C is uniformly
positive definite and either ` > cP |C| a.e. or ` < −cP |C| a.e., then there exists one and only one
E ∈ F such that

CE + ` incE = K.
Moreover we have the a priori estimate

‖ incE‖L2 ≤ ‖`−1C‖L∞
1− cP ‖`−1C‖L∞

‖C−1K‖L2 . (8.1)

Proof. We write the problem as
E + B incE = H (8.2)

with B := `C−1 and H := C−1K. Note that B is uniformly positive definite if ` > 0 and uniformly
negative definite if ` < 0. We will first prove uniqueness and then existence.
Step 1. Uniqueness. Let E ∈ F be such that

E + B incE = 0. (8.3)

Take the orthogonal decomposition E = Ec + Ei with Ec ∈ V and Ei ∈ Z0. We have

Ec + Ei + B incEi = 0. (8.4)

Take F̂ ∈ Z0. Then∫
Ω

Ec · inc F̂ dx+

∫
Ω

Ei · inc F̂ dx+

∫
Ω

B incEi · inc F̂ dx = 0.

By inc F̂N = 0 on ∂Ω the first integral vanishes. Specifically, take F̂ = Ei. We obtain∫
Ω

Ei · incEidx+

∫
Ω

B incEi · incEidx = 0.

Set B̃ = B if ` > 0, B̃ = −B if ` < 0, so that B̃ is always positive definite. We have

‖ incEi‖2L2 =

∫
Ω

incEi · incEidx =

∫
Ω

B̃−1(B̃1/2 incEi) · (B̃1/2 incEi)dx

≤ ‖B̃−1‖L∞
∫

Ω

B̃ incEi · incEidx = ‖B−1‖L∞
∣∣∣∣∫

Ω

B incEi · incEidx

∣∣∣∣ . (8.5)

By Proposition 5.6 we obtain

cP ‖ incEi‖2L2 ≥ ‖Ei‖L2‖ incEi‖L2

≥
∣∣∣∣∫

Ω

Ei · incEidx

∣∣∣∣ =

∣∣∣∣∫
Ω

B incEi · incEi

∣∣∣∣ ≥ ‖B−1‖−1
L∞‖ incEi‖2L2 ,

that is,
(cP ‖B−1‖L∞ − 1)‖ incEi‖2L2 ≥ 0.

If ‖B−1‖L∞ < c−1
P we infer incEi = 0 then Ei = 0, by Proposition 5.6. Thus (8.4) yields Ec = 0,

and eventually E = 0.
Step 2. Existence. Let E = Ec + Ei ∈ F , Ec ∈ V, Ei ∈ Z0. Then (8.2) is equivalent to{ ∫

Ω
(Ec + B incEi) · Êcdx =

∫
Ω
H · Êcdx, ∀Êc ∈ V,∫

Ω
(Ei + B incEi) · Êidx =

∫
Ω
H · Êidx, ∀Êi ∈ W0

∂Ω,
(8.6)

itself, by Proposition 5.7, equivalent to{ ∫
Ω

(Ec + B incEi) · ∇S v̂dx =
∫

Ω
H · ∇S v̂dx ∀v̂ ∈ H1(Ω), (a)∫

Ω
(Ei + B incEi) · inc F̂ dx =

∫
Ω
H · inc F̂ dx ∀F̂ ∈ Z0. (b)

(8.7)
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Define the operators LB : Z0 → Z ′0 and M : L2(Ω,S3)→ Z ′0 by

〈LBΨ,Φ〉 =

∫
Ω

B inc Ψ · inc Φdx, 〈MΨ,Φ〉 =

∫
Ω

Ψ · inc Φdx.

Equation (8.7)(b) is equivalent to

(M + LB)Ei = MH. (8.8)

By Lemma 5.8 (which obviously holds also true if B is negative definite and if Z is replaced by
Z0), LB : Z0 → Z ′0 is invertible. Thus, (8.8) is equivalent to

(I + L−1
B M)Ei = L−1

B MH. (8.9)

The operator L−1
B M : L2(Ω,S3) → L2(Ω,S3) is compact, since it is continuous from L2(Ω,S3) to

Z0 and Z0 is compactly embedded in L2(Ω,S3) as consequence of Proposition 5.6. Furthermore,
under the condition ‖B−1‖L∞ < cP

−1, the operator I +L−1
B M : L2(Ω,S3)→ L2(Ω,S3) is injective

due to the uniqueness claim. Thus, Fredholm’s alternative provides the existence of Ei ∈ L2(Ω,S3)
solution of (8.9). From Ei = L−1

B M(H−Ei) we infer Ei ∈ Z0. We have found Ei ∈ Z0 solution of
(8.7)(b).

Let us turn to (8.7)(a). We have to find Ec = ∇Sv, v ∈ H1(Ω,R3) such that∫
Ω

∇Sv · ∇S v̂dx =

∫
Ω

(H− B incEi) · ∇S v̂dx, ∀v̂ ∈ H1(Ω,R3). (8.10)

This is a standard linear elasticity problem.
Third step. A priori estimate. Equation (8.7)(b) entails∫

Ω

Ei · incEidx+

∫
Ω

B incEi · incEidx =

∫
Ω

H · incEidx.

Using (8.5) we obtain

‖ incEi‖2L2 ≤ ‖B−1‖L∞
∣∣∣∣∫

Ω

(H− Ei) · incEidx

∣∣∣∣ ≤ ‖B−1‖L∞(‖H‖L2 + ‖Ei‖L2)‖ incEi‖L2 .

Proposition 5.6 yields

‖ incEi‖L2 ≤ ‖B−1‖L∞(‖H‖L2 + cP ‖ incEi‖L2),

from which we arrive at (8.1). �

Remark 8.2. The solution space F encompasses the transmission conditions stated in Lemma
3.3. In particular, no tangential slip along internal surfaces can occur. This is in contrast with
classical formulations in perfect plasticity where spaces of bounded deformations are involved, see
e.g. [19]. Moreover, the continuity of the incompatibility flux across internal surfaces stated in
Lemma 3.2 shows that incEN = 0 at the interface between a region with incompatible strain and
a purely compatible region. Prescribing incEN = 0 on ∂Ω can be interpreted as considering the
exterior of Ω as filled with a purely compatible phase, with Ω and its exterior forming a continuum.
Other assumptions, such as discussed in Sections 8.3 and 10.3, are needed in order to enhance
incompatibilities near the boundary.

Remark 8.3. For ` constant, let E` be the solution of CE + ` incE = K. Then (8.1) implies that
G` := ` incE` converges weakly in L2(Ω,S3) to some G as ` → ±∞, up to a subsequence. More
precise limiting results will be given in the next section. On the other side, the condition |`| > cP |C|
suggests that some degeneracy occurs when |`| goes to 0, unless C also tends to 0. When `→ 0 the
incompatibility is no longer controlled, in particular the transmission conditions recalled in Remark
8.2 do not hold any more. However one can let C go to 0 keeping ` constant, in order to represent
a nearly void material. This will be considered in Section 10.3.
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8.3. Well-posedness with arbitrary incompatibility flux.

Theorem 8.2 (Second existence result). Assume Ω is simply connected. Let K ∈ L2(Ω,S3),
C ∈ L∞(Ω,S3×3), ` ∈ L∞(Ω) and h ∈ H−1/2(∂Ω,R3) such that

∫
∂Ω
hdS(x) = 0. Let cP be the

Poincaré constant of Proposition 5.6. If C is uniformly positive definite and and either ` > cP |C|
a.e. or ` < −cP |C| a.e. then there exists one and only one E ∈ H inc(Ω,S3) such that{

CE + ` incE = K in Ω
incEN = h on ∂Ω.

Moreover there exists constants c1 and c2 such that

‖ incE‖L2 ≤ ‖`−1C‖L∞
1− cP ‖`−1C‖L∞

(
‖C−1K‖L2 + c1(1 + ‖`C−1‖L∞)‖h‖H−1/2

)
+ c2‖h‖H−1/2 . (8.11)

Proof. Let w ∈ H1(Ω,R3) be solution of{
− div∇Sw = 0 in Ω
∇SwN = h on ∂Ω

and set W = ∇Sw. By Corollary 4.3 there exists H ∈ Z such that W = incH. Let Ẽ = E−H ∈ F ,
which has to solve

CẼ + ` inc Ẽ = K− CH − ` incH.

Existence and uniqueness follow from Theorem 8.1. The a priori estimate of Theorem 8.1 combined
with Proposition 5.6 and standard elliptic regularity provide (8.11). �

9. Elastic limit

Proposition 9.1. Consider a sequence Ck ∈ L∞(Ω,S3) with c1|ξ|2 ≤ Ck(x)ξ · ξ ≤ c2|ξ|2 ∀ξ ∈ R3,
a.e. x ∈ Ω, c1, c2 > 0, and a sequence `k ∈ L∞(Ω,R∗+) with infΩ `k → +∞. Assume that

K ∈ L2(Ω,S3), Ek ∈ F , CkEk + `k incEk = K. Then ‖ incEk‖L2 → 0.

Proof. It is a straightforward consequence of (8.1), since ‖`−1
k Ck‖L∞ → 0. �

Obviously the same holds for a sequence `k ∈ L∞(Ω,R∗−) with infΩ |`k| → +∞.

Proposition 9.2. If ` is constant, K ∈ L2(Ω,S3), and E ∈ F satisfies

CE + ` incE = K in Ω,

then ∫
Ω

CE · Êdx =

∫
Ω

K · Êdx ∀Ê ∈ V.

Note that the above relation is similar to a linear elasticity system, nevertheless E may not be
a symmetric gradient.

Proof. Take Ê ∈ V and observe that due to the assumptions, one has∫
Ω

` incE · Êdx = 0.

�

Theorem 9.3 (Elastic limit: homogeneous flux). Assume that C ∈ L∞(Ω,S3×3) uniformly positive
definite and K ∈ L2(Ω,S3×3) are fixed and that ` 6= 0 is constant. Let E` ∈ F be the unique solution
of CE` + ` incE` = K in Ω and let E∞ ∈ V be the unique solution of the linear elasticity problem∫

Ω

CE∞ · Êdx =

∫
Ω

K · Êdx ∀Ê ∈ V. (9.1)

Then ‖E` − E∞‖L2 → 0 when either `→ +∞ or `→ −∞.

Note that here E∞ is a symmetric gradient.
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Proof. Existence and uniqueness for (9.1) is a consequence of the Riesz representation theorem

in the Hilbert space V for the inner product (E, Ê) 7→
∫

Ω
CE · Êdx. Consider the decomposition

E` = E`c + E`i ∈ V ⊕ Z0. We have by Proposition 9.2∫
Ω

C(E`c + E`i ) · Êcdx =

∫
Ω

K · Êcdx ∀Êc ∈ V.

Substracting (9.1), one has∫
Ω

C(E`c − E∞) · Êcdx = −
∫

Ω

CE`i · Êcdx ∀Êc ∈ V.

By Propositions 9.1 and 5.6 we have ‖E`i ‖H1 → 0. Since E`c − E∞ ∈ V it follows from the above
relation that ‖E`c − E∞‖L2 → 0 hence ‖E` − E∞‖L2 → 0. �

Hence, as |`| → +∞, one retrieves the standard linear elasticity problem with Neumann bound-
ary conditions. In case of non-vanishing incompatibility flux the following holds.

Theorem 9.4 (Elastic limit: general flux). Assume that C ∈ L∞(Ω,S3×3) uniformly positive
definite and K ∈ L2(Ω,S3×3) are fixed and that ` 6= 0 is constant. Suppose that E` ∈ H inc(Ω,S3)
satisfies CE` + ` incE` = K in Ω, incE`N = h` on ∂Ω, h` ∈ H−1/2(∂Ω), `h` → h̄ in H−1/2(∂Ω)
when `→ +∞. Then ‖E` − E∞‖L2 → 0 when `→ +∞, where E∞ ∈ V is the unique solution of∫

Ω

CE∞ · ∇S v̂dx =

∫
Ω

K · ∇S v̂dx−
∫
∂Ω

h̄ · v̂dS(x) ∀v̂ ∈ H1(Ω). (9.2)

A similar result holds when `→ −∞.

Proof. Existence and uniqueness for (9.2) follows from the Riesz representation theorem. For all
v̂ ∈ H1(Ω,R3) one has ∫

Ω

CE` · ∇S v̂dx+

∫
∂Ω

`h · v̂dS(x) =

∫
Ω

K · ∇S v̂dx.

Hence ∫
Ω

C(E` − E∞) · ∇S v̂dx = −
∫
∂Ω

(`h− h̄) · v̂dS(x).

Consider the decomposition E` = E`c + E`i ∈ V ⊕ Z, see Proposition 5.3. By (8.11), one infers
‖ incE`‖L2 → 0, and subsequently, by Proposition 5.6, ‖E`i ‖L2 → 0. Finally,∫

Ω

C(E`c − E∞) · ∇S v̂dx = −
∫

Ω

CE`i · ∇S v̂dx−
∫
∂Ω

(`h− h̄) · v̂dS(x)

yields ‖E`c − E∞‖L2 → 0, then ‖E` − E∞‖L2 → 0. �

10. Interpretation of the kinematical framework and external efforts

10.1. External efforts. Consider a virtual strain Ê ∈ L2(Ω,S3) decomposed as

Ê = ∇S v̂ + inc F̂ . (10.1)

The work of the external efforts against Ê reads

Wext(Ê) =

∫
Ω

K · Êdx = −
∫

Ω

divK · v̂dx+

∫
∂Ω

KN · v̂dS(x) +

∫
Ω

incK · F̂ dx

+

∫
∂Ω

(
T1(K) · F̂ + T0(K) · ∂N F̂

)
dS(x). (10.2)

The fields −divK and KN are recognized as classical body and contact forces, while incK and
(T0(K), T1(K)) are body and contact forces working against the divergence-free part of the virtual
strain. The above fields are in principle known in the first place. The issue is then how and under
which conditions it is possible to construct a corresponding tensor field K. Formally the boundary
forces KN , T0(K) and T1(K) exhibit some coupling, as stressed in [6]. To address these points one
must specify a kinematical framework ensuring the uniqueness of the decomposition (10.1).
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10.2. Kinematical framework. Take Ê = ∇S v̂ + inc F̂ with ∇S v̂ ∈ V00
Γ1

and inc F̂ ∈ W0
Γ2

for
some partition Γ1 ∪ Γ2 of ∂Ω, with Γ1 relatively open in ∂Ω. As said above, f := −divK is
identified with the body force, and g := KN is identified with a surface load on Γ2. Now, if
K ∈ V00

Γ1
the last two integrals of (10.2) vanish by virtue of Lemma 5.2. Then (10.2) rewrites in

the classical form ∫
Ω

K · Êdx =

∫
Ω

f · v̂dx+

∫
∂Ω

g · v̂dS(x). (10.3)

More generally we have the following existence result.

Proposition 10.1. Let f ∈ L2(Ω,R3) and g ∈ H−1/2(∂Ω,R3) be such that
∫

Ω
fdx+

∫
∂Ω
gdS(x) =

0. Consider G ∈ L2(Ω,S3) such that divG = 0 in Ω, GN = 0 on ∂Ω, and P ∈ H inc(Ω,S3). There
exists K ∈ L2(Ω,S3) such that

incK = G in Ω,
−divK = f in Ω,
KN = g on Γ2,
Ti(K) = Ti(P ) on Γ1 (i = 0, 1).

Proof. Let F ∈ Z be the solution of∫
Ω

incF · inc F̂ dx =

∫
Ω

G · F̂ dx+

∫
Ω

(P · inc F̂ − incP · F̂ )dx ∀F̂ ∈ Z.

Arguing as in Proposition 6.3 we derive the corresponding strong form
inc incF = G in Ω,
−divF = 0 in Ω,
FN = 0 on ∂Ω,
Ti( incF ) = Ti(P ) on ∂Ω (i = 0, 1).

Then, let v ∈ V00
Γ1

be a solution (unique if |Γ1| > 0) of∫
Ω

∇Sv · ∇S v̂dx =

∫
Ω

f · v̂dx+

∫
∂Ω

g · v̂dS(x)−
∫

Ω

incF · ∇S v̂dx ∀v̂ ∈ V00
Γ1
.

The standard strong form reads −div∇Sv = f in Ω,
v = 0 on Γ1,
∇SvN = g − incFN on Γ2.

Setting K = incF +∇Sv fulfills all the required conditions (recall Corollary 3.6). �

Observe that one cannot prescribe T0(K) and T1(K) on Γ2, although they might yield a con-
tribution in the last integral of (10.2). In fact, if G = 0, one can write K = ∇Sw for some

w ∈ H1(Ω,R3), and as in the proof of Lemma 5.2 one has for all F̂ ∈ H inc(Ω,S3)∫
∂Ω

(
T1(K) · F̂ + T0(K) · ∂N F̂

)
dS(x) =

∫
∂Ω

inc F̂N · wdS(x). (10.4)

In the framework under consideration where inc F̂ ∈ W0
Γ2

, the integral at the right-hand side of
(10.4) is localized on Γ2, and specifically w appears as work-conjugate to the virtual incompatibility
flux on Γ2.

Remark 10.1. If one prescribes T0(K) = T1(K) = 0 on Γ1, then there is no virtual work associated
with this boundary condition even if the virtual strain is allowed to have tangential components.
Indeed, in the present model, both for finite ` and in the elastic limit, the values of T0(E) and
T1(E) are unconstrained, hence allowing for slip at the boundary. But as |`| → ∞, one may want
to retrieve a Dirichlet boundary condition on Γ1, including T0(E∞) = T1(E∞) = 0, a property
which is not verified, see Theorem 9.3. To obtain such a condition in the elastic limit, one may
either prescribe kinematical constraints in the space of solutions or incorporate some generalized
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force working against boundary slip. Let us recall that tangential slip along Dirichlet boundaries
are present in classical models of plasticity, see e.g. [19] where it is related to concentrated (in
a measure sense) plastic deformation. For instance, setting a boundary condition of the type
Ti(K) = αTi(E) (i = 0, 1) (i.e., taking P = αE in Proposition 10.1), for some constant α and
with E the sought solution itself, we are led to solve a coupled system for (K, E), for which the
existence of solutions for α small enough can be inferred from the Banach fixed point theorem or
the Neumann series. To see that this formulation is likely to impose a Dirichlet boundary condition
in the elastic limit, consider a case where ∂Ω = Γ1, G = 0 and E = ∇Sv for some v ∈ H1(Ω,R3).

Then the condition
∫
∂Ω

(T1(E) · F̂ + T0(E) · ∂N F̂ )dS(x) = 0 for all F̂ ∈ H inc(Ω,S3) is reached if
and only if T0(E) = T1(E) = 0 on ∂Ω, by Theorem 2.3, which is itself equivalent to v being a rigid
displacement on ∂Ω, by Proposition 4.5. This is expected if one lets α tend to infinity with ` in the
governing system. However, the precise asymptotic analysis, together with the existence issue, are
beyond the scope of the present work.

10.3. Alternative to the vanishing incompatibility flux condition. The condition incEN =
h on ∂Ω is related to the flux of dislocations at the boundary of Ω. This can be specified using
Kröner’s formula incE = Curl κ, with κ the contortion tensor related to the dislocation density
tensor. Prescribing an a priori given h (possibly zero) may seem an artificial or ad-hoc condition.
An alternative is to consider that the exterior of Ω is filled with a fictitious material that mimicks
void, with transmission conditions representing the fact that the two phases constitute a contin-
uum. Therefore we restrict ourselves to the pure Neumann type boundary condition, that is, a
surface load without kinematical restriction. For a full space extension, K = ∇Sw is defined by{

− div (∇Sw) = f in R3,
J∇SwNK = g on ∂Ω,

with f extended by 0 outside Ω. The equilibrium equation CE + ` incE = K is fulfilled over R3

with (C, `) extended by (Cext, `ext) outside Ω. In order to approximate a Neumann condition one
needs that Cext be chosen significantly smaller than C within Ω. Then on ∂Ω one has

incEN ≈ 1

`ext
(KN)ext,

with K = ∇Sw as found above. It is reasonable to assume that ` is continuous across ∂Ω, in such a
way that ∂Ω has a neutral effect on the transport of dislocations (transmission without reflection).
Under this assumption we have {

CE + ` incE = K in Ω
incEN = 1

` (KN)ext on ∂Ω.

Existence and uniqueness of a solution has been shown in Theorem 8.2. In addition we derive on
∂Ω

CEN = KN − ` incEN = KN − (KN)ext = g,

which is obviously the standard Neumann condition on the Cauchy stress.
Let us now examine the limit case. In view of Theorem 9.4, we have E → E∞ ∈ V as |`| → ∞

where ∫
Ω

CE∞ · ∇S v̂dx =

∫
Ω

K · ∇v̂dx−
∫
∂Ω

(KN)ext · v̂dS(x) ∀v̂ ∈ H1(Ω).

This rewrites as ∫
Ω

CE∞ · ∇S v̂dx =

∫
Ω

f · v̂dx+

∫
∂Ω

g · v̂dS(x) ∀v̂ ∈ H1(Ω).

The standard Neumann elasticity problem in Ω is retrieved.
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11. Interpretation of the incompatibility modulus by numerical examples

The purpose of the following examples is to show how the incompatibility modulus ` can be
related to dissipative processes. Of course, irreversible behaviors in the form of plasticity are most
often localized within regions that typically grow when loading increases. Here, in order to obtain
explicit expressions for all quantities and illustrate the limits stated in Theorems 9.3 and 9.4, we
assume that ` is constant in space.

Since we have only set up linearized governing equations, we simply define the free energy of the
solid body submitted to a given load as the external work that can be recovered by purely elastic
unloading, keeping C invariant for simplicity. To be more precise, in the small strain framework,
call K(t) the load at current time t, and E(t) the associated total strain. In our model, E(t) is

typically obtained through CĖ + ` inc Ė = K̇ over [0, t], E(0) = 0 and a boundary condition on
the incompatibility flux. For some T > t consider a virtual extension of K over [t, T ] by a smooth
function such that K(T ) = 0. The free energy is then defined by

Ψ(t) = −
∫ T

t

∫
Ω

K · Ėrevdxds, (11.1)

where Erev(s) = E(t) +∇Surev(s), ∇Surev(s) =

∫ s

t

∇S u̇rev(τ)dτ , and for all τ ∈ [t, T ], u̇rev(τ) ∈

H1(Ω) satisfies ∫
Ω

C∇S u̇rev(τ) · ∇S v̂dx =

∫
Ω

K̇(τ) · ∇S v̂dx ∀v̂ ∈ H1(Ω). (11.2)

Equation (11.1) ensures that Ψ̇(t) =
∫

Ω
K(t) · Ėrev(t)dx, which is the external power expenditure

in case of reversible transformation. Furthermore, on the one hand, we have Ψ(t) = −
∫ T
t

∫
Ω
K ·

∇S u̇revdxds, which after integration by parts and using (11.2) yields

Ψ(t) =
1

2

∫
Ω

C∇Surev(T ) · ∇Surev(T )dx.

On the other hand, integrating (11.2) in time leads to∫
Ω

C∇Surev(T ) · ∇S v̂dx = −
∫

Ω

K(t) · ∇S v̂dx ∀v̂ ∈ H1(Ω).

The two above equations give a practical way to compute the free energy, i.e. Ψ(t) = − 1
2

∫
Ω
K(t) ·

∇Surev(T )dx, and show that this latter is independent of the path along which K is driven to 0.

The dissipation rate is then classically defined as D := P − Ψ̇, where P(t) :=
∫

Ω
K(t) · Ė(t)dx is

the external power expenditure. We arrive at

D(t) =

∫
Ω

K(t) ·
(
Ė(t)− Ėrev(t)

)
dx.

In the following examples we will consider finite time increments in which K is constant and
compute the dissipated energy. As said above, we will limit ourselves to spatially constant incom-
patibility moduli. Such configurations will be thermodynamically consistent under the condition
that the dissipation be positive, which we expect.

11.1. 1D case: uniaxial traction. We consider the domain Ω = R3. We assume a uniform
traction of density g = 1 on the planes {z = ±h}. Hence the tensor

K =

0 0 0
0 0 0
0 0 k

 ,
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with k = χ{|z|<h}, provides the virtual power
∫
R3 K · (∇S v̂ + inc F̂ )dx =

∫
{z=h} ez.v̂dS(x) −∫

{z=−h} ez.v̂dS(x). We search for a strain field of form

E =

ϕ 0 0
0 ϕ 0
0 0 ψ

 ,

where ϕ,ψ are functions of the z variable. In this case one has

CE =

2(λ+ µ)ϕ+ λψ 0 0
0 2(λ+ µ)ϕ+ λψ 0
0 0 2λϕ+ (λ+ 2µ)ψ

 ,

incE =

ϕ′′ 0 0
0 ϕ′′ 0
0 0 0

 . (11.3)

Hence CE + ` incE = K if and only if{
2(λ+ µ)ϕ+ λψ + `ϕ′′ = 0
2λϕ+ (λ+ 2µ)ψ = k.

(11.4)

Elementary algebra leads to

ψ =
1

λ+ 2µ
(k − 2λϕ),

2µ(3λ+ 2µ)ϕ+ `(λ+ 2µ)ϕ′′ = −λk.
This ordinary differential equation leads us to assume that ` < 0, since in the other case the
solutions do not decay when |z| → ∞. We denote

ω =

√
2µ(3λ+ 2µ)

λ+ 2µ
.

We obtain:

(1) For |z| < h,

ϕ(z) =
−λ

2µ(3λ+ 2µ)

[
1− exp

(
− ωh√
|`|

)
cosh

(
ωz√
|`|

)]
,

ψ(z) =
1

λ+ 2µ

{
1 +

λ2

µ(3λ+ 2µ)

[
1− exp

(
− ωh√
|`|

)
cosh

(
ωz√
|`|

)]}
.

(2) For |z| > h,

ϕ(z) =
−λ

2µ(3λ+ 2µ)
sinh

(
ωh√
|`|

)
exp

(
− ω|z|√
|`|

)
,

ψ(z) =
λ2

µ(λ+ 2µ)(3λ+ 2µ)
sinh

(
ωh√
|`|

)
exp

(
− ω|z|√
|`|

)
.

Observe that

lim
|`|→∞

ϕ(z) = 0, lim
|`|→∞

ψ(z) =


1

λ+ 2µ
if |z| < h,

0 if |z| > h,

which is the classical elastic solution with uniaxial strain.
Let ∇SU + E0 be the Beltrami decomposition of E in the domain Ωa := {|z| < a} such that

E0 ∈ W0
∂Ωa

(see Theorem 5.1), i.e., divE0 = 0 in Ωa and E0N = 0 on ∂Ωa. One has{
div∇SU = divE in Ωa,
∇SUN = EN on ∂Ωa.
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Denoting by u the z component of U we obtain u′′ = ψ′, u′(a) = ψ(a), u′(−a) = ψ(−a). Thus
u′ = ψ and, setting u(0) = 0,

u(z) =

∫ z

0

ψ(s)ds.

We obtain in particular

u(h) =
1

λ+ 2µ

{
h+

λ2

µ(3λ+ 2µ)

[
h−

√
|`|

2ω

(
1− exp

(
− 2ωh√
|`|

))]}
.

The functions ϕ, ψ are plotted in Figure 1 for h = 1, Young modulus Y = 10 and Poisson ratio
ν = 1/3. The value of u(h) as a function of ` is also depicted. As expected, we observe an increase
of elongation as |`| decreases. Therefore, if we consider a quasi-static small-strain experiment
consisting of a first increment with ` finite and a further purely elastic increment with opposite
load (unloading), a residual positive elongation remains. This shows that a portion of the external
work has been dissipated.

One of the main outcomes of this example is that physically acceptable solutions are obtained
on the condition that ` < 0. Henceforth this condition will be assumed.

Figure 1. In-plane strain (ϕ(z), top left) and vertical strain (ψ(z), top right)
with z on the horizontal axis, for ` = −10 (blue), ` = −100 (red), ` = −1000
(yellow). Value of u(h) as a function of ` (bottom right)

11.2. 2D case: cylinder under uniform radial traction. We consider a two-dimensional
model of the variables (x, y) and we assume that

E =

u w 0
w v 0
0 0 h

 , K =

p s 0
s q 0
0 0 0

 .
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One has in Cartesian coordinates

CE =

(λ+ 2µ)u+ λ(v + h) 2µw 0
2µw (λ+ 2µ)v + λ(u+ h) 0

0 0 λ(u+ v) + (λ+ 2µ)h

 ,

incE =

 ∂yyh −∂xyh 0
−∂xyh ∂xxh 0

0 0 ∂xxv − 2∂xyw + ∂yyu

 . (11.5)

Hence CE + ` incE = K if and only if
(λ+ 2µ)u+ λ(v + h) + `∂yyh = p
(λ+ 2µ)v + λ(u+ h) + `∂xxh = q
2µw − `∂xyh = s
λ(u+ v) + (λ+ 2µ)h+ `(∂xxv − 2∂xyw + ∂yyu) = 0.

(11.6)

Elementary algebra leads to

u =
1

4µ(λ+ µ)
((λ+ 2µ)p− λq − 2λµh+ `λ∂xxh− `(λ+ 2µ)∂yyh)

v =
1

4µ(λ+ µ)
(−λp+ (λ+ 2µ)q − 2λµh− `(λ+ 2µ)∂xxh+ `λ∂yyh)

w =
1

2µ
(s+ `∂xyh) .

Within regions where incK = 0, divK = 0 and λ, µ, ` are constant, substituting the above relations
in the last equation of (11.6) entails

`2(λ+ 2µ)∆2h+ 4`λµ∆h− 4µ2(3λ+ 2µ)h = 2λµ(p+ q). (11.7)

This can be factorized as(
`(λ+ 2µ)∆ + 2µ(3λ+ 2µ)

)(
`∆− 2µ

)
h = 2λµ(p+ q). (11.8)

We consider an infinite cylinder with cross section B = B(0, 1) under uniform radial traction on
its boundary. However we take as working domain the whole space in order to circumvent the
modeling of boundary conditions. Therefore we search for K = ∇Sw such that −divK = δ∂BN ,
with δ∂B the Dirac measure on ∂B and N the outer unit normal. A standard calculation using
Airy stress functions yields in polar coordinates

K = χB
1

2
(er ⊗ er + eθ ⊗ eθ) + (1− χB)

1

2r2
(−er ⊗ er + eθ ⊗ eθ).

We choose the elastic and incompatibility moduli as

(λ, µ, `) =

{
(λi, µi, `i) in B
(λe, µe, `e) in R2 \B,

with λi/µi = λe/µe. On ∂B one has the transmission conditions JT0(E)K = JT1(E)K = 0. Let us
place ourselves in polar coordinates and, due to symmetry, search for h = h(r). The condition
JT0(E)K = 0 implies JhK = 0 and JEθθK = 0. Using CE = K − ` incE one obtains the planar
components of CE as

(CE)plan = χB

[(
1

2
− `i
r
h′
)
er ⊗ er +

(
1

2
− `ih′′

)
eθ ⊗ eθ

]
+ (1− χB)

[(
− 1

2r2
− `e

r
h′
)
er ⊗ er +

(
1

2r2
− `eh′′

)
eθ ⊗ eθ

]
.
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Then, Hooke’s law together with Err + Eθθ = u+ v = (1− 2λh− `∆h)/(2(λ+ µ)) yield

(CE)zz = χB

[
λi

2(λi + µi)

(
1− `i

r
h′ − `ih′′

)
+
µi(3λi + 2µi)

λi + µi
h

]
+ (1− χB)

[
λe

2(λe + µe)

(
−`e
r
h′ − `eh′′

)
+
µe(3λe + 2µe)

λe + µe
h

]
,

and

Eθθ = χB
1

4µi(λi + µi)

[
µi − `i(λi + 2µi)h

′′ − λi
(
−`i
r
h′ + 2µih

)]
+ (1− χB)

1

4µe(λe + µe)

[
λe + µe
r2

− `e(λe + 2µe)h
′′ − λe

(
−`e
r
h′ + 2µeh

)]
.

The condition JEθθK = 0 rewrites as
s
`

µ

λ+ 2µ

λ+ µ
h′′ − `

µ

λ

λ+ µ
h′

{
=

1

λi + µi
− 1

µe
.

Next, from T1(E) = −her ⊗ er + (h− h′)eθ ⊗ eθ we infer Jh′K = 0.
Coming back to (11.7) one looks for

h =
−λi

2µi(3λi + 2µi)
χB + h̃

with h̃ solution of the homogeneous equation in B and R2 \ B̄. In view of (11.8) and recalling that

` < 0, h̃ is spanned by the Bessel-type functions J0(k+r), Y0(k+r), I0(k−r) and K0(k−r) with

k+ =

√
2µ

−`
, k− =

√
2µ

−`
3λ+ 2µ

λ+ 2µ
.

Due to boundedness and decay at infinity, it remains

h̃(r) =

{
aJ0(k+r) + bI0(k−r) if r < 1
cK0(k−r) if r > 1.

The three transmission conditions fix a, b and c through a linear system.
In the following computations we take a material inside B with Young modulus Y = 10 and

Poisson ratio ν = 1/3, and a nearly void exterior phase such that Ce = 10−5Ci. The incompatibility
modulus is taken constant over R2. The plots of the strain are given in Figure 2, and compared
with the classical plane strain elastic strain. The external work

W =

∫
R2

K · Edx

is indicated in Table 1. This shows that decreasing the incompatibility modulus (in absolute value)
increases the external work for a given load, thus increases dissipation.

` −1000 −100 −20
W 0.3006 0.4616 1.0620

Table 1. External work

11.3. 3D case: ball under uniform traction. Consider the unit ball Ω =
{
x ∈ R3, |x| < 1

}
. We

assume a uniform unit radial traction on ∂Ω. We treat the two kinematical frameworks addressed
in this paper, namely the case of vanishing incompatibility flux and the case of free incompatibility
flux through domain extension described in Section 10.3.
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Figure 2. Strain components in cylindrical coordinates, as functions of r, for
` = −1000 (blue), ` = −100 (red), ` = −20 (yellow), classical plane strain elastic
solution (dashed)

11.3.1. Case 1: vanishing incompatibility flux. We assume in this case the condition incEN = 0
on ∂Ω. We have K = ∇Sw with {

−div∇Sw = 0 in Ω,
∇SwN = N on ∂Ω.

The solution is immediately found as w = rer and K = I. Considering the form

E = ϕ(r)I + ψ(r)er ⊗ er
we have

CE = ((3λ+ 2µ)ϕ+ λψ) I + 2µψer ⊗ er,
and (see [40])

incE =

(
ϕ′′ +

ϕ′

r
− ψ′

r

)
I +

(
−ϕ′′ + ϕ′

r
+
ψ′

r
− 2ψ

r2

)
er ⊗ er.

Hence CE + ` incE = K if and only if
(3λ+ 2µ)ϕ+ λψ + `

(
ϕ′′ +

ϕ′

r
− ψ′

r

)
= 1

2µψ + `

(
−ϕ′′ + ϕ′

r
+
ψ′

r
− 2ψ

r2

)
= 0.

The condition incEN = 0 on ∂Ω entails ϕ′(1) = ψ(1). The solution of the system is the classical
elastic solution given by

ϕ =
1

3λ+ 2µ
, ψ = 0.

There is no strain incompatibility in this case. This is a consequence of tr K being constant, as
explained in Remark 8.1.
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11.3.2. Case 2: free incompatibility flux. In this case we define K = ∇Sw over the full space R3 by{
−div∇Sw = 0 in Ω ∪ (R3 \ Ω̄),
J∇SwNK = N on ∂Ω.

For w = w(r)er one has

∇Sw = w′er ⊗ er +
w

r
(eθ ⊗ eθ + eφ ⊗ eφ),

div∇Sw =

(
w′′ + 2

w′

r
− 2

w

r2

)
er =

(
1

r2
(r2w)′

)′
er.

Therefore

div∇Sw = 0⇐⇒ w = ar +
b

r2

for some constants a, b. The transmission condition yields

w(r) =
r

3
χ{r<1} +

1

3r2
χ{r>1},

K =
1

3
Iχ{r<1} +

1

r3
χ{r>1}

(
1

3
I − er ⊗ er

)
.

We still search E of the form
E = ϕ(r)I + ψ(r)er ⊗ er.

Outside Ω we assume that the Lamé coefficients are vanishing whereas the incompatibility modulus
is kept the same as within Ω, as explained in Section 10.3. Hence CE + ` incE = K if and only if

χ{r<1} ((3λ+ 2µ)ϕ+ λψ) + `

(
ϕ′′ +

ϕ′

r
− ψ′

r

)
=

1

3
χ{r<1} +

1

3r3
χ{r>1}

χ{r<1}2µψ + `

(
−ϕ′′ + ϕ′

r
+
ψ′

r
− 2ψ

r2

)
= − 1

r3
χ{r>1}.

Note that we have taken exactly vanishing Lamé coefficients outside Ω for technical simplicity.
This leads in principle to nonunique solutions, however this issue will be overcome later.

Let us first solve the system in Ω. Set ρ = ψ − rϕ′. Substituting for ψ yields
(3λ+ 2µ)ϕ+ λ(rϕ′ + ρ)− `ρ

′

r
=

1

3

2µ(rϕ′ + ρ) + `

(
ρ′

r
− 2

ρ

r2

)
= 0.

We infer after some algebra

ϕ =
1

3λ+ 2µ

[
1

3
+ `

(
1 +

λ

2µ

)
ρ′

r
− λ`

µ

ρ

r2

]
, (11.9)

ρ′′ −
(
m+

2

r2

)
ρ = 0, with m = −2µ

`

3λ+ 2µ

λ+ 2µ
> 0.

Setting ρ = pr2 we obtain

p′′ +
4

r
p′ −mp = 0,

then, with p(r) = q(r
√
m) and s = r

√
m,

q′′ +
4

s
q′ − q = 0.

The last change of unknown q(s) = ξ(s)/s provides the spherical Bessel equation

s2ξ′′ + 2sξ′ − (s2 + 2)ξ = 0.

Bounded solutions are spanned by the spherical Bessel function

i1(s) :=
d

ds

(
sinh(s)

s

)
=

cosh(s)

s
− sinh(s)

s2
. (11.10)
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Therefore, setting

h0(s) =
i1(s)

s
,

we obtain for some constant a,
ρ(r) = ar2h0(r

√
m).

On ∂Ω we have the condition on the incompatibility flux `( incE)N = (KN)ext, which reads

2` (ϕ′(1)− ψ(1)) er = −2

3
er.

It provides ρ(1) = 1/3`, hence

ρ(r) =
1

3`
r2h0(r

√
m)

h0(
√
m)

. (11.11)

We obtain ϕ from (11.9), then ψ from ψ = ρ+ rϕ′.
Let us now turn to the exterior solution, which is needed to find the displacement field by

Beltrami decomposition. Recall the equations in R3 \ Ω̄
ϕ′′ +

ϕ′

r
− ψ′

r
=

1

3`r3

−ϕ′′ + ϕ′

r
+
ψ′

r
− 2ψ

r2
= − 1

`r3
.

The general solution is obtained as

ϕ(r) =

(
1

3`
− β

)
1

r
+
α

r3
, ψ(r) =

β

r
− 3α

r3

for some constants α, β. Denote by C∗ the Hooke tensor of the weak phase outside Ω. We assume
that C∗ = γC for some constant γ → 0. The equation C∗E+` incE = K gives divC∗E = divK =
0, whereby divCE = 0. This entails

β =
3λ+ 2µ

6`(λ+ 2µ)
.

It remains to fix α through the transmission conditions JT0(E)K = JT1(E)K = 0 on ∂Ω. The first
condition is obviously equivalent to JϕK = 0. From (2.11) we obtain JT1(E)K = −2JϕKer ⊗ er +
Jψ − ϕ′K(eθ ⊗ eθ + eφ ⊗ eφ), then given the first condition, the second one is fulfilled if and only if
Jψ − ϕ′K = 0. Observe that this is also exactly the expression of J incENK = 0. Yet we have on
the exterior side ψ(1) − ϕ′(1) = 1/3`, which turns out to be equal to ρ(1) = ψ(1) − ϕ′(1) on the
interior side. In fact, only the continuity of ϕ fixes α by

α =
1

3λ+ 2µ

[
1

3
+ `

(
1 +

λ

2µ

)
ρ′(1)− λ`

µ
ρ(1)

]
+

λ− 2µ

6`(λ+ 2µ)
.

The exterior deformation field is completely determined.
We now compute the displacement U such that E = ∇SU + E0, divE0 = 0, E0N → 0 at

infinity. Therefore U solves {
div∇SU = divE in R3

∇SUN → EN at ∞. (11.12)

For U = u(r)er, the first equation reads when r 6= 1

u′′ + 2
u′

r
− 2

u

r2
= ϕ′ + ψ′ + 2

ψ

r
.

For r > 1, rewriting the left hand side and computing the right hand side provides(
1

r2
(r2u)′

)′
=

2λ

3`(λ+ 2µ)

1

r2
,

whereby for some constants c and d,

u(r) =
−λ

3`(λ+ 2µ)
+ cr +

d

r2
.
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Now, the condition ∇SUN → EN at infinity yields c = 0, since Eer = (ϕ+ ψ)er → 0.
For r < 1 we find

ϕ′ + ψ′ + 2
ψ

r
= 4ϕ′ + ρ′ + rϕ′′ +

2

r
ρ =

2λ

λ+ 2µ

ρ

r
.

Substituting (11.11) leads to the equation(
1

r2
(r2u)′

)′
=

2λ

3`(λ+ 2µ)

i1(r
√
m)

i1(
√
m)

.

Using (11.10) we arrive at

u(r) =
−λ

3µ(3λ+ 2µ)

i1(r
√
m)

i1(
√
m)

+ er

for some constant e. On ∂Ω, (11.12) amounts to J∇SUNK = JENK, that is Ju′ + 2uK = JψK, hence
we have the jump relations JuK = 0 and Ju′K = JψK. This fixes the constants d and e through a
linear system.

A Taylor expansion provides i1(s) = s/3+o(s2) as s→ 0. Then for `→ −∞ it is easily checked
that the elastic solution is retrieved, namely

ϕ∞(r) =
1

3λ+ 2µ
χ{r<1} +

1

3λ+ 2µ

1

r3
χ{r>1}, ψ∞(r) =

−3

3λ+ 2µ

1

r3
χ{r>1}

u∞(r) =
1

3λ+ 2µ
rχ{r<1} +

1

3λ+ 2µ

1

r2
χ{r>1}.

The functions ϕ, ψ and u are plotted on Figure 3 for different values of `. The curves of displacement
show an increase of dilation due to inelastic deformation. This again highlights a dissipative process,
since the work

∫
R3 K · Edx is proportional to u(1).

Figure 3. Functions ϕ, ψ and u for ` = −1000 (blue), ` = −100 (red), ` = −10
(yellow), elastic solution (dashed).
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12. Concluding remarks

The main goal of this work was to give a rigorous mathematical basis to the model presented
in [6], as well as to complete and refine the analysis of the incompatibility operator conducted in [5].
Our study showed that a general model of small-strain generalized elasticity could be considered
to account for the strain incompatibility and hence for the presence of dislocations at the micro-
scale. Moreover, classical infinitesimal elasticity is recovered as a limit case as the incompatibility
modulus tends to minus infinity. Further, it was shown on examples that this model was able
to represent dissipative processes through residual deformations after unloading. Our next step
is twofold: first to devise a computational algorithm, based on shape / topological sensitivity
analysis, in the spirit of [1,46], to simulate the time evolution of nonlinear irreversible effects, and
second to understand the relation between this model and accepted models of elasto-plasticity.
This challenge will require theoretical as well as computational efforts, expected in future works.
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[30] D. L. McDowell. Multiscale cristalline plasticity for material design. Computational materials system design,

D. Shin and J. Saal Eds., 2018.

[31] R. D. Mindlin. Micro-structure in linear elasticity. Arch. Ration. Mech. Anal., 16:51–78, 1964.
[32] J.J. Moreau. Duality characterization of strain tensor distributions in an arbitrary open set. Journal of

Mathematical Analysis and Applications, 72(2):760 – 770, 1979.

[33] P. Podio-Guidugli. The compatibility constraint in linear elasticity. In Donald E. Carlson and Yi-Chao Chen,
editors, Advances in Continuum Mechanics and Thermodynamics of Material Behavior: In Recognition of the
60th Birthday of Roger L. Fosdick, pages 393–398. Springer Netherlands, Dordrecht, 2000.

[34] W. Prager and P.G. Hodge. Theory of Perfectly Plastic Solids. Applied Mathematics Series. John Wiley &

Sons, 1951.

[35] Ben Schweizer. On friedrichs inequality, helmholtz decomposition, vector potentials, and the div-curl lemma.
In Elisabetta Rocca, Ulisse Stefanelli, Lev Truskinovsky, and Augusto Visintin, editors, Trends in Applications

of Mathematics to Mechanics, pages 65–79. Springer International Publishing, 2018.

[36] B. Sun. Incompatible deformation field and Riemann curvature tensor. Applied Mathematics and Mechanics,
38(3):311–332, Mar 2017.

[37] R. Temam. Navier-Stokes equations. Theory and numerical analysis. North-Holland Publishing Co.,

Amsterdam-New York-Oxford, 1977. Studies in Mathematics and its Applications, Vol. 2.
[38] T. W. Ting. St Venant’s compatibility conditions and basic problems in elasticity. Rocky Mountain J. Math.,

7(1):47–52, 03 1977.
[39] N. Van Goethem. Strain incompatibility in single crystals: Kröner’s formula revisited. J. Elast., 103(1):95–111,
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