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EXISTENCE RESULTS FOR AN INTRINSIC LINEARIZED

ELASTO-PLASTICITY MODEL

SAMUEL AMSTUTZ AND NICOLAS VAN GOETHEM

Abstract. A novel model of elasto-plasticity is presented and analyzed, based on the linearized

strain and its incompatibility tensor field. Elastic strain incompatibility accounts for the pres-

ence of dislocations, whose motion is ultimately responsible for the plastic behaviour of solids.
The specific functional analysis setting is built up, on which existence results are proved. Our

solution strategy is essentially based on the projection of the governing equations on appropri-

ate subspaces in the spirit of Leray decomposition of square-integrable and solenoidal velocity
fields as used in existence results in hydrodynamics. It is also strongly related with the Beltrami

decomposition of symmetric tensor fields in the wake of previous works by the authors. Further,
classical linearized elasticity is found as the limit case when the incompatibility modulus, the

material coefficient measuring resistance to incompatibility, goes to infinity. Several examples

are provided to illustrate this property.

1. Introduction

1.1. The intrinsic approach to elasticity. An intrinsic approach to elasticity simply means that
the main and primal variable is the strain, together with its derivatives, and that the displacement
and rotation fields are possibly recovered in a second step, in case they are needed. This approach
is most probably the first historically, since the strain was indeed used to measure deformation,
that is, variation in length and in mutual orientation of infinitesimal fibers within a solid body. As
a matter of fact, for the geometer the strain is a metric from which all other geometric concepts
are retrieved. Specifically, given a smooth strain tensor field ε, the classical Kirchhoff-Saint Venant
construction (see [3] for an historical review, see also [31, 40]) in linearized elasticity basically
consists in

• introducing the Frank tensor1 F = Curlt ε, where Curlt ε stands for the transpose of the
curl of the symmetric tensor ε (computed row-wise);

• defining the rotation field as ω(x) = ω(x0) +
∫ x
x0
F(ξ)dl(ξ), on a smooth curve joining the

endpoints x0 and x;
• defining the displacement field as u(x) = u(x0) +

∫ x
x0

(ε− ε(ω)) (ξ)dl(ξ), where ε(ω) stands

for the skew-symmetric rotation tensor constructed from ω, namely (ε(ω))il = εilkωk.

Obviously such definitions are path-dependent. In order for u and ω to be well-defined, i.e., to
be path-independent in a simply connected domain, it is immediately seen that a sufficient and
necessary condition be that

inc ε := Curl Curlt ε = Curl F = 0,

introducing the strain incompatibility tensor inc ε, that is easily seen to be symmetric. In this
case, one retrieves the well-known expressions

∇Su = ε and ∇u = ε− ε(ω).

2010 Mathematics Subject Classification. 35J48,35J58,49S05,49K20,74C05,74G99,74A05,74A15, 80A17.
Key words and phrases. Elasticity, plasticity, strain incompatibility, dislocations, virtual work, objectivity, topo-

logical derivative, dissipation.
1This terminology was introduced in [47] simply because its integral on a closed loop yields the so-callled Frank

tensor attached to a disclination singularity.
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On the contrary, if the tensor inc ε is not vanishing this means exactly that the rotation and/or
displacement fields exhibit a jump around what is classically called a Burgers circuit (to this respect
an important role is played by the choice of the origin x0 as shown in [47]). So far it appears clear
that the important geometric quantities are

ε, Curlt ε, and inc ε.

This is the seminal motivation for our model which is precisely designed from these variables. In
particular, this choice makes the model of gradient-type. Note that it appears natural to consider
the curl instead of the full gradient, and the inc instead of the full Hessian.

Let us also stress that this approach, despite rarely seen today, has a long history: we date the
origin of the intrinsic view to Riemann with ground-breaking applications in general relativity and
later in mechanics (in particular see the Hodge and Prager approach in perfect plasticity [38]). In
general, as explained in [3], Riemann’s view is in contrast with Gauss’ standpoint of immersions,
that in our case is recognized as a displacement or velocity-based formulation. Furthermore, as
far as dislocations are involved this geometric approach was very much developed and enhanced
by the physicist E. Kröner in the second half of last century [29]. It should however be mentioned
that in finite as well as in linearized elasticity the intrinsic approach was recently considered and
developed during the last decades in a systematic way by Ph. Ciarlet and co-authors [10, 12, 13],
but also by Amrouche and co-authors [1, 2] and Geymonat and co-authors [20–22] (see also [50]
for a geometric approach). In particular, their aim was to write, for the elasticity system, the
homogeneous boundary condition on the displacement in function of the elastic strain only.

Strangely enough, though the incompatibility operator was regularly used in the engineering
literature, the mathematical study of spaces of square integrable tensor-valued functions with
square integrable incompatibility was not yet considered and our first step was hence to dedicate a
paper to the subject [4]. Based on these results, the model construction and its justification from
a physical standpoint were developed in a second paper [5].

1.2. Our model: from generalized elasticity to intrinsic elasto-plasticity. Traditional
elasto-plasticity has been developed on three main postulates (see for instance [30], see also [3]):

(a) The decomposition of the strain into an elastic and a plastic part. In linearized elasto-
plasticity the decomposition is additive: ε = εe + εp. In finite elasticity one decomposes
the deformation gradient multiplicatively: F = F eF p (or arguably in the reverse order,
see [16]).

(b) The coupling of two evolution laws for the elastic and the plastic part, namely on the one
hand the balance equations in terms of the Cauchy stress, given by a constitutive function
of some elastic kinematical quantity (i.e., related to εe or F e), and on the other hand, the
postulated flow rules, expressed in terms of an appropriate plastic kinematic variable (i.e.,
related to εp or F p and their time rates).

(c) The existence of convex dissipation potentials required to define the time evolution of the
plastic kinematical variables through the flow rules.

Rigourous existence results in conventional plasticity has a long history as can be found for
instance in [26,27,38,39,41] (see also the series of results [6, 14,19,34]).

The novel approach we propose has been first introduced in [5]. In our model, neither of the
three above postulates are considered. For instance, as for (c), one would like to understand plastic
deformation without appealing to convexity, at least not in its premises. For more objections and
a discussion, we refer to [3]. Our paradigm is radically different, since our approach is based on
the following rationales2.

(1) Strain rate is preferred to strain and is given the following, primordial definition. The
medium is considered as a collection of infinitesimal cells that deform smoothly, so that
within each cell one can identify and follow fibers. Denote by a1, a2, a3 three such fibers,

2”Puisque ces mystères nous dépassent, feignons d’en être l’organisateur” in Les mariés de la tour Eiffel de Jean

Cocteau (1889-1963).
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which at time t originate from point x and are oriented along the axes of a Cartesian
coordinate system and scaled to be of unit lengths. Then the deformation rate is defined
at x as (see, e.g., [18])

dij(t) =
1

2

(
∂

∂t
(ai · aj)

)
t

. (1.1)

Having fixed an initial time t0 = 0, the time integral of the objective tensor d, called the

strain or deformation tensor, reads ε(t) =
∫ t

0
d(s)ds. Note that (1.1) holds for infinitesimal

as well as for finite strains and hence one is not forced to specify the quantitative nature
of the deformations before they take place.

(2) The strain defined in this fashion is neither elastic nor plastic, it simply has a compatible
part and an incompatible part, that are given by a structure theorem called Beltrami
decomposition [31]:

ε = ∇Su+ E0. (1.2)

As opposed to elasto-plastic partitions this decomposition is unique once boundary condi-
tions for u are prescribed. Moreover, while ε is an objective field by definition, neither ∇Su
nor E0 are objective, see the discussion in [5]. Therefore the model will be constructed
upon ε and its derivatives.

(3) The governing equations should generalize classical linear elasticity in the sense that it
must take into account the possible strain incompatibility. The idea behind this is that the
model should account for the macroscopic effect of the presence and motion of dislocations
as micro-structural perturbations.

Our model can be briefly described as follows (see [5] for details). One considers linearized

gradient elasticity in the sense of Mindlin [35]. One assumes that the virtual strain rate d̂ and its
gradient produce intrinsic work and by the virtual power principle we write∫

Ω

(σ · d̂+ τ · ∇d̂)dx =

∫
Ω

K · d̂ dx,

where σ, τ are the Cauchy stress and hyperstress tensors, respectively, and K is a tensor representing
external efforts. Constitutive relations are taken as σ = Aε and τ = B∇ε, where A,B are the Lamé
and Mindlin tensors, respectively (see [35]). We require that the intrinsic power induced by the
hyperstress

∫
Ω
∇ε ·τdx vanishes as soon as the deformation is compatible, i.e., that it is only due to

micro-structural effects in the form of dislocations, since Kröners’s formula connects elastic strain
incompatibility and dislocation density (see [29, 44, 46, 47]). This yields the existence of a scalar `
called incompatibility modulus, such that −div τ = ` inc ε. Therefore the virtual power principle
yields the weak form ∫

Ω

(Aε+ ` inc ε) · d̂ dx =

∫
Ω

K · d̂ dx, ∀d̂ ∈ E , (1.3)

where E is the set of virtual strain rates.
To see that this equation generalizes linearized elasticity, take d̂ = ∇S v̂ with v̂ = 0 on ΓD ⊂ ∂Ω

and take K such that − div K = f in Ω and KN = g on ΓN := ∂Ω \ ΓD. Then, plugging this into
(1.3) immediately yields {

−div (Aε+ ` inc ε) = f in Ω,
(Aε+ ` inc ε)N = g on ΓN ,

(1.4)

which is exactly the system of linearized elasticity in case of compatible strain, i.e. with ε = ∇Su
with u = u0 on ΓD, since for such strains inc ε = 0.

More generally, we believe that our model of elasto-plasticity is able to represent finite deforma-
tions through an incremental formulation. Indeed, nonlinear problems in continuum mechanics are
classically solved through the finite element method used in conjunction with an incremental solu-
tion procedure. In this way, nonlinear problems are reduced to a sequence of iterations consisting of
linearized problems. In our case, ε is a strain increment and (A, `) are seen as tangent elasto-plastic
moduli. Of course, their evolution between increments should be driven by constitutive laws in
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order to account, for instance, for hardening phenomena. A possible thermodynamic approach is
to relate changes in these coefficients with dissipation. A sensitivity analysis of the dissipation
functional with respect to a variation of ` within a small inclusion has been conducted in [5] for
a simplified model. The extension to the full model and the numerical implementation, for which
the existence results of the present work were mandatory, is an ongoing work. For philosophical
thoughts about modeling, we refer to [32].

1.3. Summary of our results. Set E = L2(Ω,S3). The main purpose of this work is to prove
that (1.3), or equivalently the associated strong form

Aε+ ` inc ε = K in Ω,

has a unique solution in the space of square integrable functions with square integrable incom-
patibility, with the additional condition on the dislocation flux at the boundary inc εN = h on
∂Ω. The main ingredients to achieve the proof are (i) an orthogonal decompositions of L2(Ω,S3)
related to the Beltrami decomposition, and (ii) Fredholm’s alternative. It is also to be stressed
that our model has no variational structure in the sense that the solution is not minimum of an
energy. Moreover we analyze the limit case |`| → ∞, showing that our model reduces to classical
linearized elasticity. We conclude by three explicit computations to illustrate our approach.

2. Generalities and preliminary results

Let Ω be a regular (C∞) bounded domain of R3. We denote by ∂Ω its boundary and by N its
outward unit normal.

2.1. The curvilinear frame. For all x ∈ ∂Ω, the system (τA(x), τB(x)) is an orthonormal basis
of the tangent plane to ∂Ω, that can be naturally extended along N(x) in a tubular neighborhood
W of ∂Ω (see [4]). The curvatures along τA and τB are denoted by κA and κB , respectively.
Define the normal derivative as ∂N := N · ∇ and the tangential derivatives as ∂R := τR · ∇, for
R ∈ {A,B}. We will also use the notation R∗ = B if R = A, R∗ = A if R = B. The following
results are proved in [4].

Theorem 2.1. There exist smooth scalar fields ξ, γA, γB in W such that

∂NN = ∂Nτ
R = 0, (2.1)

∂RN = κRτR + ξτR
∗
, (2.2)

∂Rτ
R = −κRN − γR

∗
τR
∗
, (2.3)

∂R∗τ
R = γRτR

∗
− ξN. (2.4)

If (τA(x), τB(x)) are oriented along the principal directions of curvature then ξ(x) = 0.

Lemma 2.2. If f is twice differentiable in W then it holds

∂R∂Nf = ∂N∂Rf + κR∂Rf + ξ∂R∗f. (2.5)

2.2. Basic function spaces. Let M3 be the set of 3 × 3 real matrices and S3 be the subset of
symmetric matrices. We define

Hcurl(Ω,M3) := {E ∈ L2(Ω,M3) : Curl E ∈ L2(Ω,M3)},
Hdiv(Ω,S3) := {E ∈ L2(Ω,S3) : div E ∈ L2(Ω,R3)},
H inc(Ω,S3) :=

{
E ∈ L2(Ω,S3) : inc E ∈ L2(Ω,S3)

}
.

These spaces, endowed with the norms defined by ‖E‖2Hcurl = ‖E‖2L2 + ‖Curl E‖2L2 , ‖E‖2Hdiv =

‖E‖2L2 + ‖ div E‖2L2 , ‖E‖2Hinc = ‖E‖2L2 + ‖ inc E‖2L2 , respectively, and the corresponding inner
products are obviously Hilbert spaces. Also, by classical regularization arguments (see e.g. [9, 15,
42]), C∞(Ω̄,M3) [resp. C∞(Ω̄,S3)] is dense in each of these spaces. We also define

H inc
0 (Ω,S3) = the closure of D(Ω,S3) in H inc(Ω,S3),
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as well as the trace space

H̃3/2(∂Ω,S3) =

{
E ∈ H3/2(∂Ω,S3) :

∫
∂Ω

ENdS(x) = 0

}
.

Theorem 2.3 (Lifting [4]). Let E ∈ H̃3/2(∂Ω,S3), and G ∈ H1/2(∂Ω,S3). There exists E ∈
H2(Ω,S3) such that  E = E on ∂Ω,

(∂NE)T = GT on ∂Ω,
div E = 0 in Ω,

where the subscript T stands for the tangential part given by the components (GT )RR′ = GτR · τR′ ,
R,R′ ∈ {A,B}. In addition, such a lifting can be obtained through a linear continuous operator

L∂Ω : (E,G) ∈ H̃3/2(∂Ω,S3)×H1/2(∂Ω,S3) 7→ E ∈ H2(Ω,S3).

Define the subset of C∞(∂Ω,S3)

G = {V �N,V ∈ R3},

with the notation U � V := (U ⊗ V + V ⊗ U)/2.

Lemma 2.4 (Dual trace space [4]). Every E ∈ H−3/2(∂Ω,S3)/G admits a unique representative

Ẽ such that ∫
∂Ω

ẼNdS(x) = 0. (2.6)

Moreover, the dual space of H̃3/2(∂Ω,S3) is canonically identified with H−3/2(∂Ω,S3)/G.

2.3. Green formula and applications. Recall that the Green formula for the divergence allows
to define, for any T ∈ Hdiv(Ω,S3), its normal trace TN ∈ H−1/2(∂Ω,R3) by∫

∂Ω

(TN) · ϕdS(x) :=

∫
Ω

div T · ϕ̃+ T · ∇Sϕ̃ ∀ϕ ∈ H1/2(∂Ω,R3),

with ϕ̃ ∈ H1(Ω,R3) an arbitrary lifting of ϕ, see e.g. [23,42]. For the incompatibility operator one
has the following counterpart.

Lemma 2.5 (Green formula for the incompatibility [4]). Suppose that T ∈ C2(Ω,S3) and η ∈
H2(Ω,S3). Then∫

Ω

T · inc ηdx =

∫
Ω

inc T · ηdx+

∫
∂Ω

T1(T ) · η dS(x) +

∫
∂Ω

T0(T ) · ∂Nη dS(x) (2.7)

with the trace operators defined as

T0(T ) := (T ×N)
t ×N, (2.8)

T1(T ) :=
(

Curl (T ×N)t
)S

+ ((∂N + k)T ×N)
t ×N +

(
Curlt T ×N

)S
, (2.9)

where k := κA + κB is twice the mean curvature of ∂Ω, TS := (T + T t)/2 is the symmetric part of
T , and cross products are computed row-wise. In addition, it holds∫

∂Ω

T1(T )NdS(x) = 0. (2.10)

Alternative expressions for T1(T ) are given in [4], like

T1(T ) = −
∑
R

κR(T × τR)t × τR −
∑
R

ξ(T × τR)t × τR
∗

+ ((−∂N + k)T ×N)
t ×N

− 2

(∑
R

(∂RT ×N)t × τR
)S

. (2.11)
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For a general symmetric tensor T , with components TRR′ := TτR
′ · τR in the curvilinear frame,

one has:

T =

TAA TAB TAN
TBA TBB TBN
TNA TNB TNN

 , (T ×N)t ×N =

 TBB −TAB 0
−TAB TAA 0

0 0 0

 , (2.12)

(T × τA)t × τA =

0 0 0
0 TNN −TBN
0 −TBN TBB

 , (T × τB)t × τB =

 TNN 0 −TAN
0 0 0

−TAN 0 TAA

 , (2.13)

(T ×N)t × τA =

0 TBN −TBB
0 −TAN TAB
0 0 0

 , (T ×N)t × τB =

−TBN 0 TAB
TAN 0 −TAA

0 0 0

 . (2.14)

As shown in [4], we can define the traces T0(T ) ∈ H−1/2(∂Ω,S3) and T1(T ) ∈ H−3/2(∂Ω,S3)/G
for every T ∈ H inc(Ω,S3) by

〈T0(T ), ϕ0〉 =

∫
Ω

T · inc η0dx−
∫

Ω

inc T · η0dx, ∀ϕ0 ∈ H1/2(∂Ω,S3),

〈T1(T ), ϕ1〉 =

∫
Ω

T · inc η1dx−
∫

Ω

inc T · η1dx, ∀ϕ1 ∈ H̃3/2(∂Ω,S3),

with η0 = L∂Ω(0, ϕ0) and η1 = L∂Ω(ϕ1, 0) (recall that L∂Ω is the lifting operator defined in
Theorem 2.3, and observe that, by Lemma 2.5 and density of C∞(Ω̄,S3) in H inc(Ω,S3), these
definitions are independent of the choices of liftings). In addition, by Lemma 2.4, T1(T ) admits
a unique representative satisfying (2.10). By linearity of L∂Ω, this extends formula (2.7) to any
functions T ∈ H inc(Ω,S3) and η ∈ H2(Ω,S3).

Remark 2.1. We have defined T1(T ) against test functions which admit divergence-free liftings,
because spaces of divergence-free tensors arise naturally in problems involving the incompatibility,
see the Beltrami decomposition and its consequences in the next sections. But we could also have
defined T1(T ) ∈ H−3/2(∂Ω,S3) by using a classical lifting in H2(Ω,S3). Upon adopting the con-
vention that representatives in H−3/2(∂Ω,S3)/G satisfying the gauge condition (2.10) are chosen,
the two definitions are equivalent.

3. Properties of the trace operators in H inc(Ω,S3)

In this section, homogeneous displacement-like boundary conditions are analyzed in terms of
traces of the symmetric strain. These results should be put in perspective with previous results
about this problem obtained by Ciarlet and co-authors by means of change-of-metric and change-of-
curvature tensors (see [12,13]). Though our characterization is different, the objective of expressing
Dirichlet boundary conditions in terms of intrinsic quantities is the same.

To begin with, as particular cases of the two Green formulae recalled in the previous section,
one readily obtains the following.

Lemma 3.1. 1. For all v ∈ H1(Ω,R3), one has inc ∇Sv = 0 in the sense of distributions.
2. For all E ∈ H inc(Ω,S3), one has div inc E = 0 in the sense of distributions.

Consequently, if E ∈ H inc(Ω,S3), then inc EN is defined in H−1/2(∂Ω,R3) by∫
∂Ω

inc EN · ϕdS(x) =

∫
Ω

inc E · ∇Sϕdx ∀ϕ ∈ H1(Ω,R3).

Hereafter, if ω ⊂⊂ Ω and u is a vector or tensor field defined over Ω with well-defined traces on
each side of ∂ω, we denote by JuK the jump of u across ∂ω with inner term counted positively.

Lemma 3.2. If E ∈ H inc(Ω,S3) and ω ⊂⊂ Ω, then J inc ENK = 0 across ∂ω.
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Proof. Let ϕ ∈ D(Ω,R3). By definition and Lemma 3.1, one has∫
∂ω

J inc ENK · ϕdx =

∫
Ω

inc E · ∇Sϕdx = 0.

By density this is also true for any ϕ ∈ H1
0 (Ω,R3), and subsequently for any trace of ϕ in

H1/2(∂ω,R3). �

Lemma 3.3. If E ∈ L2(Ω,S3), E|ω ∈ H inc(ω,S3), E|Ω\ω̄ ∈ H inc(Ω \ ω̄,S3) and JT0(E)K =

JT1(E)K = 0 across ∂ω, then E ∈ H inc(Ω,S3).

Proof. Let Φ ∈ D(Ω,S3). The Green formula yields∫
Ω

E · inc Φdx =

∫
ω

inc EΦdx+

∫
Ω\ω̄

inc EΦdx+

∫
∂ω

JT0(E)K · ∂NΦdS(x) +

∫
∂ω

JT1(E)K ·ΦdS(x).

The last two integrals vanish by assumption, hence the distribution inc E ∈ D′(Ω,S3) is actually
an L2 function. �

If E ∈ H inc(Ω,S3) and T0(E) = T1(E) = 0 on ∂Ω, then extending E by 0 and applying Lemmas
3.3 and 3.2 yields inc EN = 0 on ∂Ω. If v ∈ H1

0 (Ω,R3), then by density of D(Ω,R3) and continuity
of the trace operators in H inc(Ω,S3), it follows T0(∇Sv) = T1(∇Sv) = 0 on ∂Ω. These two remarks
admit the following local versions.

Considering an open subset Γ of ∂Ω and given E ∈ H inc(Ω,S3), we say that T0(E) = T1(E) = 0
on Γ if the corresponding distributions vanish on Γ, namely

〈T0(E), ϕ1〉 = 〈T1(E), ϕ0〉 = 0 ∀ϕ0, ϕ1 ∈ C∞(∂Ω,S3), spt ϕ0 ⊂ Γ, spt ϕ1 ⊂ Γ, (3.1)

and similarly that inc EN = 0 on Γ if∫
∂Ω

inc EN · ϕdS(x) = 0 ∀ϕ ∈ C∞(∂Ω,R3), spt ϕ ⊂ Γ. (3.2)

Lemma 3.4. If E ∈ H inc(Ω,S3) satisfies T0(E) = T1(E) = 0 on Γ then inc EN = 0 on Γ.

Proof. Let z ∈ Γ and B be an open ball of center z such that ∂Ω∩B = Γ∩B and Ω∩B is on one
side of Γ ∩B. Let v ∈ C∞(Ω̄,R3) with spt v ⊂ B. We have by the Green formulae∫

∂Ω

inc EN · vdS(x) =

∫
Ω

inc E · ∇Svdx = −
∫
∂Ω

(
T0(E) · ∂N∇Sv + T1(E) · ∇Sv

)
dS(x) = 0.

By lifting, this holds true for any v ∈ C∞(∂Ω,R3) with support in B. By linearity, covering and
partition of unity this extends to any v ∈ C∞(∂Ω,R3) with support in Γ. �

Lemma 3.5. If v ∈ H1(Ω,R3) satisfies v = 0 on Γ in the sense of traces, then T0(∇Sv) =
T1(∇Sv) = 0 on Γ.

Proof. Let z ∈ Γ and B be an open ball of center z such that ∂Ω∩B = Γ∩B and Ω∩B is on one
side of Γ ∩B. Let ϕ ∈ C∞(Ω̄,S3) with spt ϕ ⊂ B. We have

〈T0(∇Sv), ∂Nϕ〉+ 〈T1(∇Sv), ϕ〉 =

∫
Ω

∇Sv · inc ϕdx =

∫
∂Ω

inc ϕN · vdS(x) = 0.

We conclude as in Lemma 3.4 . �

Corollary 3.6. Let v ∈ H1(Ω,R3) be such that v = r on Γ in the sense of traces, with r a rigid
displacement field. Then T0(∇Sv) = T1(∇Sv) = 0 on Γ.

Proof. On Γ it holds
Ti(∇Sv) = Ti(∇S(v − r)) = 0, i = 0, 1,

by Lemma 3.5. �

Lemma 3.7. Let T ∈ H2(Ω). Then T = T1(T ) = 0 on Γ if and only if T = (∂NT ×N)
t ×N =

Curlt T ×N = 0 on Γ.
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Proof. From T = 0 on Γ one infers that ∂RT = 0 on Γ, with R = A,B. Moreover, using (2.11) and
(2.12)-(2.14) one obtains the expression in the basis of principal curvatures for simplicity (ξ = 0):

T1(T ) =

 −∂NTBB + 2(∂BT )BN + kTBB − κBTNN ∂NTAB − kTAB − (∂BT )AN − (∂AT )BN
∂NTAB − kTAB − (∂BT )AN − (∂AT )BN −∂NTAA + 2(∂AT )AN + kTAA − κATNN

κBTAN + (∂AT )BB − (∂BT )AB κATBN − (∂AT )AB + (∂BT )AA

κBTAN + (∂AT )BB − (∂BT )AB
κATBN − (∂AT )AB + (∂BT )AA

−κATBB − κBTAA

 .

From the knowledge that TAA = TAB = TBB = 0, one obtains

T1(T ) =

 −∂NTBB + 2(∂BT )BN − κBTNN ∂NTAB − (∂BT )AN − (∂AT )BN
∂NTAB − (∂BT )AN − (∂AT )BN −∂NTAA + 2(∂AT )AN + kTAA − κATNN
κBTAN + (∂AT )BB − (∂BT )AB κATBN − (∂AT )AB + (∂BT )AA

κBTAN + (∂AT )BB − (∂BT )AB
κATBN − (∂AT )AB + (∂BT )AA

)
. (3.3)

Thus, (3.3) rewrites as

0 =

−∂NTBB ∂NTAB 0
∂NTAB −∂NTAA 0

0 0 0

 = −T0(∂NT )

on Γ, achieving the proof of the direct implication, the last statement being proved in [4]. The
converse is shown in the same manner. �

Lemma 3.8. We have the characterization

H inc
0 (Ω,S3) =

{
E ∈ H inc(Ω,S3) : T0(E) = T1(E) = 0 on ∂Ω

}
.

Proof. Suppose En ∈ D(Ω,S3), E ∈ H inc(Ω,S3), En → E in H inc(Ω,S3). Of course, T0(En) =
T1(En) = 0 on ∂Ω. Then by continuity T0(E) = T1(E) = 0 on ∂Ω.

Suppose now E ∈ H inc(Ω,S3) with T0(E) = T1(E) = 0 on ∂Ω. Extend E by 0 to get Ẽ ∈
H inc(R3,S3). By local charts, shifting and convolution with mollifiers, we can define through a

standard construction En ∈ D(R3,S3) such that En → Ẽ in H inc(R3,S3) and spt En ⊂ Ω. Hence
En → E in H inc(Ω,S3), which yields E ∈ H inc

0 (Ω,S3). �

4. Beltrami decomposition and related results

In this section we first recall the Beltrami decomposition of symmetric tensor fields, stated here
in an Lp version for the sake of generality. A specific proof of the L2 version, which in fact is
our main concern, can be found in, e.g., [21, 22]. This structure theorem is named after Eugenio
Beltrami (1835-1900), an Italian physicist and mathematician known in particular for his works
on elasticity, in particular by stating the equilibrium equations of a body in terms of the stress in
place of the strain [8]3, but also in non-Euclidean geometries in the wake of Gauss and Riemann4.

We need to introduce first the so-called Saint-Venant-Beltrami condition, originaly considered
by Saint-Venant in [7], then extended by Donati in [17], Ting [43], Moreau [36] Ciarlet and Ciarlet
in [11], Amrouche at al. [2], and eventually by Geymonat and Krasucki [20] in Lp for p 6= 2. Below
we give the version found in [31] (originally from [1]).

3Here, Beltrami also showed a new proof of the conditions when six given functions are the components of an
elastic deformation.

4Beltrami was indeed a friend of Riemann whom he met at Pisa university where he had a chair. Moreover,
his chair of mathematical physics in Rome was later transmitted to Volterra in 1900. Vito Volterra (1860-1940) is

presumably the first who gave a correct definition of dislocations and disclinations in [48].
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Theorem 4.1 (Saint-Venant-Beltrami compatibility conditions). Assume that Ω is simply-connected.
Let p ∈ (1,+∞) be a real number and let E ∈ Lp(Ω,S3). Then,

inc E = 0 in W−2,p(Ω,S3)⇐⇒ E = ∇Sv
for some v ∈W 1,p(Ω,R3). Moreover, u is unique up to rigid displacements.

Let us also refer to [25] and [37] for more details and references on this topic. The following
decomposition will show crucial in our model. Pioneer version of this result can be found in [22]
for p = 2.

Theorem 4.2 (Beltrami decomposition [31]). Assume that Ω is simply-connected. Let p ∈ (1,+∞)
be a real number and let E ∈ Lp(Ω,S3). Then, for any v0 ∈ W 1/p,p(∂Ω), there exists a unique
v ∈ W 1,p(Ω,R3) with v = v0 on ∂Ω and a unique F ∈ Lp(Ω,S3) with Curl F ∈ Lp(Ω,R3×3),
inc F ∈ Lp(Ω,S3), div F = 0 and FN = 0 on ∂Ω such that

E = ∇Sv + inc F. (4.1)

We call v and F the velocity and incompatibility fields, respectively, associated with E. The
following result is the dual counterpart of Saint-Venant’s conditions.

Corollary 4.3 (Representation of solenoidal symmetric tensors). Assume that Ω is simply-connected.
If E ∈ L2(Ω,S3) satisfies div E = 0 in H−1(Ω), then there exists a unique F ∈ L2(Ω,S3) with
Curl F ∈ L2(Ω,S3), div F = 0 and FN = 0 on ∂Ω such that E = inc F .

Proof. Theorem 4.2 yields
E = ∇Sv + inc F,

with the appropriate F and v ∈ H1
0 (Ω,S3). The condition 0 = div E = div ∇Sv entails v = 0. �

We now specialize Saint-Venant’s decomposition in the case of homogeneous boundary condi-
tions.

Proposition 4.4 (Saint-Venant with boundary conditions). Assume that Ω is simply-connected.
If E ∈ L2(Ω,S3) satisfies {

inc E = 0 in Ω,
T0(E) = T1(E) = 0 on ∂Ω,

(4.2)

then there exists v ∈ H1
0 (Ω,R3) such that ∇Sv = E. Moreover, the map E ∈ L2(Ω,S3) 7→ v ∈

H1
0 (Ω,R3) is linear and continuous.

Proof. Let A : H−1(Ω,R3)→ L2(Ω,S3) be the linear map defined by Aϕ = ∇Su with{
− div ∇Su = ϕ in Ω,
u = 0 on ∂Ω.

Let A∗ : L2(Ω,S3) → H1
0 (Ω,R3) be the adjoint operator of A. Let v = A∗E ∈ H1

0 (Ω,R3). Let
Φ ∈ D(Ω,S3). By definition we have

−
∫

Ω

A∗E div Φdx = −
∫

Ω

E ·A( div Φ)dx.

Set Ψ = A( div Φ). We have − div Ψ = div Φ. By Corollary 4.3, Ψ = −Φ + inc ζ for some
ζ ∈ H inc(Ω,S3). We obtain

−
∫

Ω

A∗E div Φdx =

∫
Ω

E · Φdx−
∫

Ω

E · inc ζdx.

By the Green formula and the assumptions it holds∫
Ω

E · inc ζdx = 0.

We arrive at

−
∫

Ω

A∗E div Φdx =

∫
Ω

E · Φdx,
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thus
∇S(A∗E) = E

in the sense of distributions. �

We can now state a converse to Lemma 3.5.

Proposition 4.5. Assume that Ω is simply connected. If v ∈ H1(Ω,R3) is such that T0(∇Sv) =
T1(∇Sv) = 0 on ∂Ω then there exists a rigid displacement field r such that v = r on ∂Ω.

Proof. By Proposition 4.4, there exists w ∈ H1
0 (Ω,R3) such that ∇Sv = ∇Sw. Hence there exists

a rigid displacement field r such that v = w + r. On ∂Ω this reduces to v = r. �

5. Orthogonal decompositions

We assume in this section that Ω is simply-connected.

5.1. Orthogonal decomposition of L2(Ω,S3). In this section we obtain a decomposition of
L2(Ω,S3) into orthogonal subspaces, in the same spirit as in [22], but to account for more general
boundary conditions. We define the spaces

V =
{
E ∈ L2(Ω,S3) : inc E = 0

}
,

W =
{
E ∈ L2(Ω,S3) : div E = 0

}
,

and, given a subset Γ of ∂Ω,

V0
Γ = {E ∈ V : T0(E) = T1(E) = 0 on Γ} ,
V00

Γ =
{
∇Sv : v ∈ H1(Ω,R3), v = 0 on Γ

}
,

W0
Γ = {E ∈ W : EN ≡ 0 on Γ} .

Recall that V0
Γ is well-defined by (3.1) if Γ is an open subset of ∂Ω. In the definition ofW0

Γ, EN ≡ 0
on Γ means ∫

∂Ω

EN.ϕdS(x) = 0 ∀ϕ ∈ H1/2(∂Ω,R3), ϕ∂Ω\Γ = 0.

This is usually stronger than vanishing in the sense of distributions, see e.g. [24] for density and
extension properties in fractional Sobolev spaces.

Remark 5.1. By Theorem 4.1 and Corollary 4.3 we have

V =
{
∇Sv, v ∈ H1(Ω,R3)

}
, (5.1)

W =
{

inc F, F ∈ L2(Ω,S3), Curl F ∈ L2(Ω,S3), div F = 0 in Ω, FN = 0 on ∂Ω
}
. (5.2)

Moreover, the velocity field v in (5.1) is unique up to a rigid displacement field. The incompatibility
field F in (5.2) is unique.

Remark 5.2. If |Γ| > 0, the velocity field v in the definition of V00
Γ is unique.

Theorem 5.1 (Orthogonal decomposition of L2). Assume that ∂Ω admits the partition ∂Ω =
Γ1 ∪ Γ2 with Γ1 ∩ Γ2 = ∅ and Γ1 = ∂Ω \ Γ2. We have the orthogonal decomposition

L2(Ω,S3) = V00
Γ1
⊕W0

Γ2
.

Proof. i) Let Ê ∈ V00
Γ1

, E ∈ W0
Γ2

. We have Ê = ∇S v̂ for some v̂ ∈ H1(Ω), v̂ = 0 on Γ1. The Green
formula entails∫

Ω

Ê · Edx =

∫
Ω

∇S v̂ · Edx = −
∫

Ω

v̂ · div Edx+

∫
∂Ω

v̂ · ENdS(x) = 0.

ii) Let E ∈ L2(Ω,S3). Write the Beltrami decomposition of Theorem 4.2 as E = ∇Sv + inc F
with v = 0 on ∂Ω. Let w ∈ H1(Ω,R3) be the solution of −div ∇Sw = 0 in Ω,

w = 0 on Γ1,
∇SwN = inc FN on Γ2,
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that is, w ∈ H1
Γ1

(Ω,R3) := {ϕ ∈ H1(Ω,R3) : ϕ|Γ1
= 0},∫

Ω

∇Sw · ∇Sϕdx =

∫
Ω

inc F · ∇Sϕdx ∀ϕ ∈ H1
Γ1

(Ω,R3).

We have

E = ∇S(v + w) + ( inc F −∇Sw) ∈ V00
Γ1

+W0
Γ2
,

since by definition∫
∂Ω

( inc F −∇Sw)N · ϕdS(x) =

∫
Ω

( inc F −∇Sw) · ∇Sϕdx.

This completes the proof. �

Remark 5.3. By Lemma 3.5 we have

V00
Γ ⊂ V0

Γ,

whenever Γ is an open subset of ∂Ω, and we infer from Proposition 4.4 that

V00
∂Ω = V0

∂Ω.

In this case the decomposition of Theorem 5.1 is the same as in [22, Theorem 2.1.].

We have the following additional property.

Lemma 5.2. If K ∈ V00
Γ1

and inc F̂ ∈ W0
Γ2

it holds∫
∂Ω

(
T1(K) · F̂ + T0(K) · ∂N F̂

)
dS(x) = 0.

Proof. By the Green formula, we obtain∫
∂Ω

(
T1(K) · F̂ + T0(K) · ∂N F̂

)
dS(x) =

∫
Ω

(
K · inc F̂ − inc K · F̂

)
dx =

∫
Ω

K · inc F̂ dx.

Writing K = ∇Sw and applying the Green formula for the divergence yields∫
∂Ω

(
T1(K) · F̂ + T0(K) · ∂N F̂

)
dS(x) =

∫
∂Ω

inc F̂N · wdS(x).

However, we have w = 0 on Γ1 while inc F̂N = 0 on Γ2, achieving the proof. �

5.2. Orthogonal decomposition of H inc(Ω,S3) and related results. Define

Z = {E ∈ H inc(Ω,S3) : div E = 0 in Ω, EN = 0 on ∂Ω},
Z0 = {E ∈ Z : inc EN = 0 on ∂Ω},
F = {E ∈ H inc(Ω,S3) : inc EN = 0 on ∂Ω}. (5.3)

By virtue of Theorem 5.1 we infer the following decompositions.

Proposition 5.3 (Orthogonal decomposition of H inc). We have the orthogonal decompositions

H inc(Ω,S3) = Z ⊕ V,
F = Z0 ⊕ V. (5.4)

We now gather some properties of the spaces Z and Z0.

Proposition 5.4. If E ∈ Z then Curl E ∈ L2(Ω,S3). Moreover there exists c > 0 such that

‖E‖L2 + ‖Curl E‖L2 ≤ c‖ inc E‖L2 ∀E ∈ Z.
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Proof. Let

X =
{
F ∈ L2(Ω,S3), Curl F ∈ L2, inc F ∈ L2, div F = 0, FN = 0 on ∂Ω

}
,

Y =
{
F ∈ L2(Ω,S3), div F = 0

}
and define the linear map Φ : X → Y by Φ(E) = inc E. Equip X and Y with the norms

‖F‖X = ‖F‖L2 + ‖Curl F‖L2 + ‖ inc F‖L2 ,

‖F‖Y = ‖F‖L2 .

Clearly, X and Y are Banach spaces and Φ is continuous. If E ∈ X and Φ(E) = 0 then inc E = 0,
div E = 0 and EN = 0 on ∂Ω, whereby E = 0 since it is a symmetric gradient by Theorem 4.1.
Hence Φ is injective. By Corollary 4.3, Φ is also surjective. The open mapping theorem entails
that Φ−1 is continuous. Hence there exists c > 0 such that

‖Φ−1(F )‖X ≤ c‖F‖L2 ∀F ∈ Y.
Let E ∈ Z. From E = Φ−1 ◦ Φ(E) we obtain

‖E‖L2 + ‖Curl E‖L2 + ‖ inc E‖L2 = ‖E‖X = ‖Φ−1( inc E)‖X ≤ c‖ inc E‖L2 (5.5)

and the result follows. �

The following result is proved in [23, Theorem 3.8.], see [28, 49] for Lp versions and extensions
to non simply connected domains.

Theorem 5.5. There exists a constant c > 0 such that

‖u‖H1 ≤ c(‖ div u‖L2 + ‖Curl u‖L2)

for all u ∈ L2(Ω,R3) such that div u ∈ L2, Curl u ∈ L2 and u ·N = 0 on ∂Ω.

Proposition 5.6 (Poincaré’s inequality in Z). There exists C > 0 such that for all E ∈ Z
‖E‖H1 ≤ C‖ inc E‖L2 .

Proof. Let E ∈ Z. By Proposition 5.4 we already have

‖E‖L2 + ‖Curl E‖L2 ≤ c‖ inc E‖L2 .

Then Theorem 5.5 yields

‖∇E‖L2 ≤ c‖Curl E‖L2

for some other constant c. This completes the proof. �

We infer in particular that Z is imbedded in H1(Ω,S3) and compactly imbedded in L2(Ω,S3).

Proposition 5.7. We have the representation

W0
∂Ω = inc Z0.

Proof. Of course, if F ∈ Z0, then inc F ∈ W0
∂Ω. Take E ∈ W0

∂Ω. By Corollary 4.3 there exists
F ∈ H inc(Ω,S3) with div F = 0 and FN = 0 on ∂Ω such that E = inc F . The condition EN = 0
on ∂Ω yields F ∈ Z0. �

Lemma 5.8. Given a symmetric uniformly positive definite fourth order tensor field B (i.e. B(x)T ·
T > α|T |2 ∀T ∈ S3 for some α > 0 independent of x) define the linear map LB : Z → Z ′ by

〈LBE,Φ〉 =

∫
Ω

B inc E · inc Φdx ∀E,Φ ∈ Z.

Then LB is an isomorphism from Z into Z ′.

Proof. By Proposition 5.4, 〈LBE,E〉 defines a norm in Z equivalent to the H inc-norm. Let T ∈ Z ′.
By the Riesz representation theorem, there exists T ∈ Z such that 〈T ,Φ〉 = 〈LBT,Φ〉 for all Φ ∈ Z.
Therefore LB is an isomorphism. �
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We define the inverse map L−1
B : Z ′ → Z, that is continuous by Banach’s continuous inverse

theorem. Since Z ⊂ L2(Ω,S3) ⊂ Z ′, the restriction L−1
B : L2(Ω,S3) → L2(Ω,S3) is also well-

defined.

Lemma 5.9. The operator L−1
B : L2(Ω,S3) → L2(Ω,S3) is self-adjoint positive definite and com-

pact.

Proof. The compactness stems from the compact embedding Z ↪→ L2(Ω,S3) of Proposition 5.6.
One has for all E,F ∈ L2(Ω,S3)∫

Ω

L−1
B E · Fdx =

∫
Ω

L−1
B E · LBL

−1
B Fdx =

∫
Ω

B inc (L−1
B E) · inc (L−1

B F )dx.

It follows that L−1
B F is self-adjoint and positive definite, achieving the proof. �

5.3. Two elliptic boundary value problems for the incompatibility. Lemmas 5.8 and 5.9
yield the following proposition.

Proposition 5.10 (Weak form in Z). Let K ∈ L2(Ω,S3) and B a symmetric uniformly positive
definite fourth order tensor field. There exists a unique E ∈ Z such that∫

Ω

B inc E · inc Êdx =

∫
Ω

K · Êdx ∀Ê ∈ Z. (5.6)

Moreover, the solution map Φ : K ∈ L2(Ω,S3)→ E ∈ L2(Ω,S3) is linear and compact.

Similarly we have the following.

Proposition 5.11 (Weak form in Z0). Let K ∈ L2(Ω,S3) and B a symmetric uniformly positive
definite fourth order tensor field. There exists a unique E ∈ Z0 such that∫

Ω

B inc E · inc Êdx =

∫
Ω

K · Êdx ∀Ê ∈ Z0. (5.7)

Moreover, the solution map Φ0 : K ∈ L2(Ω,S3)→ E ∈ L2(Ω,S3) is linear and compact.

Proposition 5.12 (Strong form in Z). Let K be such that div K = 0 in Ω and KN = 0 on ∂Ω.
Then, the strong form of (5.6) reads

inc (B inc E) = K in Ω,
div E = 0 in Ω,
EN = 0 on ∂Ω,

T0(B inc E) = T1(B inc E) = 0 on ∂Ω,

(5.8)

whose solution coincide with to the solution of the weak form.

Proof. Eq. (5.6) holds actually true for all Ê ∈ Z+V = H inc(Ω,S3), in particular for Ê ∈ D(Ω,S3)

and for Ê with arbitrary traces T0(∂N Ê) and Ê on ∂Ω, by Theorem 2.3. Then the Green formula
provides the strong form, which is seen to be equivalent to the weak form. �

Remark 5.4 (Strong form in Z0). The solution of (5.7) satisfies the strong form
inc (B inc E) = K in Ω,

div E = 0 in Ω,
EN = 0 on ∂Ω,

inc EN = 0 on ∂Ω.

(5.9)

In fact, one can take any test function Ê ∈ D(Ω,S3) ⊂ F = V + Z0. One obtains the strong form
in Ω. The boundary conditions are given by the essential condition of the space.
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6. Elasto-plasticity model

6.1. Power of internal efforts. We recall the main features of the model introduced in [5].

Assumption 1. The power of the internal efforts against the virtual strain rate Ê ∈ D(Ω,S3) is of
form

Wint(Ê) =

∫
Ω

(
σ · Ê + τ · ∇Ê

)
dx.

The second and third order tensor fields σ and τ are called the stress and hyperstress tensors,
respectively.
Assumption 2. The power of the internal efforts is a continuous linear functional of Ê ∈ L2(Ω,S3).
We infer σ − div τ ∈ L2(Ω,S3) and

Wint(Ê) =

∫
Ω

(σ − div τ) · Êdx ∀Ê ∈ L2(Ω,S3).

Assumption 3. The material is piecewise linear homogeneous isotropic: there exists a partition of
Ω as Ω =

⋃
Ωp such that, in each Ωp,

σ = ApE, τ = Bp∇E (6.1)

where E is the strain, Ap is the standard Hooke tensor and Bp is the Mindlin tensor [35]. They
read componentwise

σij = λδijEkk + 2µEij , (6.2)

τijk = c1(δki∂lElj + δkj∂lEli) +
c2
2

(δki∂jEll + δkj∂iEll + 2δij∂lElk) + 2c3δij∂kEll

+ 2c4∂kEij + c5(∂iEjk + ∂jEik), (6.3)

where λ, µ, c1, ..., c5 are constants assigned to each Ωp (index p is dropped for readability).
Assumption 4. The hyperstress τ does not produce any virtual intrinsic power as soon as the strain
E is compatible. This means

inc E = 0⇒
∫

Ω

τ · ∇Ê dx = 0 ∀Ê ∈ D(Ω,S3),

or equivalently inc E = 0 ⇒ −div τ = 0 in Ω. From expression (6.3) we derive the existence
within each Ωp of a constant `p such that −div τ = `p inc E.
Conclusion. We denote ` =

∑
`pχΩp and A =

∑
ApχΩp , whereby σ = AE and −div τ = ` inc E

in Ω. The expression of the internal virtual power is

Wint(Ê) =

∫
Ω

(AE + ` inc E) · Êdx ∀Ê ∈ L2(Ω,S3).

The scalar field ` is called incompatibility modulus, as it expresses the resistance of the material
to incompatible deformations.

6.2. Power of external efforts. The power of external efforts is assumed to be a linear functional
on L2(Ω,S3). By Riesz representation, there exists K ∈ L2(Ω,S3) such that

Wext(Ê) =

∫
Ω

K · Êdx.

We emphasize that the power of external efforts may be at first expressed in terms of the non-
objective fields v̂ and F̂ of the Beltrami decomposition of Ê. However, provided attention is paid
to the uniqueness of the decomposition, these fields are themeselves linear functions of Ê. This
will specified in Section 9.1.
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6.3. Virtual power principle. The virtual power principle in the absence of inertia reads

Wint(Ê) = Wext(Ê),

that is ∫
Ω

(AE + ` inc E) · Êdx =

∫
Ω

K · Êdx, (6.4)

for all Ê ∈ L2(Ω,S3) satisfying possible kinematical constraints. In the absence of kinematical
constraints, (6.4) is obviously equivalent to

AE + ` inc E = K. (6.5)

6.4. Time-evolution of a nonlinear elasto-plasticity model. Within an incremental formula-
tion, A and ` are tangent elasto-plastic moduli. They need to be updated at each increment as soon
as plasticity phenomena occur. The stress-strain relation is therefore piecewise linear. Typically,
in a region with plastic deformations, the Lamé coefficients and the incompatibility modulus ` are
expected to be less than in purely elastic regions. The way these coefficients evolve is driven by
nonlinear constitutive laws that substitute to flow rules and hardening models. We emphasize that
dislocations may by created / moved without creation of incompatibility, as shown by Kröner’s
relation inc E = Curl Λ with Λ the dislocation density tensor [29, 46]. Therefore varying ` alone
is not sufficient to describe plastic effects.

7. Solution of elasto-plasticity equations with natural boundary condition

The main problem we address is the following: given K ∈ L2(Ω,S3), find E solution of (6.4).

7.1. Kinematical setting. We will limit ourselves to the case where no kinematical constraint
is assumed on the virtual strain Ê. Therefore, the problem reduces to (6.5). However, we will see
that the absence of constraint on E leads to nonunique solutions, and that uniqueness is obtained
by prescribing the incompatibility flux inc EN on ∂Ω. The homogeneous case inc EN = 0 is
studied first. However prescribing a given value, either 0 or not, for the incompatibility flux may
seem artificial from a modeling point of view. This issue is related to the characterization of the
behavior of dislocations at interfaces, whose difficulty is emphasized in [33] in the case of grain
boundaries for polycrystals. An attempt to determine the incompatibility flux through a domain
extension technique is proposed in Section 9.3.

Remark 7.1. A particular kinematical setting is to require K ∈ V, and a very special case occurs
when K = ∇Sv with div v = tr K constant. Then for A constant a solution to AE + ` inc E = K
is E = A−1K. Indeed by the structure of A−1 one has E proportional to K plus a constant tensor
hence inc E = 0.

7.2. Well-posedness with vanishing incompatibility flux. Our main result is the following.

Theorem 7.1 (First existence result). Assume Ω is simply connected. Let K ∈ L2(Ω,S3). Let C
be the Poincaré constant of Proposition 5.6. If A is uniformly positive definite and |`| > C|A| a.e.,
then there exists one and only one E ∈ F such that

AE + ` inc E = K.

Moreover we have the a priori estimate

‖ inc E‖L2 ≤ ‖`−1A‖L∞
1− C‖`−1A‖L∞

‖A−1K‖L2 . (7.1)

Proof. We assume that ` > 0. The other case is deduced considering ˜̀ = −`, Ã = −A, K̃ = −K.
We write the problem as

E + B inc E = H (7.2)

with B := `A−1 and H := A−1K. We will first prove uniqueness and then existence.
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Step 1. Uniqueness. Let E ∈ F be such that

E + B inc E = 0. (7.3)

Take the orthogonal decomposition E = Ec + Ei with Ec ∈ V and Ei ∈ Z0. We have

Ec + Ei + B inc Ei = 0. (7.4)

Take F̂ ∈ Z0. Then∫
Ω

Ec · inc F̂ dx+

∫
Ω

Ei · inc F̂ dx+

∫
Ω

B inc Ei · inc F̂ dx = 0.

By inc F̂N = 0 on ∂Ω the first integral vanishes. Specifically, take F̂ = Ei. We obtain∫
Ω

Ei · inc Eidx+

∫
Ω

B inc Ei · inc Eidx = 0.

We have

‖ inc Ei‖2L2 =

∫
Ω

inc Ei · inc Eidx =

∫
Ω

B−1(B1/2 inc Ei) · (B1/2 inc Ei)dx

≤ ‖B−1‖L∞
∫

Ω

B inc Ei · inc Eidx. (7.5)

By Proposition 5.6 we obtain

C‖ inc Ei‖2L2 ≥ ‖Ei‖L2‖ inc Ei‖L2

≥
∣∣∣∣∫

Ω

Ei · inc Eidx

∣∣∣∣ =

∫
Ω

B inc Ei · inc Ei ≥ ‖B−1‖−1
L∞‖ inc Ei‖2L2 ,

that is,

(C‖B−1‖L∞ − 1)‖ inc Ei‖2L2 ≥ 0.

If ‖B−1‖L∞ < C−1 we infer inc Ei = 0 then Ei = 0, by Proposition 5.6. Thus (7.4) yields Ec = 0,
and eventually E = 0.
Step 2. Existence. Let E = Ec + Ei ∈ F , Ec ∈ V, Ei ∈ Z0. Then (7.2) is equivalent to{ ∫

Ω
(Ec + B inc Ei) · Êcdx =

∫
Ω
H · Êcdx, ∀Êc ∈ V,∫

Ω
(Ei + B inc Ei) · Êidx =

∫
Ω
H · Êidx, ∀Êi ∈ W0

∂Ω,
(7.6)

itself, by Proposition 5.7, equivalent to{ ∫
Ω

(Ec + B inc Ei) · ∇S v̂dx =
∫

Ω
H · ∇S v̂dx ∀v̂ ∈ H1(Ω), (a)∫

Ω
(Ei + B inc Ei) · inc F̂ dx =

∫
Ω
H · inc F̂ dx ∀F̂ ∈ Z0. (b)

(7.7)

Define the operators LB : Z0 → Z ′0 and M : L2(Ω,S3)→ Z ′0 by

〈LBΨ,Φ〉 =

∫
Ω

B inc Ψ · inc Φdx, 〈MΨ,Φ〉 =

∫
Ω

Ψ · inc Φdx.

Equation (7.7)(b) is equivalent to

(M + LB)Ei = MH. (7.8)

By Lemma 5.8, LB : Z0 → Z ′0 is invertible. Thus, (7.8) is equivalent to

(I + L−1
B M)Ei = L−1

B MH. (7.9)

The operator L−1
B M : L2(Ω,S3) → L2(Ω,S3) is compact, since it is continuous from L2(Ω,S3)

to Z0 and Z0 is compactly embedded in L2(Ω,S3) by Proposition 5.6. Furthermore, under the
condition ‖B−1‖L∞ < C−1, the operator I +L−1

B M : L2(Ω,S3)→ L2(Ω,S3) is injective due to the
uniqueness claim. Thus, Fredholm’s alternative provides the existence of Ei ∈ L2(Ω,S3) solution
of (7.9). From Ei = L−1

B M(H−Ei) we infer Ei ∈ Z0. We have found Ei ∈ Z0 solution of (7.7)(b).
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Let us turn to (7.7)(a). We have to find Ec = ∇Sv, v ∈ H1(Ω,R3) such that∫
Ω

∇Sv · ∇S v̂dx =

∫
Ω

(H− B inc Ei) · ∇S v̂dx, ∀v̂ ∈ H1(Ω,R3). (7.10)

This is a standard linear elasticity problem.
Third step. A priori estimate. Equation (7.7)(b) entails∫

Ω

Ei · inc Eidx+

∫
Ω

B inc Ei · inc Eidx =

∫
Ω

H · inc Eidx.

Using (7.5) we obtain

‖ inc Ei‖2L2 ≤ ‖B−1‖L∞
∫

Ω

(H− Ei) · inc Eidx ≤ ‖B−1‖L∞(‖H‖L2 + ‖Ei‖L2)‖ inc Ei‖L2 .

Proposition 5.6 yields

‖ inc Ei‖L2 ≤ ‖B−1‖L∞(‖H‖L2 + C‖ inc Ei‖L2),

from which we arrive at (7.1). �

Remark 7.2 (Dislocation-induced stress). Because of Kröner’s formula we call G := ` inc E the
dislocation-induced stress tensor. For ` constant, let E` be the solution of AE + ` inc E = K.
Then (7.1) implies that G` := ` inc E` converges weakly in L2(Ω,S3) to some G as `→ ±∞. More
precise limiting results will be given in the next section.

Conversely, the condition |`| > C|A| prevents |`| from going to 0 without assuming that A also
tends to 0. Such limit cases are left for future work.

7.3. Well-posedness with arbitrary incompatibility flux.

Theorem 7.2 (Second existence result). Assume Ω is simply connected. Let K ∈ L2(Ω,S3) and
h ∈ H−1/2(∂Ω,R3) such that

∫
∂Ω
hdS(x) = 0. Let C be the Poincaré constant of Proposition

5.6. If A is uniformly positive definite and |`| > C|A| a.e., then there exists one and only one
E ∈ H inc(Ω,S3) such that {

AE + ` inc E = K in Ω
inc EN = h on ∂Ω.

Moreover there exists constants c1 and c2 such that

‖ inc E‖L2 ≤ ‖`−1A‖L∞
1− C‖`−1A‖L∞

(
‖A−1K‖L2 + c1(1 + ‖`A−1‖L∞)‖h‖H−1/2

)
+ c2‖h‖H−1/2 . (7.11)

Proof. Let w ∈ H1(Ω,R3) be solution of{
−div ∇Sw = 0 in Ω
∇SwN = h on ∂Ω

and setW = ∇Sw. By Corollary 4.3 there existsH ∈ Z such thatW = inc H. Let Ẽ = E−H ∈ F ,
which has to solve

AẼ + ` inc Ẽ = K− AH − ` inc H.

Existence and uniqueness follow from Theorem 7.1. The a priori estimate of Corollary 4.3 combined
with Proposition 5.6 and standard elliptic regularity provide (7.11). �

8. Elastic limit

Proposition 8.1. Consider a sequence Ak ∈ L∞(Ω,S3) with c1|ξ|2 ≤ Ak(x)ξ · ξ ≤ c2|ξ|2 ∀ξ ∈ R3,
a.e. x ∈ Ω, c1, c2 > 0, and a sequence `k ∈ L∞(Ω,R∗+) with infΩ `k → +∞. Assume that

K ∈ L2(Ω,S3), Ek ∈ F , AkEk + `k inc Ek = K. Then ‖ inc Ek‖L2 → 0.

Proof. It is a straightforward consequence of (7.1), since ‖`−1
k Ak‖L∞ → 0. �

Obviously the same holds for a sequence `k ∈ L∞(Ω,R∗−) with infΩ |`k| → +∞.
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Proposition 8.2. If ` is constant, K ∈ L2(Ω,S3), E ∈ F , AE + ` inc E = K in Ω then∫
Ω

AE · Êdx =

∫
Ω

K · Êdx ∀Ê ∈ V.

Proof. Take Ê ∈ V and observe that due to the assumptions, one has∫
Ω

` inc E · Êdx = 0.

�

Theorem 8.3 (Elastic limit: homogeneous flux). Assume that A, K are fixed, ` is constant,
E` ∈ F , AE` + ` inc E` = K in Ω. There exists a unique E∞ ∈ V such that∫

Ω

AE∞ · Êdx =

∫
Ω

K · Êdx ∀Ê ∈ V. (8.1)

Moreover ‖E` − E∞‖L2 → 0 when |`| → +∞.

Proof. Existence and uniqueness for (8.1) is a consequence of the Riesz representation theorem

in the Hilbert space V for the inner product (E, Ê) 7→
∫

Ω
AE · Êdx. Consider the decomposition

E` = E`c + E`i ∈ V ⊕ Z0. We have by Proposition 8.2∫
Ω

A(E`c + E`i ) · Êcdx =

∫
Ω

K · Êcdx ∀Êc ∈ V.

Substracting (8.1), one has∫
Ω

A(E`c − E∞) · Êcdx = −
∫

Ω

AE`i · Êcdx ∀Êc ∈ V.

By Propositions 8.1 and 5.6 we have ‖E`i ‖H1 → 0. It follows ‖E`c − E∞‖L2 → 0 hence ‖E` −
E∞‖L2 → 0. �

Hence, as |`| → +∞, one retrieves the standard linear elasticity problem with Neumann bound-
ary conditions.

In case of non-vanishing incompatibility flux the following holds.

Theorem 8.4 (Elastic limit: general flux). Assume that A, K are fixed, ` is constant, E` ∈
H inc(Ω,S3), AE` + ` inc E` = K in Ω, inc E`N = h` on ∂Ω, h` ∈ H−1/2(∂Ω), `h` → h̄ in
H−1/2(∂Ω) when |`| → +∞. There exists a unique E∞ ∈ V such that∫

Ω

AE∞ · ∇S v̂dx =

∫
Ω

K · ∇v̂dx−
∫
∂Ω

h̄ · v̂dS(x) ∀v̂ ∈ H1(Ω). (8.2)

Moreover ‖E` − E∞‖L2 → 0 when |`| → +∞.

Proof. For all v̂ ∈ H1(Ω,R3) one has∫
Ω

AE` · ∇S v̂dx+

∫
∂Ω

`h · v̂dS(x) =

∫
Ω

K · ∇S v̂dx.

Hence ∫
Ω

A(E` − E∞) · ∇S v̂dx = −
∫
∂Ω

(`h− h̄) · v̂dS(x).

Consider the decomposition E` = E`c + E`i ∈ V ⊕ Z, see Proposition 5.3. By (7.11), one infers
‖ inc E`‖L2 → 0, and subsequently by Proposition 5.6 ‖E`i ‖L2 → 0. Finally,∫

Ω

A(E`c − E∞) · ∇S v̂dx = −
∫

Ω

AE`i · ∇S v̂dx−
∫
∂Ω

(`h− h̄) · v̂dS(x)

yields ‖E`c − E∞‖L2 → 0, then ‖E` − E∞‖L2 → 0. �
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9. Interpretation of the kinematical framework and external efforts

9.1. External efforts. Consider a virtual strain Ê ∈ L2(Ω,S3) decomposed as

Ê = ∇S v̂ + inc F̂ . (9.1)

The work of the external efforts against Ê reads

Wext(Ê) =

∫
Ω

K · Êdx = −
∫

Ω

div K · v̂dx+

∫
∂Ω

KN · v̂dS(x) +

∫
Ω

inc K · F̂ dx

+

∫
∂Ω

(
T1(K) · F̂ + T0(K) · ∂N F̂

)
dS(x). (9.2)

The fields − div K and KN are recognized as classical body and contact forces, while inc K and
(T0(K), T1(K)) are body and contact forces working against the incompatible part of the virtual
strain. The above fields are in principle known in the first place. The issue is then how and under
which conditions it is possible to construct a corresponding K. Formally the boundary forces KN ,
T0(K) and T1(K) exhibit some coupling, as stressed in [5]. To address these points one must specify
a kinematical framework ensuring the uniqueness of the decomposition (9.1).

9.2. Kinematical framework. Take Ê = ∇S v̂ + inc F̂ with ∇S v̂ ∈ V00
Γ1

and inc F̂ ∈ W0
Γ2

for
some partition Γ1 ∪ Γ2 of ∂Ω. As said above, f := −div K is identified with the body force, and
g := KN is identified with a surface load on Γ2. Now, if K ∈ V00

Γ1
the last two integrals of (9.2)

vanish by virtue of Lemma 5.2. Then (9.2) rewrites as∫
Ω

K · Êdx =

∫
Ω

f · v̂dx+

∫
Γ2

g · v̂dS(x). (9.3)

To sum up, given f ∈ L2(Ω,R3) and g ∈ H−1/2(Ω,R3) one wants to determine K = ∇Sw ∈
L2(Ω,S3) such that  −div ∇Sw = f in Ω,

w = 0 on Γ1,
∇SwN = g on Γ2.

(9.4)

It is well-known that this problem admits a unique solution w ∈ H1(Ω,R3), provided
∫

Ω
fdx +∫

∂Ω
gdS(x) = 0 if |Γ1| = 0.

Proposition 9.1 (Generalized strong form for intrinsic elasto-plasticity). Assume that Ω is simply-
connected. Let K ∈ L2(Ω,S3) be such that K = ∇Sw, where w satisfies (9.4). Then the weak form∫

Ω

(AE + ` inc E) · (∇S v̂ + Ê0)dx =

∫
Ω

f · v̂dx+

∫
Γ2

g · v̂dS(x), ∀(∇S v̂, Ê0) ∈ V00
Γ1
×W0

Γ2
(9.5)

admits a unique solution E ∈ F that corresponds to the solution of the strong form

−div (AE + ` inc E) = f in Ω
inc (AE + ` inc E) = 0 in Ω

(AE + ` inc E)N = (AE)N = g on Γ2

inc EN = 0 on ∂Ω
T0(AE + ` inc E) = T1(AE + ` inc E) = 0 on Γ1

T0(AE + ` inc E) = T0(K) on Γ2

T1(AE + ` inc E) = T1(K) on Γ2.

. (9.6)

Proof. Eq. (9.5) is equivalent to AE + ` inc E = K, itself equivalent to{
div (AE + ` inc E) = div K and inc (AE + ` inc E) = inc K in Ω,
(AE + ` inc E)N = KN and T0(AE + ` inc E) = T0(K) and T1(AE + ` inc E) = T1(K) on ∂Ω.

The assumptions and the essential conditions complete the system. �

Remark 9.1. We remark that the normal component of the Cauchy stress (AE)N can be prescribed
on Γ2, whereas the tangential part of the full stress T0(AE + ` inc E) is fixed to zero on Γ1.
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Remark 9.2. In this framework, there is no virtual work associated with the boundary condition
on Γ1, even if the virtual strain is allowed to have tangential components. This does not model a
clamped condition, and when |`| → ∞ one does not retrieve T0(E∞) = T1(E∞) = 0, see Theorem
8.3. To do so one must prescribe kinematical constraints.

9.3. Alternative to the vanishing incompatibility flux condition. As already said, the con-
dition inc EN = 0 included in the space F may seem unphysical, as well as prescribing inc EN = h
for an a priori given h. An alternative is to consider that the exterior of Ω is filled with a fictitious
material that mimicks void, with transmission conditions representing the fact that the two phases
constitute a continuum. Therefore we restrict ourselves to the pure ”Neumann” boundary condi-
tion, that is, a surface load without kinematical restriction. For a full space extension, K = ∇Sw
is defined by {

−div (∇Sw) = f in R3,
J∇SwNK = g on ∂Ω,

with f extended by 0 outside Ω. The equilibrium equation AE + ` inc E = K is fulfilled over R3

with (A, `) extended by (Aext, `ext) outside Ω. In order to approximate a Neumann condition one
needs that Aext be chosen significantly smaller that A within Ω. Then on ∂Ω one has

inc EN ≈ 1

`ext
(KN)ext.

It is reasonable to assume that ` is continuous across ∂Ω in a way that ∂Ω has a neutral effect on
the transport of dislocations (transmission without reflection). Under this assumption we have{

AE + ` inc E = K in Ω
inc EN = 1

` (KN)ext on ∂Ω.

Existence and uniqueness of a solution has been shown in Theorem 7.2. In addition we derive on
∂Ω

AEN = KN − ` inc EN = KN − (KN)ext = g,

which is obviously the standard Neumann condition on the Cauchy stress.
Let us now examine the limit case. In view of Theorem 8.4, we have E → E∞ ∈ V as |`| → ∞

where ∫
Ω

AE∞ · ∇S v̂dx =

∫
Ω

K · ∇v̂dx−
∫
∂Ω

(KN)ext · v̂dS(x) ∀v̂ ∈ H1(Ω).

This rewrites as ∫
Ω

AE∞ · ∇S v̂dx =

∫
Ω

f · v̂dx+

∫
∂Ω

g · v̂dS(x) ∀v̂ ∈ H1(Ω).

The standard Neumann elasticity problem in Ω is retrieved.

10. Examples

10.1. 1D case: uniaxial traction. We consider the domain Ω = R3. We assume a uniform
traction of density g = 1 on the planes {z = ±h}. Hence the tensor

K =

0 0 0
0 0 0
0 0 k

 ,

with k = χ{|z|<h}, provides the virtual power
∫
R3 K · (∇S v̂ + inc F̂ )dx =

∫
{z=h} ez.v̂dS(x) −∫

{z=−h} ez.v̂dS(x). We search for a strain field of form

E =

ϕ 0 0
0 ϕ 0
0 0 ψ

 ,
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where ϕ,ψ are functions of the z variable. In this case one has

AE =

2(λ+ µ)ϕ+ λψ 0 0
0 2(λ+ µ)ϕ+ λψ 0
0 0 2λϕ+ (λ+ 2µ)ψ

 ,

inc E =

ϕ′′ 0 0
0 ϕ′′ 0
0 0 0

 . (10.1)

Hence AE + ` inc E = K if and only if{
2(λ+ µ)ϕ+ λψ + `ϕ′′ = 0
2λϕ+ (λ+ 2µ)ψ = k.

(10.2)

Elementary algebra leads to

ψ =
1

λ+ 2µ
(k − 2λϕ),

2µ(3λ+ 2µ)ϕ+ `(λ+ 2µ)ϕ′′ = −λk.
This ordinary differential equation leads us to assume that ` < 0, since in the other case the
solutions do not decay when |z| → ∞. We denote

ω =

√
2µ(3λ+ 2µ)

λ+ 2µ
.

We obtain:

(1) For |z| < h,

ϕ(z) =
−λ

2µ(3λ+ 2µ)

[
1− exp

(
− ωh√
|`|

)
cosh

(
ωz√
|`|

)]
,

ψ(z) =
1

λ+ 2µ

{
1 +

λ2

µ(3λ+ 2µ)

[
1− exp

(
− ωh√
|`|

)
cosh

(
ωz√
|`|

)]}
.

(2) For |z| > h,

ϕ(z) =
−λ

2µ(3λ+ 2µ)
sinh

(
ωh√
|`|

)
exp

(
− ω|z|√
|`|

)
,

ψ(z) =
λ2

µ(λ+ 2µ)(3λ+ 2µ)
sinh

(
ωh√
|`|

)
exp

(
− ω|z|√
|`|

)
.

Observe that

lim
|`|→∞

ϕ(z) = 0, lim
|`|→∞

ψ(z) =


1

λ+ 2µ
if |z| < h,

0 if |z| > h,

which is the classical elastic solution with uniaxial strain.
Let ∇SU + E0 be the Beltrami decomposition of E in the domain Ωt := {|z| < t} such that

E0 ∈ W0
∂Ωt

(see Theorem 5.1), i.e., div E0 = 0 in Ωt and E0N = 0 on ∂Ωt. One has{
div ∇SU = div E in Ωt,
∇SUN = EN on ∂Ωt.

Denoting by u the z component of U we obtain u′′ = ψ′, u′(t) = ψ(t), u′(−t) = ψ(−t). Thus
u′ = ψ and, setting u(0) = 0,

u(z) =

∫ z

0

ψ(s)ds.
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Figure 1. Functions ϕ (top left) and ψ (top right), for ` = −10 (blue), ` = −100
(red), ` = −1000 (yellow). Value of u(h) in function of ` (bottom right)

We obtain in particular

u(h) =
1

λ+ 2µ

{
h+

λ2

µ(3λ+ 2µ)

[
h−

√
|`|

2ω

(
1− exp

(
− 2ωh√
|`|

))]}
.

The functions ϕ, ψ are plotted in Figure 1 for h = 1, Young’s modulus Y = 10 and Poisson ratio
ν = 1/3. The value of u(h) as a function of ` is also depicted. As expected, we observe the increase
of elongation as |`| decreases.

10.2. 2D case: cylinder under uniform radial traction. We consider a two-dimensional
model of the variables (x, y) and we assume that

E =

u w 0
w v 0
0 0 h

 , K =

p s 0
s q 0
0 0 0

 .

One has in Cartesian coordinates

AE =

(λ+ 2µ)u+ λ(v + h) 2µw 0
2µw (λ+ 2µ)v + λ(u+ h) 0

0 0 λ(u+ v) + (λ+ 2µ)h

 ,

inc E =

 ∂yyh −∂xyh 0
−∂xyh ∂xxh 0

0 0 ∂xxv − 2∂xyw + ∂yyu

 . (10.3)

Hence AE + ` inc E = K if and only if
(λ+ 2µ)u+ λ(v + h) + `∂yyh = p
(λ+ 2µ)v + λ(u+ h) + `∂xxh = q
2µw − `∂xyh = s
λ(u+ v) + (λ+ 2µ)h+ `(∂xxv − 2∂xyw + ∂yyu) = 0.

(10.4)
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Elementary algebra leads to

u =
1

4µ(λ+ µ)
((λ+ 2µ)p− λq − 2λµh+ `λ∂xxh− `(λ+ 2µ)∂yyh)

v =
1

4µ(λ+ µ)
(−λp+ (λ+ 2µ)q − 2λµh− `(λ+ 2µ)∂xxh+ `λ∂yyh)

w =
1

2µ
(s+ `∂xyh) .

Within regions where inc K = 0, div K = 0 and λ, µ, ` are constant, substituting the above
relations in the last equation of (10.4) entails

`2(λ+ 2µ)∆2h+ 4`λµ∆h− 4µ2(3λ+ 2µ)h = 2λµ(p+ q). (10.5)

This can be factorized as(
`(λ+ 2µ)∆ + 2µ(3λ+ 2µ)

)(
`∆− 2µ

)
h = 2λµ(p+ q). (10.6)

We consider an infinite cylinder B = B(0, 1) under uniform radial traction on its boundary. There-
fore we search for K = ∇Sw such that − div K = δ∂BN . A standard calculation using Airy stress
functions yields in polar coordinates

K = χB
1

2
(er ⊗ er + eθ ⊗ eθ) + (1− χB)

1

2r2
(er ⊗ er − eθ ⊗ eθ).

We choose the elastic and incompatibility moduli as

(λ, µ, `) =

{
(λi, µi, `i) in B
(λe, µe, `e) in R2 \B,

with λi/µi = λe/µe. On ∂B one has the transmission conditions JT0(E)K = JT1(E)K = 0. Let us
place ourselves in polar coordinates and, due to symmetry, search for h = h(r). The condition
JT0(E)K = 0 implies JhK = 0 and JEθθK = 0. Using AE = K − ` inc E one obtains the planar
components of AE as

(AE)plan = χB

[(
1

2
− `i
r
h′
)
er ⊗ er +

(
1

2
− `ih′′

)
eθ ⊗ eθ

]
+ (1− χB)

[(
− 1

2r2
− `e

r
h′
)
er ⊗ er +

(
1

2r2
− `eh′′

)
eθ ⊗ eθ

]
.

Then, Hooke’s law together with Err + Eθθ = u+ v = (1− 2λh− `∆h)/(2(λ+ µ)) yield

(AE)zz = χB

[
λi

2(λi + µi)

(
1− `i

r
h′ − `ih′′

)
+
µi(3λi + 2µi)

λi + µi
h

]
+ (1− χB)

[
λe

2(λe + µe)

(
−`e
r
h′ − `eh′′

)
+
µe(3λe + 2µe)

λe + µe
h

]
,

and

Eθθ = χB
1

4µi(λi + µi)

[
µi − `i(λi + 2µi)h

′′ − λi
(
−`i
r
h′ + 2µih

)]
+ (1− χB)

1

4µe(λe + µe)

[
λe + µe
r2

− `e(λe + 2µe)h
′′ − λe

(
−`e
r
h′ + 2µeh

)]
.

The condition JEθθK = 0 rewrites as
s
`

µ

λ+ 2µ

λ+ µ
h′′ − `

µ

λ

λ+ µ
h′

{
=

1

λi + µi
− 1

µe
.

Next, from T1(E) = −her ⊗ er + (h− h′)eθ ⊗ eθ we infer Jh′K = 0.
Coming back to (10.5) one looks for

h =
−λi

2µi(3λi + 2µi)
χB + h̃
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Figure 2. Strain components in cylindrical coordinates for ` = −1000 (blue),
` = −100 (red), ` = −20 (yellow), classical plane strain elastic solution (dashed)

` −1000 −100 −20
W 0.2850 0.3498 0.6016

Table 1. External work

with h̃ solution of the homogeneous equation in B and R2 \ B̄. In view of (10.5) and assuming

` < 0, h̃ is spanned by the Bessel-type functions J0(k+r), Y0(k+r), I0(k−r) and K0(k−r) with

k+ =

√
2µ

−`
, k− =

√
2µ

−`
3λ+ 2µ

λ+ 2µ
.

Due to boundedness and decay at infinity, it remains

h̃(r) =

{
aJ0(k+r) + bI0(k−r) if r < 1
cK0(k−r) if r > 1.

The three transmission conditions fix a, b and c through a linear system.
In the following simulations we take a material inside B with Young modulus Y = 10 and

Poisson ration ν = 1/3, and a nearly void exterior phase such that Ai = 10−5Ae. The compatibility
modulus is taken constant over R2. The plots of the strain are given in Figure 2, and compared
with the classical plane strain elastic strain. The external work

W =

∫
R2

K · Edx

is indicated in Table 1. This shows that decreasing the incompatibility modulus (in absolute value)
increases dissipation.

10.3. 3D case: ball under uniform traction. Consider the domain Ω =
{
x ∈ R3, |x| < 1

}
. We

assume a uniform unit radial traction on ∂Ω. We treat the two kinematical frameworks addressed



LINEARIZED INTRINSIC ELASTO-PLASTICITY 25

in this paper, namely the case of vanishing incompatibility flux and the case of free incompatibility
flux through domain extension described in Section 9.3.

10.3.1. Case 1: vanishing incompatibility flux. We assume in this case the condition inc EN = 0
on ∂Ω. We have K = ∇Sw with {

−div ∇Sw = 0 in Ω,
∇SwN = N on ∂Ω.

The solution is immediately found as w = rer and K = I. Considering the form

E = ϕ(r)I + ψ(r)er ⊗ er
we have

AE = ((3λ+ 2µ)ϕ+ λψ) I + 2µψer ⊗ er,
and (see [45])

inc E =

(
ϕ′′ +

ϕ′

r
− ψ′

r

)
I +

(
−ϕ′′ + ϕ′

r
+
ψ′

r
− 2ψ

r2

)
er ⊗ er.

Hence AE + ` inc E = K if and only if
(3λ+ 2µ)ϕ+ λψ + `

(
ϕ′′ +

ϕ′

r
− ψ′

r

)
= 1

2µψ + `

(
−ϕ′′ + ϕ′

r
+
ψ′

r
− 2ψ

r2

)
= 0.

The condition inc EN = 0 on ∂Ω entails ϕ′(1) = ψ(1). The solution of the system is the classical
elastic solution given by

ϕ =
1

3λ+ 2µ
, ψ = 0.

There is no strain incompatibility in this case. This is a consequence of tr K being constant, as
explained in Remark 7.1.

10.3.2. Case 2: free incompatibility flux. In this case we define K = ∇Sw over R3 by{
−div ∇Sw = 0 in Ω ∪ (R3 \ Ω̄),
J∇SwNK = N on ∂Ω.

For w = w(r)er one has

∇Sw = w′er ⊗ er +
w

r
(eθ ⊗ eθ + eφ ⊗ eφ),

div ∇Sw =

(
w′′ + 2

w′

r
− 2

w

r2

)
er =

(
1

r2
(r2w)′

)′
er.

Therefore

div ∇Sw = 0⇐⇒ w = ar +
b

r2

for some constants a, b. The transmission condition yields

w(r) =
r

3
χ{r<1} +

1

3r2
χ{r>1},

K =
1

3
Iχ{r<1} +

1

r3
χ{r>1}

(
1

3
I − er ⊗ er

)
.

We still search E of the form

E = ϕ(r)I + ψ(r)er ⊗ er.
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Outside Ω we assume that the Lamé coefficients are vanishing whereas the incompatibility modulus
is kept the same as within Ω, as explained in Section 9.3. Hence AE + ` inc E = K if and only if

χ{r<1} ((3λ+ 2µ)ϕ+ λψ) + `

(
ϕ′′ +

ϕ′

r
− ψ′

r

)
=

1

3
χ{r<1} +

1

3r3
χ{r>1}

χ{r<1}2µψ + `

(
−ϕ′′ + ϕ′

r
+
ψ′

r
− 2ψ

r2

)
= − 1

r3
χ{r>1}.

Note that we have taken exactly vanishing Lamé coefficients outside Ω for technical simplicity.
This leads in principle to nonunique solutions, however this issue will be overcome later.

Let us first solve the system in Ω. Set ρ = ψ − rϕ′. Substituting for ψ yields
(3λ+ 2µ)ϕ+ λ(rϕ′ + ρ)− `ρ

′

r
=

1

3

2µ(rϕ′ + ρ) + `

(
ρ′

r
− 2

ρ

r2

)
= 0.

We infer after some algebra

ϕ =
1

3λ+ 2µ

[
1

3
+ `

(
1 +

λ

2µ

)
ρ′

r
− λ`

µ

ρ

r2

]
, (10.7)

ρ′′ −
(
m+

2

r2

)
ρ = 0, with m = −2µ

`

3λ+ 2µ

λ+ 2µ
> 0.

Setting ρ = pr2 we obtain

p′′ +
4

r
p′ −mp = 0,

then, with p(r) = q(r
√
m) and s = r

√
m,

q′′ +
4

s
q′ − q = 0.

The last change of unknown q(s) = ξ(s)/s provides the spherical Bessel equation

s2ξ′′ + 2sξ′ − (s2 + 2)ξ = 0.

Bounded solutions are spanned by the spherical Bessel function

i1(s) :=
d

ds

(
sinh(s)

s

)
=

cosh(s)

s
− sinh(s)

s2
. (10.8)

Therefore, setting

h0(s) =
i1(s)

s
,

we obtain for some constant a,

ρ(r) = ar2h0(r
√
m).

On ∂Ω we have the condition on the incompatibility flux ` inc EN = (KN)ext, which reads

2` (ϕ′(1)− ψ(1)) er = −2

3
er.

It provides ρ(1) = 1/3`, hence

ρ(r) =
1

3`
r2h0(r

√
m)

h0(
√
m)

. (10.9)

We obtain ϕ from (10.7), then ψ from ψ = ρ+ rϕ′.
Let us now turn to the exterior solution, which is needed to find the displacement field by

Beltrami decomposition. Recall the equations in R3 \ Ω̄
ϕ′′ +

ϕ′

r
− ψ′

r
=

1

3`r3

−ϕ′′ + ϕ′

r
+
ψ′

r
− 2ψ

r2
= − 1

`r3
.
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The general solution is obtained as

ϕ(r) =

(
1

3`
− β

)
1

r
+
α

r3
, ψ(r) =

β

r
− 3α

r3

for some constants α, β. Denote by A∗ the Hooke tensor of the weak phase outside Ω. We assume
that A∗ = γA for some constant γ → 0. The equation A∗E + ` inc E = K gives div A∗E =
div K = 0, whereby div AE = 0. This entails

β =
3λ+ 2µ

6`(λ+ 2µ)
.

It remains to fix α through the transmission conditions JT0(E)K = JT1(E)K = 0 on ∂Ω. The first
condition is obviously equivalent to JϕK = 0. From (2.11) we obtain JT1(E)K = −2JϕKer ⊗ er +
Jψ − ϕ′K(eθ ⊗ eθ + eφ ⊗ eφ), then given the first condition, the second one is fulfilled if and only if
Jψ − ϕ′K = 0. Observe that this also exactly the expression of J inc ENK = 0. Yet we have on the
exterior side ψ(1) − ϕ′(1) = 1/3`, which turns to be equal to ρ(1) = ψ(1) − ϕ′(1) on the interior
side. In fact, only the continuity of ϕ fixes α by

α =
1

3λ+ 2µ

[
1

3
+ `

(
1 +

λ

2µ

)
ρ′(1)− λ`

µ
ρ(1)

]
+

λ− 2µ

6`(λ+ 2µ)
.

The exterior deformation field is completely determined.
We now compute the displacement U such that E = ∇SU + E0, div E0 = 0, E0N → 0 at

infinity. Therefore U solves {
div ∇SU = div E in R3

∇SUN → EN at ∞. (10.10)

For U = u(r)er, the first equation reads when r 6= 1

u′′ + 2
u′

r
− 2

u

r2
= ϕ′ + ψ′ + 2

ψ

r
.

For r > 1, rewriting the left hand side and computing the right hand side provides(
1

r2
(r2u)′

)′
=

2λ

3`(λ+ 2µ)

1

r2
,

whereby for some constants c and d,

u(r) =
−λ

3`(λ+ 2µ)
+ cr +

d

r2
.

Now, the condition ∇SUN → EN at infinity yields c = 0, since Eer = (ϕ+ ψ)er → 0.
For r < 1 we find

ϕ′ + ψ′ + 2
ψ

r
= 4ϕ′ + ρ′ + rϕ′′ +

2

r
ρ =

2λ

λ+ 2µ

ρ

r
.

Substituting (10.9) leads to the equation(
1

r2
(r2u)′

)′
=

2λ

3`(λ+ 2µ)

i1(r
√
m)

i1(
√
m)

.

Using (10.8) we arrive at

u(r) =
−λ

3µ(3λ+ 2µ)

i1(r
√
m)

i1(
√
m)

+ er

for some constant e. On ∂Ω, (10.10) amounts to J∇SUNK = JENK, that is Ju′ + 2uK = JψK, hence
we have the jump relations JuK = 0 and Ju′K = JψK. This fixes the constants d and e through a
linear system.

A Taylor expansion provides i1(s) = s/3+o(s2) as s→ 0. Then for `→ −∞ it is easily checked
that the elastic solution is retrieved, namely

ϕ∞(r) =
1

3λ+ 2µ
χ{r<1} +

1

3λ+ 2µ

1

r3
χ{r>1}, ψ∞(r) =

−3

3λ+ 2µ

1

r3
χ{r>1}
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Figure 3. Functions ϕ, ψ and u for ` = −1000 (blue), ` = −100 (red), ` = −10
(yellow), elastic solution (dashed).

u∞(r) =
1

3λ+ 2µ
rχ{r<1} +

1

3λ+ 2µ

1

r2
χ{r>1}.

The functions ϕ, ψ and u are plotted on Figure 3 for different values of `. The curves of displacement
show an increase of dilation due to inelastic deformation.
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