
HAL Id: hal-01651821
https://hal.science/hal-01651821v1

Preprint submitted on 29 Nov 2017 (v1), last revised 30 Jun 2020 (v5)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

EXISTENCE RESULTS FOR A LINEARIZED
INTRINSIC ELASTO-PLASTICITY MODEL

Samuel Amstutz, Nicolas van Goethem

To cite this version:
Samuel Amstutz, Nicolas van Goethem. EXISTENCE RESULTS FOR A LINEARIZED INTRINSIC
ELASTO-PLASTICITY MODEL. 2017. �hal-01651821v1�

https://hal.science/hal-01651821v1
https://hal.archives-ouvertes.fr


EXISTENCE RESULTS FOR A LINEARIZED INTRINSIC

ELASTO-PLASTICITY MODEL

SAMUEL AMSTUTZ AND NICOLAS VAN GOETHEM

Abstract. A novel model of elasto-plasticity based on an intrinsic approach is proposed. The

model variables are the linearized strain and its incompatibility. Elastic strain incompatibility

accounts for the presence of dislocations in the microstructure, which are responsible for the
plastic behaviour of solids. The functional analysis setting is built up, on which existence results

are proved.

1. Introduction

1.1. The intrinsic approach to elasticity. An intrinsic approach to elasticity simply means that
the main and primal variable is the strain, together with its derivatives, and that the displacement
and rotation fields are possibly recovered in a second step, in case they are needed. This approach
is most prabably the first historically, since the strain was indeed used to measure deformation,
that is, variation in length and in mutual orientations of infinitesimal fibers within a solid body.
As a matter of fact, for the geometer the strain is a metric from which all other geometric concepts
are retrieved. Specifically given a smooth strain tensor field ε the classical Volterra-Michell-Cesaro
construction [3, 14,23] (see also [13]) in linearized elasticity consists in

• introducing the Frank tensor1 F = Curlt ε;
• defining the rotation field as ω(x) = ω(x0) +

∫ x
x0
F (ξ)dL(ξ), on a smooth curve joining the

endpoints x0 and x;
• defining the displacement field as u(x) = u(x0)+

∫ x
x0

(ε− ε(ω)) (ξ)dL(ξ), where ε(ω) stands

for the skew-symmetric rotation tensor constructed from ω, namely (ε(ω))il = εilkωk.

In order for u and ω to be well defined, i.e., to be path-independent in a simply connected domain,
it is immediately seen that a sufficient and necessary condition be that

inc ε := Curl Curlt ε = Curl F = 0,

introducing the strain incompatibility tensor inc ε, that is easily seen to be symmetric. Note
that in case inc ε is not vanishing this means exactly that the rotation and/or displacement fields
exhibit a jump around what is classically called a Burgers circuit (to this respect an important
role is played by the choice of the origin x0 as shown in [21]). So far it appears clear that the
important geometric quantities are ε, Curlt ε and inc ε. This is the seminal motivation for our
model which is precisely designed from these variables. In particular, this choice makes the model
of gradient-type. Note that it appears natural to consider the curl instead of the full gradient, and
the inc instead of the full Hessian.

Strangely enough, though the incompatibility operator was regularly used in the engineering
literature, the mathematical study of spaces of square integrable tensor-valued functions with
square integrable incompatibility was not yet considered and our first step was hence to dedicate
a paper to the subject [1].

2010 Mathematics Subject Classification. 35J48,35J58,49S05,49K20,74C05,74G99,74A05,74A15, 80A17.
Key words and phrases. Elasticity, plasticity, strain incompatibility, dislocations, intrinsic model.
1This terminology was introduced in [21, 22] simply because its integral on a closed loop yields the so-callled

Frank tensor attached to a disclination singularity.
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In finite elasticity the intrinsic approach was recently carried on in a systematic way by Ph.
Ciarlet and co-authors [4–6]. In a first step, they proved that given a smooth enough metric
C it can be written as C = ∇tϕ∇ϕ for some smooth enough map ϕ provided the Riemannian
curvature associated to C was vanishing. It turns out that the first-order terms of the Riemannian
curvature is precisely inc 1

2 (C − Id) (see [13]), that is, requiring vanishing strain incompatibility
in linearized elasticity is the counterpart of requiring vanishing curvature in finite elasticity. In a
second step (see [6] for instance), their aim was to rewrite classical boundary value problems of
linearized elasticity in a intrinsic form, that is, with boundary conditions expressed in terms of
the strain ε = ∇Su only, in place of the displacement. As a result, they showed that requiring
vanishing displacement u on the boundary amounts to imposing vanishing tangential metric and
second fundamental form (i.e., curvature associated with the metric). The purpose of [20] was to
show in turn that these intrinsic boundary conditions were equivalent to requiring the tangential
part of ε and Curlt ε×N to vanish on the boundary, where N stands for the outward unit normal.

1.2. A critical view on traditional elasto-plasticity. Traditional elasto-plasticity has been
developed on three main postulates (see for instance [12]):

(1) The decomposition of the strain into an elastic and a plastic part. In linearized elasto-
plasticity the decomposition is additive: ε = εe + εp. In finite elasticity one decomposes
the deformation gradient multiplicatively: F = F eF p (or arguably in the reverse order,
see [8]).

(2) The coupling of two evolution laws for the elastic and the plastic part, namely the balance
equations in terms of the Cauchy stress, given by a constitutive function of some elastic
kinematical quantity (i.e., related to εe or F e), and the postulated flow rules, expressed in
terms of an appropriate plastic kinematic variable (i.e., related to εp or F p and their time
rates).

(3) The existence of convex dissipation potentials required to define the time evolution of the
plastic kinematical variables through the flow rules.

One usually justifies the partition hypothesis (1) by the different kinds of physical processes in-
volved: while the elastic deformation models the change in interatomic distances, the plastic strain
is a measure of the displacement of atoms with modification of interatomic bonds. Note that this
partition is local, i.e., ε(x) = εe(x) + εp(x) for any x ∈ Ω and is purely of physical nature, that
is, there is not any sort of mathematical structure that justifies the decomposition. In linearized
elasto-plasticity the additive decomposition can be understood through the definition of the elastic
strain from the Cauchy stress σ (a measurable quantity) as εe := A−1σ and the assumption that
the plastic strain εp is the complement so that the total strain is compatible, that is, that there
exists a displacement field u such that ε = ∇Su. This statement is not justified by any mathemat-
ical argument and the adoption of this hypothesis is made for simplicity. Indeed it automatically
implies that the incompatibilities of elastic and plastic parts mutually compensate, without the
need to let the flow rules comply with this property. The finite deformation case is more delicate
since any kind of multiplicative decomposition (originally due to Nye [17]) relies on the generally
postulated existence of an intermediate reference configuration from which elastic (or plastic) de-
formation applies. In the sequel we will not dwell on the finite deformation case, since our model
is about linearized elasto-plasticity.

As for (2) it should be noted that the balance equation involves the Cauchy stress only. In a
modelling step, the latter is related to the elastic strain by a constitutive law. In contrast, the
knowledge of the plastic strain is obtained by the solution of the flow rules, which from a modelling
standpoint, are unrelated to the balance equation. This mere superposition of conceptually distinct
constructs (one originates from conservation principles, the other by arbitrary modelling choices),
though leading to an extraordinary efficient model, might also appear as insatisfactory from an
intellectual viewpoint.

Lastly, assumption (3) cannot be given any rigourous justification. It allows one to use the
powerfull toolbox of convex calculus and again, as for (2) has led to establishing a model which
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has proven to simulate accurately real world processes. One would like to understand plastic
deformation without appealing to convexity, at leat not in its premises.

Rigourous existence results in traditional plasticity can be found for instance in [7, 15,18].

1.3. Our model: from generalized elasticity to intrinsic elasto-plasticity. The novel ap-
proach we propose has been introduced and discussed in [2]. In our model, neither of the three
above postulates are considered. Our paradigm is radically different and our approach is based on
the following rationales.

(1) Strain rate is prefered to strain and is given its following, primordial definition. Identify
three fibers at x, denoted by a1, a2, a3, which at time t are oriented along the axes of a
Cartesian coordinate system and of unit lengths. Then the deformation rate is defined at
x as (see, e.g., [9])

dij(t) =
1

2

(
∂

∂t
(ai · aj)

)
t

. (1.1)

Having fixed an initial time t0 = 0, the time integral of the objective tensor d, called the

strain or deformation tensor reads ε(t) =
∫ t

0
d(s)ds. Note that (1.1) holds for infinitesimal

as well as for finite strains and hence one is not forced to specify the quantitative nature
of the deformations before they take place.

(2) This strain defined in this fashion is neither elastic nor plastic, it simply has a compatible
and an incompatible part, that are given by a structure theorem called Beltrami decom-
position [13]:

ε = ∇Su+ E0. (1.2)

As opposed to elasto-plastic partitions this decomposition is unique once boundary con-
ditions for u are prescribed. Moreover, while ε is an objective field (in a general sense as
discussed in [1]), neither∇Su nor E0 are objective. Therefore the model will be constructed
upon ε and its derivatives.

(3) The governing equations should generalize classical linear elasticity in the sense that it
must take into account the possible strain incompatibility. The idea behind is that the
model should explicitely account for the physical cause of plasticity: the presence and
motion of dislocations as microstructural perturbations.

Our model can be briefly described as follows (see [2] for details). One considers linearized

gradient elasticity in the sense of Mindlin [16]. One assumes that the virtual strain rate d̂ and its
gradient produce intrinsic work and by the virtual power principle we write∫

Ω

(σ · d̂+ τ · ∇d̂)dx =

∫
Ω

K · d̂ dx,

where σ, τ are the Cauchy stress and hyperstress tensors, respectively, and K is a tensor representing
external efforts. Our constitutive framework is that of linear gradient-elasticity, that is σ = Aε
and τ = B∇ε, where A,B are the Lamé and Mindlin tensors, respectively (see [16]). We require
that the intrinsic power induced by the hyperstress

∫
Ω
∇ε ·τdx vanishes as soon as the deformation

is compatible, i.e., that it is only due to microstructural effects in the form of dislocations, since
Kröners’s formula links elastic strain incompatibility and dislocation density (see [11,20,21]). This
yields the existence of a scalar ` called incompatibility modulus, such that −div τ = ` inc ε.
Therefore the VPP yields the weak form∫

Ω

(Aε+ ` inc ε) · d̂ dx =

∫
Ω

K · d̂ dx, ∀d̂ ∈ E , (1.3)

where E is the set of virtual strain rates.
To see that this equation generalizes linearized elasticity, take d̂ = ∇S v̂ with v̂ = 0 on ΓD ⊂ ∂Ω

and take K such that −div K = f in Ω and KN = g on ΓN := ∂Ω \ ΓD. Then, plugging this into
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(1.3) immediately yields {
−div (Aε+ ` inc ε) = f in Ω,

(Aε+ ` inc ε)N = g on ΓN ,
(1.4)

which is exactly the system of linearized elasticity in case of compatible strain, i.e. with ε = ∇Su
with u = u0 on ΓD, since for such strains inc ε = 0.

More generally, we believe that our model is able to represent finite deformations through an
incremental formulation. In this case, ε is a strain increment and (A, `) are seen as tangent
elasto-plastic moduli. Of course, their evolution should be driven by constitutive laws in order
to account, for instance, for hardening phenomena. An energetic approach is to relate changes in
these coefficients with mechanical dissipation. A sensitivity analysis of the dissipation functional
with respect to a variation of ` within a small inclusion has been conducted in [2] for a simplified
model. The extension to the full model and the numerical implementation, for which the existence
results of the present work were mandatory, is an ongoing work.

1.4. Summary of our results. Set E = L2(Ω). The main purpose of this work is to prove that
(1.3), or equivalently the associated strong form Aε+ ` inc ε = K in Ω has a solution in the space
of square integrable functions with square integrable incompatibility, with the additional condition
on the dislocation flux at the boundary inc εN = 0 on ∂Ω. The main ingredients to achieve the
proof are (i) orthogonal decompositions of L2(Ω) based on the Beltrami decomposition, and (ii)
Fredholm’s alternative. It is also to be stressed that our model has no variational structure in
the sense that the solution is not minimum of an energy. Moreover we analyze the case |`| → ∞
which represents the elastic limit, i.e., with vanishing strain incompatibility. We conclude by two
academic examples.

2. Preliminary results

Let Ω be a regular (C∞) bounded domain of R3. We denote by ∂Ω its boundary and by N its
outward unit normal.

2.1. The curvilinear frame. For all x ∈ ∂Ω, the system (τA(x), τB(x), N(x)) is an orthonormal
basis of the tangent plane to ∂Ω, that can be naturally extended along N in a neigborhood W
of ∂Ω (see [1]). The curvatures along τA and τB are denoted by κA and κB . Define the normal
derivative as ∂N := N · ∇ and tangential derivative as ∂R := τR · ∇, for R ∈ {A,B}. We will also
use the notation R∗ = B if R = A, R∗ = A if R = B. The following results are proved in [1].

Theorem 2.1. There exist smooth scalar fields ξ, γA, γB in W such that

∂NN = ∂Nτ
R = 0, (2.1)

∂RN = κRτR + ξτR
∗
, (2.2)

∂Rτ
R = −κRN − γR

∗
τR
∗
, (2.3)

∂R∗τ
R = γRτR

∗
− ξN. (2.4)

If (τA(x), τB(x)) are oriented along the principal directions of curvature then ξ(x) = 0.

Lemma 2.2. If f is twice differentiable in W it holds

∂R∂Nf = ∂N∂Rf + κR∂Rf + ξ∂R∗f. (2.5)

2.2. Basic function spaces. Define

Hcurl(Ω,M3) := {E ∈ L2(Ω,M3) : Curl E ∈ L2(Ω,M3)},
Hdiv(Ω,S3) := {E ∈ L2(Ω,S3) : div E ∈ L2(Ω,R3)},

H inc(Ω) :=
{
E ∈ L2(Ω,S3) : inc E ∈ L2(Ω,S3)

}
.
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These spaces are endowed with the norms defined by ‖E‖2Hcurl = ‖E‖2L2 + ‖Curl E‖2L2 , ‖E‖2Hdiv =

‖E‖2L2 + ‖ div E‖2L2 , ‖E‖2Hinc = ‖E‖2L2 + ‖ inc E‖2L2 , respectively. We also define

H inc
0 (Ω,S3) = the closure of D(Ω,S3) in H inc(Ω,S3),

as well as the trace space

H̃3/2(∂Ω,S3) =

{
E ∈ H3/2(∂Ω,S3) :

∫
∂Ω

ENdS(x) = 0

}
.

Theorem 2.3 (Lifting [1]). Let E ∈ H̃3/2(∂Ω,S3), and G ∈ H1/2(∂Ω,S3). There exists E ∈
H2(Ω,S3) such that  E = E on ∂Ω,

(∂NE)T = GT on ∂Ω,
div E = 0 in Ω,

where the subscript T stands for the tangential part. In addition, such a lifting can be obtained
through a linear continuous operator

L∂Ω : (E,G) ∈ H̃3/2(∂Ω,S3)×H1/2(∂Ω,S3) 7→ E ∈ H2(Ω,S3).

Define the subset of C∞(∂Ω,S3)

G = {V �N,V ∈ R3},

with the notation U � V := (U ⊗ V + V ⊗ U)/2.

Lemma 2.4 (Dual trace space [1]). Every E ∈ H−3/2(∂Ω,S3)/G admits a unique representative

Ẽ such that ∫
∂Ω

ẼNdS(x) = 0. (2.6)

Moreover, the dual space of H̃3/2(∂Ω,S3) is canonically identified with H−3/2(∂Ω,S3)/G.

2.3. Green formula and applications. Recall that the Green formula for the divergence allows
to define, for any T ∈ Hdiv(Ω,S3), its normal trace TN ∈ H−1/2(∂Ω,R3) by∫

∂Ω

(TN) · ϕdS(x) :=

∫
Ω

div T · ϕ̃+ T · ∇Sϕ̃ ∀ϕ ∈ H1/2(∂Ω,R3),

with ϕ̃ ∈ H1(Ω,R3) an arbitrary lifting of ϕ. For the incompatibility operator one has the following
counterpart.

Lemma 2.5 (Green formula for the incompatibility [1]). Suppose that T ∈ C2(Ω,S3) and η ∈
H2(Ω,S3). Then∫

Ω

T · inc ηdx =

∫
Ω

inc T · ηdx+

∫
∂Ω

T1(T ) · η dS(x) +

∫
∂Ω

T0(T ) · ∂Nη dS(x) (2.7)

with the trace operators defined as

T0(T ) := (T ×N)
t ×N, (2.8)

T1(T ) :=
(

Curl (T ×N)t
)S

+ ((∂N + k)T ×N)
t ×N +

(
Curlt T ×N

)S
, (2.9)

where k is twice the mean curvature on ∂Ω and TS = (T + T t)/2. In addition, it holds∫
∂Ω

T1(T )NdS(x) = 0. (2.10)
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Alternative expressions for T1(T ) are given in [1], like

T1(T ) = −
∑
R

κR(T × τR)t × τR −
∑
R

ξ(T × τR)t × τR
∗

+ ((−∂N + k)T ×N)
t ×N

− 2

(∑
R

(∂RT ×N)t × τR
)S

. (2.11)

For a general symmetric tensor T , with components TRR′ := TτR
′ · τR in the curvilinear frame,

one has:

T =

TAA TAB TAN
TBA TBB TBN
TNA TNB TNN

 , (T ×N)t ×N =

 TBB −TAB 0
−TAB TAA 0

0 0 0

 , (2.12)

(T × τA)t × τA =

0 0 0
0 TNN −TBN
0 −TBN TBB

 , (T × τB)t × τB =

 TNN 0 −TAN
0 0 0

−TAN 0 TAA

 , (2.13)

(T ×N)t × τA =

0 TBN −TBB
0 −TAN TAB
0 0 0

 , (T ×N)t × τB =

−TBN 0 TAB
TAN 0 −TAA

0 0 0

 . (2.14)

As shown in [1], we can define the traces T0(T ) ∈ H−1/2(∂Ω,S3) and T1(T ) ∈ H−3/2(∂Ω,S3)/G
for every T ∈ H inc(Ω,S3) by

〈T0(T ), ϕ0〉 =

∫
Ω

T · inc η0dx−
∫

Ω

inc T · η0dx, ∀ϕ0 ∈ H1/2(∂Ω,S3),

〈T1(T ), ϕ1〉 =

∫
Ω

T · inc η1dx−
∫

Ω

inc T · η1dx, ∀ϕ1 ∈ H̃3/2(∂Ω,S3),

with η0 = L∂Ω(0, ϕ0) and η1 = L∂Ω(ϕ1, 0) (recall that L∂Ω is the lifting operator defined in
Theorem 2.3). In addition, by Lemma 2.4, T1(T ) admits a unique representative satisfying (2.10).
By linearity of L∂Ω, this extends formula (2.7) to any functions T ∈ H inc(Ω,S3) and η ∈ H2(Ω,S3).
Note that we could well have defined T1(T ) ∈ H−3/2(∂Ω,S3) by using a classical lifting inH2(Ω,S3),
but spaces of divergence-free tensors arise naturally in our problems.

From the two Green formulas recalled above one easily infers the following.

Lemma 2.6. 1. For all v ∈ H1(Ω,R3), one has inc ∇Sv = 0 in the sense of distributions.
2. For all E ∈ H inc(Ω,S3), one has div inc E = 0 in the sense of distributions.

Consequently, if E ∈ H inc(Ω,S3), inc EN is defined in H−1/2(∂Ω,R3) by∫
∂Ω

inc EN · ϕdx =

∫
Ω

inc E · ∇Sϕdx ∀ϕ ∈ H1(Ω,R3).

If ω ⊂⊂ Ω and u is a vector or tensor field defined over Ω with well-defined traces on each side of
∂ω, we denote by JuK the jump of u across ∂ω with inner term counted positively.

Lemma 2.7. If E ∈ H inc(Ω,S3) and ω ⊂⊂ Ω, then J inc ENK = 0 across ∂ω.

Proof. Let ϕ ∈ D(Ω,R3). By definition and Lemma 2.6,∫
∂ω

J inc ENK · ϕdx =

∫
Ω

inc E · ∇Sϕdx = 0.

By density this is also true for any ϕ ∈ H1
0 (Ω,R3), and subsequently for any ϕ ∈ H1/2(∂ω,R3). �

Lemma 2.8. If E ∈ L2(Ω,S3), E|ω ∈ H inc(ω,S3), E|Ω\ω̄ ∈ H inc(Ω \ ω̄,S3) and JT0(E)K =

JT1(E)K = 0 across ∂ω, then E ∈ H inc(Ω,S3).

Proof. By the Green formula. �



LINEARIZED INTRINSIC ELASTO-PLASTICITY 7

Corollary 2.9. If E ∈ H inc(Ω,S3) and T0(E) = T1(E) = 0 on ∂Ω, then inc EN = 0 on ∂Ω.

Proof. Extend E by 0 and apply Lemmas 2.8 and 2.7. �

Corollary 2.10. If v ∈ H1
0 (Ω,R3), then T0(∇Sv) = T1(∇Sv) = 0 on ∂Ω.

Proof. Extend v by 0 and apply Lemma 2.7. �

Let Γ be a smooth subset of ∂Ω. Corollary 2.10 extends as follows.

Lemma 2.11. If v ∈ H1(Ω,R3) satisfies v = 0 on Γ in the sense of traces, then T0(∇Sv) =
T1(∇Sv) = 0 on Γ.

Proof. Denote T = ∇Sv. One obtains from Theorem 2.1:

TNN = (∇Sv)N ·N =
1

2
(∂jvi + ∂ivj)NiNj = ∂NvN ,

TRR = (∇Sv)τR · τR =
1

2
(∂jvi + ∂ivj)τ

R
i τ

R
j = ∂RvR + κRvN + γR

∗
vR? ,

TAB = (∇Sv)τB · τA =
1

2
(∂BvA + ∂AvB)− 1

2
(γAvB + γBvA) + ξvN ,

TRN =
1

2
(∂jvi + ∂ivj)τ

R
i Nj =

1

2
(∂NvR + ∂RvN − κRvR − ξvR∗).

Therefore condition v = 0 on Γ implies TAA = TAB = TBB = 0, whereby T0(T ) = 0.
Moreover, using (2.11) and (2.12)-(2.14) one obtains the expression in the basis of principal

curvatures for simplicity (ξ = 0):

T1(T ) =

 −∂NTBB + 2(∂BT )BN + kTBB − κBTNN ∂NTAB − kTAB − (∂BT )AN − (∂AT )BN
∂NTAB − kTAB − (∂BT )AN − (∂AT )BN −∂NTAA + 2(∂AT )AN + kTAA − κATNN

κBTAN + (∂AT )BB − (∂BT )AB κATBN − (∂AT )AB + (∂BT )AA

κBTAN + (∂AT )BB − (∂BT )AB
κATBN − (∂AT )AB + (∂BT )AA

−κATBB − κBTAA

 .

From the knowledge that TAA = TAB = TBB = 0, one obtains

T1(T ) =

 −∂NTBB + 2(∂BT )BN − κBTNN ∂NTAB − (∂BT )AN − (∂AT )BN
∂NTAB − (∂BT )AN − (∂AT )BN −∂NTAA + 2(∂AT )AN + kTAA − κATNN
κBTAN + (∂AT )BB − (∂BT )AB κATBN − (∂AT )AB + (∂BT )AA

κBTAN + (∂AT )BB − (∂BT )AB
κATBN − (∂AT )AB + (∂BT )AA

0

 . (2.15)

Yet one has in a general basis

(∂RT )RN = ∂RTRN − κRTRR + γR
∗
TR∗N + κRTNN − ξTRR∗ ,

(∂R∗T )RN = ∂R∗TRN − κR
∗
TRR∗ − γRTR∗N + ξTNN − ξTRR.

Recalling that v = 0 on Γ and by Lemma 2.2 the first diagonal term of T1(T ) vanishes since

−∂NTBB + 2(∂BT )BN − κBTNN (2.16)

= −∂NTBB + 2∂BTBN + 2γATAN + κBTNN (2.17)

= −∂N (∂BvB + κBvN + γAvA) + (∂BNvB − ∂BBvB − ∂B(κBvB)) + γA(∂NvA + ∂AvN − κAvA)

−∂B(ξvA)− γAξvB + κB∂NvN

= ∂BNvB − ∂NBvB = γB∂BvB = 0. (2.18)

The same computation holds for the second diagonal term. For the AB-term one has

∂NTAB − (∂BT )AN − (∂AT )BN = ∂NTAB − ∂BTAN − ∂ATBN + γATBN + γBTAN − 2ξTNN ,
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which vanishes whenever ξ = 0 by the same arguments. Finally one has (∂RT )R∗R∗ = ∂RTR∗R∗ −
2γR

∗
TRR∗ + 2ξTR∗N and (∂R∗T )RR∗ = ∂R∗TRR∗ + κR

∗
TRN + γRTRR − γR

∗
TRR∗ + ξTRN , hence

the AN - and BN -terms also vanish. �

Corollary 2.12. Let v ∈ H1(Ω,R3) be such that v = r on Γ in the sense of traces, with r a rigid
displacement field. Then T0(∇Sv) = T1(∇Sv) = 0 on Γ.

Proof. On Γ it holds
Ti(∇Sv) = Ti(∇S(v − r)) = 0, i = 0, 1,

by Lemma 2.11. �

Lemma 2.13. Let E ∈ H2(Ω). Then E = T1(E) = 0 on Γ ⊂ ∂Ω if and only if E = (∂NT ×N)
t×

N = Curlt E ×N = 0 on Γ.

Proof. From E = 0 on Γ one infers that ∂RE = 0 on Γ, with R = A,B. Thus, (2.15) rewrites as

0 =

−∂NEBB ∂NEAB 0
∂NEAB −∂NEAA 0

0 0 0

 = −T0(∂NE)

on Γ, achieving the proof, the last statement being proved in [1]. The converse is proven in the
same manner. �

Lemma 2.14. We have the characterization

H inc
0 (Ω,S3) =

{
E ∈ H inc(Ω,S3) : T0(E) = T1(E) = 0 on ∂Ω

}
.

Proof. Suppose En ∈ D(Ω,S3), E ∈ H inc(Ω,S3), En → E in H inc(Ω,S3). Of course, T0(En) =
T1(En) = 0 on ∂Ω. Then by continuity T0(E) = T1(E) = 0 on ∂Ω.

Suppose now E ∈ H inc(Ω,S3) with T0(E) = T1(E) = 0 on ∂Ω. Extend E by 0 to get Ẽ ∈
H inc(R3,S3). By local charts, shifting and convolution with mollifiers, we can define through a

standard construction En ∈ D(R3,S3) such that En → Ẽ in H inc(R3,S3) and spt En ⊂ Ω. Hence
En → E in H inc(Ω,S3), which yields E ∈ H inc

0 (Ω,S3). �

2.4. Beltrami decomposition and related results.

Theorem 2.15 (Saint-Venant compatibility conditions [13]). Assume that Ω is simply-connected.
Let p ∈ (1,+∞) be a real number and let E ∈ Lp(Ω,S3). Then,

inc E = 0 in W−2,p(Ω,S3)⇐⇒ E = ∇Sv
for some v ∈W 1,p(Ω,R3). Moreover, u is unique up to rigid displacements.

Theorem 2.16 (Beltrami decomposition [13]). Assume that Ω is simply-connected. Let p ∈
(1,+∞) be a real number and let E ∈ Lp(Ω,S3). Then, for any v0 ∈ W 1/p,p(∂Ω), there exists a
unique v ∈W 1,p(Ω,R3) with v = v0 on ∂Ω and a unique F ∈ Lp(Ω,S3) with Curl F ∈ Lp(Ω,R3×3),
inc F ∈ Lp(Ω,S3), div F = 0 and FN = 0 on ∂Ω such that

E = ∇Sv + inc F. (2.19)

We call v and F the velocity and incompatibility fields, respectively, associated with E. The
following result is the dual counterpart of Saint-Venant’s decomposition.

Corollary 2.17. Assume that Ω is simply-connected. If E ∈ L2(Ω,S3) satisfies div E = 0 in
H−1(Ω), then there exists a unique F ∈ L2(Ω,S3) with Curl F ∈ L2(Ω,S3), div F = 0 and
FN = 0 on ∂Ω such that E = inc F .

Proof. Theorem 2.16 yields
E = ∇Sv + inc F,

with the appropriate F and v ∈ H1
0 (Ω,S3). The condition 0 = div E = div ∇Sv entails v = 0. �

We now specialize Saint-Venants’s decomposition in the case of boundary conditions.
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Proposition 2.18. Assume that Ω is simply-connected. If E ∈ L2(Ω,S3) satisfies{
inc E = 0 in Ω,
T0(E) = T1(E) = 0 on ∂Ω

(2.20)

there exists v ∈ H1
0 (Ω,R3) such that ∇Sv = E. Moreover, the map E ∈ L2(Ω,S3) 7→ v ∈ H1

0 (Ω,R3)
is linear and continuous.

Proof. Up to passing to the limit of a sequence, we can without loss of generality assume that
E ∈ D(Ω,S3). Let A : H−1(Ω,R3)→ L2(Ω,S3) be the linear map defined by Aϕ = ∇Su with{

−div ∇Su = ϕ in Ω,
u = 0 on ∂Ω.

Let A∗ : L2(Ω,S3) → H1
0 (Ω,R3) be the adjoint operator of A. Let E ∈ L2(Ω,S3) satisfy (2.20)

and v = A∗E ∈ H1
0 (Ω,R3). Let Φ ∈ D(Ω,S3). By definition we have

−
∫

Ω

A∗E div Φdx = −
∫

Ω

E ·A( div Φ)dx.

Set Ψ = A( div Φ). We have −div Ψ = div Φ. By Corollary 2.17, Ψ = −Φ + inc ζ for some
ζ ∈ H inc(Ω,S3). We obtain

−
∫

Ω

(
A∗E div Φ =

∫
Ω

E · Φ−
∫

Ω

E · inc ζ

)
dx.

Since E ∈ D(Ω,S3) and inc E = 0 it holds∫
Ω

E · inc ζdx = 0.

We arrive at

−
∫

Ω

A∗E div Φdx =

∫
Ω

E · Φdx,

thus

∇S(A∗E) = E

in the sense of distributions. �

We can now state a converse to Corollary 2.10.

Proposition 2.19. Assume that Ω is simply connected. If v ∈ H1(Ω,R3) is such that T0(∇Sv) =
T1(∇Sv) = 0 on ∂Ω then there exists a rigid displacement field r such that v = r on ∂Ω.

Proof. By Proposition 2.18, there exists w ∈ H1
0 (Ω,R3) such that ∇Sv = ∇Sw. Next, there exists

a rigid displacement field r such that v = w + r. On ∂Ω we have v = r. �

3. Orthogonal decompositions

We assume in this section that Ω is simply-connected.

3.1. Orthogonal decomposition of L2(Ω,S3). Let Γ be a smooth subset of ∂Ω. We define the
sets

V =
{
E ∈  L2(Ω,S3) : inc E = 0

}
,

V0
Γ = {E ∈ V : T0(E) = T1(E) = 0 on Γ} ,
V00

Γ =
{
∇Sv : v ∈ H1(Ω), v = 0 on Γ

}
,

W =
{
E ∈  L2(Ω,S3) : div E = 0

}
,

W0
Γ = {E ∈ W : EN = 0 on Γ} .
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Remark 3.1. By Theorem 2.15 and Corollary 2.17 we have

V =
{
∇Sv, v ∈ H1(Ω,R3)

}
, (3.1)

W =
{

inc F, F ∈ L2(Ω,S3), Curl F ∈ L2(Ω,S3), div F = 0 in Ω, FN = 0 on ∂Ω
}
. (3.2)

Moreover, the velocity field v in (3.1) is unique up to a rigid displacement field. The incompatibility
field F in (3.2) is unique.

Remark 3.2. If |Γ| > 0, the velocity field v in the definition of V00
Γ is unique.

Remark 3.3. By Lemma 2.11 we have

V00
Γ ⊂ V0

Γ,

and we infer from Proposition 2.18 that

V00
∂Ω = V0

∂Ω.

Theorem 3.1. Assume that ∂Ω admits the partition ∂Ω = Γ1 ∪ Γ2 with Γ1 ∩ Γ2 = ∅. We have
the orthogonal decomposition

L2(Ω,S3) = V00
Γ1
⊕W0

Γ2
.

Proof. i) Let Ê ∈ V00
Γ1

, E ∈ W0
Γ2

. We have Ê = ∇S v̂, v̂ ∈ H1(Ω), v̂ = 0 on Γ1. The Green formula
entails ∫

Ω

Ê · Edx =

∫
Ω

∇S v̂ · Edx = −
∫

Ω

v̂ · div Edx+

∫
∂Ω

v̂ · ENdS(x) = 0.

ii) Let E ∈ L2(Ω). Write the Beltrami decomposition of Theorem 2.16 as E = ∇Sv + inc F with
v = 0 on ∂Ω. Let w ∈ H1(Ω) be the solution of −div ∇Sw = 0 in Ω,

w = 0 on Γ1,
∇SwN = inc FN on Γ2.

We have

E = ∇S(v + w) + ( inc F −∇Sw) ∈ V00
Γ1

+W0
Γ2
,

which completes the proof. �

We have the following additional property.

Lemma 3.2. If K ∈ V00
Γ1

and inc F̂ ∈ W0
Γ2

it holds∫
Γ2

(
T1(K) · F̂ + T0(K) · ∂N F̂

)
dS(x) = 0.

Proof. First, as V00
Γ1
⊂ V0

Γ1
, we have∫

Γ2

(
T1(K) · F̂ + T0(K) · ∂N F̂

)
dS(x) =

∫
∂Ω

(
T1(K) · F̂ + T0(K) · ∂N F̂

)
dS(x).

By the Green formula, we obtain∫
∂Ω

(
T1(K) · F̂ + T0(K) · ∂N F̂

)
dS(x) =

∫
Ω

(
K · inc F̂ − inc K · F̂

)
dx =

∫
Ω

K · inc F̂ dx.

Writing K = ∇S v̂ and applying the Green formula yields∫
∂Ω

(
T1(K) · F̂ + T0(K) · ∂N F̂

)
dS(x) =

∫
∂Ω

inc F̂N · v̂dS(x).

However, v̂ = 0 on Γ1 while inc F̂N = 0 on Γ2, achieving the proof. �
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3.2. Orthogonal decomposition of H inc(Ω) and related results. Define

Z = {E ∈ H inc(Ω) : div E = 0 in Ω, EN = 0 on ∂Ω},
Z0 = {E ∈ Z : inc EN = 0 on ∂Ω},
F = {E ∈ H inc(Ω) : inc EN = 0 on ∂Ω}. (3.3)

By virtue of Theorem 3.1 we infer the following decompositions.

Proposition 3.3. We have the orthogonal decompositions

H inc(Ω) = Z ⊕ V,
F = Z0 ⊕ V. (3.4)

We now gather some properties of the spaces Z and Z0.

Proposition 3.4. If E ∈ Z then Curl E ∈ L2. Moreover there exists c > 0 such that

‖E‖L2 + ‖Curl E‖L2 ≤ c‖ inc E‖L2 ∀E ∈ Z.

Proof. Let

X =
{
F ∈ L2(Ω,S3), Curl F ∈ L2, inc F ∈ L2, div F = 0, FN = 0 on ∂Ω

}
,

Y =
{
F ∈ L2(Ω,S3), div F = 0

}
and define the linear map Φ : X → Y by Φ(E) = inc E. Equip X and Y with the norms

‖F‖X = ‖F‖L2 + ‖Curl F‖L2 + ‖ inc F‖L2 ,

‖F‖Y = ‖F‖L2 .

Clearly, X and Y are Banach spaces and Φ is continuous. By Corollary 2.17, Φ is bijective. The
open mapping theorem entails that Φ−1 is continuous. Hence there exists c > 0 such that

‖Φ−1( inc E)‖X ≤ c‖ inc E‖L2 .

Let E ∈ Z. Then inc E ∈ L2. Set F = Φ−1( inc E). From inc F = inc E, div F = div E = 0
and FN = EN = 0 on ∂Ω we infer F = E. Therefore

‖E‖L2 + ‖Curl E‖L2 + ‖ inc E‖L2 = ‖E‖X = ‖Φ−1( inc E)‖X ≤ c‖ inc E‖L2 (3.5)

and the results follow. �

Theorem 3.5 (Kozono-Yanagisawa [10] and von Wahl [24]). There exists a constant c > 0 such
that

‖∇u‖L2 ≤ c(‖ div u‖L2 + ‖Curl u‖L2)

for all

u ∈ {v ∈ L2(Ω,R3), div v ∈ L2, Curl v ∈ L2, v.N = 0 on ∂Ω}.

Proposition 3.6. There exists C > 0 such that for all E ∈ Z
‖E‖H1 ≤ C‖ inc E‖L2 .

Proof. Let E ∈ Z. By Proposition 3.4 we already have

‖E‖L2 + ‖Curl E‖L2 ≤ c‖ inc E‖L2 .

Then Theorem 3.5 yields

‖∇E‖L2 ≤ c‖Curl E‖L2

for some other constant c. This completes the proof. �

We infer in particular that Z is imbedded in H1(Ω,S3) and compactly imbedded in L2(Ω,S3).

Proposition 3.7. We have the representation

W0
∂Ω = { inc F, F ∈ Z0}.
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Proof. Of course, if F ∈ Z0, then inc F ∈ W0
∂Ω.

Take E ∈ W0
∂Ω. By Corollary 2.17 there exists F ∈ H inc(Ω) with div F = 0 and FN = 0 on

∂Ω such that E = inc F . The condition EN = 0 on ∂Ω yields F ∈ Z0. �

Lemma 3.8. Given a symmetric uniformly positive definite fourth order tensor field B (i.e.
B(x)T.T > α|T |2 ∀T ∈ S3 for some α > 0 independent of x) define the linear map LB : Z → Z ′ by

〈LBE,Φ〉 =

∫
Ω

B inc E · inc Φdx ∀E,Φ ∈ Z.

Then LB is an isomorphism from Z into Z ′.

Proof. By Proposition 3.4, 〈LBE,E〉 defines a norm in Z equivalent to the H inc-norm. Let T ∈ Z ′.
By Riesz theorem, there exists T ∈ Z such that 〈T , E〉 = 〈LBT,E〉. �

Therefore we can define the inverse map L−1
B : Z ′ → Z, that is continuous by Banach’s con-

tinuous inverse theorem. Since Z ⊂ L2(Ω) ⊂ Z ′, the restriction L−1
B : L2(Ω) → L2(Ω) is also

well-defined.

Lemma 3.9. The operator L−1
B : L2(Ω)→ L2(Ω) is self-adjoint positive definite and compact.

Proof. The compactness stems from the compact embedding Z ↪→ L2(Ω) of Proposition 3.6. One
has for all E,F ∈ L2(Ω)∫

Ω

L−1
B E · Fdx =

∫
Ω

L−1
B E · LBL

−1
B Fdx =

∫
Ω

B inc (L−1
B E) · inc (L−1

B F )dx.

It follows that L−1
B F is self-adjoint and positive definite, achieving the proof. �

3.3. Two elliptic boundary value problems for the incompatibility. Lemmas 3.8 and 3.9
yield the following two propositions.

Proposition 3.10. Let K ∈ L2(Ω,S3) and B a symmetric uniformly positive definite fourth order
tensor field. There exists a unique E ∈ Z such that∫

Ω

B inc E · inc Êdx =

∫
Ω

K · Êdx ∀Ê ∈ Z. (3.6)

Moreover, the solution map Φ : K ∈ L2(Ω,S3)→ E ∈ L2(Ω,S3) is linear and compact.

Proposition 3.11. Let K ∈ L2(Ω,S3) and B ∈ L∞(Ω,S3) uniformly positive definite. There
exists a unique E ∈ Z0 such that∫

Ω

B inc E · inc Êdx =

∫
Ω

K · Êdx ∀Ê ∈ Z0. (3.7)

Moreover, the solution map Φ0 : K ∈ L2(Ω,S3)→ E ∈ L2(Ω,S3) is linear and compact.

Proposition 3.12. Let K be such that div K = 0 in Ω and KN = 0 on ∂Ω. Then, the strong
form of (3.6) reads 

inc (B inc E) = K in Ω
div E = 0 in Ω
EN = 0 on ∂Ω

T0(B inc E) = T1(B inc E) = 0 on ∂Ω

. (3.8)

whose solution coincide with to the solution of the weak form.

Proof. Eq. (3.6) holds actually true for all Ê ∈ Z + V = H inc(Ω). In particular for Ê ∈ D(Ω)

and for Ê with arbitrary traces T0(∂N Ê) and Ê on ∂Ω, by Theorem 2.3. Then the Green formula
provides the strong form, which is seen to be equivalent to the weak form. �
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Remark 3.4. The solution of (3.7) satisfies the strong form
inc (B inc E) = K in Ω

div E = 0 in Ω
EN = 0 on ∂Ω

inc EN = 0 on ∂Ω

. (3.9)

In fact, taking any test function Ê ∈ D(Ω) ⊂ F . Since F = V + Z0, one obtains the strong form
in Ω. The boundary conditions are given by the essential condition of the space.

4. Elasto-plasticity model

4.1. Power of internal efforts. We recall the main features of the model introduced in [2].

Assumption 1. The power of the internal efforts against the virtual strain rate Ê ∈ D(Ω,S3) is of
form

Wint(Ê) =

∫
Ω

(
σ · Ê + τ · ∇Ê

)
dx.

The tensor fields σ and τ are called the stress and hyperstress tensors, respectively.
Assumption 2. The power of the internal efforts is a continuous linear functional of Ê ∈ L2(Ω,S3).
We infer σ − div τ ∈ L2(Ω,S3) and

Wint(Ê) =

∫
Ω

(σ − div τ) · Êdx ∀Ê ∈ L2(Ω,S3).

Assumption 3. The material is piecewise linear homogeneous isotropic: there exists a partition of
Ω as Ω =

⋃
Ωp such that, in each Ωp,

σ = ApE, τ = Bp∇E (4.1)

where E is the strain, Ap is the standard Hooke tensor and Bp is the Mindlin tensor. They read
componentwise

σij = λδijEkk + 2µEij , (4.2)

τijk = c1(δki∂lElj + δkj∂lEli) +
c2
2

(δki∂jEll + δkj∂iEll + 2δij∂lElk) + 2c3δij∂kEll

+ 2c4∂kEij + c5(∂iEjk + ∂jEik), (4.3)

where λ, µ, c1, ..., c5 are constants assigned in each Ωp (index p is dropped for readability).
Assumption 4. The hyperstress τ does not produce any virtual intrinsic power as soon as the strain
E is compatible. This means

inc E = 0⇒
∫

Ω

τ · ∇Ê dx = 0 ∀Ê ∈ D(Ω,S3),

or equivalently inc E = 0 ⇒ −div τ = 0 in Ω. From expression (4.3) we derive the existence
within each Ωp of a constant `p such that −div τ = `p inc E.
Conclusion. We denote ` =

∑
`pχΩp

and A =
∑

ApχΩp
, whereby σ = AE and −div τ = ` inc E

in Ω. The expression of the internal virtual power is

Wint(Ê) =

∫
Ω

(AE + ` inc E) · Êdx ∀Ê ∈ L2(Ω,S3).

4.2. Power of external efforts. The power of external efforts is assumed to be a linear functional
on L2(Ω,S3). By Riesz representation, there exists K ∈ L2(Ω,S3) such that

Wext(Ê) =

∫
Ω

K · Êdx.

We emphasize that the power of external efforts may be at first expressed in terms of the non-
objective fields v̂ and F̂ of the Beltrami decomposition of Ê. However, provided attention is paid
to the uniqueness of the decomposition, these fields are themeselves linear functions of Ê. This
will specified in Section 7.1.
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4.3. Virtual power principle. The virtual power principle in the absence of inertia reads

Wint(Ê) = Wext(Ê),

that is ∫
Ω

(AE + ` inc E) · Êdx =

∫
Ω

K · Êdx, (4.4)

for all Ê ∈ L2(Ω,S3) satisfying the kinematical constraints. Of course, in the absence of kinematical
constraints, (4.4) is equivalent to

AE + ` inc E = K,
but this strong formulation requires that K be known (see for instance the example of Section 8.1).

4.4. Time-evolution of a nonlinear elasto-plasticity model. Within an incremental formula-
tion, A and ` are tangent elasto-plastic moduli. They need to be updated at each increment as soon
as plasticity phenomena occur. The stress-strain relation is therefore piecewise linear. Typically,
in a region with plastic deformations, the Lamé coefficients and the incompatibility modulus ` are
expected to be less than in purely elastic regions. The way these coefficients evolve is driven by
nonlinear constitutive laws that substitute to flow rules and hardening models. We emphasize that
dislocations may by created / moved without creation of incompatibility, as shown by Kröner’s
relation inc E = Curl Λ with Λ the dislocation density tensor [11, 20]. Therefore varying ` alone
is not sufficient to describe plastic effects.

5. Solution of elasto-plasticity equations with natural boundary condition

The main problem we address is the following: given K ∈ L2(Ω,S3), find E solution of (4.4).

5.1. Kinematical setting. We will see that the absence of kinematical constraints leads to
nonunique solutions. We will assume that inc EN = 0 on ∂Ω. In view of Lemma 2.7, this is con-
sistent with assuming that the exterior of Ω is filled with a purely elastic phase (|`ext| → +∞). A
more general setting would be to consider a boundary condition of form inc EN = Φ(T0(E), T1(E))
with an appropriate linear operator Φ.

Remark 5.1. A particular kinematical setting is to require K ∈ V, and a very special case occurs
when K = ∇Sv with div v = tr K constant. Then for A constant a solution to AE + ` inc E = K
is E = A−1K. Indeed by the structure of A−1 one has E proportional to K plus a constant and
hence inc E = 0.

5.2. Well-posedness. Our main result is the following.

Theorem 5.1. Assume Ω is simply connected. Let K ∈ L2(Ω,S3). Let C be the Poincaré constant
of Proposition 3.6. If A is uniformly positive definite and |`| > C|A| a.e., then there exists one
and only one E ∈ F such that

AE + ` inc E = K.
Moreover we have the a priori estimate

‖ inc E‖L2 ≤ ‖`−1A‖L∞
1− C‖`−1A‖L∞

‖A−1K‖L2 . (5.1)

Proof. We assume that ` > 0. The other case is deduced considering ˜̀ = −`, Ã = −A, K̃ = −K.
We write the problem as

E + B inc E = H (5.2)

with B := `A−1 and H := A−1K. We will first prove uniqueness and then existence of a solution.
Step 1. Uniqueness. Let E ∈ F be such that

E + B inc E = 0. (5.3)

Take the orthogonal decomposition E = Ec + Ei with Ec ∈ V and Ei ∈ Z0. We have

Ec + Ei + B inc Ei = 0. (5.4)
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Take F̂ ∈ Z0. Then∫
Ω

Ec · inc F̂ dx+

∫
Ω

Ei · inc F̂ dx+

∫
Ω

B inc Ei · inc F̂ dx = 0.

By inc F̂N = 0 on ∂Ω the first integral vanishes. Specifically, take F̂ = Ei. We obtain∫
Ω

Ei · inc Eidx+

∫
Ω

B inc Ei · inc Eidx = 0.

We have

‖ inc Ei‖2L2 =

∫
Ω

inc Ei · inc Eidx =

∫
Ω

B−1(B1/2 inc Ei) · (B1/2 inc Ei)dx

≤ ‖B−1‖L∞
∫

Ω

B inc Ei · inc Eidx. (5.5)

By Proposition 3.6 we obtain

C‖ inc Ei‖2L2 ≥ ‖Ei‖L2‖ inc Ei‖L2

≥
∣∣∣∣∫

Ω

Ei · inc Eidx

∣∣∣∣ =

∫
Ω

B inc Ei · inc Ei ≥ ‖B−1‖−1
L∞‖ inc Ei‖2L2 ,

that is,
(C‖B−1‖L∞ − 1)‖ inc Ei‖2L2 ≥ 0.

If ‖B−1‖L∞ < C−1 we infer inc Ei = 0 then Ei = 0, by Proposition 3.6. Thus (5.4) yields Ec = 0,
and eventually E = 0.
Step 2. Existence. Let E = Ec + Ei ∈ F , Ec ∈ V, Ei ∈ Z0. Then (5.2) is equivalent to{ ∫

Ω
(Ec + B inc Ei) · Êcdx =

∫
Ω
H · Êcdx, ∀Êc ∈ V,∫

Ω
(Ei + B inc Ei) · Êidx =

∫
Ω
H · Êidx, ∀Êi ∈ W0

∂Ω,
(5.6)

itself, by Proposition 3.7, equivalent to{ ∫
Ω

(Ec + B inc Ei) · ∇S v̂dx =
∫

Ω
H · ∇S v̂dx ∀v̂ ∈ H1(Ω), (a)∫

Ω
(Ei + B inc Ei) · inc F̂ dx =

∫
Ω
H · inc F̂ dx ∀F̂ ∈ Z0. (b)

(5.7)

Define the operators LB : Z0 → Z ′0 and M : L2(Ω,S3)→ Z ′0 by

〈LBΨ,Φ〉 =

∫
Ω

B inc Ψ · inc Φdx, 〈MΨ,Φ〉 =

∫
Ω

Ψ · inc Φdx.

Equation (5.7)(b) is equivalent to
(M + LB)Ei = MH. (5.8)

By Lemma 3.8, LB : Z0 → Z ′0 is invertible. Thus, (5.8) is equivalent to

(I + L−1
B M)Ei = L−1

B MH. (5.9)

The operator L−1
B M : L2(Ω,S3) → L2(Ω,S3) is compact, since it is continuous from L2(Ω,S3)

to Z0 and Z0 is compactly embedded in L2(Ω,S3) by Proposition 3.6. Furthermore, under the
condition ‖B−1‖L∞ < C−1, the operator I +L−1

B M : L2(Ω,S3)→ L2(Ω,S3) is injective due to the
uniqueness claim. Thus, Fredholm’s alternative provides the existence of Ei ∈ L2(Ω) solution of
(5.9). From Ei = L−1

B M(H− Ei) we infer Ei ∈ Z0. We have found Ei ∈ Z0 solution of (5.7)(b).
Let us turn to (5.7)(a). We have to find Ec = ∇Sv, v ∈ H1(Ω,R3) such that∫

Ω

∇Sv · ∇S v̂dx =

∫
Ω

(H− B inc Ei) · ∇S v̂dx, ∀v̂ ∈ H1(Ω,R3). (5.10)

This is a standard linear elasticity problem.
Third step. A priori estimate. Equation (5.7)(b) entails∫

Ω

Ei · inc Eidx+

∫
Ω

B inc Ei · inc Eidx =

∫
Ω

H · inc Eidx.
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Using (5.5) we obtain

‖ inc Ei‖2L2 ≤ ‖B−1‖L∞
∫

Ω

(H− Ei) · inc Eidx ≤ ‖B−1‖L∞(‖H‖L2 + ‖Ei‖L2)‖ inc Ei‖L2 .

Proposition 3.6 yields

‖ inc Ei‖L2 ≤ ‖B−1‖L∞(‖H‖L2 + C‖ inc Ei‖L2),

from which we arrive at (5.1). �

Remark 5.2 (Dislocation-induced stress). Because of Kröner’s formula we call G := ` inc E the
dislocation-induced stress tensor. For ` constant, let E` be the solution of AE+ ` inc E = K. Then
(5.1) implies that G` := ` inc E` converges weakly in L2(Ω,S3) to some G as `→∞. More precise
limiting results will be given in the next section.

Conversely, the condition |`| > C|A| prevents |`| from going to 0 without assuming that A also
tends to 0. Such limit cases are left for future work.

6. Elastic limit

Proposition 6.1. Consider a sequence Ak ∈ L∞(Ω,S3) with c1|ξ|2 ≤ Ak(x)ξ · ξ ≤ c2|ξ|2 ∀ξ ∈ R3,
a.e. x ∈ Ω, c1, c2 > 0, and a sequence `k ∈ L∞(Ω,R+

∗ ) with infΩ `k → +∞. Assume that
K ∈ L2(Ω,S3), Ek ∈ F , AkEk + `k inc Ek = K. Then ‖ inc Ek‖L2 → 0.

Proof. It is a straightforward consequence of (5.1), since ‖`−1
k Ak‖L∞ → 0. �

Obviously the same holds for a sequence `k ∈ L∞(Ω,R−∗ ) with infΩ |`k| → +∞.

Proposition 6.2. If ` is constant, K ∈ L2(Ω,S3), E ∈ F , AE + ` inc E = K in Ω then∫
Ω

AE · Êdx =

∫
Ω

K · Êdx ∀Ê ∈ V.

Proof. Take Ê ∈ V and observe that due to the assumptions, one has∫
Ω

` inc E · Êdx = 0.

�

Theorem 6.3. Assume that A, K are fixed, ` is constant, E` ∈ F , AE` + ` inc E` = K in Ω.
There exists a unique E∞ ∈ V such that∫

Ω

AE∞ · Êdx =

∫
Ω

K · Êdx ∀Ê ∈ V. (6.1)

Moreover ‖E` − E∞‖L2 → 0 when |`| → +∞.

Proof. Existence and uniqueness for (6.1) is a consequence of the Riesz representation theorem

in the Hilbert space V for the inner product (E, Ê) 7→
∫

Ω
AE · Êdx. Consider the decomposition

E` = E`c + E`i ∈ V ⊕ Z0. We have by Proposition 6.2∫
Ω

A(E`c + E`i ) · Êcdx =

∫
Ω

K · Êcdx ∀Êc ∈ V.

Substracting (6.1), one has∫
Ω

A(E`c − E∞) · Êcdx = −
∫

Ω

AE`i · Êcdx ∀Êc ∈ V.

By Propositions 6.1 and 3.6 we have ‖E`i ‖H1 → 0. It follows ‖E`c − E∞‖L2 → 0 hence ‖E` −
E∞‖L2 → 0. �

Hence, as |`| → +∞, one retrieves the standard linear elasticity problem with Neumann bound-
ary conditions. The next theorem addresses how to obtain Dirichlet conditions.
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Theorem 6.4. Assume that ` is constant, A`(x) = A if x ∈ Ω \ ω and A`(x) = α`A if x ∈ ω,
with ω ⊂⊂ Ω, A a symmetric positive definite tensor, 0 < α` < |`|/(C|A|), lim|`|→+∞ α` = +∞,

α` = O(
√
|`|). Set

Vω =
{
E ∈ V, E|ω = 0

}
.

Assume that K is fixed, E` ∈ F , A`E` + ` inc E` = K in Ω. There exists a unique E∞ ∈ Vω such
that ∫

Ω

AE∞ · Êdx =

∫
Ω

K · Êdx ∀Ê ∈ Vω. (6.2)

Moreover ‖E` − E∞‖L2 → 0 when |`| → +∞.

Proof. Problem (6.2) is a standard linear elasticity problem with Dirichlet boundary condition on
∂ω and Neumann boundary condition on ∂Ω. Existence and uniqueness are standard.

Decompose E` = E`c + E`i ∈ V ⊕ Z0. By Theorem 5.1 and Proposition 3.6 we have ‖E`i ‖H1 =
O(|`|−1α`) = O(|`|−1/2). We have by Proposition 6.2∫

Ω

A`E`c · Êcdx =

∫
Ω

K · Êcdx−
∫

Ω

A`E`i · Êcdx ∀Êc ∈ V.

In view of the assumptions this shows that ‖E`c‖L2(Ω) is bounded. Choosing Êc = E`c we infer∫
ω

AE`c · E`cdx ≤ α−1
`

∣∣∣∣∫
Ω

K · E`cdx−
∫

Ω

A`E`i · E`cdx
∣∣∣∣ .

This yields

‖E`c‖L2(ω) → 0. (6.3)

We have by difference∫
Ω

A`(E`c − E∞) · Êcdx = −
∫

Ω

(A` − A)E∞ · Êcdx−
∫

Ω

A`E`i · Êcdx ∀Êc ∈ Vω,

that is ∫
Ω\ω

A(E`c − E∞) · Êcdx = −
∫

Ω\ω
AE`i · Êcdx ∀Êc ∈ Vω.

Let v` ∈ H1(Ω) be such that E`c = ∇Sv` and ‖v`‖H1(Ω) ≤ c1‖E`c‖L2(Ω) for some geometrical

constant c1. Let w` ∈ H1(Ω) be an extension on (v`)|ω such that ‖w`‖H1(Ω) ≤ c2‖v`‖H1(ω) for

some other geometrical constant c2. Then R`c := ∇Sw` ∈ V is an extension of (E`c)|ω such that

‖R`c‖L2(Ω) ≤ c1c2‖E`c‖L2(ω). Moreover, E`c − E∞ −R`c ∈ Vω and hence we have∫
Ω\ω

A(E`c − E∞) · (E`c − E∞)dx

=

∫
Ω\ω

A(E`c − E∞) · (E`c − E∞ −R`c)dx+

∫
Ω\ω

A(E`c − E∞) ·R`cdx

= −
∫

Ω\ω
AE`i · (E`c − E∞ −R`c)dx+

∫
Ω\ω

A(E`c − E∞) ·R`cdx.

This goes to 0 as |`| → +∞, since ‖E`i ‖L2(Ω) → 0 and ‖R`c‖L2(Ω) → 0 by (6.3), while E`c−E∞−R`c
and E`c − E∞ are uniformly bounded. We infer that ‖E`c − E∞‖L2(Ω\ω) → 0. This implies

‖E`c − E∞‖L2(Ω) → 0 and eventually ‖E` − E∞‖L2(Ω) → 0. �
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7. Interpretation of the kinematical framework and external efforts

7.1. External efforts. Consider a virtual strain Ê ∈ L2(Ω,S3) decomposed as

Ê = ∇S v̂ + inc F̂ . (7.1)

The work of the external efforts against Ê reads

Wext(Ê) =

∫
Ω

K · Êdx = −
∫

Ω

div K · v̂dx+

∫
∂Ω

KN · v̂dS(x) +

∫
Ω

inc K · F̂ dx

+

∫
∂Ω

(
T1(K) · F̂ + T0(K) · ∂N F̂

)
dS(x). (7.2)

The fields −div K and KN are recognized as classical body and contact forces. The fields inc K,
T0(K), T1(K) are body and contact forces working on the incompatible part of the virtual strain.
The above fields are in principle known in the first place. The issue is then how and under which
conditions it is possible to construct a corresponding K. Formally the boundary forces KN , T0(K)
and T1(K) exhibit some coupling, as stressed in [2]. To address these points one must specify a
kinematical framework ensuring the uniqueness of the decomposition (7.1).

7.2. Kinematical framework. Take Ê = ∇S v̂ + inc F̂ with ∇S v̂ ∈ V00
Γ1

and inc F̂ ∈ W0
Γ2

for
some partition Γ1 ∪ Γ2 of ∂Ω. As said above, f := −div K is identified with the body force, and
g := KN is identified with a surface load on Γ2. Now, if K ∈ V00

Γ1
the last two integrals of (7.2)

vanish by virtue of Lemma 3.2. Then (7.2) rewrites as∫
Ω

K · Êdx =

∫
Ω

f · v̂dx+

∫
Γ2

g · v̂dS(x). (7.3)

To sum up, given f ∈ L2(Ω,R3) and g ∈ H−1/2(Ω,R3) such that
∫

Ω
fdx+

∫
∂Ω
gdS(x) = 0, one

wants to determine K = ∇Sw ∈ L2(Ω,S3) such that − div ∇Sw = f in Ω,
w = 0 on Γ1,
∇SwN = g on Γ2.

(7.4)

It is well-known that this problem admits a unique solution w ∈ H1(Ω).

Proposition 7.1. Assume that Ω is simply-connected. Let K ∈ L2(Ω,S3) be such that K = ∇Sw
satisfies (7.4). Then the weak form∫

Ω

(AE + ` inc E) · (∇S v̂ + Ê0)dx =

∫
Ω

f · v̂dx+

∫
Γ2

g · v̂dS(x), ∀(∇S v̂, Ê0) ∈ V00
Γ1
×W0

Γ2
(7.5)

admits a unique solution E ∈ F that corresponds to the solution of the strong form

− div (AE + ` inc E) = f in Ω
inc (AE + ` inc E) = 0 in Ω

(AE + ` inc E)N = (AE)N = g on Γ2

inc EN = 0 on ∂Ω
T0(AE + ` inc E) = T1(AE + ` inc E) = 0 on Γ1

T0(AE + ` inc E) = T0(K) on Γ2

T1(AE + ` inc E) = T0(K) on Γ2.

. (7.6)

Proof. Eq. (7.5) is equivalent to AE + ` inc E = K, itself equivalent to{
div (AE + ` inc E) = div K and inc (AE + ` inc E) = inc K in Ω,
(AE + ` inc E)N = KN and T0(AE + ` inc E) = T0(K) and T1(AE + ` inc E) = T1(K) on ∂Ω.

The assumptions and the essential conditions complete the system. �

Remark 7.1. We remark that the normal component of the Cauchy stress (AE)N can be prescribed
on Γ2, whereas the tangential part of the full stress T0(AE + ` inc E) is fixed to zero on Γ1.
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Remark 7.2. In this framework, there is no virtual work associated with the boundary condition
on Γ1, even if the virtual strain is allowed to have tangential components. This may not well model
a clamped condition, and when |`| → ∞ one do not retrieve T0(E∞) = T1(E∞) = 0, see Theorem
6.3. To do so, one has to set KN = AEelN on the whole ∂Ω, where Eel is the strain associated
with the purely elastic solution, i.e., Eel = ∇Svel with −div (A∇Svel) = f in Ω,

vel = 0 on Γ1,
A∇SvelN = g on Γ2.

8. Examples

8.1. Uniaxial traction. We consider the domain Ω = R3. We assume a uniform traction of
density g = 1 on the planes z = ±h. Hence

K =

0 0 0
0 0 0
0 0 k

 ,

with k = χ{|z|<h}, provides the virtual power
∫
R3 K · (∇S v̂ + inc F̂ )dx =

∫
{z=h} ez.v̂dS(x) −∫

{z=−h} ez.v̂dS(x). We search for a strain field of form

E =

ϕ 0 0
0 ϕ 0
0 0 ψ

 ,

where ϕ,ψ are functions of the z variable. In this case one has

AE =

2(λ+ µ)ϕ+ λψ 0 0
0 2(λ+ µ)ϕ+ λψ 0
0 0 2λϕ+ (λ+ 2µ)ψ

 ,

inc E =

ϕ′′ 0 0
0 ϕ′′ 0
0 0 0

 . (8.1)

Hence AE + ` inc E = K if and only if{
2(λ+ µ)ϕ+ λψ + `ϕ′′ = 0
2λϕ+ (λ+ 2µ)ψ = k.

(8.2)

Elementary algebra leads to

ψ =
1

λ+ 2µ
(k − 2λϕ),

2µ(3λ+ 2µ)ϕ+ `(λ+ 2µ)ϕ′′ = −λk.
We are led to consider that ` < 0, since in the other case the solution does not decay when |z| → ∞.
We denote

ω =

√
2µ(3λ+ 2µ)

λ+ 2µ
.

We obtain:

(1) For |z| < h

ϕ(z) =
−λ

2µ(3λ+ 2µ)

[
1− exp

(
− ωh√
|`|

)
cosh

(
ωz√
|`|

)]
,

ψ(z) =
1

λ+ 2µ

{
1 +

λ2

µ(3λ+ 2µ)

[
1− exp

(
− ωh√
|`|

)
cosh

(
ωz√
|`|

)]}
.
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(2) For |z| > h

ϕ(z) =
−λ

2µ(3λ+ 2µ)
sinh

(
ωh√
|`|

)
exp

(
− ω|z|√
|`|

)
,

ψ(z) =
λ2

µ(λ+ 2µ)(3λ+ 2µ)
sinh

(
ωh√
|`|

)
exp

(
− ω|z|√
|`|

)
.

Observe that

lim
|`|→∞

ϕ(z) = 0, lim
|`|→∞

ψ(z) =


1

λ+ 2µ
if |z| < h,

0 if |z| > h,

which is the classical elastic solution with uniaxial strain. The von Mises stress is found as σM =
2µ|ϕ− ψ|.

Let ∇SU + E0 be the Beltrami decomposition of E such that ∇SU ∈ V and E0 ∈ W0
∂Ω (see

Theorem 3.1), i.e., div E0 = 0 in Ω and E0N = 0 on ∂Ω. One has{
div ∇SU = div E in Ω,
∇SUN = EN on ∂Ω.

This means u′′ = ψ′, u′(h) = ψ(h), u′(−h) = ψ(−h). Thus u′ = ψ and, setting u(0) = 0,

u(z) =

∫ z

0

ψ(s)ds.

We obtain in particular

u(h) =
1

λ+ 2µ

{
h+

λ2

µ(3λ+ 2µ)

[
h−

√
|`|

2ω

(
1− exp

(
− 2ωh√
|`|

))]}
.

The functions ϕ, ψ are plotted in Figure 1 for h = 1, Young’s modulus Y = 10, Poisson ratio
ν = 1/3. The value of u(h) as a function of ` is also depicted.

Remark 8.1. Suppose the Poisson ratio ν and the load K are fixed, and the Young and incom-
patibility moduli Y and ` are allowed to vary. In view of the equation AE + ` inc E = K, with
A = Y A0 we get A0(Y E) + (`/Y ) inc (Y E) = K hence there exists a function Φ such that the
strain E and Cauchy stress σ satisfy

E =
1

Y
Φ

(
Y

`

)
, σ = A0Φ

(
Y

`

)
.

In the previous example, at each point σM is an increasing function of Y/|`|. Therefore, if Y
and |`| are decreased in such a way that the ratio Y/|`| is decreased, then the von Mises stress is
alleviated, while the strain is likely to increase.

8.2. Spherical shell under uniform pressure. Consider the domain Ω =
{
x ∈ R3, R < |x| < 1

}
.

Call ΓR and Γ1 the internal and external boundaries, respectively. We assume a uniform pressure
p on ΓR and free boundary on Γ1. Hence one has K = ∇Sw with −div ∇Sw = 0 in Ω,

∇SwN = 0 on Γ1,
∇SwN = −pN on ΓR.

For w = w(r)er ⊗ er one has

∇Sw = w′er ⊗ er +
w

r
(eθ ⊗ eθ + eφ ⊗ eφ),

div ∇Sw =

(
w′′ + 2

w′

r
− 2

w

r2

)
er.

Therefore

div ∇Sw = 0⇐⇒ w = ar +
b

r2
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Figure 1. Functions ϕ (top left), ψ (top right), σM (bottom left) for ` = −10
(blue), ` = −100 (red), ` = −1000 (yellow). Value of u(h) in function of ` (bottom
right)

for some constants a, b. The conditions w′(1) = 0 and w′(R) = −p yield

w =
pR3

1−R3

(
r +

1

2r2

)
, w′ =

pR3

1−R3

(
1− 1

r3

)
.

We arrive at

K =
pR3

1−R3

[(
1 +

1

2r3

)
I − 3

2r3
er ⊗ er

]
.

Considering the guess

E = ϕ(r)I + ψ(r)er ⊗ er
we have

AE = ((3λ+ 2µ)ϕ+ λψ) I + 2µψer ⊗ er,
On the other hand (see [19])

inc E =

(
ϕ′′ +

ϕ′

r
− ψ′

r

)
I +

(
−ϕ′′ + ϕ′

r
+
ψ′

r
− 2ψ

r2

)
er ⊗ er.

Hence AE + ` inc E = K if and only if
(3λ+ 2µ)ϕ+ λψ + `

(
ϕ′′ +

ϕ′

r
− ψ′

r

)
=

pR3

1−R3

(
1 +

1

2r3

)
2µψ + `

(
−ϕ′′ + ϕ′

r
+
ψ′

r
− 2ψ

r2

)
= − pR3

1−R3

3

2r3
.

Moreover, the condition inc EN = 0 on Γ1 and ΓR read

ϕ′(1) = ψ(1), ϕ′(R) =
ψ(R)

R
.



22 SAMUEL AMSTUTZ AND NICOLAS VAN GOETHEM

The solution of the system is the elastic solution:

ϕ =
pR3

1−R3

(
1

3λ+ 2µ
+

1

4µr3

)
, ψ =

−pR3

1−R3

3

4µr3
.

There is no strain incompatibility here. This is a consequence of tr K being constant, see Remark
5.1.
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