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EXISTENCE RESULTS FOR A LINEARIZED INTRINSIC
ELASTO-PLASTICITY MODEL

SAMUEL AMSTUTZ AND NICOLAS VAN GOETHEM

ABSTRACT. A novel model of elasto-plasticity based on an intrinsic approach is proposed. The
model variables are the linearized strain and its incompatibility. Elastic strain incompatibility
accounts for the presence of dislocations in the microstructure, which are responsible for the
plastic behaviour of solids. The functional analysis setting is built up, on which existence results
are proved.

1. INTRODUCTION

1.1. The intrinsic approach to elasticity. An intrinsic approach to elasticity simply means that
the main and primal variable is the strain, together with its derivatives, and that the displacement
and rotation fields are possibly recovered in a second step, in case they are needed. This approach
is most prabably the first historically, since the strain was indeed used to measure deformation,
that is, variation in length and in mutual orientations of infinitesimal fibers within a solid body.
As a matter of fact, for the geometer the strain is a metric from which all other geometric concepts
are retrieved. Specifically given a smooth strain tensor field € the classical Volterra-Michell-Cesaro
construction [3,14,23] (see also [13]) in linearized elasticity consists in
e introducing the Frank tensor! F = Curl’ ¢;
e defining the rotation field as w(x) = w(xg) + ffo F(£)dL(£), on a smooth curve joining the
endpoints zg and x;
e defining the displacement field as u(z) = u(xo) +f;0 (e — €(w)) (§)dL(E), where e(w) stands
for the skew-symmetric rotation tensor constructed from w, namely (e(w))y = 1w

In order for u and w to be well defined, i.e., to be path-independent in a simply connected domain,
it is immediately seen that a sufficient and necessary condition be that

inc € := Curl Curl’ e = Curl F =0,

introducing the strain incompatibility tensor inc e, that is easily seen to be symmetric. Note
that in case inc ¢ is not vanishing this means exactly that the rotation and/or displacement fields
exhibit a jump around what is classically called a Burgers circuit (to this respect an important
role is played by the choice of the origin zy as shown in [21]). So far it appears clear that the
important geometric quantities are e, Curl’ € and inc e. This is the seminal motivation for our
model which is precisely designed from these variables. In particular, this choice makes the model
of gradient-type. Note that it appears natural to consider the curl instead of the full gradient, and
the inc instead of the full Hessian.

Strangely enough, though the incompatibility operator was regularly used in the engineering
literature, the mathematical study of spaces of square integrable tensor-valued functions with
square integrable incompatibility was not yet considered and our first step was hence to dedicate
a paper to the subject [1].

2010 Mathematics Subject Classification. 35J48,35J58,49505,49K20,74C05,74G99,74A05,74A15, 80A1T7.
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IThis terminology was introduced in [21,22] simply because its integral on a closed loop yields the so-callled
Frank tensor attached to a disclination singularity.
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2 SAMUEL AMSTUTZ AND NICOLAS VAN GOETHEM

In finite elasticity the intrinsic approach was recently carried on in a systematic way by Ph.
Ciarlet and co-authors [4-6]. In a first step, they proved that given a smooth enough metric
C it can be written as C = VoV for some smooth enough map ¢ provided the Riemannian
curvature associated to C' was vanishing. It turns out that the first-order terms of the Riemannian
curvature is precisely inc 4 (C — Id) (see [13]), that is, requiring vanishing strain incompatibility
in linearized elasticity is the counterpart of requiring vanishing curvature in finite elasticity. In a
second step (see [6] for instance), their aim was to rewrite classical boundary value problems of
linearized elasticity in a intrinsic form, that is, with boundary conditions expressed in terms of
the strain ¢ = V°u only, in place of the displacement. As a result, they showed that requiring
vanishing displacement u on the boundary amounts to imposing vanishing tangential metric and
second fundamental form (i.e., curvature associated with the metric). The purpose of [20] was to
show in turn that these intrinsic boundary conditions were equivalent to requiring the tangential
part of e and Curl’ € x N to vanish on the boundary, where N stands for the outward unit normal.

1.2. A critical view on traditional elasto-plasticity. Traditional elasto-plasticity has been
developed on three main postulates (see for instance [12]):

(1) The decomposition of the strain into an elastic and a plastic part. In linearized elasto-
plasticity the decomposition is additive: € = £° 4+ ¢P. In finite elasticity one decomposes
the deformation gradient multiplicatively: F = F°FP (or arguably in the reverse order,
see [8]).

(2) The coupling of two evolution laws for the elastic and the plastic part, namely the balance
equations in terms of the Cauchy stress, given by a constitutive function of some elastic
kinematical quantity (i.e., related to ¢ or F°), and the postulated flow rules, expressed in
terms of an appropriate plastic kinematic variable (i.e., related to P or FP and their time
rates).

(3) The existence of convex dissipation potentials required to define the time evolution of the
plastic kinematical variables through the flow rules.

One usually justifies the partition hypothesis (1) by the different kinds of physical processes in-
volved: while the elastic deformation models the change in interatomic distances, the plastic strain
is a measure of the displacement of atoms with modification of interatomic bonds. Note that this
partition is local, i.e., e(z) = €°(z) + eP(z) for any x €  and is purely of physical nature, that
is, there is not any sort of mathematical structure that justifies the decomposition. In linearized
elasto-plasticity the additive decomposition can be understood through the definition of the elastic
strain from the Cauchy stress o (a measurable quantity) as €° := A~!o and the assumption that
the plastic strain €P is the complement so that the total strain is compatible, that is, that there
exists a displacement field u such that ¢ = V9u. This statement is not justified by any mathemat-
ical argument and the adoption of this hypothesis is made for simplicity. Indeed it automatically
implies that the incompatibilities of elastic and plastic parts mutually compensate, without the
need to let the flow rules comply with this property. The finite deformation case is more delicate
since any kind of multiplicative decomposition (originally due to Nye [17]) relies on the generally
postulated existence of an intermediate reference configuration from which elastic (or plastic) de-
formation applies. In the sequel we will not dwell on the finite deformation case, since our model
is about linearized elasto-plasticity.

As for (2) it should be noted that the balance equation involves the Cauchy stress only. In a
modelling step, the latter is related to the elastic strain by a constitutive law. In contrast, the
knowledge of the plastic strain is obtained by the solution of the flow rules, which from a modelling
standpoint, are unrelated to the balance equation. This mere superposition of conceptually distinct
constructs (one originates from conservation principles, the other by arbitrary modelling choices),
though leading to an extraordinary efficient model, might also appear as insatisfactory from an
intellectual viewpoint.

Lastly, assumption (3) cannot be given any rigourous justification. It allows one to use the
powerfull toolbox of convex calculus and again, as for (2) has led to establishing a model which
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has proven to simulate accurately real world processes. One would like to understand plastic
deformation without appealing to convexity, at leat not in its premises.
Rigourous existence results in traditional plasticity can be found for instance in [7,15,18].

1.3. Our model: from generalized elasticity to intrinsic elasto-plasticity. The novel ap-
proach we propose has been introduced and discussed in [2]. In our model, neither of the three
above postulates are considered. Our paradigm is radically different and our approach is based on
the following rationales.

(1) Strain rate is prefered to strain and is given its following, primordial definition. Identify
three fibers at x, denoted by ai,as,as, which at time t are oriented along the axes of a
Cartesian coordinate system and of unit lengths. Then the deformation rate is defined at
x as (see, e.g., [9])

i) = 5 @ '“”)g (11)

Having fixed an initial time ¢, = 0, the time integral of the objective tensor d, called the
strain or deformation tensor reads e(t) = fot d(s)ds. Note that (1.1) holds for infinitesimal
as well as for finite strains and hence one is not forced to specify the quantitative nature
of the deformations before they take place.

(2) This strain defined in this fashion is neither elastic nor plastic, it simply has a compatible
and an incompatible part, that are given by a structure theorem called Beltrami decom-
position [13]:

e=Vou+ E° (1.2)

As opposed to elasto-plastic partitions this decomposition is unique once boundary con-
ditions for u are prescribed. Moreover, while ¢ is an objective field (in a general sense as
discussed in [1]), neither VSu nor E° are objective. Therefore the model will be constructed
upon ¢ and its derivatives.

(3) The governing equations should generalize classical linear elasticity in the sense that it
must take into account the possible strain incompatibility. The idea behind is that the
model should explicitely account for the physical cause of plasticity: the presence and
motion of dislocations as microstructural perturbations.

Our model can be briefly described as follows (see [2] for details). One considers linearized
gradient elasticity in the sense of Mindlin [16]. One assumes that the virtual strain rate d and its
gradient produce intrinsic work and by the virtual power principle we write

/(a.d+7-vd)dx:/11<.ddx,
Q Q

where o, T are the Cauchy stress and hyperstress tensors, respectively, and K is a tensor representing
external efforts. Our constitutive framework is that of linear gradient-elasticity, that is o = Ae
and 7 = BVe, where A, B are the Lamé and Mindlin tensors, respectively (see [16]). We require
that the intrinsic power induced by the hyperstress fQ Ve - rdx vanishes as soon as the deformation
is compatible, i.e., that it is only due to microstructural effects in the form of dislocations, since
Kroners’s formula links elastic strain incompatibility and dislocation density (see [11,20,21]). This
yields the existence of a scalar ¢ called incompatibility modulus, such that —div 7 = finc €.
Therefore the VPP yields the weak form

/(As—kfincs)-czdx:/K-cid% vd € &, (1.3)
Q Q
where £ is the set of virtual strain rates.

To see that this equation generalizes linearized elasticity, take d=V5 witho =0onTp C IQ
and take K such that —div K= fin 2 and KN =g on I'y := 9Q \ I'p. Then, plugging this into
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(1.3) immediately yields

{ —div (Ae+/lince) = f inQ, (1.4)

(Ae+Llince)N = g on Ty,

which is exactly the system of linearized elasticity in case of compatible strain, i.e. with e = V5u
with u = ug on I'p, since for such strains inc ¢ = 0.

More generally, we believe that our model is able to represent finite deformations through an
incremental formulation. In this case, € is a strain increment and (A,f) are seen as tangent
elasto-plastic moduli. Of course, their evolution should be driven by constitutive laws in order
to account, for instance, for hardening phenomena. An energetic approach is to relate changes in
these coeflicients with mechanical dissipation. A sensitivity analysis of the dissipation functional
with respect to a variation of £ within a small inclusion has been conducted in [2] for a simplified
model. The extension to the full model and the numerical implementation, for which the existence
results of the present work were mandatory, is an ongoing work.

1.4. Summary of our results. Set £ = L?(£2). The main purpose of this work is to prove that
(1.3), or equivalently the associated strong form Ae + £inc ¢ = K in ) has a solution in the space
of square integrable functions with square integrable incompatibility, with the additional condition
on the dislocation flux at the boundary inc eN = 0 on 0. The main ingredients to achieve the
proof are (i) orthogonal decompositions of L?(f2) based on the Beltrami decomposition, and (ii)
Fredholm’s alternative. It is also to be stressed that our model has no variational structure in
the sense that the solution is not minimum of an energy. Moreover we analyze the case |[¢| — oo
which represents the elastic limit, i.e., with vanishing strain incompatibility. We conclude by two
academic examples.

2. PRELIMINARY RESULTS

Let © be a regular (C*°) bounded domain of R3. We denote by 99 its boundary and by N its
outward unit normal.

2.1. The curvilinear frame. For all x € 99, the system (74 (z),75(z), N(z)) is an orthonormal
basis of the tangent plane to 0f), that can be naturally extended along N in a neighorhood W
of 99 (see [1]). The curvatures along 74 and 77 are denoted by k“ and xZ. Define the normal
derivative as 9y := N - V and tangential derivative as Or := 77 - V, for R € {A, B}. We will also
use the notation R* = B if R = A, R* = A if R = B. The following results are proved in [1].

Theorem 2.1. There exist smooth scalar fields &, v, ¥2 in W such that

ONN = oyt =0, (2.1)
OrN = kBrE perf, (2.2)
Opt?® = —kBN-— ’}/R*TR*, (2.3)
Op-mf = ARrF N (2.4)
If (t4(z), 78 (z)) are oriented along the principal directions of curvature then &(z) = 0.
Lemma 2.2. If f is twice differentiable in W it holds
ORONf = ONORS + KRORS + EOp-f. (2.5)
2.2. Basic function spaces. Define
HUY QM) = {Fe L*(Q,M?): Curl E € L*(Q,M?)},
HV(Q,8% = {FeL*Q,S%: div E c L*(Q,R3)},

Hinc(Q) — {E c LQ(Q’SB) :inc F € Lz(Q,SS)} .
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These spaces are endowed with the norms defined by || E||%cun = [|E||22 + || Curl E|22, [|E|%0 =

|E|2: + || div E||32, | E||%me = || E||32 + | inc E||3., respectively. We also define
Hi"(Q,S?) = the closure of D(Q,S?) in H™(Q,S?),
as well as the trace space

H??(8Q,S?) = {E € H3?(8Q,8%) : / ENdS(z) = o} :
onN

Theorem 2.3 (Lifting [1]). Let E € H3/2(0Q,S?), and G € HY?(0Q,S%). There exists E €
H?(Q,S?) such that

E=E on 0L,
(8NE)T = GT on 89,
div E=0 in Q,

where the subscript T stands for the tangential part. In addition, such a lifting can be obtained
through a linear continuous operator

Lo : (E,G) € H?(00,8%) x H/?(8Q,S?) — E € H*(Q,S?).
Define the subset of C°°(99, S?)
G={VON,VecR?},
with the notation U 0@V := UV +V @U)/2.

Lemma 2.4 (Dual trace space [1]). Every E € H=3/2(0Q,S?)/G admits a unique representative
E such that

/ ENAS(z) = 0. (2.6)
oQ
Moreover, the dual space of H3/2(8Q, S%) is canonically identified with H=3/2(09,S%)/G.

2.3. Green formula and applications. Recall that the Green formula for the divergence allows
to define, for any T € HYV(Q,S?), its normal trace TN € H~'/2(9Q,R3) by

/ (TN) - pdS(z) ::/ divT-g+T-V5  Vee HY?(00,R?),
o0 Q

with ¢ € H'(2,R?) an arbitrary lifting of . For the incompatibility operator one has the following
counterpart.

Lemma 2.5 (Green formula for the incompatibility [1]). Suppose that T € C?(2,S?) and n €
H?(Q,S?). Then

/ T-inc ndx = / inc T - ndx +/ Ti(T) -n dS(z) +/ To(T) - Onn dS(z) (2.7)
Q Q oQ oQ
with the trace operators defined as

To(T) = (TxN)'xN, (2.8)
Ti(T) (Curl (T x N)Y 4 ((Oy + k)T x N)' x N+ (Cul' Tx N)®,  (2.9)

where k is twice the mean curvature on 9Q and TS = (T + T%)/2. In addition, it holds

T{(T)NdS(z) = 0. (2.10)
[019)
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Alternative expressions for 7;(T") are given in [1], like

TiT) = =Y T x77) x 77 =N T x 77) x 7% 4 (0n + B)T x N)' x N
R R

S
-2 (Z(@RT x N x TR> . (2.11)

R
For a general symmetric tensor 7', with components Trp/ := T+ .72 in the curvilinear frame,
one has:
Taa Tap Tan Tpp —Tap O
T=|Tga T Tan |, (TXN)tXNZ —Tap Taa 0], (2.12)
ITna Tnp InNN 0 0 0
0 0 0 Ty 0 —Tan
(Txtxrt4=[0 Twn —Tsn|,(Tx7B)xrP= o o0 0 |, (213
0 —Tgn TeB ~Tany O Taa
0 Tgn —TBB —Tgn 0 Tag
(TxNYtx74=[0 —Tuy Tup |, (TxN):xrB=| Tuy 0 —Taal|. (2.14)
0 0 0 0 0 0

As shown in [1], we can define the traces To(T) € H~Y2(99Q,S%) and T1(T) € H=3/2(09,$%)/G
for every T € H'™(€,S?) by

(To(T), o) = / T - inc nodx */ inc T-modx, Vo € HY/?(09,8%),
0 0

(TW(T), 1) = / T - inc 771d33—/ inc T'- mdz, Vi, € H¥?(0Q,S%),
Q Q

with ng = Lsa(0,90) and m = Laa(p1,0) (recall that Lo is the lifting operator defined in
Theorem 2.3). In addition, by Lemma 2.4, 71(T) admits a unique representative satisfying (2.10).
By linearity of Lsq, this extends formula (2.7) to any functions T € H'™(Q,S?) and n € H%(Q,S?).
Note that we could well have defined 7 (T) € H~3/2(9Q,S?) by using a classical lifting in H?(Q,S?),
but spaces of divergence-free tensors arise naturally in our problems.

From the two Green formulas recalled above one easily infers the following.

Lemma 2.6. 1. For allv € H'(Q,R?), one has inc Vv = 0 in the sense of distributions.
2. For all E € H™(£,S%), one has div inc E = 0 in the sense of distributions.

Consequently, if E € H™(Q,S?), inc EN is defined in H~/2(99,R?) by

/ inc EN - odz = / inc E-V3pde Vo e HY(Q,R?).
o0 Q

If w cC Q and wu is a vector or tensor field defined over 2 with well-defined traces on each side of
Ow, we denote by JuK the jump of u across Ow with inner term counted positively.

Lemma 2.7. If E € H™(Q,S?) and w CC Q, then Jinc ENK = 0 across Ow.
Proof. Let ¢ € D(Q,R?). By definition and Lemma 2.6,

Jinc ENK - odx :/ inc E - V3pdz = 0.

ow Q

By density this is also true for any ¢ € Hg(Q,R?), and subsequently for any ¢ € HY?(dw,R?). O
Lemma 2.8. If E € L*(Q,S%), E, € H™(w,S?), Eg\w € H™(Q\ ©,S?) and JTo(E)K =
JTL(E)K = 0 across dw, then E € H"¢(Q,S%).

Proof. By the Green formula. O
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Corollary 2.9. If E € H"¢(Q,S3) and To(E) = T1(E) = 0 on 09, then inc EN =0 on 0.

Proof. Extend E by 0 and apply Lemmas 2.8 and 2.7. g

Corollary 2.10. If v € H}(Q,R3), then To(VIv) = T1(VSv) = 0 on 0.

Proof. Extend v by 0 and apply Lemma 2.7. g
Let T be a smooth subset of 2. Corollary 2.10 extends as follows.

Lemma 2.11. If v € H'(Q,R3) satisfies v = 0 on T in the sense of traces, then To(VSv) =
Ti(V30) =0 onT.

Proof. Denote T' = VSv. One obtains from Theorem 2.1:

1
TNy = (VSU)N -N = 5((9]"01' =+ 6ﬂ)j)NiNj = 61\[’UN,

Trr = (V)-8 = S(9v; + 0,0;)7 7] = Orvr + £Fon +97 v,

N | =

1 1
Tap = (VS”)TB A = g(aBUA + davp) — 5(7’4“3 + VBUA) +&un,

1 1
TRN = 5(8]'1)1‘ + 8i1}j)TiRNj = 5(81\]1)}{ + 8RvN — I*CR’UR — f’UR*).

Therefore condition v = 0 on I' implies Ta4 = Tap = T = 0, whereby To(T) = 0.
Moreover, using (2.11) and (2.12)-(2.14) one obtains the expression in the basis of principal
curvatures for simplicity (£ = 0):
—ONTpp +2(08T)eN + kTpp — kPTyn  ONTap — kTap — (08T) an — (0aT) BN
T(T) = ONTap — kTap — (0T)an — (0aT)pn  —ONTaa + 2(0aT)an + kTaa — k4 TyN
kBTan 4+ (0aT)pe — (08T) an kATpN — (0aT) ap + (05T) aa
KBTan + (0aT)gp — (05T) aB
KATpN — (0aT) ap + (08T) aa
—KATBB — KBTAA

From the knowledge that Ta 4 = Tap = Tpp = 0, one obtains

—OnTpp +2(08T) N — KB TNy ONTap — (0BT )an — (04T )BN
T(T) = ONTap — (OBT)an — (0aT)Bny  —ONTan +2(0aT)an + kTan — kTN
KBTaAN + (04T) BB — (0BT) AB kATpNn — (0aT) ap + (08T) aa

KBTaAN + (04T)sB — (08T) AB
KATeN — (0aT)ap + (98T)aa | - (2.15)
0

Yet one has in a general basis
(OrT)rn = ORTRN — kTR + 7% Tren + kTN N — ETRR-,
OrT)rn = Or-Try — 6% Trre — ¥ *Tren + ETnn — ETRR-
Recalling that v =0 on I" and by Lemma 2.2 the first diagonal term of 77 (T") vanishes since
~OnTpp +2(08T)sN — P TN (2.16)
= —OnTsp +20TsN + 27 Tan + kP T (2.17)
= —9n(0pvs + kPuy +vMa) + (O8NvB — OBUB — OB(KPUR)) + YA (ONvA + DavN — KAV
—0p(6va) — v*évp + KPONuN
= Opnvp — Onpus = yPopup = 0. (2.18)

The same computation holds for the second diagonal term. For the AB-term one has

ONTap — (08T)an — (0aT) BN = ONTap — 08Tan — 0aTeN + v TN + VP Tan — 26Tn N,
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which vanishes whenever £ = 0 by the same arguments. Finally one has (OrT)g+r+ = OrTr*r* —
2’7R TRR* + 2£TR*N and (8R*T)RR* = 8R*TRR* —+ /iR TRN =+ "/RTRR — ’}/R TRR* + fTRNa hence
the AN- and BN-terms also vanish. O

Corollary 2.12. Let v € H'(Q,R3) be such that v =1 on T in the sense of traces, with r a rigid
displacement field. Then To(VSv) = T1(VIv) =0 on T.

Proof. On T it holds
Ti(Vo0) = Ti(Vi(w —7)) =0, i=0.1,
by Lemma 2.11. O
Lemma 2.13. Let E € H2(Q). Then E =Ti(E) =0 on T C 9Q if and only if E = (ONT x N)" x
N=Cuwl' ExN=0onT.
Proof. From E =0 on I" one infers that 9gE' = 0 on I', with R = A, B. Thus, (2.15) rewrites as
—OnEpp  OnEap 0

0= 8NEAB _8NEAA 0 = —75(8NE)
0 0 0
on I', achieving the proof, the last statement being proved in [1]. The converse is proven in the
same manner. g

Lemma 2.14. We hawve the characterization
H(Q,8%) = {E € H™(Q,S%) : To(E) = Ti(E) = 0 on 0Q} .
Proof. Suppose E, € D(Q,S?), E € H"(Q,S?), E, — E in H™(Q,S3). Of course, To(E,) =
Ti(Ey) =0 on 02 Then by continuity 7o(E) = T1(E) = 0 on 9S. }
Suppose now E € H™(Q,S3) with To(E) = T1(E) = 0 on 9Q. Extend E by 0 to get F €
H™¢(R3,S?). By local charts, shifting and convolution with mollifiers, we can define through a

standard construction E, € D(R3,S?) such that E,, — E in H™(R3 S?) and spt E, C Q. Hence
E, — E in H™¢(Q,S3), which yields E € H"(Q2,S?). O

2.4. Beltrami decomposition and related results.

Theorem 2.15 (Saint-Venant compatibility conditions [13]). Assume that Q is simply-connected.
Let p € (1,4+00) be a real number and let E € LP(Q,S?). Then,

inc E=0in W™2P(Q,$%) «—= F =V
for some v € WHP(Q,R3). Moreover, u is unique up to rigid displacements.
Theorem 2.16 (Beltrami decomposition [13]). Assume that Q is simply-connected. Let p €
(1,400) be a real number and let E € LP(),S?). Then, for any vo € W'/PP(0Q), there exists a
unique v € WHP(Q, R3) with v = vy on 9Q and a unique F € LP(2,S3) with Curl F € LP(Q,R3%3),
inc F € LP(Q,S?), div F =0 and FN =0 on 9Q such that

E=vV% + inc F. (2.19)

We call v and F' the velocity and incompatibility fields, respectively, associated with E. The
following result is the dual counterpart of Saint-Venant’s decomposition.

Corollary 2.17. Assume that Q is simply-connected. If E € L?(Q,S?) satisfies div E = 0 in
H=Y(Q), then there exists a unique F € L*(,S?) with Curl F € L*(Q,S?), div F = 0 and
FN =0 on 09 such that E = inc F.

Proof. Theorem 2.16 yields
E =V + inc F,
with the appropriate F' and v € H (2, S?). The condition 0 = div E = div Vv entailsv = 0. O

We now specialize Saint-Venants’s decomposition in the case of boundary conditions.
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Proposition 2.18. Assume that Q is simply-connected. If E € L*(,S?) satisfies

inc E =0 in €,
To(E) =Ti(E) =0 on 00

there exists v € HE (2, R3) such that Vv = E. Moreover, the map E € L*(Q,S%) — v € H}(Q,R?)
is linear and continuous.

(2.20)

Proof. Up to passing to the limit of a sequence, we can without loss of generality assume that
EeD(Q,S?). Let A: H1(Q,R?) — L2(2,S?) be the linear map defined by Ap = VSu with

—div VSu = ¢ in Q,
u = 0 on 9.

Let A* : L*(Q,S?) — H{(9,R3) be the adjoint operator of A. Let E € L*(Q2,S?) satisfy (2.20)
and v = A*F € H} (2, R3). Let ® € D(Q2,S?). By definition we have

—/ A*Ediv &dx = —/ E - A(div ®)dz.
Q Q

Set ¥ = A(div ®). We have —div ¥ = div ®. By Corollary 2.17, ¥ = —& + inc ¢ for some
¢ € H1¢(Q,S?). We obtain

—/ (A*Ediv(I):/E-‘I)—/E- incC)dm.
Q Q Q
Since E € D(Q,S?) and inc E = 0 it holds

/E-inchm:O.
Q

We arrive at
—/ A*E div &dx = / E - ®dzx,
Q Q

V3(A*E)=F

in the sense of distributions. O

thus

We can now state a converse to Corollary 2.10.

Proposition 2.19. Assume that ) is simply connected. If v € H'(Q,R3) is such that To(V v) =
T1(V5v) = 0 on 9 then there exists a rigid displacement field v such that v =r on 9.

Proof. By Proposition 2.18, there exists w € Hg (92, R?) such that VSv = Vw. Next, there exists
a rigid displacement field r such that v = w + r. On 99 we have v = r. d
3. ORTHOGONAL DECOMPOSITIONS

We assume in this section that €2 is simply-connected.

3.1. Orthogonal decomposition of L?(Q,S?). Let I' be a smooth subset of Q. We define the
sets

Vv = {E€l*(QS?) : inc E=0},

W = {EecV : To(E)=Ti(E)=0o0nT},
VIQO = {VSU : UGHl(Q),UZOOHF},
W = {Eel*Q,S% : divE=0},

W2 = {Ec€W : EN=0onT}.
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Remark 3.1. By Theorem 2.15 and Corollary 2.17 we have
VZ{VSv,veHl(Q,R3)}, (3.1)

W = {inc F,F € L*(Q,S?), Curl F € L*(Q,S?), div F =0 in Q, FN =0 on 09} . (3.2)

Moreover, the velocity field v in (3.1) is unique up to a rigid displacement field. The incompatibility
field F in (3.2) is unique.

Remark 3.2. If [T'| > 0, the velocity field v in the definition of VRO is unique.
Remark 3.3. By Lemma 2.11 we have

VRO VR,
and we infer from Proposition 2.18 that

Voo = Via-

Theorem 3.1. Assume that 00 admits the partition 00 = T'y UTy with T'1 NTy = 0. We have
the orthogonal decomposition

L*(Q,8%) =V @ WL,

Proof. i) Let E € VR, E e WP,. We have E=V5%, %€ H(Q), o =0on ;. The Green formula
entails

/E de—/v% de——/v-divEdm—i—/ - ENdS(z) =
a0

ii) Let E € L?(Q2). Write the Beltrami decomposition of Theorem 2.16 as E = Vv + inc F with
v =0 on 9. Let w € H'(Q) be the solution of

—div V5w =0 in ©,
w=0onTI4,
VSwN = inc FN on Ds.

We have
E=V%w+w)+ (inc F - V5w) € VR + WP,
which completes the proof. O
We have the following additional property.

Lemma 3.2. If K € V2 and inc Fe WR, it holds
| (70 £+ To(x) - o F) ds(a) =
I
Proof. First, as VIQ? C Vlgl, we have

/Fz (ﬂ(K)-FJr%(K)-aNF) 45(z) :/

(T(K) - F -+ To(K) - 0w ) dS(z).
N

By the Green formula, we obtain

/m (T:) - F + To(K) - 0w F) dS (x) :/

(K- inc F — incK~F>dx:/K~ inc Fdx.
Q Q

Writing K = V5% and applying the Green formula yields
/ (7'1(K) P+ To(K) - aNF) dS(z) = / inc FN - 6dS(z).
a0 a0

However, v = 0 on I'; while inc FN =0on I's, achieving the proof. O
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3.2. Orthogonal decomposition of H'™¢({)) and related results. Define

Z = {E€H™(Q) : div E=0inQ,EN =0 on 00},
2y = {E€Z : inc EN =0on 9dQ},
F = {EcH™(Q) : inc EN =0 on §Q}. (3.3)

By virtue of Theorem 3.1 we infer the following decompositions.

Proposition 3.3. We have the orthogonal decompositions
H™Q) = Za)V,
F = ZydV. (3.4)
We now gather some properties of the spaces Z and Zj.
Proposition 3.4. If E € Z then Curl E € L?. Moreover there exists ¢ > 0 such that
IE|L2 + || Curl B2 < ¢|inc E|| L2 VE € Z.
Proof. Let
X ={FeL*(S%,Cul FeL?inc FeL?divF=0FN=0ondQ},
Y = {F € L*(Q,§%), div F =0}
and define the linear map ® : X — Y by ®(F) = inc E. Equip X and Y with the norms
[Fllx = [[Fl[z> + || Curl F[|g2 4 [[inc F]| L2,
IElly = 1F]|rz.

Clearly, X and Y are Banach spaces and @ is continuous. By Corollary 2.17, ® is bijective. The
open mapping theorem entails that ®~! is continuous. Hence there exists ¢ > 0 such that

@~ (inc E)|x < ¢/ inc E||p-.

Let E € Z. Then inc E € L?. Set F = @ 1(inc E). From inc F = inc E, div F = div E =0
and FN = EN =0 on 0f2 we infer F' = E. Therefore

IE|L2 + || Curl E|pz + ||inc E||r2 = ||E||lx = ||<I>_1(inc E)|lx < c¢|linc E|| L2 (3.5)
and the results follow. O

Theorem 3.5 (Kozono-Yanagisawa [10] and von Wahl [24]). There exists a constant ¢ > 0 such
that
IVullrz < e(||div ul|z2 + || Curl ul|z2)

for all
u € {ve L*(Q,R?), divv e L? Curl v € L?,v.N =0 on 00Q}.

Proposition 3.6. There exists C > 0 such that for all E € Z
|Ell < Cline Ellz2.
Proof. Let E € Z. By Proposition 3.4 we already have
IE L2 + || Curl ElL2 < cf|inc El| 2.

Then Theorem 3.5 yields
IVE|| L2 < ¢| Curl E||2

for some other constant c¢. This completes the proof. O
We infer in particular that Z is imbedded in H'(£2,S%) and compactly imbedded in L?(£,S?).

Proposition 3.7. We have the representation

Whq = {inc F, F € Z}.
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Proof. Of course, if F' € Zj, then inc F' € WgQ.
Take E € W),. By Corollary 2.17 there exists FF € H™¢(Q2) with div F = 0 and FN = 0 on
0 such that E = inc F. The condition EN = 0 on 0f2 yields F € Z. O

Lemma 3.8. Given a symmetric uniformly positive definite fourth order tensor field B (i.e.
B(x)T.T > o|T|?> VT € S? for some o > 0 independent of x) define the linear map Ly : Z — Z' by

(LsE, ®) = / Binc E - inc ®dx  VE,® € Z.
Q

Then Ly is an isomorphism from Z into Z'.
Proof. By Proposition 3.4, (Lg E, E) defines a norm in Z equivalent to the H™¢-norm. Let 7 € Z'.
By Riesz theorem, there exists T € Z such that (T, E) = (LT, E). O

Therefore we can define the inverse map Ly 1. 2/ — Z, that is continuous by Banach’s con-
tinuous inverse theorem. Since Z C L?*(Q) C Z’, the restriction Lz’ : L(Q) — L%() is also
well-defined.

Lemma 3.9. The operator L]gl 1 L2(Q) — L?(Q) is self-adjoint positive definite and compact.

Proof. The compactness stems from the compact embedding Z < L?(Q) of Proposition 3.6. One
has for all E, F € L*(Q)

/L;E.Fdx:/L;E.LBL;F@:/Binc (Lg'E) - inc (Lg'F)dz.
Q Q Q

It follows that Ly LF is self-adjoint and positive definite, achieving the proof. O

3.3. Two elliptic boundary value problems for the incompatibility. Lemmas 3.8 and 3.9
yield the following two propositions.

Proposition 3.10. Let K € L?(Q2,S?) and B a symmetric uniformly positive definite fourth order
tensor field. There exists a unique B € Z such that

/BincE~ inc de:/K-de VE € Z. (3.6)
Q Q

Moreover, the solution map ® : K € L*(Q,S3) — E € L?(,S?) is linear and compact.

Proposition 3.11. Let K € L?(Q,S?) and B € L*(,S3) uniformly positive definite. There
ezists a unique B € Zy such that

Binc E - inc Ede = | K-Edz  VE € 2. (3.7)
Q Q
Moreover, the solution map ®¢ : K € L*(Q,S?) — E € L*(Q,S?) is linear and compact.

Proposition 3.12. Let K be such that div K = 0 in Q and KN = 0 on 9. Then, the strong
form of (3.6) reads

inc (Binc £) = K inQ
divE = 0 inQ
EN = 0 onoQ (3.8)
To(Binc E) =Ti(Binc E) = 0 on 09

whose solution coincide with to the solution of the weak form.

Proof. Eq. (3.6) holds actually true for all E € Z +V = H™(Q). In particular for E € D()
and for E with arbitrary traces To(On E) and E on 92, by Theorem 2.3. Then the Green formula
provides the strong form, which is seen to be equivalent to the weak form. O
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Remark 3.4. The solution of (3.7) satisfies the strong form

inc (Binc E) = K in§
divE = 0 inQ
EN = 0 onofQQ (3.9)
inc EN = 0 on0f2

In fact, taking any test function E € D(Q) C F. Since F =V + 2y, one obtains the strong form
in Q. The boundary conditions are given by the essential condition of the space.

4. ELASTO-PLASTICITY MODEL

4.1. Power of internal efforts. We recall the main features of the model introduced in [2].

Assumption 1. The power of the internal efforts against the virtual strain rate £ € D(Q,S?) is of
form

Wi (E) = /Q (0-E+T-VE) dz

The tensor fields ¢ and 7 are called the stress and hyperstress tensors, respectively.
Assumption 2. The power of the internal efforts is a continuous linear functional of E € L?(Q,S?).
We infer o — div 7 € L?(,S?) and

Wit (E) = /(g —div7)-Ede  VE e L*(Q,S%).
Q
Assumption 3. The material is piecewise linear homogeneous isotropic: there exists a partition of
N as Q =JQ, such that, in each Q,,
o=AFE, T=B,VE (4.1)

where E is the strain, A, is the standard Hooke tensor and B, is the Mindlin tensor. They read
componentwise

oy = MNoijE, +2uE;, (4.2)
C
Tijk = c1(0kiOEy + 0101 Ey) + 52(51@5]'15’” + 0 0i By + 204501 Eqx) 4 2¢30:0k By
+  2¢40pEij + ¢5(0iEji + 0;Eir), (4.3)

where A, p1, ¢1, ..., ¢5 are constants assigned in each €, (index p is dropped for readability).
Assumption 4. The hyperstress 7 does not produce any virtual intrinsic power as soon as the strain
FE is compatible. This means

incE=0:>/r-vdezovEeD(Q,S3),
Q

or equivalently inc £ = 0 = —div7 = 0 in Q. From expression (4.3) we derive the existence
within each €2, of a constant ¢, such that —div 7 = ¢, inc F.

Conclusion. We denote £ = {,xq, and A = Y A, xq,, whereby 0 = AE and —div 7 = linc F
in Q. The expression of the internal virtual power is

Wint (E) = / (AE + linc E) - Edz ~ VE € L*(Q,S%).
Q

4.2. Power of external efforts. The power of external efforts is assumed to be a linear functional
on L?(€,S?). By Riesz representation, there exists K € L?(2,S%) such that

ext / K- de

We emphasize that the power of external efforts may be at first expressed in terms of the non-
objective fields v and F of the Beltrami decomposition of E. However, provided attention is paid
to the uniqueness of the decomposition, these fields are themeselves linear functions of E. This
will specified in Section 7.1.
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4.3. Virtual power principle. The virtual power principle in the absence of inertia reads
I/Vint(-E‘) = Wext (E)7
that is
/(AE +¢inc E) - Bdx = / K- Edz, (4.4)
Q Q

for all E € L?(Q,S?) satisfying the kinematical constraints. Of course, in the absence of kinematical
constraints, (4.4) is equivalent to
AFE +/linc F =K,

but this strong formulation requires that K be known (see for instance the example of Section 8.1).

4.4. Time-evolution of a nonlinear elasto-plasticity model. Within an incremental formula-
tion, A and ¢ are tangent elasto-plastic moduli. They need to be updated at each increment as soon
as plasticity phenomena occur. The stress-strain relation is therefore piecewise linear. Typically,
in a region with plastic deformations, the Lamé coefficients and the incompatibility modulus ¢ are
expected to be less than in purely elastic regions. The way these coefficients evolve is driven by
nonlinear constitutive laws that substitute to flow rules and hardening models. We emphasize that
dislocations may by created / moved without creation of incompatibility, as shown by Kréner’s
relation inc E = Curl A with A the dislocation density tensor [11,20]. Therefore varying ¢ alone
is not sufficient to describe plastic effects.

5. SOLUTION OF ELASTO-PLASTICITY EQUATIONS WITH NATURAL BOUNDARY CONDITION
The main problem we address is the following: given K € L?(Q,S?), find E solution of (4.4).

5.1. Kinematical setting. We will see that the absence of kinematical constraints leads to
nonunique solutions. We will assume that inc EN = 0 on 02. In view of Lemma 2.7, this is con-
sistent with assuming that the exterior of Q2 is filled with a purely elastic phase (|lext| — +00). A
more general setting would be to consider a boundary condition of form inc EN = ®(7y(E), T1(E))
with an appropriate linear operator ®.

Remark 5.1. A particular kinematical setting is to require K € V, and a very special case occurs
when K = Vv with div v = tr K constant. Then for A constant a solution to AE + ¢inc E =K
is E = A™'K. Indeed by the structure of A~! one has E proportional to K plus a constant and
hence inc F = 0.

5.2. Well-posedness. Our main result is the following.

Theorem 5.1. Assume §) is simply connected. Let K € L?(Q,S?). Let C be the Poincaré constant
of Proposition 3.6. If A is uniformly positive definite and |£| > C|A| a.e., then there exists one
and only one E € F such that

AFE +/inc E =K.

Moreover we have the a priori estimate

|inc E||z2 < I I

— = ATIK]| . 1
=1_ OHf_lA”Loo || HL (5 )

Proof. We assume that ¢ > 0. The other case is deduced considering { = —¢, A = —A, K = —K.
We write the problem as

E+Binc E=H (5.2)
with B := /A~! and H := A~'K. We will first prove uniqueness and then existence of a solution.
Step 1. Uniqueness. Let E € F be such that

FE + Binc E = 0. (5.3)
Take the orthogonal decomposition £ = F. + E; with E. € V and E; € Z;. We have
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Take F' € Zy. Then
/ E. - inc Fda:+/ E; - inc Fdx+/ Binc E; - inc F'dx = 0.
Q Q Q
By inc FN =0 on 99 the first integral vanishes. Specifically, take F' = E;. We obtain
/ FE; - inc E;dx —|—/ Binc E; - inc E;dx = 0.
Q Q
We have

inc B;||2, = [ inc E; - inc E;dz = [ B~ (BY?inc E;) - (B"/?inc E;)dz
L
Q Q

< |IB7Y z~ / Binc E; - inc E;dv. (5.5)
Q
By Proposition 3.6 we obtain

Cllinc Eil|72 > || Bl 12| inc Ej| 2

/ E; - inc E;dx
Q

(CIB™ |z — 1) inc E;||32 > 0.
If |B~1||z < C~! we infer inc E; = 0 then E; = 0, by Proposition 3.6. Thus (5.4) yields E. = 0,
and eventually £ = 0.
Step 2. Fuistence. Let E=FE.+ E; € F, E. €V, E; € Zy. Then (5.2) is equivalent to
Jo(Ec+Binc E;) - Edz = [,H- E.dz, VE. €V,
itself, by Proposition 3.7, equivalent to
Jo(Ec + Binc E;) - V9dz = [ H - Vbdx Vo € H (), (a)
Jo(Ei +Binc E;) - inc Fdx = [,H- inc Fdz YF € Z,.  (b)
Define the operators Ly : Zg — Z} and M : L*(Q,S?) — 2} by

>

= / Binc E; - inc E; > |B7Y| 4| inc |2,
Q

that is,

(Lp¥, D) = / Binc ¥ - inc ®dx, (MU, D) = / ¥ - inc ®dz.
Q Q

Equation (5.7)(b) is equivalent to
(M + Lg)E; = MH. (5.8)

By Lemma 3.8, Ly : Zy — Z|, is invertible. Thus, (5.8) is equivalent to

(I+Lg'M)E; = Ly' MH. (5.9)
The operator Lz M : L?(Q,S%) — L?(Q,S%) is compact, since it is continuous from L?(€2,S?)
to Zg and Zq is compactly embedded in L?(€,S?) by Proposition 3.6. Furthermore, under the
condition |B~!||p~ < C~1, the operator I + Lg'M : L*(Q,S?) — L?(Q2,S?) is injective due to the
uniqueness claim. Thus, Fredholm’s alternative provides the existence of E; € L?(f) solution of
(5.9). From E; = Ly'M(H — E;) we infer E; € Z,. We have found E; € Z solution of (5.7)(b).

Let us turn to (5.7)(a). We have to find E. = Vv, v € H*(Q,R®) such that

/ V- Vida :/(H—Binc E;) - V¥0dz, Yo € H'(Q,R?). (5.10)
Q Q

This is a standard linear elasticity problem.
Third step. A priori estimate. Equation (5.7)(b) entails

/ FE; - inc E;dx —|—/ Binc F; - inc F;dx = / H - inc F;dx.
Q Q Q
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Using (5.5) we obtain
linc B;l|7> < B~z / (H - E;) - inc Eydz < B[z (|Hl| 2 + || Bill 22) || inc By re.
Q
Proposition 3.6 yields
line Eillze < [B™"||ze (|H]|z2 + C|linc By r2),
from which we arrive at (5.1). O

Remark 5.2 (Dislocation-induced stress). Because of Kriner’s formula we call G := £inc E the
dislocation-induced stress tensor. For ¢ constant, let E* be the solution of AE+{inc E =K. Then
(5.1) implies that G* := Linc E* converges weakly in L*(,S®) to some G as £ — oo. More precise
limiting results will be given in the next section.

Conversely, the condition |[¢| > C|A| prevents || from going to 0 without assuming that A also
tends to 0. Such limit cases are left for future work.

6. ELASTIC LIMIT

Proposition 6.1. Consider a sequence Ay € L>(Q,S?) with c1|€]* < Ag(2)€- € < eo€]? VE € R?,
a.e. © € Q, c1,co > 0, and a sequence l € L>®(Q,RF) with infql, — +oo. Assume that
K € L3(Q,S?), E* € F, A,E* + {),inc E¥ =K. Then | inc E*| > — 0.

Proof. Tt is a straightforward consequence of (5.1), since ||£; *Ag||f — 0. O
Obviously the same holds for a sequence ¢, € L= (Q, R, ) with infq [£| — +o0.
Proposition 6.2. If { is constant, K € L*(Q,S?), E € F, AE +/{inc E =K in Q then

/AE~Ed:c:/K-de VE € V.
Q Q

Proof. Take E €V and observe that due to the assumptions, one has
/ inc F - Edz = 0.
Q
O

Theorem 6.3. Assume that A, K are fized, ¢ is constant, E* € F, AE® + ¢inc E* = K in Q.
There exists a unique E*° €V such that

/AEOO-Edmsz-de VE e V. (6.1)
Q Q

Moreover |E¢ — E*¥||> — 0 when || — +oo.

Proof. Existence and uniqueness for (6.1) is a consequence of the Riesz representation theorem
in the Hilbert space V for the inner product (F, E) — fQ AFE - Edz. Consider the decomposition
E' = E‘+ Ef € V@ Z5. We have by Proposition 6.2

/A(Ef—i—Ef)-Ecdaz = / K-E.de VE.eV.
Q Q
Substracting (6.1), one has

/ A(EY — E®) . E dz = —/ AE! E.de  VE.eV.

Q Q

By Propositions 6.1 and 3.6 we have ||[Ef| g1 — 0. It follows ||EY — E>®||z2 — 0 hence ||E¢ —
EOOHL2 — 0. O

Hence, as |¢| — +00, one retrieves the standard linear elasticity problem with Neumann bound-
ary conditions. The next theorem addresses how to obtain Dirichlet conditions.
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Theorem 6.4. Assume that € is constant, Ag(x) = A if z € Q\w and Ay(z) = A if v € w,
with w CC Q, A a symmetric positive definite tensor, 0 < ay < |[€|/(C|A]), limg_ 400 ¢ = +00,
ap = O(/|¢). Set

Vo={EcV,E,=0}.

Assume that K is fived, E* € F, AyE’ 4+ ¢inc E* = K in Q. There exists a unique E>® € V,, such
that

/AEoo ‘Edr= | K-Edz VEeV,. (6.2)
Q Q

Moreover ||E* — E*®| g2 — 0 when |¢| — +oo0.

Proof. Problem (6.2) is a standard linear elasticity problem with Dirichlet boundary condition on
Ow and Neumann boundary condition on 0f2. Existence and uniqueness are standard.

Decompose Ef = E + Ef € V @ Zy. By Theorem 5.1 and Proposition 3.6 we have |Ef||;1 =
O(|¢| ') = O(|¢|~1/?). We have by Proposition 6.2

/ AE - Eodx = / K- E.dx — / AE!-E.dx  VE,eV.
Q Q Q
In view of the assumptions this shows that || Ef| 12() is bounded. Choosing E. = E! we infer

/ AE! - Eldr < aj!

/K-Eﬁdm—/AgEf-Eﬁdx
Q Q

This yields
1B L2 () — 0. (6.3)

We have by difference

/ Ag(Ef — E®) . Eodx = — / (Ag — AYE>® - E.da — / AyEf - E dz  VE,eV,,
Q Q Q
that is
/ A(E! — E®) - E.dx = _/ AE! E.dz  YE.e€V,.
QNw Q\w
Let v € H'(Q2) be such that Ef = V50! and |[v!||g1q) < c1||EY|12(q) for some geometrical
constant ¢;. Let w’ € H'(Q) be an extension on (v%)|, such that ||| () < col|v*] g (w) for

some other geometrical constant c;. Then R’ := VSw’ € V is an extension of (Ef)‘w such that
RN 220y < crco||EL|| 12(w)- Moreover, Ef — E> — RY € V,, and hence we have

/ A(EY — E®) - (E! — E®)dx
QN\w

= / A(E' — E*®) . (Ef — E® — RY)dz + A(E' — E*) - Rldx
QAN\w QN\w

—/ AE! - (E' — E® — RY)dx +/ A(ES — E>) - Rldx.

QN\w QN\w

This goes to 0 as [¢| — +00, since || Ef | 12) — 0 and ||RE| 12(q) — 0 by (6.3), while Ef — E>~ — R’
and Ef — E> are uniformly bounded. We infer that |Ef — E*| 12\, — 0. This implies
|Ef — E*||12(q) — 0 and eventually ||E¢ — E>||12(q) — 0. O
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7. INTERPRETATION OF THE KINEMATICAL FRAMEWORK AND EXTERNAL EFFORTS

7.1. External efforts. Consider a virtual strain £ € L2(Q,S?) decomposed as

E=vV% + inc F. (7.1)
The work of the external efforts against E reads
We(E) = | K-Ede = — div K -ode + [ KN -odS(z) + / inc K - Fdx
Q Q a0 Q
+ /m (ﬂ(K) P4 To(K) .aNF) ds(z). (7.2)

The fields — div K and KN are recognized as classical body and contact forces. The fields inc K,
To(K), T1(K) are body and contact forces working on the incompatible part of the virtual strain.
The above fields are in principle known in the first place. The issue is then how and under which
conditions it is possible to construct a corresponding K. Formally the boundary forces KN, 7o (K)
and 77 (K) exhibit some coupling, as stressed in [2]. To address these points one must specify a
kinematical framework ensuring the uniqueness of the decomposition (7.1).

7.2. Kinematical framework. Take E = V0 + inc F' with V50 € VP and inc Fe We, for
some partition I'y UTs of 0. As said above, f := —div K is identified with the body force, and
g := KN is identified with a surface load on I's. Now, if K € VP the last two integrals of (7.2)
vanish by virtue of Lemma 3.2. Then (7.2) rewrites as

/QK-de:/Qf-@d:v—&—/rzg-ﬁdS(:c). (7.3)

To sum up, given f € L*(Q,R?) and g € H~/2(Q,R?) such that [, fdz + [, gdS(z) = 0, one
wants to determine K = VSw € L2(2,S?) such that
—div VSw = f in Q,
w=0onTy, (7.4)
VSwN = g on I'y.
It is well-known that this problem admits a unique solution w € H* ().

Proposition 7.1. Assume that Q is simply-connected. Let K € L*(Q,S?) be such that K = VSw
satisfies (7.4). Then the weak form

/(AE—i—Einc E)-(VS®+EO)d:c:/f~ﬁdx+/ g-9dS(x), V(V59,E%) € VRO x W2 (7.5)
Q Q T

admits a unique solution E € F that corresponds to the solution of the strong form

—div (AE+/{inc E) = f in Q
inc (AE+/{¢inc E) = 0 in
(AE+/{inc E)YN = (AE)YN = g on I'y
inc EN = 0 on Q) . (7.6)
To(AE + ¢inc E) = Ti(AE+{¢inc E) = 0 on I’y
To(AE+/linc E) = To(K) on Ty
Ti(AE+/linc E) = To(K) onTs.

Proof. Eq. (7.5) is equivalent to AE + {inc E = K, itself equivalent to

div (AE 4 finc F) = div K and inc (AF + finc F) = inc K in Q,
(AE + ¢inc E)N = KN and To(AE + Linc E) = To(K) and T;(AE + £inc E) = T1(K) on 5.

The assumptions and the essential conditions complete the system. O

Remark 7.1. We remark that the normal component of the Cauchy stress (AE)N can be prescribed
on Ty, whereas the tangential part of the full stress To(AE + Linc E) is fized to zero on I'y.
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Remark 7.2. In this framework, there is no virtual work associated with the boundary condition
on I'y, even if the virtual strain is allowed to have tangential components. This may not well model
a clamped condition, and when |€| — 0o one do not retrieve To(E>) = T1(E*) = 0, see Theorem
6.3. To do so, one has to set KN = AE®'N on the whole 9Q, where E® is the strain associated
with the purely elastic solution, i.e., B = Vv with

—div (AVv®!) = f in Q,

vl =0 on Ty,

AVveIN =g on I'y.

8. EXAMPLES

8.1. Uniaxial traction. We consider the domain € = R3. We assume a uniform traction of
density g = 1 on the planes z = +h. Hence

000
K=[0 0 0],
00 k

with k& = x{|s<n}, provides the virtual power [p, K - (V50 + inc Fydz = f{z:h} e,.0dS(z) —
f{zth} e,.0dS(z). We search for a strain field of form

o 0 0
E=10 ¢ 0],
0 0 ¢
where @, are functions of the z variable. In this case one has
20+ )+ M 0 0
AE = 0 2N+ w)e + Ay 0 ,
0 0 22+ (AN +2p)9

1"

0
incE=1|0 ¢
0 0

o O O
—~
I
—_
~—

Hence AE + ¢inc E = K if and only if

20+ e+ M+ Lp" =0
20+ (A +2p)p = k.

Elementary algebra leads to

V=g )
203X + 2p) + L\ + 2u) " = —\k.
We are led to consider that ¢ < 0, since in the other case the solution does not decay when |z| — oco.
We denote
Y [20(3X + 2u)'
A+2u
We obtain:
(1) For |z| < h
-A wh wz
w(z) = BN T o) 1 —exp (—\/m> cosh <|€|>] )

1 )\2 wh wz
Y& = 53 {1 TG T 2) ll - <_|€|> o (lﬁlﬂ } |
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) —A sinh wh . wz|
zZ) = 111 X - B
A2 = 5B+ 20 ) P i

(2) For |z| > h

A2 wh w|z|
PY(z) = sinh | —— | exp | — .
(2) w4+ 2p) (3A + 2u) 12| |€]
Observe that
lim ¢(z) =0, lim ¢(z) =< A+2u il < b
[€]— o0 [€]— 00 0if |Z‘ > h,
which is the classical elastic solution with uniaxial strain. The von Mises stress is found as oy =

2plp — |-
Let V°U + E; be the Beltrami decomposition of E such that VU € V and E, € WgQ (see
Theorem 3.1), i.e., div Eg =0 in Q and EgN = 0 on 9. One has

div VSU = div E in Q,
VSUN = EN on 9.

This means v’ = ¢', v/(h) = ¥(h), w/(—=h) = ¥(—h). Thus ' = 1 and, setting u(0) = 0,
= ds.
uz) = [ wis

We obtain in particular

B 1 A2 \/m 2wh
uM =5 {h+ (3 + 2p) lh_ 2w (1 - <_|4|>>] }

The functions ¢, ¥ are plotted in Figure 1 for A = 1, Young’s modulus Y = 10, Poisson ratio
v =1/3. The value of u(h) as a function of ¢ is also depicted.

Remark 8.1. Suppose the Poisson ratio v and the load K are fized, and the Young and incom-
patibility modult Y and ¢ are allowed to vary. In view of the equation AE + finc F = K, with
A =YAg we get Ag(YE) + (¢/Y)inc (YE) = K hence there exists a function ® such that the
strain E and Cauchy stress o satisfy

1 Y Y

In the previous example, at each point oy is an increasing function of Y/|€|. Therefore, if Y
and €] are decreased in such a way that the ratio Y/|| is decreased, then the von Mises stress is
alleviated, while the strain is likely to increase.

8.2. Spherical shell under uniform pressure. Consider the domain €2 = {3: ER3R< || < 1}.
Call I'p and I'y the internal and external boundaries, respectively. We assume a uniform pressure
p on T'r and free boundary on T';. Hence one has K = Vw with

—div V5w =0 in ,
VSwN =0 on Iy,
V5wN = —pN on T'p.

For w = w(r)e, ® e, one has

w
Vow =w'e, ® e, + ?(69 Reg+ep@ey),

!
div Vow = (w” + 22 — 2% €.
r r2
Therefore b
divVSw:0<:>w:ar+f2
r
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FIGURE 1. Functions ¢ (top left), ¢ (top right), ops (bottom left) for £ = —10

(blue), £ = —100 (red), = —1000 (yellow). Value of u(h) in function of ¢ (bottom
right)
for some constants a,b. The conditions w’(1) = 0 and w’(R) = —p yield

w = PR’ r+i w' = PR’ 17i
1—R3 2r2 )’ 1—R3 r3 )’

_ pR? 1 3
Kil—R?’ [(1+2 3>I 5 3er®er].

We arrive at

Considering the guess
E=op(r)I+(r)e, @ er
we have
AE = (BN +2u)¢ + M) I + 2uape, @ ey,
On the other hand (see [19])

/ / / / 2
incE:(gp”—i—w—w>l+<—<p”+<p+¢ w)er®eT.
rooor roor r?

Hence AFE + ¢inc E = K if and only if

/

/ R3 1
9 wy PV _ P
(3\ + M)<p+)\w+€( + r) T +2r3

¢+£_% __pR 3
T 72 1— R32r3°

2up + £ <—<,0" +

Moreover, the condition inc EN =0 on I'y and I'g read
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e solution of the system is the elastic solution:
pR3 1 1 —-pR3 3
Y= 3 + 3 ) V=73 3"
1—R3\3\+2u  4upr 1—R34pr

ere is no strain incompatibility here. This is a consequence of tr K being constant, see Remark
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