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Symmetry and symmetry breaking:
rigidity and flows in elliptic PDEs

Jean Dolbeault, Maria J. Esteban, and Michael Loss

Abstract

The issue of symmetry and symmetry breaking is fundamental in all areas
of science. Symmetry is often assimilated to order and beauty while symmetry
breaking is the source of many interesting phenomena such as phase transi-
tions, instabilities, segregation, self-organization, etc. In this contribution we
review a series of sharp results of symmetry of nonnegative solutions of non-
linear elliptic differential equation associated with minimization problems on
Euclidean spaces or manifolds. Nonnegative solutions of those equations are
unique, a property that can also be interpreted as a rigidity result. The method
relies on linear and nonlinear flows which reveal deep and robust properties of
a large class of variational problems. Local results on linear instability leading
to symmetry breaking and the bifurcation of non-symmetric branches of solu-
tions are reinterpreted in a larger, global, variational picture in which our flows
characterize directions of descent.

1. INTRODUCTION

Symmetries are fundamental properties of the laws of Physics. They impose con-
straints on modeling phenomena and, at a more basic level, they serve as criteria of
classification. Inspired by his work in crystallography, Pierre Curie made an early
attempt (in 1894) to investigate the consequences of symmetries. Since then, sym-
metry has been an important preoccupation for many scientists.

More intriguing than symmetry is the phenomenon of symmetry breaking, which
asserts that the state of a system may have less symmetries than the underlying
physical laws. Among various considerations on the causes of the symmetries and
what these symmetries mean in physics, P. Curie wrote in [12] that

C’est la dissymétrie qui crée le phénomène.

In mathematical terms, “dissymétrie” shifts the attention to solutions which may
have less symmetries than the problem they solve. Symmetry breaking, especially
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spontaneous symmetry breaking, has been an incredibly fruitful concept over the
last century. It appears in mechanics (buckling instabilities), in particle physics,
in the description of phase transitions or complex dynamics, etc. One of the ba-
sic mechanisms is the bifurcation phenomenon in nonlinear systems, which has to
do with the stability analysis of symmetric states.

Symmetry has attracted the attention of mathematicians for diverse reasons which
range from assertions like “symmetry is beautiful” to practical motivations: symme-
try simplifies the search of solutions and makes their computation more tractable
from a numerical point of view by reducing the number of degrees of freedom.

Entropy methods have a long history in various fields of Science and in particular
of Mathematics. The notion of entropy that we shall consider here is inspired by re-
sults in the theory of nonlinear PDEs and especially nonlinear diffusion equations.
It borrows tools from Kinetic Theory and from Information Theory. Other major
sources of inspiration are the carré du champ method used in the study of Semi-
groups and Markov processes as well as the rigidity (uniqueness) techniques in the
Theory of Nonlinear Elliptic Equations. In addition to the application to symmetry
issues, one of our contributions was to rephrase these two approaches in a common
framework of parabolic equations and to emphasize the role of the nonlinear diffu-
sions in the search for optimal ranges and optimal constants in related interpolation
inequalities.

It is definitely out of reach to give even a partial account of all mathematical
issues of symmetry and symmetry breaking in this paper, so we shall focus on PDEs
with two main examples: the first one is the equation

−div
(|x|−β∇w

)= |x|−γ (
w2p−1 −w p)

in Rd \ {0} ,

which has an interesting feature: there is a competition between nonlinearities and
weights. The solutions can be interpreted as critical points of an energy functional.
Without weights, solutions are radially symmetric (up to translations). With weights
and in some regime of the parameters β, γ and p, non-radial solutions are energet-
ically more favorable. Since we are interested in energy minimizers, as a particular
sub-problem, understanding who wins in the competition is a central question.

Alternatively, we shall consider the equation

−∆ϕ+Λϕ=ϕp−1 on M ,

where M is a sphere, a compact manifold or a cylinder. In that case, the geometric
properties of the manifold replace the weight and compete with the scale induced by
the parameter Λ. If there is enough space, in a precise sense that can be measured,
then solutions with less symmetry may have a lower energy.

These two equations, although very simple because the nonlinearities (and also
the weights in the case of the first equation) obey power laws, are not purely aca-
demic. For one, the solutions (and the associated functional inequalities) are of
direct interest for instance in some models of fluid mechanics. More important is
the fact that power laws appear in many problems when scalings or blow-up meth-
ods are used to extract an asymptotic behavior. Hence, we expect that our model
equations lie at the core of many nonlinear or weighted problems. Finally, models
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involving power laws have the advantage that they can be treated by using nonlin-
ear flows and entropy methods. Indeed we are able to give sharp results of rigidity
for the equation, and symmetry results for the optimal functions associated with
related interpolation inequalities.

Because of the confluence of various branches of analysis such as non-linear dif-
fusion and the calculus of variations, and the fundamental nature of the above equa-
tions, we believe that it is worth studying them in great detail, with sharp stability
results and sharp constants in the functional inequalities. Note that this amounts to
establishing the exact range of the parameters for which extremal functions are sym-
metric. Variational issues of the symmetry and symmetry breaking will be detailed
below.

Let us fix some notations and conventions. Throughout this paper, we shall use
the notation 2∗ := 2d

d−2 if d ≥ 3, and 2∗ :=∞ if d = 1 or 2. We shall say that a function
is an extremal function for an optimal functional inequality if equality holds in the
inequality. To simplify notations, parameters will be omitted whenever they are not
essential for the understanding of the strategy of proof. This paper is a review of
various results which were published in several papers (references will appear in
the text) and are collected together for the first time. The reader is invited to pay
attention that some notations have been redefined compared to the original papers.

2. INTERPOLATION INEQUALITIES AND FLOWS ON COMPACT MANIFOLDS

2.1. Interpolation inequalities onSd . Let us consider the inequality

‖∇u‖2
L2(Sd )

+ d

p −2
‖u‖2

L2(Sd )
≥ d

p −2
‖u‖2

Lp (Sd )
∀u ∈ H1(Sd ,dµ) (1)

where dµ is the uniform probability measure induced by the Lebesgue measure on
Sd ⊂ Rd+1. Here the exponent p is such that 1 ≤ p < 2 or 2 < p < 2∗, or p = 2∗ if
d ≥ 3. The case p = 2∗ corresponds to the usual Sobolev inequality on Sd or, using
the stereographic projection, to the Sobolev inequality in Rd . In the limit case as
p → 2, we recover the logarithmic Sobolev inequality

‖∇u‖2
L2(Sd )

≥ d

2

ˆ
Sd

|u|2 log

(
|u|2

‖u‖2
L2(Sd )

)
dµ ∀u ∈ H1(Sd ,dµ) \ {0} . (2)

In (1) and (2), equality is achieved by any constant non-zero function. The value
of the optimal constants, d/(p − 2) and d/2 is obtained by linearization: if ϕ is an
eigenfunction associated with the first positive eigenvalue of the Laplace-Beltrami
operator on Sd , the infimum of

(p −2)‖∇u‖2
L2(Sd )

‖u‖2
Lp (Sd )

−‖u‖2
L2(Sd )

and
2‖∇u‖2

L2(Sd )´
Sd |u|2 log

( |u|2
‖u‖2

L2(Sd )

)
dµ

,

respectively for p 6= 2 and for p = 2, is achieved by u = 1+εϕ in the limit as ε→ 0.

3



Inequality (1) has been established in [8] by rigidity methods, in [6] by tech-
niques of harmonic analysis, and using the carré du champ method in [7, 5, 14],
for any p > 2. The case p = 2 was studied in [39]. In [1, 2, 3], D. Bakry and M. Emery
proved the inequalities under the restriction

2 < p ≤ 2# := 2d 2 +1

(d −1)2 .

Their method relies on a linear heat flow method which is presented below, as well
as a nonlinear flow which allow us to get rid of this restriction.

2.2. Flows and carré du champ methods on Sd . We start by the linear heat flow
method of [3]. For any function ρ > 0 we define a generalized entropy functional Ep

and a generalized Fisher information functional Ip by

Ep [ρ] := 1

p −2

[(ˆ
Sd
ρdµ

) 2
p −
ˆ
Sd
ρ

2
p dµ

]
and E2[ρ] := 1

2

ˆ
Sd
ρ log

(
ρ

‖ρ‖L1(Sd )

)
dµ

if p 6= 2 or p = 2, respectively, and

Ip [ρ] :=
ˆ
Sd

|∇ρ 1
p |2 dµ .

With this notation, (1) and (2) amount to Ip [ρ] ≥ d Ep [ρ] as can be checked using
ρ = |u|p . Let us consider the heat flow

∂ρ

∂t
=∆ρ (3)

where ∆ denotes the Laplace-Beltrami operator on Sd , and compute

d

d t
Ep [ρ] =−2Ip [ρ] and

d

d t
Ip [ρ] ≤−2d Ip [ρ]

where the differential inequality holds if p ≤ 2#. Under this condition, we obtain that

d

d t

(
Ip [ρ]− d Ep [ρ]

)
≤ 0.

On the other hand, ρ(t , ·) converges as t →∞ to a constant, namely
´
Sd ρdµ since

dµ is a probability measure and
´
Sd ρdµ is conserved by (3). As a consequence,

limt→∞
(
Ip [ρ]−d Ep [ρ]

) = 0, which proves that Ip [ρ(t , ·)] −d Ep [ρ(t , ·)] is nonneg-
ative for any t ≥ 0 and completes the proof. See [3] for details. One may wonder
whether the monotonicity property is also true for some p > 2#. The following result
contains a negative answer to this question.

Proposition 1. [27] For any p ∈ (2#,2∗) or p = 2∗ if d ≥ 3, there exists a function ρ0

such that, if ρ is a solution of (3) with initial datum ρ0, then

d

d t

(
Ip [ρ]− d Ep [ρ]

)
|t=0

> 0.
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The function ρ0 is explicitly constructed in [27].

To overcome the limitation p ≤ 2#, one can consider a nonlinear diffusion of fast
diffusion or porous medium type

∂ρ

∂t
=∆ρm . (4)

With this flow, we no longer have d
d t Ep [ρ] =−Ip [ρ] but we can still prove that

d

d t

(
Ip [ρ]− d Ep [ρ]

)
≤ 0,

for any p ∈ [1,2∗]. Proofs of the latter have been given in [14, 24]. We also refer
to [21, 22] for results which are more specific to the case of the sphere, and further
references therein. Except for p = 1 and p = 2∗ with d ≥ 3, there is some flexibility
in the choice of m, which can be used to build deficit functionals and improved
inequalities: see [14, 22]. Notice that ρ0 in Proposition 1 is a function related with
the nonlinear diffusion equation (4).

The case of Sd highlights the limitations of linear flows and shows the flexibil-
ity and strength of nonlinear flows. At least for p < 2∗, the optimal constant in (1)
and (2) is established by proving that the minimum of Ip [ρ]− d Ep [ρ] is 0. Earlier
results in [8, 5, 6] can be reinterpreted as a purely elliptic method, which goes as fol-
lows. A positive minimizer actually exists by standard compactness arguments and
any solution ρ satisfies an Euler-Lagrange equation. By testing the equation with
∆ρm , we observe that the solution is a constant and, as a consequence, that ρ ≡ 1
because of the normalization. We will rely on a similar observation in the next two
sections and refer to this method as the elliptic method.

The method applies not only to minimizers, but also to any positive solution of
the Euler-Lagrange equations. What we prove is a uniqueness result. Since constant
functions are solutions, this proves that there are no non-constant solutions. This is
why it is called a rigidity result.

Compared to [8, 5, 6], our approach provides a unified framework for p > 2 and
p < 2 (which is not covered in the above mentioned results). However, the main
advantage of the method is that it explains why a local result (the best constant is
given by the linearization around the constant functions) is actually global: Ip [ρ]−
d Ep [ρ] is strictly monotone decreasing under the action of the flow, unless the so-
lution has reached the unique, trivial stationary state.

2.3. Inequalities on compact manifolds. The nonlinear diffusion flow method ap-
plies not only to spheres, but also to general compact manifolds. Without entering in
the details, let us state a result of [24]. Earlier important references are: [35, 8, 38, 14],
among many other contributions which are listed in [24].

Let us assume that (M , g ) is a smooth compact connected Riemannian mani-
fold of dimension d ≥ 1, without boundary. We denote by d vg the volume element,
by ∆ the Laplace-Beltrami operator on M , by Ric the Ricci tensor and assume for
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simplicity that volg (M ) = 1. Let λ1 be the lowest positive eigenvalue of −∆ and

λ? := inf
u∈H2 (M )

ˆ
M

[
(1−θ) (∆u)2 + θd

d−1 Ric(∇u,∇u)
]

d vg

´
M |∇u|2 d vg

, θ = (d −1)2 (p −1)

d (d +2)+p −1
.

Theorem 2. With the above notations, if 0 < λ < λ?, then for any p ∈ (1,2)∪ (2,2∗),
the equation

−∆v + λ

p −2

(
v − v p−1)= 0

has a unique positive solution in C 2(M ), which is constant and equal to 1.

It has been shown in [24] that nonlinear diffusion flows provide a unified frame-
work for elliptic rigidity and carré du champ methods. The computations heavily
rely on the Bochner-Lichnerowicz-Weitzenböck formula

1
2 ∆ (|∇ f |2) = ‖Hess f ‖2 +∇· (∆ f ) ·∇ f +Ric(∇ f ,∇ f ) .

More general results can be established using the so-called C D(ρ, N ) condition (see
[4] and references therein), but they are formal in most of the cases covered only
by nonlinear flows. In dimension d = 2, the Moser-Trudinger-Onofri inequality re-
places in a certain sense Sobolev’s inequality, and it is possible to extend the method
described above to cover this case: see [20]. Bounded convex domains in Rd have
also been considered in [31] in relation with the Lin-Ni conjecture (homogeneous
Neumann boundary conditions). Concerning unbounded domains, subcritical Ga-
gliardo-Nirenberg have been established in the case of the line in [23] while Rényi
entropy powers, which will be essential in Section 4, can be used in Rd to get sharp
interpolation inequalities: see [40, 41, 33].

3. RIGIDITY ON CYLINDERS AND SHARP SYMMETRY RESULTS IN CRITICAL

CAFFARELLI-KOHN-NIRENBERG INEQUALITIES

In this section we use a nonlinear flow to prove rigidity results for nonlinear ellip-
tic problems on non-compact manifolds: cylinders and weigthed Euclidean spaces.
All results of this section, and their proofs, can be found in [26].

3.1. Three equivalent rigidity results. Let us consider the spherical cylinder C :=
R×Sd−1 and denote by s ∈ R and ω ∈ Sd−1 the coordinates. Let ∆ω denote the
Laplace-Beltrami operator on Sd−1.

Theorem 3. Let d ≥ 2. For all p ∈ (2,2∗) and 0 < Λ ≤ ΛFS := 4 d−1
p2−4

, any positive

solution ϕ ∈ H1(C ) of

− ∂2
s ϕ− ∆ωϕ+Λϕ=ϕp−1 in C (5)

is, up to a translation in the s-direction, equal to

ϕΛ(s) := ( p
2 Λ

) 1
p−2

(
cosh

(
p−2

2

p
Λ s

))− 2
p−2 ∀ s ∈R .

For any Λ>ΛFS, there are also positive solutions which do not depend only on s.
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A similar rigidity result holds for non-spherical cylinders R×M where M is a
compact manifold, but in this case we cannot characterize the optimal set of pa-
rameters Λ with our method: see [26].

Let

ac := d −2

2
and bFS(a) := d (ac −a)

2
√

(ac −a)2 +d −1
+a −ac .

By using the Emden-Fowler transformation

v(r,ω) = r a−ac ϕ(s,ω) with r = |x| , s =− logr and ω= x

r
, (6)

Theorem 3 is equivalent to the following result.

Theorem 4. Assume that d ≥ 2, a < ac and min{a,bFS(a)} < b ≤ a + 1. Then any
nonnegative solution v of

− ∇· (|x|−2 a ∇v
)= |x|−b p |v |p−2 v in Rd \ {0} (7)

which satisfies
´
Rd

|v |p
|x|b p ,d x <∞, is, up to a scaling, equal to

v?(x) = (
1+|x|(p−2)(ac−a))− 2

p−2 ∀x ∈Rd .

If a < 0 and a < b < bFS(a), there are also positive solutions which do not depend only
on |x|.

Let us define αFS :=
√

d−1
n−1 and pick n and α such that

n = d −b p

α
= d −2 a −2

α
+2 = 2 p

p −2
,

so that we also have p = 2n/(n −2). Next we consider the diffusion operator

L w :=α2
(

w ′′+ n −1

r
w ′

)
− 1

r 2 ∆ω w .

Then, with the change of variables

v(r,ω) = w(rα,ω) ∀ (r,ω) ∈R+×Sd−1 ,

Theorem 4 is equivalent to

Theorem 5. Assume that n > d ≥ 2 and p = 2n/(n − 2). If 0 < α ≤ αFS, then any
nonnegative solution w(x) = w(r,ω) with r ∈R+ and ω ∈Sd−1 of

− L w = w p−1 in Rd \ {0} (8)

which satisfies
´
Rd |x|n−d |w |p d x <∞, is equal, up to a scaling, to

w?(x) = (
1+|x|2)− n−2

2 ∀x ∈Rd .

If α>αFS, there are also solutions which do not depend only on |x|.
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Let us complement these results with some remarks:
(i) If n is an integer, then (8) is the Euler-Lagrange equation associated with the stan-
dard Sobolev inequality

−α2∆w = w
n+2
n−2 in Rn ,

where ∆ denotes the Laplacian operator in Rn , but in the class of functions which
depend only on the first d −1 angular variables.
(ii) The conditions on the parameters in Theorems 3, 4 and 5 are equivalent:

0 <Λ≤ΛFS ⇐⇒ b−1
FS (b) ≤ a < ac ⇐⇒ 0 <α≤αFS .

(iii) Solutions of (3), (7) and (8) are stable (in a sense defined below) among non-
symmetric solutions, i.e., solutions which explicitly depend on ω, if and only if the
above condition on the parameters is satisfied. Such a condition has been intro-
duced in [11], but the sharp condition was established by V. Felli and M. Schneider
in [34], and this is why we use the notation ΛFS, bFS and αFS (see Section 5). Notice
that stability is a local property while our uniqueness (rigidity) results are global.

3.2. Optimal symmetry range in critical Caffarelli-Kohn-Nirenberg inequalities.
The Caffarelli-Kohn-Nirenberg inequalities(ˆ

Rd

|v |p
|x|b p

d x

)2/p

≤ Ca,b

ˆ
Rd

|∇v |2
|x|2 a d x ∀v ∈Da,b (9)

appear in [10], under the conditions that a ≤ b ≤ a +1 if d ≥ 3, a < b ≤ a +1 if d = 2,
a +1/2 < b ≤ a +1 if d = 1, and a < ac where the exponent

p = 2d

d −2+2(b −a)

is determined by the invariance of the inequality under scalings. Here Ca,b denotes
the optimal constant in (9) and the space Da,b is defined by

Da,b :=
{

v ∈ Lp(
Rd , |x|−b d x

)
: |x|−a |∇v | ∈ L2(Rd ,d x

)}
.

These inequalities were apparently introduced first by V.P. Il’in in [36] but are more
known as Caffarelli-Kohn-Nirenberg inequalities, according to [10]. Up to a scaling
and a multiplication by a constant, any extremal function for the above inequality
is a nonnegative solution of (7). It is therefore natural to ask whether v? realizes the
equality case in (9). Let

C?a,b :=
(´
Rd

|v?|p
|x|b p d x

)2/p

´
Rd

|∇v?|2
|x|2 a d x

= p
2 |Sd−1|1− 2

p (a −ac )1+ 2
p

 2
p
π Γ

( p
p−2

)
(p −2)Γ

( 3 p−2
2(p−2)

)


p−2
p

.

It was proved in [34] that whenever a < 0 and b < bFS(a), the solutions of (7) are not
radially symmetric: this is a symmetry breaking result, based on the linear instability

of F [v] := C?a,b

´
Rd

|∇v |2
|x|2 a d x − (´

Rd
|v |p
|x|b p d x

)2/p at v = v?. The main symmetry result

of [26] is
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Corollary 6. Assume that d ≥ 2, a < ac , and bFS(a) ≤ b ≤ a +1 if a < 0. Then Ca,b =
C?a,b and equality in (9) is achieved by a function v ∈Da,b if and only if, up to a scaling
and a multiplication by a constant, v = v?.

In other words, whenever F [v] is linearly stable at v = v?, then v? is a global
extremal function for (9).

3.3. Sketch of the proof of Theorem 5. The case d = 2 requires some specific esti-
mates so we shall assume that d ≥ 3 for simplicity. Let

u
1
2 − 1

n = w ⇐⇒ u = w p with p = 2n

n −2
. (10)

Up to a multiplicative constant, the right hand side in (9) is transformed into a
generalized Fisher information functional

I [u] :=
ˆ
Rd

u |Dp|2 dµ where p= m

1−m
um−1 . (11)

Here dµ= |x|n−d d x, p is the pressure function, Dp := (
α
∂p
∂r , 1

r ∇ωp
)
, and p′ = ∂p

∂r and
∇ωp respectively denote the radial and the angular derivatives of p. The left hand
side in (9) is now proportional to a mass integral,

´
Rd u dµ. In this section we con-

sider the critical case and make the choice m = 1−1/n.
After these preliminaries, let us introduce the fast diffusion flow

∂u

∂t
=L um , m = 1− 1

n
, (12)

where the operator L , which has been considered in Theorem 5, is such that L w :=
−D∗Dw . The flow associated with (12) preserves the mass. At formal level, the key
idea is to prove that I [u(t , ·)] is decreasing w.r.t. t if u solves (12), and that the limit
is I [w p

?]. A long computation indeed shows that, if u is a smooth solution of (12)
with the appropriate behavior as x → 0 and as |x|→+∞, then

d

d t
I [u(t , ·)] ≤−2

ˆ
Rd

K[p(t , ·)]u(t , ·)m dµ

where, with r = |x|, we have

K[p] =α4
(
1− 1

n

)[
p′′− p′

r
− ∆ωp

α2 (n −1)r 2

]2

+2α2 1

r 2

∣∣∣∣∇ωp′− ∇ωp
r

∣∣∣∣2

+ (n −2)
(
α2

FS −α2) |∇ωp|2
r 4 +ζ? (n −d)

|∇ωp|4
r 4 (13)

for some positive constant ζ?. Hence, if α ≤ αFS, then I [u(t , ·)] is nonincreasing
along the flow of (12). However, regularity and decay estimates needed to justify
such computations are not known yet and this parabolic approach is therefore for-
mal. As in Section 2, we can instead rely on an elliptic method, which can be justified
as follows.
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If u0 is a nonnegative critical point of I under mass constraint, then

0 =I ′[u0] ·L um
0 = dI [u(t , ·)]

d t |t=0
≤−2

ˆ
Rd

K[p0]u1−n
0 dµ

if u solves (12) with initial datum u0. Here I ′[u0] denotes the differential of I at u0.
With p0 = p(0, ·), this proves that ∇ωp0 = 0: p0 is radially symmetric. By solving
p′′0 − p′0/r = 0, we obtain that p0(x) = a + b |x|2 for some constants a, b ∈R+. The
conclusion easily follows.

Proposition 7. Let w be a nonnegative solution of (8) and p= (n −1) w− 2
n−2 . Under

the assumptions of Theorem 5, if α≤αFS, then K[p] = 0.

In practice, we prove that any solution of (5) on C has good decay properties
as s → ±∞, by delicate elliptic estimates, which rely on the fact that p = 2n/(n −
2) < 2d/(d −2) is a subcritical exponent on the d-dimensional manifold C . This is
enough to justify all integrations by parts and prove as a consequence that a non-
negative solution of (8) satisfies K[p] = 0: the conclusion follows as above. Notice
that this amounts to test (8) by L w2(n−1)/(n−2).

4. RIGIDITY AND SHARP SYMMETRY RESULTS IN SUBCRITICAL

CAFFARELLI-KOHN-NIRENBERG INEQUALITIES

In this section we consider a class of subcritical Caffarelli-Khon-Nirenberg in-
equalities and extend the results obtained for the critical case. Most results of this
section have been published in [28], a joint paper of the authors with M. Muratori.

4.1. Subcritical Caffarelli-Kohn-Nirenberg inequalities. With the notation

‖w‖Lq,γ(Rd ) :=
(ˆ
Rd

|w |q |x|−γd x

)1/q

, ‖w‖Lq (Rd ) := ‖w‖Lq,0(Rd ) ,

we define Lq,γ(Rd ) as the space {w ∈ L1
loc(Rd \{0}) : ‖w‖Lq,γ(Rd ) <∞}. We shall work in

the space Hp
β,γ(Rd ) of functions w ∈ Lp+1,γ(Rd ) such that ∇w ∈ L2,β(Rd ), which can

also be defined as the completion of D(Rd \ {0}) with respect to the norm

‖w‖2 := (p?−p)‖w‖2
Lp+1,γ(Rd )

+‖∇w‖2
L2,β(Rd )

.

Let us consider the family of subcritical Caffarelli-Kohn-Nirenberg interpolation in-
equalities that can be found in [10] and which is given by

‖w‖L2p,γ(Rd ) ≤Cβ,γ,p ‖∇w‖ϑ
L2,β(Rd )

‖w‖1−ϑ
Lp+1,γ(Rd )

∀w ∈ Hp
β,γ(Rd ) . (14)

Here the parameters β, γ and p are subject to the restrictions

d ≥ 2, γ−2 <β< d −2

d
γ , γ ∈ (−∞,d) , p ∈ (

1, p?
]

(15)

with

p? := d −γ
d −β−2

and ϑ= (d −γ) (p −1)

p
(
d +β+2−2γ−p (d −β−2)

) .

10



The critical case p = p? determines ϑ= 1 and has been dealt with in Section 3, so
we shall focus on the subcritical case p < p?. Here by critical we simply mean that
‖w‖L2p,γ(Rd ) scales like ‖∇w‖L2,β(Rd ) and Cβ,γ,p denotes the optimal constant in (14).
The limit case β = γ− 2 and p = 1, which is an endpoint for (15), corresponds to
Hardy-type inequalities: optimality is achieved among radial functions but there
is no extremal function: see [29]. The other endpoint is β = (d − 2)γ/d , in which
case p? = d/(d − 2): according to [11] (also see Section 5), either γ ≥ 0, symmetry
holds and there exists a symmetric extremal function, or γ< 0, and then symmetry
is broken but there is no extremal function. in all other cases, the existence of an
extremal function for (14) follows from standard methods: see [11, 16, 32] for related
results.

When β = γ = 0, (14) is a Gagliardo-Nirenberg interpolation inequality which is
well known to be related to the fast diffusion equation ∂u

∂t =∆um in Rd , not only for
m = 1−1/d but also for any m ∈ [1−1/d ,1). Here we generalize this observation to
the weighted spaces.

Symmetry in (14) means that the equality case is achieved by Aubin-Talenti type
functions

w?(x) =
(
1+|x|2+β−γ

)−1/(p−1) ∀x ∈Rd .

On the contrary, there is symmetry breaking if this is not the case, because the equal-
ity case is then achieved by a non-radial extremal function. It has been proved in [9]
that symmetry breaking holds in (14) if

γ< 0 and βFS(γ) <β< d −2

d
γ (16)

where

βFS(γ) := d −2−
√

(γ−d)2 −4(d −1) .

Under Condition (15), symmetry holds in the complement of the set defined by (16).

Theorem 8. Assume that (15) holds and that

β≤βFS(γ) if γ< 0. (17)

Then the extremal functions for (14) are radially symmetric and, up to a scaling and
a multiplication by a constant, equal to w?.

This means that (16) is the sharp condition for symmetry breaking.

4.2. A rigidity result. Up to a scaling and a multiplication by a constant, the Euler-
Lagrange equation

− div
(|x|−β∇w

)= |x|−γ (
w2p−1 − w p)

in Rd \ {0} (18)

is satisfied by any extremal function for (14). In the range of parameters given by (15)
and (17), our method establishes the symmetry of all positive solutions.

Theorem 9. Assume that (15) and (17) hold. Then all positive solutions to (18) in
Hp
β,γ(Rd ) are radially symmetric and, up to a scaling, equal to w?.

11



This is again a rigidity result. Nonnegative solutions to (18) are actually positive
by the standard Strong Maximum principle. Theorem 8 is therefore a consequence
of Theorem 9.

4.3. Sketch of the proof of Theorem 9. Let us give an outline of the strategy of [28].
As in the critical case, Inequality (14) for a function w can be transformed by the
change of variables

w(x) = v(rα,ω) ,

where r = |x| 6= 0 and ω= x/r , in the new inequality(ˆ
Rd

|v |2p dµ

) 1
2p ≤Kα,n,p

(ˆ
Rd

|Dv |2 dµ

) ϑ
2
(ˆ
Rd

|v |p+1 dµ

) 1−ϑ
p+1

(19)

with Kα,n,p =α−ζCβ,γ,p , ζ= ϑ
2 + 1−ϑ

p+1 − 1
2 p and dµ= |x|n−d d x. The condition for the

change of variables is

n = d −β−2

α
+2 = d −γ

α
,

which reflects the fact that the weights are all the same in (19). It is solved by

α= 1+ β−γ
2

and n = 2
d −γ

β+2−γ .

Inequality (19) is a Caffarelli-Kohn-Nirenberg inequality with weight |x|n−d in all
terms, and Dv := (

α ∂v
∂s , 1

s ∇ωv
)
. Notice that p? = n

n−2 , so that 2 p? is the critical
Sobolev exponent associated with the fractional dimension n considered in (10).

With a generalized Fisher information I and the pressure function p defined
by (11), we consider the subcritical range m1 := 1 − 1/n < m < 1. If u is smooth
solution of (12) with sufficient decay properties, we obtain that I evolves according
to

d

d t
I [u(t , ·)] =−2

ˆ
Rd

R[p(t , ·)]u(t , ·)m dµ with R[p] :=K[p]+ (m −m1)
(
L p

)2 ,

where K is given by (13). We recover the result of the critical case of Section 3 by
taking the limit as m → m1.

Inspired by tools of Information Theory and [40, 41, 33], we introduce the gener-
alized Rényi entropy power functional

F [u] :=
(ˆ
Rd

um dµ

)σ
with σ= 2

n

1

1−m
−1 > 1

and observe that F ′′ has the sign of −H [u(t , ·)] where

H [u] := (m −m1)

ˆ
Rd

∣∣∣∣∣L p−
´
Rd u |Dp|2 um dµ´

Rd um dµ

∣∣∣∣∣
2

dµ+
ˆ
Rd

R[p]um dµ .

Here F ′ denotes the derivative with respect to t of F [u(t , ·)]. The computation re-
quires many integrations by parts. The fact that boundary terms do not contribute

12



can be justified if u is a nonnegative critical point, i.e., a minimizer of F ′ under mass
constraint. Indeed, the minimization of(ˆ

Rd
v p+1 dµ

)σ−1ˆ
Rd

|Dv |2 dµ with v = um−1/2

under the constraint that
´
Rd u dµ= ´

Rd v2p dµ takes a given positive value is equiv-
alent to the Caffarelli-Kohn-Nirenberg interpolation inequalities (14).

To make the argument rigorous, we can argue as in Section 3 by taking u as initial
datum and performing the computation of F ′′ at t = 0 only. In other words, we
are simply testing the Euler-Lagrange equation satisfied by u with L um . By elliptic
regularity (the estimates are as delicate as in the critical case and we refer to [28] for
details), we have enough estimates to prove that H [u] = 0 and deduce that p(x) =
a+b |x|2 for some real constants a and b.

4.4. Considerations on the optimality of the method. The symmetry breaking con-
dition in (9) and (14) has been established by proving the linear instability of radial
critical points, in [34] and [9] respectively. This amounts to a spectral gap condition
in a Hardy-Poincaré inequality: see [9] for details. It is remarkable that the sym-
metry holds whenever radial critical points are linearly stable and this deserves an
explanation. The solution of (12) is attracted by self-similar Barenblatt functions as
t →+∞. Since these Barenblatt functions are precisely the radial critical points of
our variational problem, the asymptotic rate of convergence is determined by the
previous spectral gap, in self-similar variables. It can be checked that the condi-
tion that appears in the carré du champ method, which amounts to prove that a
quadratic form has a sign, is the same in the asymptotic regime as t → +∞ as the
quadratic form which is used to check symmetry breaking. Hence either symmetry
breaking occurs, or the carré du champ method shows that the Rényi entropy power
functional is monotone non-increasing, at least in the asymptotic regime: see [25]
for details. To conclude in the critical case, it is enough to observe that all terms in
the expression of K[p] in (13) are quadratic, except the last one, which has a sign and
is negligible compared to the others in the asymptotic regime: the sign condition for
K[p] away from the asymptotic regime is the same as when t →+∞. This explains
why our method for proving symmetry gives the optimal range in the critical case. In
the subcritical regime, a similar observation can also be done.

5. BIFURCATIONS AND SYMMETRY BREAKING

The results of this section are taken mostly from [15, 17, 18].

5.1. Rigidity and bifurcations. Let us come back to the critical Caffarelli-Kohn-
Nirenberg inequality and consider the Emden-Fowler transformation (6). As noted
in [11], Inequality (9) is transformed into the Gagliardo-Nirenberg-Sobolev inequal-
ity

‖∇ϕ‖2
L2(C ) +Λ‖ϕ‖2

L2(C ) ≥µ(Λ)‖ϕ‖2
Lp (C ) ∀ϕ ∈ H1(C )

where µ(Λ) =C−1
a,b

∣∣Sd−1
∣∣1−2/p . Here C :=R×Sd−1 is a cylinder and, as in Section 2,

we adopt the convention that the measure on the sphere is the uniform probability
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measure. The extremal functions are, up to multiplication by a constant, and dila-
tion, solutions of (5).

If we restrict the study to symmetric functions, that is, v(r ) = r a−ac ϕ(− logr )
with r = |x|, then the inequality degenerates into the simple Gagliardo-Nirenberg-
Sobolev inequality

‖∇ϕ‖2
L2(R) +Λ‖ϕ‖2

L2(R) ≥µ?(Λ)‖ϕ‖2
Lp (R) ∀ϕ ∈ H1(R) .

Here we denote by

µ?(Λ) =µ?(1)Λ
p+2
2 p

the optimal constant and notice that ϕ?(s) = ( 1
2 pΛ cosh

( p−2
2

p
Λ s

)−2)1/(p−2) is an
optimal function, which is the unique solution of −ϕ′′+Λϕ = |ϕ|p−2ϕ on R, up to

translations. With this notation, we have µ?(Λ) = ‖ϕ?‖p−2
Lp (R). If we linearize

‖∇ϕ‖2
L2(C ) +Λ‖ϕ‖2

L2(C ) −µ?(Λ)‖ϕ‖2
Lp (C )

around ϕ=ϕ?, V. Felli and M. Schneider found in [34] that the lowest eigenvalue of
the quadratic form, that is, the lowest positive eigenvalue of the Pöschl-Teller oper-

ator − d 2

d s2 +Λ+d −1− (p −1)ϕp−2
? , is given by λ1(Λ) =− 1

4 (p2 −4)(Λ−ΛFS), so that
λ1(ΛFS) < 0 if and only if

Λ>ΛFS := 4
d −1

p2 −4
.

See [37, p. 74] for details. This condition is the symmetry breaking condition of The-
orem 3. The branch of non-radial solutions bifurcating fromΛ=ΛFS has been com-
puted numerically in [17] and an example is shown in Fig. 1. By construction, we
know that Λ 7→ µ(Λ) is increasing, concave, and we read from Theorem 3 that the
non-symmetric branch bifurcates from Λ = ΛFS, and is such that µ(Λ) < µ?(Λ) if
Λ>ΛFS. This simple scenario explains the symmetry and symmetry breaking prop-
erties in (9), but is not generic as we shall see next in the case of more complicated
interpolation inequalities.

5.2. Bifurcations, reparametrization and turning points. Let us consider the inter-
polation inequality(ˆ

Rd

|u|p
|x|bp

d x

) 2
p ≤Ca,b,θ

(ˆ
Rd

|∇u|2
|x|2a d x

)θ (ˆ
Rd

|u|2
|x|2(a+1)

d x

)1−θ
(20)

with d ≥ 1, p ∈ (2,2∗) or p = 2∗ if d ≥ 3, and θ ∈ (ϑ(p),1] with ϑ(p) := d p−2
2 p . The

scaling invariance imposes p = 2d/
(
d − 2+ 2(b − a)

)
. As proved in [10], the above

inequalities hold with a finite constantCa,b,θ if a < ac = (d−2)/2, and b ∈ (a+1/2, a+
1] when d = 1, b ∈ (a, a+1] when d = 2 and b ∈ [a, a+1] when d ≥ 3. Moreover, there
exist extremal functions for the inequalities (20) for any p ∈ (2,2∗) and θ ∈ (ϑ(p),1)
or θ =ϑ(p) and d ≥ 2, with ac −a > 0 not too large. On the contrary equality is never
achieved for p = 2, or a < 0, p = 2∗ and d ≥ 3, or d = 1 and θ =ϑ(p,1). The existence
of extremal functions has been studied in [16]. We may notice that

0 ≤ϑ(p) ≤ θ < 1 ⇐⇒ 2 ≤ p ≤ p∗(d ,θ) := 2d

d −2θ
< 2∗ .
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Figure 1: Branches for p = 2.8, d = 5, θ = 1.

With the same conventions as in the previous subsection, the Emden-Fowler change
of variables (6) transforms (20) into the Gagliardo-Nirenberg-Sobolev inequality(

‖∇ϕ‖2
L2(C ) +Λ‖ϕ‖2

L2(C )

)θ ‖ϕ‖2(1−θ)
L2(C )

≥µ(θ,Λ)‖ϕ‖2
Lp (C ) ∀ϕ ∈ H1(C ) (21)

on C := R×Sd−1, with Λ= (a −ac )2 and µ(θ,Λ) = C−1
a,b,θ

∣∣Sd−1
∣∣1−2/p . Of course, the

case θ = 1 corresponds to the critical case and, consistently, we write µ(1,Λ) =µ(Λ).
For θ < 1, the Euler-Lagrange equation of an extremal function on C is

−∆ϕ+ 1

θ

(
(1−θ)

‖∇ϕ‖2
L2(C )

‖ϕ‖2
L2(C )

+Λ
)
ϕ−

‖∇ϕ‖2
L2(C )

+Λ‖ϕ‖2
L2(C )

θ‖ϕ‖p
Lp (C )

ϕp−1 = 0. (22)

Up to the reparametrization

Λ 7→λ= 1

θ

[
(1−θ) t [ϕ]+Λ

]
where t [ϕ] :=

‖∇ϕ‖2
L2(C )

‖ϕ‖2
L2(C )

and a multiplication by a constant, an extremal function ϕ for (21) solves (5). In
other words, we can use the set of solutions in the critical case θ = 1 to parametrize
the solutions corresponding to θ < 1.

Let us start with the symmetric functions. With an evident notation, we define
µ?(θ,Λ) as the optimal constant in the inequality corresponding to (21) restricted to
symmetric functions, i.e., functions depending only on s ∈ R. If we denote by ϕ?,λ

the function

ϕ?,λ(s) =
(

1

2
pλ cosh

( p−2
2

p
λ s

)−2
) 1

p−2

for any λ> 0, then t [ϕ?,λ] is explicit and we can parametrize the set
{(
Λ,µ?(θ,Λ)

)
:

Λ > 0
}

by
{(
θλ− (1−θ) t [ϕ?,λ],µ?(λ)

)
: λ > 0

}
. It turns out that the equation Λ =
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θλ− (1−θ) t [ϕ?,λ] can be inverted, which allows us to obtain λ=Λθ∗(Λ) and get an
explicit expression for

µ?(θ,Λ) =µ?
(
Λθ∗(Λ)

)=µ?(
Λθ∗(1)

)
Λ
θ− p−2

2 p .

According to [13], a Taylor expansion around ϕ?,ΛFS shows that for any Λ > ΛθFS,
where

ΛθFS := θµFS − (1−θ) t [uFS] ,

the function ϕ?,λ with λ=Λθ∗(Λ) is linearly unstable, so that µ(θ,Λ) <µ?(θ,Λ).
The case of non-symmetric functions is more subtle because we do not know

the exact multiplicity of the solutions of (5) in the symmetry breaking range. There
is a branch of non-symmetric solutions of (22) which bifurcates from the branch
of symmetric solutions at Λ = ΛθFS. This branch has been computed numerically
in [17] and a formal asymptotic expansion was performed in a neighborhood of the
bifurcation point in [18]. Because of the reparametrization of the solutions of (22)
by the solutions of (5), we can use the branch λ 7→ ϕλ of non-symmetric extremal
functions for λ>ΛFS to get an upper bound of µ(θ,Λ):

µ(θ,Λ) ≤µ(λ) for any λ>ΛFS such that Λ= θλ− (1−θ) t [ϕλ] .

Actually, we deduce from the branch λ 7→ ϕλ of non-symmetric extremal functions
an entire branch of non-symmetric solutions of (22) which is parametrized by λ and
deduce a parametric curve B := {(

Λ(λ) := θλ− (1−θ) t [ϕλ],µ(λ)
)

: λ >ΛFS
}

which
can be used to bound µ(θ,Λ) from above. If (Λ,µ) ∈ B, we have no proof that ϕλ is
optimal if µ(λ) <µ?(θ,Λ), but at least we know that

µ(λ) =
(
‖∇ϕλ‖2

L2(C ) +Λ(λ)‖ϕλ‖2
L2(C )

)θ ‖ϕλ‖2(1−θ)
L2(C )

‖ϕλ‖−2
Lp (C ) .

Some numerical results are shown in Fig. 2.
The formal asymptotic expansion of [18] suggests that there are only two possi-

ble generic scenarii:

(i) Either the curve B bifurcates to the right, that is, B is included in the region
Λ≥ΛθFS, and Λ 7→ µ(θ,Λ) is qualitatively expected to be as in Fig. 1. We know
that this is what happens for θ = 1 and expect a similar behavior for any θ close
enough to 1. In this case, the region of symmetry breaking is characterized by
the linear instability of the symmetric optimal functions.

(ii) Or the curve B bifurcates to the left. For λ−ΛFS > 0, small enough, the curve
λ 7→ (

Λ(λ),µ(λ)
)

satisfies Λ(λ) <ΛθFS and µ(λ) > µ?(θ,Λ(λ)). In that case, the
region of symmetry breaking does not seem to be characterized by the linear
instability of the symmetric optimal functions and we numerically observe a
turning point as in Fig. 2 (right).

In [19], a priori estimates for branches with θ < 1 were deduced from the known
symmetry results (later improved in [26]). This further constrains B and the sym-
metry breaking region and determines a lower bound for the value ofΛ correspond-
ing to a turning point of the branch. There are many open questions concerning B
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Figure 2: Branches for p = 2.8, d = 5, θ = 0.718. Left: the bifurcation point (ΛθFS,µ?(θ,ΛθFS) is
at the intersection of the horizontal and vertical lines. The area enclosed in the small ellipse
is enlarged in the right plot: the branch has a turning point and µ(θ,ΛθFS) <µ?(θ,ΛθFS).

and the set of extremal functions when θ < 1, but at least we can prove that the sym-
metry breaking range does not always coincide with the region of linear instability
of symmetric optimal functions.

5.3. Symmetry breaking and energy considerations. The exponent ϑ(p) is the ex-
ponent which appears in the Gagliardo-Nirenberg inequality

‖∇u‖2ϑ(p)

L2(Rd )
‖u‖2(1−ϑ(p))

L2(Rd )
≥CGN(p)‖u‖2

Lp (Rd )
∀u ∈ H1(Rd ) . (23)

By considering an extremal function for this inequality and translations, for any p ∈
(2,2∗), one can check that

µ(ϑ(p),Λ) ≤CGN(p) ∀Λ> 0.

Lemma 10. Let d ≥ 2. For any p ∈ (2,2∗), if CGN(p) < µ?(ϑ(p),Λϑ(p)
FS ), there exists

Λs ∈ (0,Λϑ(p)
FS ) such that µ(ϑ(p),Λ) =µ?(ϑ(p),Λ) if and only if Λ ∈ (0,Λs ].

The fact that the symmetry range is an interval of the form (0,Λs ] can be de-
duced from a scaling argument: see [30, 15] for details. The result is otherwise
straightforward but difficult to use because the value of CGN(p) is not known ex-
plicitly. From a numerical point of view, it gives a simple criterion, which has been
implemented in [15]. Moreover, in [18], it has been observed numerically that the

condition CGN(p) < µ?(ϑ(p),Λϑ(p)
FS ) is equivalent to a bifurcation to the left as in

Fig. 2.
For θ and p−2 small enough, the assumption of Lemma 10 holds. Let us consider

the Gaussian test function g(x) := (2π)−d/4 exp(−|x|2/4) in (20) and consider

h(p) :=
‖∇g‖2θ

L2(Rd )
‖g‖2(1−θ)

L2(Rd )

‖g‖2
Lp (Rd )

1

µ?(θ,ΛθFS)
with θ =ϑ(p) .

17



A computation shows that limp→2+ h(p) = 1 and limp→2+
dh
d p (p) < 0. For p − 2 > 0,

small enough, we obtain that

CGN(p) ≤ h(p) <µ?(θ,ΛθFS) .

A perturbation argument has been used in [15] to establish the following result.

Theorem 11. Let d ≥ 2. There exists η> 0 such that for any p ∈ (2,2+η),

µ(θ,Λ) <µ?(θ,Λ) if ΛθFS −η<Λ<ΛθFS and ϑ(p) < θ <ϑ(p)+η .

5.4. An open question. The criterion considered in Lemma 10 is based on energy
considerations and provides only a sufficient condition for symmetry breaking. It
is difficult to check it in practice, except in asymptotic regimes of the parameters.
The formal expansions of the branch near the bifurcation points are based on a
purely local analysis, and suggest another criterion: either the branch bifurcates to
the right and the symmetry breaking range is characterized by the linear instability
of the symmetric optimal functions, or the branch bifurcates to the left, and this is
not anymore the case. Is such an observation, which has been made numerically
only for some specific values of p, true in general? This seems to be true when θ is
close enough to ϑ(p) and at least in this regime we can conjecture that the symmetry
breaking range is not characterized by the linear instability of the symmetric optimal
functions if and only if the branch bifurcates to the left.

An additional question, which corresponds to a limiting case, goes as follows. If
θ = ϑ(p), is the range of symmetry determined exactly by the value of the optimal
constant in (23), when it is below µ?(θ,ΛθFS)? Numerically, this is supported by the
fact that, in this case, the curve B is monotone increasing as a function of Λ.

In the study of the symmetry issue in (9) and (14), the key tool is the nonlinear
flow, which extends a local result (linear stability) to a global result (rigidity). A sim-
ilar tool would be needed to answer the conjecture. In the case θ = ϑ(p), it would
be crucial to obtain a variational characterization of the non-symmetric solutions in
the curve of non-symmetric functions B and a uniqueness result for any given Λ.
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