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Abstract—This paper deals with structured covariance matrix
estimation in a robust statistical framework. Covariance matrices
often exhibit a particular structure related to the application
of interest and taking this structure into account increases
estimation accuracy. Within the framework of robust estimation,
the class of circular Complex Elliptically Symmetric (CES)
distributions is particularly interesting to handle impulsive and
spiky data. Normalized CES random vectors are known to
share a common Complex Angular Elliptical distribution. In
this context, we propose a Robust Covariance Matrix Estimation
Technique (RCOMET) based on Tyler’s estimate and COMET
criterion for convexly structured matrices. We prove that the
proposed estimator is consistent and asymptotically efficient
while computationally attractive. Numerical results support the
theoretical analysis in a particular application for Hermitian
Toeplitz structure.

Index Terms—Robust covariance estimation, elliptical distri-
butions, Tyler’s M-estimator, structured covariance matrix.

I. INTRODUCTION

Covariance Matrix (CM) estimation plays a central role in
adaptive signal processing. Besides the obvious Hermitian and
positive characters, CM’s often exhibit a particular structure
related to the application of interest: a well-known example
is the Toeplitz structure for uniform linear arrays. Taking
this structure into account increases estimation accuracy. In a
Gaussian context, this problem has been widely investigated.
In particular, an estimation procedure known as Covariance
Matching Estimation Technique (COMET) [1] is an interesting
alternative to Maximum Likelihood (ML) estimation: it allows
one to handle easily linear structures and provides asymp-
totically efficient CM estimates. However, COMET is based
on the Sample Covariance Matrix (SCM) estimate: therefore,
it is neither robust to departures from Gaussianity nor to
outliers. Within the framework of robust CM estimation, the
class of circular Complex Elliptically Symmetric distributions
(CES) has attracted much attention since the pioneering works
of Maronna [2] and Tyler [3]. Indeed, CES distributions
encompass a large number of non Gaussian distributions that
are met in various applications such as radar or sonar [4]:
Generalized Gaussian, compound Gaussian, t-distribution and
K-distribution... Within this CES framework, Tyler proposed
an unstructured distribution free estimate of the scatter matrix
[3] which may be interpreted as the ML estimate of the
covariance matrix of normalized CES data [5]. The latter ran-
dom vectors are known to share a common Complex Angular
Elliptical (CAE) distribution [5]. Furthermore estimation of
CM’s with convex structures has been recently addressed for
a CAE distribution [6, 7]. A COnvexly ConstrAined (COCA)

CM estimator has been recently proposed in [6] in which
the proposed estimator is consistent but suffers from heavy
computational cost. Moreover, COCA is not asymptotically
efficient. Iterative Majorization-Minimization algorithms for
the computation of structured CM estimates are developped
in [7]. However, the latter approach may be computationally
demanding (except for several very specific structures yielding
closed form iterations). In order to fulfill this lack, we propose
in this paper a Robust Covariance Matrix Estimation Technique
(RCOMET) based on Tyler’s estimate and COMET criterion
for convexly structured CM matrices. The proposed criterion is
convex and its minimization admits a unique solution that can
be efficiently computed (notably in a straightforward manner
for linear structures). Our main contribution is to show that
it yields consistent and asymptotically efficient CM estimates
for CAE distributions.

This paper is organized as follows. In section II, the
data model is presented. Section III focuses on the proposed
algorithm. The performance analysis is also treated. Section
IV gives a particular application considering a Hermitian
Toeplitz structure with some simulation results. Finally, a brief
conclusion is given in Section V.

In what follows, the notation d
= indicates ”has the same

distribution as”. Convergence in distribution and in probability
are respectively denoted by L→ and P→. For a matrix A,
|A| and Tr (A) denote the determinant and the trace of A,
AT (respectively AH ) stands for the transpose (respectively
conjugate transpose) matrix. The vec-operator vec (A) stacks
all columns of A into a vector. The operator ⊗ refers to
Kronecker matrix product. The subscript ”e” refers to the true
value. The notations < and = denote the real and imaginary
parts.

II. PROBLEM SETUP

Let x ∈ Cm be a circular CES random vector [5] with
scatter matrix R. If it exists, the covariance matrix of x is
proportional to R. The normalized vector y =

x
‖x‖

, x 6= 0,

follows a CAE distribution, denoted by y ∼ U (R).

The vector y has the following probability density function
(p.d.f.) w.r.t. spherical measure which is the natural Borel mea-
sure on the unit complex sphere CSm , {z ∈ Cm | ‖z‖ = 1}
[6]

p(y | R) ∝ |R|−1
(
yHR−1y

)−m
(1)

where the shape matrix R is defined up to an arbitrary scale
factor. To avoid scaling ambiguity, R is normalized according



to Tr (R) = m. It is worth noting that R is not the scaled
covariance matrix of y unless R = I, though it is the
scatter matrix of the underlying CES vector x: that is why
we refer to R as the shape matrix of y. We assume that
the latter matrix belongs to a convex subset S of Hermitian
positive-definite matrices, and that there exists a one-to-one
differentiable mapping µ 7→ R(µ) from RP to S . The vector
µ is the unknown interest parameter with exact value µe, and
Re = R(µe) corresponds to the exact shape matrix.

Considering N i.i.d. CAE distributed observations,
yn ∼ U(Re), n = 1, . . . , N , the log-likelihood function is
given, up to an additive constant by

L(y1, . . . , yN ;µ) = −m
N∑

n=1

log
(

yHn R(µ)−1yn
)
−N log |R(µ)| (2)

The above log-likelihood is a non-convex function of R.
Therefore its maximization is a difficult and time consuming
problem. To overcome this issue, we propose in the next
section a new estimation procedure that provides unique,
consistent and asymptotically efficient estimates. Moreover,
closed form expressions of the estimates are easily obtained
for linear structures of the shape matrix.

III. RCOMET: A ROBUST ASYMPTOTICALLY EFFICIENT
COVARIANCE MATCHING ESTIMATE

Let R̂ � 0 be an unstructured shape matrix estimate based
on N CAE distributed observations. Consider the following
function

d
(

R̂, αR(µ)
)
= Tr

((
R̂− αR(µ)

)
R̂
−1
(

R̂− αR(µ)
)

R̂
−1
)
, (3)

where α > 0 is needed for the purpose of theoretical deriva-
tions, though the shape matrix is parameterized as R(µ). Given
R̂, d

(
R̂, αR(µ)

)
is a convex function of αR. Therefore, for

R ∈ S convex set and α > 0, the minimization of (3) w.r.t.
αR is a convex problem that admits a unique solution. In
addition, the constraint on the trace matrix, avoiding scaling
ambiguity, ensures the uniqueness of R(µ). Finally, the one-
to-one mapping yields a unique solution for µ.

Function (3) is a COMET type criterion that has been orig-
inally introduced in a Gaussian framework [1]. In that former
Gaussian data context, taking for R̂ the SCM, the minimization
of d

(
R̂, αR(µ)

)
w.r.t. α and µ yields an efficient estimate for

the covariance matrix model αR(µ).

In this paper, we address the study of criterion (3) in the
context of CAE observations. In this non-Gaussian context,
we will show that taking Tyler’s estimate R̂T in (3) for R̂
ensures asymptotic statistical efficiency for CAE distribution:
d
(

R̂T, αR(µ)
)

will be referred to as the RCOMET criterion.
Properties of Tyler’s estimate are recalled in section III-A, and
we will show in III-B that minimizing d

(
R̂T, αR(µ)

)
w.r.t. α

and µ leads to an asymptotically efficient estimate of µe for
CAE observations. In the following, µ̂ will be referred as the
RCOMET estimate of µ.

A. Tyler’s estimate: an overview

The unstructured ML estimate of the shape matrix is known
to be Tyler’s estimate R̂T [5], it maximizes (2) over the set of
Hermitian positive matrices under constraint Tr

(
R̂T

)
= m.

Assuming N > m, it is well known that R̂T is the unique
solution of the fixed point equation

R̂T =
m

N

N∑
n=1

ynyHn
yHn R̂

−1
T yn

, subject to Tr
(

R̂T

)
= m (4)

It is obtained by a simple algorithm which converges to R̂T
[3, 8]. R̂T is also known to be a consistent, unbiased estimate
of Re. Its asymptotic distribution is related to the Complex
Wishart distribution. Let R̂W be a complex Wishart matrix
with

m

m+ 1
N degrees of freedom and parameter matrix Re.

Then, both random matrices
√
N

 m R̂T

Tr
(

R−1e R̂T

) − Re

 and

√
N

 m R̂W
Tr
(

R−1e R̂W
) − Re

 converge to the same asymptotic

Gaussian distribution [8]. This result plays a central role in the
proof of Theorem 2 at the next section.

B. Consistency and asymptotic efficiency of the RCOMET
estimator

This section provides a statistical analysis of the
RCOMET estimator µ̂ which minimizes d

(
R̂T, αR(µ)

)
where minimization is carried out w.r.t. α > 0 and
µ = (µ1, . . . , µP )

T ∈ RP . As already noticed, µ̂ is unique.

Theorem 1. The RCOMET estimator µ̂ is a consistent es-
timator of µe. Likewise, R (µ̂) is a consistent estimator of
R(µe)

Proof: See Appendix A

The following Lemma is needed for proving Theorem 2.

Lemma 1. Let CRBCAE be the P × P Cramér-Rao Bound
(CRB) on µ for y ∼ U (R(µe)). Let CRBG be the CRB on
µ for z ∼ CN (0, αeR(µe)) where αe, µe are both unknown.
Then

CRBCAE =
m+ 1

m
CRBG

Proof: See Appendix B

Remark: note that αe is not part of our model U (R(µe)) while
it appears in the Gaussian model CN (0,αeR(µe)).

Theorem 2. Let µ̂ be the RCOMET estimator of µe based
on N i.i.d. observations, yn ∼ U (R(µe)). µ̂ is asymptotically
Gaussian and efficient:

√
N (µ̂− µe)

L→ N (0,CRBCAE)

Proof: See Appendix C



IV. APPLICATION AND NUMERICAL RESULTS

This section presents the RCOMET algorithm in the par-
ticular case of an Hermitian Toeplitz shape matrix. Simulation
results are given in order to assess the statistical analysis and
to compare performance with a state of the art algorithm.

A. Toeplitz structure

Let Re = R(µe) ∈ Cm×m belong to S, the convex subset
of Hermitian positive-definite matrices, with Toeplitz structure
and trace equal to m. A natural parameterization is as follows:

R(µ) =


1 R2 · · · Rm

R∗2
. . . . . .

...
...

. . . . . . R2

R∗m · · · R∗2 1

 and µ =



< (R2)

= (R2)

...
< (Rm)

= (Rm)

 ∈ R2m−2

Let us introduce λ = α

(
1

µ

)
∈ R2m−1 and R′(λ) = αR(µ).

Note that there exists a matrix, J ∈ Cm2×2m−1, which relates
the vectorized matrix R′(λ) to λ as

r′(λ) = vec
(
R′(λ)

)
= vec (αR(µ)) = Jλ

Consequently, the RCOMET criterion (3) reads

λ̂ = arg min
λ

∥∥∥Ŵ
−1/2
T r̂T − Ŵ

−1/2
T Jλ

∥∥∥2
where r̂T = vec

(
R̂T

)
and ŴT = R̂

T

T ⊗ R̂T. The well known
analytical solution gives

λ̂ =
(

JHŴ
−1

T J
)−1

JHŴ
−1

T r̂T thus

 α̂ =
[
λ̂
]
1

µ̂ =
1

α̂

[
λ̂
]
2:2m−1

In this particular case, using lemma 1 the CRB on µ for a
single observation is easily shown to be

CRB−1CAE =
m

m+ 1
KHJH

(
W−1e −

vec
(

R−1e

)
vec
(

R−1e

)H
m

)
JK

where K is the identity matrix deprived of its first row.

B. Simulations

For m = 8, the Toeplitz shape matrix is generated from
its first row according to {Re}1,` = ρ|`−1|, ` = 1, . . . ,m
and ρ = 0.8 + 0.3i. We generate 1000 sets of N indepen-
dent m-dimensional Compound-Gaussian distributed samples,
xn ∼ τCN (0,Re), n = 1, . . . , N [5]. These data are
normalized, to obtain CAE distributed samples, yn =

xn
‖xn‖

,

n = 1, . . . , N , thereby getting rid of the random texture τ
which plays no role anymore in what follows.

Our algorithm will be compared to the COCA covariance
estimator proposed in [6], which consists in solving the fol-
lowing problem:

minimize
R∈S,di

∥∥∥∥∥R− 1

N

N∑
i=1

diyiy
H
i

∥∥∥∥∥
F

subject to

{
R � 1

m
diyiyHi , ∀i = 1, . . . N

di > 0, ∀i = 1, . . . N

The standard semi-definite program solver, CVX, is used
to compute this estimator. The algorithm proposed in [7,
Algorithm 3] cannot be directly transposed to a complex-
valued matrix and cannot be used here.

Performance of our RCOMET estimator and COCA are
compared to the CRB via MSE(µ̂) and Tr (CRBCAE).
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Fig. 1: Bias simulation

Fig. 1 presents the Euclidean norm of the estimated bias for
µ̂ based on 1000 runs for each N . As shown previously, our
RCOMET algorithm is asymptotically unbiased with a higher
rate than COCA.
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Fig. 2: Efficiency simulation



The asymptotic efficiency of RCOMET is checked on
Fig. 2: it gets closer and closer to the CRB as N increases,
unlike COCA estimator. However, we can note that COCA
performs better at small number of samples, probably due to
a bias in finite samples [6].
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Fig. 3: Average calculation time

The average computing times are reported in Fig. 3. As
pointed out in [7], the number of constraints grows linearly in
N for the COCA algorithm which becomes computationally
prohibitively expensive when N increases: this is not the case
for our proposed RCOMET.

V. CONCLUSION

In this paper, we addressed robust structured covariance
estimation for convex structures. We proposed a robust exten-
sion of the classical Gaussian COMET for CAE distributed
observations. The proposed RCOMET method is consistent,
asymptotically unbiased and efficient. Numerical simulations
confirm the theoretical analysis and the practical interest of
this approach.

APPENDIX A
PROOF OF THEOREM 1

Let (α̂, µ̂) be the unique values of α and µ which minimize
d
(

R̂T, αR(µ)
)

: (α̂, µ̂) = arg min
α,µ

d
(

R̂T, αR(µ)
)

.

µ̂ is a function of R̂T that we denote by:

µ̂ = g
(

R̂T

)
Function g(·) satisfies g (Re) = µe since d (Re,R(µe)) = 0.
Moreover, for a smooth parameterization R(µ), g(·) is differ-
entiable and thus continuous. Then, the consistency of R̂T [8]
and the continuity of g imply µ̂ = g

(
R̂T

)
P→ g (Re) = µe.

Consequently, R(µ̂)
P→ R(µe).

APPENDIX B
PROOF OF LEMMA 1

For the Gaussian problem, the Slepian-Bang Formula can
be directly applied for the Fisher Information Matrix (FIM):

[Fµµ]k,` = Tr
(
R−1e ∂kRR−1e ∂`R

)
∀ k, ` = 1, . . . , P

[Fµα]k =
1

α
Tr
(
R−1e ∂kR

)
and Fαα =

m

α2

The Schur complement gives us the CRB on µ

∀ k, ` = 1, . . . , P[
CRB−1

G

]
k,`

= Tr
(
R−1

e ∂kRR−1
e ∂`R

)
−

Tr
(
R−1

e ∂kR
)

Tr
(
R−1

e ∂`R
)

m

For the CAE problem, by following the same methodology as
in [9], we obtain

[
CRB−1

CAE

]
k,`

=
mTr

(
R−1

e ∂kRR−1
e ∂`R

)
− Tr

(
R−1

e ∂kR
)

Tr
(
R−1

e ∂`R
)

m+ 1

=
m

m+ 1

[
CRB−1

G

]
k,`

∀ k, ` = 1, . . . , P

Therefore CRBCAE =
m+ 1

m
CRBG which proves the lemma.

APPENDIX C
PROOF OF THEOREM 2

First, remark that µ̂ is independent of the scaling fac-
tor on R̂T. Indeed, if (α̂, µ̂) = arg min

α,µ
d
(

R̂T, αR(µ)
)

then (λα̂, µ̂) = arg min
α,µ

d
(
λR̂T, αR(µ)

)
∀λ ∈ R∗.

µ̂ = g
(

R̂T

)
is thus an homogeneous function of degree 0:

g
(
λR̂T

)
= g

(
R̂T

)
∀λ ∈ R∗.

Let R̂W be a complex Wishart matrix with
m

m+ 1
N

degrees of freedom and parameter matrix Re. It is known that
√
N

 m R̂T

Tr
(

R−1e R̂T

) − Re

 and
√
N

 m R̂W
Tr
(

R−1e R̂W
) − Re


converge to the same asymptotic Gaussian distribution [8].
It follows from the Delta method [10, Chapter 3] and
the homogeneity of g(·) that

√
N
(
g
(

R̂T

)
− g (Re)

)
and

√
N
(
g
(

R̂W
)
− g (Re)

)
, where g (Re) = µe, converge

also to the same asymptotic Gaussian distribution. But
g
(

R̂W
)

= µ̂W is COMET’s estimate of µe based

on K =
m

m+ 1
N independant complex Gaussian samples

CN (0, αeR(µe)), and it is known [1] that µ̂W is an asymp-
totically Gaussian efficient estimator. Therefore,

√
K (µ̂W − µe)

L→ N (0,CRBG)
√
N (µ̂W − µe)

L→ N
(

0,
m+ 1

m
CRBG

)
= N (0,CRBCAE)

√
N (µ̂− µe)

L→ N (0,CRBCAE)
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