Robust-COMET for Covariance Estimation in Convex Structures: Algorithm and Statistical Properties - Archive ouverte HAL Access content directly
Conference Papers Year : 2017

Robust-COMET for Covariance Estimation in Convex Structures: Algorithm and Statistical Properties

Abstract

This paper deals with structured covariance matrix estimation in a robust statistical framework. Covariance matrices often exhibit a particular structure related to the application of interest and taking this structure into account increases estimation accuracy. Within the framework of robust estimation, the class of circular Complex Elliptically Symmetric (CES) distributions is particularly interesting to handle impulsive and spiky data. Normalized CES random vectors are known to share a common Complex Angular Elliptical distribution. In this context, we propose a Robust Covariance Matrix Estimation Technique (RCOMET) based on Tyler's estimate and COMET criterion for convexly structured matrices. We prove that the proposed estimator is consistent and asymptotically efficient while computationally attractive. Numerical results support the theoretical analysis in a particular application for Hermitian Toeplitz structure.
Fichier principal
Vignette du fichier
main.pdf (333.5 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-01651772 , version 1 (29-11-2017)

Identifiers

Cite

Bruno Meriaux, Chengfang Ren, Mohammed Nabil El Korso, Arnaud Breloy, Philippe Forster. Robust-COMET for Covariance Estimation in Convex Structures: Algorithm and Statistical Properties. 2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP 2017), Dec 2017, Curaçao, Netherlands. pp.1-5, ⟨10.1109/CAMSAP.2017.8313081⟩. ⟨hal-01651772⟩
418 View
240 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More