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INTRODUCTION

Genetic fingerprinting (sometimes including sequen-
cing) and cloning have been used to assess changes in
bacterial community composition and potential control-
ling mechanisms. Genetic fingerprints have been used
to characterize gradients such as depth (Lee & Fuhrman

1991, Giovannoni et al. 1996, Acinas et al. 1999), salin-
ity (Bouvier & del Giorgio 2002, Crump et al. 2004), or
productivity (Reinthaler et al. 2005, Winter et al. 2005).
Also, the dynamics of bacterioplankton diversity during
phytoplankton blooms have been studied (Arrieta &
Herndl 2002, Arrieta et al. 2004) and the results used to
argue that there is seasonality in oceanic bacterio-
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ABSTRACT: Bacterial abundance and community composition were investigated along trophic gra-
dients in the barrier reef lagoon of Noumea, New Caledonia. Bacterial abundance and the percent-
age of high nucleic acid (%HNA) bacteria (a potential indicator for bacterial production) increased
from offshore waters towards the head of the bays. 16S rRNA gene PCR and denaturing gradient gel
electrophoresis (DGGE) were used as genetic fingerprints for assessing differences in bacterial com-
munity composition. Sequences of DGGE bands were assigned to (1) the genera Rugeria and
Roseobacter (Rhodobacteriaceae), (2) the SAR11 cluster, (3) other Alphaproteobacteria, and (4) the
genus Alteromonas. Removal of the operationally defined attached bacteria by prefiltration did not
affect community profiles in offshore waters but had a strong influence in the bays, probably due to
the much higher particle load and thus, attached bacteria in the bays. For the free-living community,
the number of bands decreased linearly with increasing water residence time, chlorophyll a concen-
tration, and viral abundance. Specific bands were found for offshore waters and the 2 investigated
semi-enclosed bays, whereas the lagoon showed no specific bands. A similarity analysis showed spe-
cific clusters for offshore water, the lagoon, and the bays. A principle component analysis together
with cluster and correlation analysis indicated that water residence time, viruses, and a complex top-
down cascading effect of ciliate grazers on flagellates influenced community composition. Also, data
from fingerprints of the total and free-living communities suggest that the free-living and the
attached community are controlled by different mechanisms.
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plankton composition (Pinhassi & Hagström 2000,
Fuhrman et al. 2006). Although the number of studies
on bacterial diversity has increased in recent years,
many environments remain poorly investigated, includ-
ing the water column systems of tropical coral reefs
(Dinsdale et al. 2008).

A variety of mechanisms influence bacterial commu-
nity composition, including UV radiation (Winter et al.
2001), turbulence (Malits & Weinbauer 2009), nutrient
and dissolved organic matter composition (Arrieta &
Herndl 2002), grazing (Pernthaler 2005, Pernthaler &
Amann 2005), and viral infection (Hewson et al. 2003,
Winter et al. 2004). Also, general ecological patterns
such as the species-area relationship (Horner-Devine
et al. 2004b), the increase of diversity with system
(‘island’) size (Bell et al. 2005, Reche et al. 2005), or the
existence of latitudinal gradients (Fuhrman et al. 2008)
appear to apply to bacteria. While one can expect that
such influences and patterns are also operational in
coral reef systems, no studies are available. In coral
reef systems, the release of nutrients and mucus by
corals stimulates the production of bacteria in nearby
waters (Herndl & Velimirov 1986, Schiller & Herndl
1989) and fuels the food web of lagoon systems (Wild
et al. 2004). This likely explains observations that the
microbial loop is predominant and the community is
often heterotrophic in the water column part of reef
systems (Ferrier-Pagès & Gattuso 1998). Typically,
lagoon bacteria are more active than bacteria in the
open ocean, and usually only a moderate fraction of
bacteria (ca. 10%) is attached to particles in the open
ocean and reef lagoons (Rath et al. 1993, Torréton &
Dufour 1996, Torréton 1999, Torréton et al. 2002).
However, attached bacteria are often more active than
their free-living counterparts (Simon et al. 2002,
Grossart et al. 2007). It is also well documented that the
diversity of prokaryotes attached to organic aggre-
gates can be very different from free-living prokary-
otes (DeLong et al. 1993, Acinas et al. 1999), although
this has not been investigated yet in coral reef systems.

Water residence time is an important concept to
understand the hydrodynamically restricted aquatic
systems and its control of ecological processes in the
plankton. Water residence time is thought to be the
most important physical control factor of ecological
processes in estuaries (Jouon et al. 2006). In atoll and
lagoon systems, it has been shown that chlorophyll a
(chl a) concentrations, primary production, and bacter-
ial production increase with water residence time
(Delesalle & Sournia 1992, Charpy et al. 1997, Torréton
et al. 2007). Water residence time also influences the
dynamics of dissolved organic carbon and transparent
exopolymeric particles (TEP; Mari et al. 2007b). Water
residence time also determines whether a specific bac-
terial community can develop; thus, for the develop-

ment of a specific bacterial community, the water resi-
dence time must exceed that of bacterial growth.
Indeed, a study in an estuary showed that specific
communities developed with high bacterial production
and long water residence time (Crump et al. 2004).

A recent study of organic matter reactivity along
eutrophic gradients in the lagoon of New Caledonia
revealed that the transfer efficiency of organic matter
from the dissolved to the particulate phase via aggre-
gation processes was reduced when the residence time
of the water increased (Mari et al. 2007b). Such a
reduction in organic matter reactivity may, in addition
to water residence time itself, influence the distribu-
tion and fate of attached and free-living prokaryotes.
The lagoon of Noumea represents a steep, 20 km long
gradient from the oligotrophic open ocean to meso-
trophic semi-enclosed bays with a negligible freshwa-
ter input from terrestrial runoff. Here we present data
on the community composition of bacterioplankton in
the water column of various lagoon habitats by using
genetic fingerprints and relate these diversity patterns
to potential controlling factors such as water residence
time and mortality factors.

MATERIALS AND METHODS

Study site and sampling. The SW lagoon of New
Caledonia is an enclosed, relatively shallow site (aver-
age depth: 20 m), surrounded by oligotrophic oceanic
water. In contrast to the oligotrophy observed near the
coral barrier, the near-shore environment is subject to
terrestrial and, especially in the bays around the city of
Noumea, to both industrial and urban inputs that
increase the general productivity in these areas.
Eutrophication in Grande Rade Bay is mainly of indus-
trial origin, due to the close proximity of a large nickel
smelter, while in Sainte Marie Bay, eutrophication is
mostly of urban origin, i.e. due to wastewater outfalls
from the Sainte Marie area. For more details see Mari
et al. (2007b).

Seawater samples were collected during November
and December 2004 at 10 stations distributed along 2
transects in the SW lagoon of New Caledonia, going
from 2 semi-enclosed bays in the city of Noumea
(~130 000 inhabitants) to a station outside the reef bar-
rier (Fig. 1). Both transects were sampled twice, on 22
and 24 November 2004 (from Grande Rade Bay to the
outer edge of the coral reef) and 29 November and
1 December 2004 (from Sainte-Marie Bay to the outer
edge of the coral reef). Samples were obtained from
5 m depth using a Teflon pump. CTD casts were used
on each sampling occasion to determine the vertical
distribution of physical parameters. All stations were
sampled within 1 h; water samples were stored in acid-
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cleaned polycarbonate bottles and brought back to the
laboratory within 1 to 2 h after sampling.

Residence time of the water masses. The parameter
used to depict the ‘residence time’ of the water mass
is the Local e-Flushing Time (LeFT; in days). The LeFT
is defined as the time required for a tracer mass con-
tained within the control volume (station) to be reduced
by a factor 1/e by waters coming from outside the lagoon
and, thus, it describes the replacement efficiency of
water masses in the study area (Jouon et al. 2006): the
shorter the LeFT, the faster the water masses at the loca-
tion will definitely be replaced and, thus, renewed. The

annual average LeFT at the different stations was calcu-
lated from a hydrodynamic model taking into account
topographic constraints, average wind condition, and
tidal cycle (Jouon et al. 2006). During the sampling pe-
riod, wind conditions were similar to those used as input
parameters in the hydrodynamic model (i.e. well estab-
lished trade winds of about 8 to 10 m s–1). The LeFT was
0 at the offshore station (input parameter) and it was cal-
culated for each station to range from 0.4 to 5.6 d in the
lagoon stations, 12 to 17 d in Sainte Marie Bay, and 31 to
47 d in Grande Rade Bay (Mari et al. 2007b; Table 1).

Enumeration of microbes. Water samples were
preserved with glutaraldehyde (0.5% final concentra-
tion) for 30 min at 4°C, then flash frozen in liquid
nitrogen and stored at –80°C until analysis. Viruses
and bacteria were stained with SYBRGreen I and
counted by flow cytometry using the protocol of Gasol
& del Giorgio (2000) for bacteria and Brussaard (2004)
for viruses. Synechococcus, Prochlorococcus, and auto-
trophic picoeukaryotes were counted as described by
Jacquet et al. (2006). Samples for viruses were diluted
100-fold in TE (10 mM Tris, 1 mM EDTA, pH 8.0)
buffer. Based on fluorescence intensity (and side scat-
ter) 2 bacterial populations were distinguished: low
(LNA) and high nucleic acid (HNA) bacteria.

Flagellate and ciliates were stained with DAPI, col-
lected onto 0.8 µm pore-size Nuclepore filters, and
counted using an epifluorescence microscope. It
should be noted that ciliate counts obtained by this
method can be underestimates. Heterotrophic (HNF)
and autotrophic nanoflagellates (ANF) were distin-
guished based on autofluorescence. Total flagellate
(TNF) abundance is the sum of HNF and ANF. Chl a
was determined fluorometrically from duplicate 200 ml
subsamples filtered onto 25 mm Whatman GF/F filters,
and data were obtained from Mari et al. (2007b).
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Fig. 1. Study area showing sampling stations. Stns D and N
are in Grande Rade Bay and Sainte Marie Bay, respectively,

whereas Stns M are in the lagoon proper and offshore

Trophic group Stn LeFT Chl a No. of bands No. of bands Bacteria % HNA
(d) (µmol l–1) TC FLC (106 ml–1) bacteria

Head of bays D01 46.9 1.64 (1.50–1.82) 14.5 (14–15) 12 1.27 (1.20–1.34) 80 (79–82)
N04 17.1 1.72 (0.97–2.46) 16.0 (16) ND 1.70 (1.44–1.97) 69 (62–75)

Middle of bays D08 40.8 0.88 (0.85–0.92) 13.5 (13–14) 13 1.08 (1.03–1.14) 77 (73–81)
N12 12.9 1.12 (0.89–1.36) 16.0 (16) ND 1.42 (1.32–1.52) 67 (66–69)

Mouth of bays D22 31.0 0.47 (0.43–0.52) 12.5 (12–13) 13 1.13 (1.11–1.16) 62 (62)
N33 12.4 0.38 (0.35–0.41) 11.5 (11–12) ND 1.10 (1.07–1.14) 60 (59–62)

Middle of lagoon M05 5.6 0.31 (0.28–0.34) 12.0 (12) 13 1.04 (1.03–1.06) 51 (51)
M33 0.5 0.30 (0.31–0.31) 11.5 (11–12) ND 1.26 (1.10–1.34) 57 (57–58)

Near barrier M10 0.4 0.31 (0.25–0.36) 12.8 (12–13) 14 0.99 (0.82–1.22) 60 (52–64)

Open ocean M41 0 0.19 (0.10–0.31) 15.3 (14–16) 15 0.67 (0.61–0.73) 54 (51–60)

Table 1. Bacterial and environmental characteristics of the sampling stations. Local e-flushing time (LeFT) and chlorophyll a
(chl a) data are from Mari et al. (2007b) and are presented to characterize the trophic gradient. Each value corresponds to the
average (range in parentheses) of 2 or 4 measurements (except free-living communities, FLC). The numbers of denaturing
gradient gel electrophoresis (DGGE) bands are for total bacterial communities (TC) and FLC. HNA: high nucleic acid bacteria; 

ND: not determined
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DNA extraction. Cells from 0.5 to 1 l samples (total
community) were recovered on a 0.2 µm pore-size poly-
carbonate filter (diameter 47 mm; Whatman). A replicate
sample (except for the Sainte-Marie Bay transects) was
prefiltered through 1 µm polycarbonate filter (diameter
47 mm; Whatman) to remove mainly attached bacteria,
and the filtrate containing mainly the free-living commu-
nity was collected. Nucleic acids were extracted from the
filters and purified as described elsewhere (Winter et
al. 2004). Briefly, after 4 freeze-thaw cycles (–196°C to
+37°C), an enzyme treatment was performed with
lysozyme (1.25 mg ml–1 final concentration; Fluka Bio-
Chemika) for 30 min at 37°C followed by a digestion with
Proteinase K (100 µg ml–1 final concentration; Fluka Bio-
Chemika) and 1% sodium dodecyl sulfate for 2 h at
55°C. In contrast to the phenol-chloroform extraction
step from the original protocol, nucleic acids were ex-
tracted with 4.5 M NaCl2, followed by 100% isopropanol
precipitation. This modified procedure avoids the use of
a toxic chemical and yields genetic fingerprints identical
to those obtained by the original method (Malits & Wein-
bauer 2009). The pellets were re-suspended in 60 µl of
0.5× TE buffer (10 mM Tris, 1 mM EDTA [HCl, pH 8.0]).

PCR. Conditions of the touchdown PCR and chemi-
cals were as described by Schäfer & Muyzer (2001).
One to 4 µl of cleaned nucleic acid extract were used as
template in a 50 µl PCR reaction (1.5 mM MgCl2,
0.25 µM of each primer, and 2.5U Taq polymerase;
Sigma) together with a positive and a negative control.
A fragment of the 16S rRNA gene was amplified using
the primer pairs 341F-GC/ 907R and 344F-GC/ 915R
for Bacteria and Archaea, respectively (Schäfer &
Muyzer 2001). The bacterial primers had the modifica-
tions suggested to also detect Gammaproteobacteria
(Sanchez et al. 2007). Archaeal PCR products could
either not be obtained or were often too weak to per-
form denaturing gradient gel electrophoresis (DGGE).
Therefore, we conclude that Archaea were not abun-
dant at the study site and we use the term ‘bacteria’ in
the following.

DGGE. DGGE procedures followed those described
by Schäfer & Muyzer (2001). PCR products (500 ng)
were separated into bands by electrophoresis for 18 h
at 100 V on acrylamide/bis-acrylamide (6%) gels pre-
pared using a gradient of 30 to 70% (urea and for-
mamide) using an INGENYphorU DNA Mutation
Detection System (Ingeny International). A standard
made from a 200 l bacterioplankton extraction was
loaded to allow for comparison of bands within and
between gels. DGGE gels were photographed with a
gel documentation system (GelDoc EQ; Bio-Rad) after
15 min of staining with a 10× SYBR Gold solution (Mol-
ecular Probes). Analysis of band patterns between
lanes was performed with the Quantity One Software
(Bio-Rad) using a variety of exposure times.

Selected samples covering all detected bands were
rerun on a DGGE gel, and bands were excised. The
DNA was eluted overnight in autoclaved Milli Q
water at 4°C, checked for purity by re-running it on a
gel, and sequenced (MWG-Biotech). Sequences were
edited using the freeware program 4Peaks 1.6 (www.
mekentosj.com). Up to approximately 500 bp of the
16S rRNA gene were used in a BLAST search.

Statistical analyses. Correlation and regression
analyses were performed using a probability (p) < 0.05 as
significant. Data were log or arcsine transformed (for
percentages) to meet statistical requirements. Bacterial
fingerprints were analyzed using a Simple Match simi-
larity index. The difference in the number of bands was
compared between offshore, lagoon, and bay waters us-
ing an analysis of variance (ANOVA). Data comparison
between the 2 bays was done by Student’s t-test. 

Potential relationships among variables were tested
by linear pairwise correlations (Spearman correlation
analysis). Key parameters were used to perform princi-
pal component analysis (PCA). Data were log(+1)
transformed to satisfy the requirements of normality
and homogeneity of variance necessary for parametric
statistics. Only factors with an eigenvalue >1 were
retained. All statistical analyses were performed with
the JMP program.

RESULTS

Characterization of sampling sites

A physical and chemical characterization of the sam-
pling stations at the sampling dates can be found in
Mari et al. (2007b). Briefly, salinity and temperature
varied only slightly between sampling sites and dates,
and no stratification of the water column was observed
within the barrier reef. Nutrient concentrations were
highest at the head of the bays and gradually de-
creased towards the mouth of the bays, the distant
parts of the lagoon, and the open ocean. All sampling
stations during the sampling period were character-
ized by inorganic nitrogen limitation as indicated by
N:P ratios <5 (Mari et al. 2007b).

Microbial abundance

Bacterial abundance ranged from 0.6 × 106 to 2.0 ×
106 ml–1, and in all 4 transects, bacterial abundance was
lowest at the open ocean station and highest at the head
of the bays (Table 1). Bacterial abundance was generally
higher in Sainte Marie Bay than in Grande Rade Bay.
HNA ranged from 51 to 82% and increased from 54% in
the open ocean to 80% at the head of Grande Rade Bay.
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The abundance of Synechococcus ranged from 0.8 to
19.8 × 104 ml–1. The abundance was highest in Grande
Rade Bay, similar in the lagoon and Sainte Marie Bay,
and much lower offshore (Table 2). Prochlorococcus
was not detectable in most bay stations and showed low
abundances in the lagoon and very high abundances
offshore (on average 1.5 × 105 ml–1). Thus, Prochloro-
coccus dominated the cyanobacterial community off-
shore, whereas Synechococcus dominated in the la-
goon and bays. Abundances of Cyanobacteria (i.e.
Synechococcus plus Prochlorococcus) did not change
much between study sites. Picoeukaryotes ranged from
1.6 to 12.4 × 103 ml–1 and generally showed higher
abundances in the bays than at other stations.

HNF abundance ranged from 0.6 to 13.4 × 103 ml–1.
HNF abundance was higher at the head of the bays
than in the open ocean, although the lowest values
were found at a station in the middle of the lagoon and
in the middle and mouth of Sainte Marie Bay (Table 3).

With the exception of a single sampling, ANF abun-
dance was lower than HNF abundance. ANF abun-
dance and its relative contribution to total abundance
were lowest in the open ocean and highest in the bays.
Ciliate abundance ranged from 0.1 to 19 cells ml–1, and
abundance was on average lowest in the open ocean.
The distribution of viral abundance in the lagoon of
Noumea has been described elsewhere (Mari et al.
2007a). Briefly, viral abundance ranged from 0.8 to
3.2 × 107 ml–1 and was highest at the head of the bays
and lowest in the open ocean.

Bacterial community composition

Fourteen different bands were successfully sequenced
(Table 4). The identity of bands could be confirmed by
identical sequences. Five major groups of phylotypes
were detected: (1) sequences related to Rhodobacteri-
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Trophic group Stn HNF ANF TNF Ciliates Viruses
(103 ml–1) (102 ml–1) (103 ml–1) (ml–1) (107 ml–1)

Head of bays D01 3.0 (2.7–3.2) 7.8 (2.4–13.2) 3.8 (3.4–4.1) 2.1 (2.0–2.2) 2.8 (2.8–2.9)
N04 5.5 (4.7–6.3) 6.8 (2.5–11.0) 6.2 (5.8–6.6) 3.1 (1.0–5.1) 2.7 (2.2–3.2)

Middle of bays D08 1.5 (0.6–2.3) 3.5 (0.5–6.5) 1.8 (1.3–2.4) 0.9 (0.9–1.0) 2.9 (2.8–3.0)
N12 8.5 (3.7–13.4) 4.0 (1.8–6.3) 8.9 (4.3–13.5) 9.6 (0.5–18.6) 2.6 (2.3–2.9)

Mouth of bays D22 1.6 (1.5–1.6) 3.5 (2.2–4.8) 1.9 (1.8–2.0) 1.2 (0.4–1.9) 2.5 (2.4–2.7)
N33 2.7 (1.5–4.0) 16.3 (2.2–30.5) 4.4 (4.2–4.6) 0.9 (0.6–1.1) 2.4 (2.3–2.6)

Middle of lagoon M05 1.4 (0.8–1.9) 1.6 (1.1–2.1) 1.5 (0.9–2.1) 2.3 (0.1–4.5) 2.0 (1.7–2.2)
M33 2.8 (2.0–3.6) 1.7 (1.2–2.3) 3.0 (2.1–3.9) 1.7 (1.1–2.3) 2.6 (2.4–2.8)

Near barrier M10 2.1 (1.4–4.0) 1.4 (0.7–3.1) 2.3 (1.6–4.1) 1.7 (1.2–2.4) 2.0 (1.4–2.6)

Open ocean M41 2.5 (1.4–3.5) 1.4 (0.4–2.5) 2.6 (1.4–4.1) 0.6 (0.3–0.8) 1.2 (0.8–1.7)

Table 3. Protistan and viral characteristics at the sampling stations. Virus data are from Mari et al. (2007a). Each value corre-
sponds to the average (range in parentheses) of 2 or 4 measurements taken for each station. HNF: heterotrophic nanoflagellates;

ANF: autotrophic nanoflagellates; TNF: total nanoflagellates

Trophic group Stn Synechococcus Prochlorococcus Cyanobacteria Picoeukaryotes
(104 ml–1) (103 ml–1) (104 ml–1) (103 ml–1)

Head of bays D01 16.8 (16.0–17.7) 3.7 (ND–7.3) 17.1 (16.7–17.8) 6.3 (5.6–7.1)
N04 12.4 (11.2–12.8) ND 12.0 (11.2–12.8) 10.7 (10.1–11.4)

Middle of bays D08 19.1 (18.5–19.8) ND 19.1 (18.5–19.8) 5.3 (5.1_5.5)
N12 12.9 (12.2–13.6) ND 12.9 (12.2–13.6) 11.6 (10.7–12.4)

Mouth of bays D22 18.3 (17.4–19.5) 0.7 (ND–1.3) 18.6 (17.5–19.5) 3.9 (3.7–4.0)
N33 10.5 (10.2–10.8) ND 10.5 (10.2–10.8) 5.4 (5.0–5.9)

Middle of lagoon M05 12.5 (11.1–13.9) 10.1 (5.5–14.6) 13.5 (11.2–15.4) 3.2 (2.3–4.4)
M33 13.2 (12.5–14.0) 6.1 (5.0–7.2) 13.9 (13.3–14.5) 3.3 (2.4–4.2)

Near barrier M10 12.2 (8.2–15.2) 20.7 (9.2–41.4) 13.6 (9.5–17.1) 4.8 (2.0–8.1)

Open ocean M41 2.2 (0.8–2.8) 145.7 (130.7–167.7) 16.8 (15.0–19.4) 3.4 (1.6–4.3)

Table 2. Characteristics of Cyanobacteria and autotrophic picoeukaryotes at the sampling stations. Each value corresponds to the
average (range in parentheses) of 2 or 4 measurements taken for each station. ND: not detectable. Cyanobacteria is the sum

of Synechococcus and Prochlorococcus
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aceae (e.g. genera Rugeria and Roseobacter), (2) se-
quences related to the SAR11 cluster, (3) sequences re-
lated to other Alphaproteobacteria, (4) sequences related
to Alteromonadaceae (genus Alteromonas), and (5) a se-
quence related to cyanobacterial sequences. The band
corresponding to cyanobacterial sequences was not in-
cluded in the analysis of the community composition. It is
noteworthy that no plastid sequences were detected.

Duplicate filters yielded identical community pro-
files (data not shown). Bacterial community composi-
tion changed strongly along trophic gradients. Twenty
different bands were detected, and 13 bands were pre-
sent at all stations. The number of detected bands
ranged from 14 to 16 in offshore waters, from 11 to 13
in the lagoon and the mouth of the bays, and from 13 to
15 in Grande Rade Bay, and it was 16 in Sainte Marie
Bay (middle and head of bays). Thus, the highest num-
ber of bands of total bacterial communities was found
in the upper part of the bays and at the open ocean sta-
tion (Fig. 2). An ANOVA and post hoc tests showed
that the number of bands of the total community in the
lagoon was significantly different from bay and off-
shore stations. The number of bands of the free-living
community showed a different trend and decreased
from the open ocean towards the head of the bays. An
ANOVA showed that offshore, lagoon, and bay waters
were significantly different with respect to the number
of bands of the free-living community.

Using band identity to describe environments, 3 spe-
cific bands were found for offshore waters, 1 band was
specific for the middle and head station of Sainte Marie
Bay, and 1 band was specific for Grande Rade Bay. An
additional band occurred only in the 2 bays, whereas
no specific band was detected for the lagoon stations.

A similarity tree of the DGGE profiles (presence versus
absence of bands) showed that the free-living commu-
nity in Grande Rade was different from all others
(Fig. 3). The offshore community was different from all
other remaining lagoon and bay communities. Within
the lagoon and bay communities, 3 clusters were
found: 1 consisting of the head and center of Sainte
Marie Bay, 1 of the mouth of Sainte Marie Bay and
some lagoon stations (total community), and 1 of the
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Band Closest match % Sequence similarity Taxonomic group
(environmental or culture) (no. bases)

Noumea04-3 Roseobacter sp. MED001 98 (413) Alphaproteobacteria/Rhodobacteriaceae
Noumea04-4 Roseobacter sp. MED001 96 (369) Alphaproteobacteria/Rhodobacteriaceae
Noumea04-7 Clone VH-PA7-59 97 (457) Gammaproteobacteria/Alteromonadaceae
Noumea04-9 Clone 2_B6 or 2_C6 99 (433) Alphaproteobacteria/Rhodobacteriaceae
Noumea04-10 Clone SIMO-846 99 (420) Alphaproteobacteria/Rhodobacteriaceae
Noumea04-11 Clone 2_C6 98 (434) Alphaproteobacteria/Rhodobacteriaceae
Noumea04-12 Clone SIMO-846 98 (470) Alphaproteobacteria/Rhodobacteriaceae
Noumea04-13 Alphaproteobacterium IMCC10404 99 (279) Alphaproteobacteria
Noumea04-14 Alphaproteobacterium IMCC10417 97 (281) Alphaproteobacteria
Noumea04-16 Proteobacterium MS-B-38 or MS-F-42 96 (250) Proteobacteria
Noumea04-18 Clone VH-PA7-59 98 (445) Gammaproteobacteria/Alteromonadaceae
Noumea04-21 Marine eubacterial sp. (FL1) 93 (242) Alphaproteobacteria/SAR11
Noumea04-22 SAR11 cluster Alphaproteobacterium 86 (268) Alphaproteobacteria/SAR11
Noumea04-27 Prochlorococcus marinus Str. MIT 9215 98 (364) Cyanobacteria/Prochlorococcus

Table 4. Phylogenetic affiliation of sequences from denaturing gradient gel electrophoresis (DGGE) bands with closest uncul-
tured and cultured matches. The number of bases used to calculate sequence similarity is given in parentheses in the third col-
umn. Note that the last 2 sequences were from bands not included in the analysis of the community composition because they

were below the threshold set for the detection of a band
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Grande Rade total communities and free-living com-
munities from the lagoon. Specific clusters were found
for communities from the middle and head of Sainte
Marie Bay, from Grande Rade Bay, and from all lagoon
stations (except Stn M10 sampled on 29 November)
and the mouth of Sainte Marie Bay. Communities from
the 2 bays were clearly different. Prefiltration did not
affect the profiles at the open ocean station, whereas
after prefiltration, i.e. when only the free-living com-
munities were present, lagoon communities clustered
together with non-prefiltered lagoon station communi-
ties (Stn M10 sampled on 29 November), and Grande
Rade Bay communities clustered apart from all other
communities.

Relationship between parameters

Regression and correlation analyses were performed
with average values per station, since LeFT values
were only available as average values per station, and
not all stations were sampled at the same frequency
(Table 1). Bacterial abundance increased strongly with

chl a concentration and ciliate and viral abundance,
but not with LeFT, whereas %HNA increased signifi-
cantly with LeFT, chl a concentration, and viral abun-
dance but not with ciliate abundance parameters
(Table 5). Other significant relationships were those
between LeFT and chl a, between viruses and chl a
(although r was lower than for the relationship be-
tween viral and bacterial abundance), and between
HNF or TNF abundance and ciliate abundance. The
abundance of Synechococcus was strongly related to
viruses, whereas the abundance of picoeukaryotes was
strongly related to %HNA, HNF, and TNF.

Using correlation analysis, the number of bands of
total communities was only related significantly to
HNF, TNF, and eukaryote abundance (Table 5). How-
ever, we also found more complex relationships using
regression analysis. For example, the number of bands
was related to chl a concentration in a U-shape (Fig. 4).
No relationship was detected between the number of
bands of total communities and LeFT. The number of
bands of the free-living community decreased linearly
with LeFT, chl a concentration (Fig. 4), Synechococcus,
%HNA, and bacterial, viral, and ciliate abundance.
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Integrated view of data: PCA

Key parameters, namely richness, LeFT, bacteria,
viral, HNF and ciliate abundance, and chl a concen-
trations were selected for PCA. Three significant com-
ponents with an eigenvalue >1 were extracted, ex-
plaining 86.2% of the total variation (Table 6). The
component matrix revealed 2 fundamental factors
influencing the environment. Most of the variations in
the barrier reef system were characterized by the first
component (PCA-C1), where LeFT was strongly corre-
lated with bacterial and viral abundance and chl a and

was responsible for almost 50% of the variation in the
system. The other 2 components, together explaining
about 36% of the variation, revealed a relation
between grazers and richness. The second component
(PCA-C2) showed a positive correlation between the
number of bands for the total community and HNF
abundance, and the third component (PCA-C3)
showed a negative correlation between the number of
bands for the total community and ciliate abundance.

DISCUSSION

Potential control mechanisms of bacterial abundance

A lower bacterial abundance in the open ocean than in
lagoon stations of coral reefs as shown in the present
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R-TC R-FLC LeFT Chl a Synecho PicoE Bacteria %HNA HNF TNF Ciliates

R-FLC 0.297 1
LeFT 0.155 –0.840*** 1
Chl a 0.554 –0.887**** 0.680 1
Synecho 0.021 –0.875 0.584 0.608 1
PicoE 0.676 –0.174 0.226 0.719* 1
Bacteria 0.232 –0.961**** 0.309 0.811** 0.712* 0.576 1
%HNA 0.419 –0.651 0.826*** 0.839*** 0.525 0.623 0.466 1
HNF 0.687* 0.146 –0.182 0.500 –0.083 0.729* 0.548 0.213 1
TNF 0.614 –0.066 –0.090 0.542 –0.023 0.828*** 0.576 0.273 0.975**** 1
Ciliates 0.466 –0.689* –0.006 0.577 0.376 0.451 0.699* 0.191 0.697* 0.621 1
Viruses –0.034 –0.910**** 0.618 0.779** 0.907**** 0.464 0.850**** 0.676 0.380 0.291 0.407

Table 5. Spearman correlation coefficients among all parameters. Data are from Table 1–3 and were log or arcsine transformed.
Temperature is not shown, as no significant correlation was found. R-TC: number of bands, total community; R-FLC: number of
bands, free-living community; LeFT: local e-flushing time; chl a: chlorophyll a; Synecho: Synechococcus; PicoE: picoeukaryotes;
HNA: high nucleic acid bacteria; HNF: heterotrophic nanoflagellates; TNF: total nanoflagellates. Values in bold are p < 0.05;

*p < 0.01; **p < 0.005; ***p < 0.001; ****p < 0.0005

Lagoon of Noumea
Parameter C1 C2 C3

No. of bands 0.09 0.56 0.67
LeFT 0.42 –0.27 0.24
BA 0.49 –0.05 –0.14
VA 0.47 –0.30 –0.10
HNFA 0.24 0.61 –0.18
CA 0.20 0.39 –0.61
Chl a 0.50 0.02 0.24

% of variance 49.8 21.3 15.0
Cumulative 86.2%

Table 6. Component matrix for the lagoon of Noumea. Extrac-
tion method: principal component analysis (PCA). Data set for
PCA was reduced to 7 key parameters (no. of samples = 24).
Three components were extracted. Correlations >0.4 are in
bold. No. of bands: number of denaturing gradient gel elec-
trophoresis (DGGE) bands for total community; LeFT: local 
e-flushing time; BA: bacterial abundance; VA: viral abun-
dance; HNFA: heterotrophic nanoflagellate abundance; 

CA: ciliate abundance; chl a: chlorophyll a
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study has been demonstrated previously (e.g. Torréton
1999). This difference was only moderate (Torréton
1999) and is supported by our study. The relationship be-
tween bacterial abundance and chl a concentrations
(Table 5) suggests that bacterial production was linked
to primary production as has been shown before for the
barrier reef system of New Caledonia (Rochelle-Newall
et al. 2008) and many other pelagic environments (e.g.
Cole et al. 1988). Such a tight link is thought to be mainly
the consequence of dissolved organic matter release
from healthy phytoplankton cells (Baines & Pace 1991),
which fuels bacterial production. Other links could be
detritus formation and subsequent use by bacteria. In-
deed, the concentration of transparent organic particles
(TEP) was also well correlated with chl a (Mari et al.
2007b) and bacterial abundance (data not shown). It is
known that %HNA often increases with bacterial pro-
duction and that the HNA populations are often more ac-
tive (e.g. Servais et al. 1999). We did not measure bacte-
rial production in the present study, although previous
work has shown that bacterial production increases
along the trophic gradient in the lagoon in all seasons
(Torréton et al. 2007, Conan et al. 2008, Rochelle-Newall
et al. 2008). Thus, the strong correlation between %HNA
(and total abundance) and chl a detected in the lagoon of
Noumea and the fact that these parameters strongly in-
crease along trophic gradients is a good indication of a
link between bacterial and primary production as shown
previously along the trophic gradients investigated
(Rochelle-Newall et al. 2008). In the bays, the long water
residence time and the positive buoyancy of TEP result
in an efficient cycling loop of organic matter (Mari et al.
2007b), and this could be an additional mechanism ex-
plaining the high %HNA.

Our data support a previous report (Torréton et al.
2007) suggesting that water residence time has an in-
fluence on bacterioplankton biomass. Recalculating 2
data sets from a total of 6 cruises from the same stations
as in the present study (Jacquet 2005, Torréton et al.
2007), a negative relationship was found between LeFT
and bacterial turnover time (data were used as log-
transformed averages per station from 3 cruises; Torré-
ton data set: r = –0.70, p < 0.01, n = 9; Jacquet data set:
r = –0.74, p < 0.005, n = 10). In the bays, water residence
time was much higher than bacterial turnover time
(Fig. 5). At Stn M05 (lagoon station closest to coast),
LeFT and turnover times were similar, whereas for the
other lagoon stations, bacterial turnover times were
much lower than LeFT. Water residence time is a cru-
cial ecological parameter in semi-confined environ-
ments, but it has not often been related to bacterial
abundance and production or bacterial subpopulations
(Crump et al. 2004). For example, it has been argued
that specific communities can develop when the water
residence time is higher than the bacterial turnover

time (Crump et al. 2004). PCA-C1 also suggests a posi-
tive link between water residence time and bacterial
and viral abundance and chl a concentrations (Table 6),
thus supporting the argument outlined here.

The abundances of bacteria and HNF often show a
lack of coupling across trophic gradients, especially in
more eutrophic environments (Gasol & Vaqué 1993,
Gasol 1994). This is probably due to top-down control
of HNF by larger protists such as ciliates. These find-
ings have been used by Gasol and co-workers to
develop a model predicting that grazing by flagellates
controls bacterial production in oligotrophic but not in
eutrophic environments (see also Pernthaler 2005). In
support of these ideas, we did not find a significant
relationship between bacterial and HNF or TNF abun-
dance, whereas HNF and TNF abundance were highly
correlated with ciliate abundance. This analysis could
be influenced by mixotrophic flagellates, which are
able to feed on bacteria and thus represent an addi-
tional mortality factor for bacteria. However, total or
autotrophic flagellate abundance was also not coupled
to bacterial abundance. The lack of correlation be-
tween HNF (or TNF) and bacterial abundance could
also be due to flagellates grazing mainly on Cyanobac-
teria as shown for an atoll lagoon (Sakka et al. 2000).
HNF (or TNF) abundance was not related significantly
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to Synechococcus, Prochlorococcus, or Cyanobacteria
but to autotrophic picoeukaryotes, suggesting that
flagellates could have grazed on autotrophic pico-
eukaryotes. Sakka et al. (2000) also provided evidence
that protistan grazing on bacteria is low in oligotrophic
coral reef lagoons. Thus, the weak correlation between
bacterial abundance and HNF abundance could not
only be due to top-down control of HNF by ciliates but
also due to selective feeding of HNF.

Using the approach of Gasol & Vaqué (1993), Wein-
bauer & Peduzzi (1995) found the same lack of cou-
pling between bacterial and HNF abundance in the
Adriatic Sea. In addition, they reported a strong corre-
lation between bacterial and viral abundance. Since
viral infection also increased with bacterial abundance
and trophic conditions, they speculated that viral con-
trol was stronger in eutrophic than in oligotrophic
environments. Compilations of literature data also sug-
gest that on average, the viral impact can be greater in
eutrophic than in oligotrophic environments (Wein-
bauer 2004, Parada et al. 2006). The reason for this
could be the increased encounter rates with hosts and
the lack of top-down control of viral abundance. HNF
can ingest and digest viruses; however, since the
removal rates are low (González & Suttle 1993), graz-
ing is likely not an important mechanism controlling
viral abundance. Viruses could also originate from
sources other than heterotrophic bacteria, such as
Cyanobacteria, which can be abundant at the study
site; in addition, Synechococcus abundance was sig-
nificantly related to viral abundance. However, the
abundance of Synechococcus (and Prochlorococcus or
Cyanobacteria) was typically ca. 1 order of magnitude
lower than the abundance of heterotrophic bacteria.
Moreover, viral lysis rates seem to be lower for Syne-
chococcus and Prochlorococcus than for heterotrophic
bacteria (e.g. Garza & Suttle 1998, Baudoux et al.
2007). Thus, it is likely that the majority of viruses orig-
inated from the lysis of heterotrophic bacteria. In the
bays, up to 30% of total viral abundance was attached
to organic particles at the study site (Mari et al. 2007a).
If this attachment is detrimental to viral infectivity
(Simon et al. 2002, Weinbauer et al. 2009), attachment
could be an important mechanism for viral decay (Sut-
tle & Chen 1992). However, this potential loss was at
maximum 30% of the total abundance and did not
result in a disruption of the correlation between viral
and bacterial abundance. Thus, this suggests either
that attachment of viruses was not a major cause of loss
of viruses or that losses were not substantial.

Solar radiation can destroy viral particles and cause
losses of infectivity without losses of particles (Suttle &
Chen 1992). Data from the study area suggest that
DNA effective radiation attenuates more rapidly with
depth in more coastal than in more offshore waters

(Conan et al. 2008). Thus, a gradient in the losses of
viral infectivity due to solar radiation can be expected,
with the lowest effect in the bays. In addition, cell-spe-
cific bacterial production increased towards the bays
(Torréton et al. 2007, Rochelle-Newall et al. 2008), and
this could also result in an increase of viral infection
(Wommack & Colwell 2000). However, these mecha-
nisms did not disrupt the relationship between viral
and bacterial abundance (Table 5). In the bays, it is
possible that increased losses by attachment are bal-
anced by reduced losses due to UV light and higher
infection frequencies. Thus, assuming that the models
of Gasol & Vaqué (1993) and Gasol (1994) are applica-
ble, the data indicate that the relative impact on bac-
terioplankton mortality changed from viral lysis domi-
nating in the bays to HNF dominating in the open
ocean.

Bacterial community composition

Genetic fingerprints such as 16S rRNA gene-based
DGGE have methodological constraints, which could
influence our analysis. For example, multiple operons
could be problematic, either resulting in an overesti-
mation of a phylotype (in the case of sequence identity
of multiple operons) or in suggesting higher diversity
(in the case of sequence diversity of multiple operons).
However, this is unlikely for the investigated types of
water-column environments (Brown et al. 2005). More-
over, it is known that some primers select against
Gammaproteobacteria. However, we used an im-
proved primer set that also detects the SAR11 cluster
and some Gammaproteobacteria (Sanchez et al. 2007).
Indeed, the ubiquitous SAR11 cluster (Morris et al.
2002) was detected in our samples. In addition, plastids
might be amplified. However, we did not obtain plastid
sequences from the SW lagoon of New Caledonia. A
high number of phylotypes belonging to Rhodobacteri-
aceae as in the present study was also found in the
Mediterranean Sea using DGGE (Alonso-Saez et al.
2007, Malits & Weinbauer 2009), where it was also
demonstrated by using fluorescence in situ hybridiza-
tion (FISH) that Roseobacter can be numerically domi-
nant (Alonso-Saez et al. 2007). Our detection of Al-
teromonadaceae sequences is more surprising, since
the abundance of this group is thought to be low. How-
ever, bloom-like outbreaks have been documented re-
cently for Alteromonas (Alonso-Saez et al. 2007), prob-
ably because they can react quickly to disturbances
(Allers et al. 2007). At the study site, the Alteromonas
bands were most typical for the bays. Assuming that
Alteromonas-specific responses to disturbance exist,
such disturbances could be mixing of oligotrophic off-
shore-water with mesotrophic particle-rich bay water.
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It is well known from marine systems that bacterial
community composition changes along open gradi-
ents such as estuaries (e.g. Bouvier & del Giorgio
2002, del Giorgio & Bouvier 2002, Crump et al. 2004).
Using cluster analysis, we found that the gradients
separated specific bacterial communities in the open
ocean and the 2 bays. The system is characterized by
gradients from oligotrophic open ocean waters to
mesotrophic bays within a distance of ca. 20 km
(Jacquet et al. 2006, Mari et al. 2007b, Rochelle-
Newall et al. 2008). The gradients include water resi-
dence time, metal concentrations (Ni, Cr, and Zn),
nutrient and chl a concentrations, particulate organic
concentration and TEP contribution, and bacterial
production (Mari et al. 2007b, Migon et al. 2007, Tor-
réton et al. 2007). In addition, coral mucus harbors a
large bacterial diversity (Rohwer et al. 2002), and
mucus (and thus, probably also attached bacteria) is
transported into the lagoon system (Wild et al. 2004).
All of these parameters could have influenced bacter-
ial community composition.

The community composition of attached and free-
living bacteria can be different (DeLong et al. 1993,
Acinas et al. 1999, Crump et al. 1999). Particle load
increases from open ocean to bay stations (Mari et al.
2007b). Thus, the relative proportion of attached bac-
teria is likely much higher in the bays than in the
open ocean. Fingerprints of total bacteria did not dif-
fer from free-living bacteria in the open ocean,
whereas the strongest difference was found for
Grande Rade Bay. Thus, our data suggest an abun-
dant and phylogenetically specific attached bacterial
community in the bays. The long water residence time
as a consequence of constrained hydrodynamic circu-
lation (Mari et al. 2007b) could provide enough time
for the development of a specific or more pronounced
community as has been previously suggested for
another system (Crump et al. 2004). Bacterial turnover
times were indeed much lower than the water resi-
dence times in the investigated bays (Fig. 5). In addi-
tion, the positively buoyant particles in the bays (Mari
et al. 2007b), which keep the attached bacterial com-
munities suspended, could have contributed to that.
Moreover, this feedback system, where organic mat-
ter is not exported efficiently but is continuously
degraded in the water column, results in refractory
dissolved organic matter (Mari et al. 2007b), which
could also have influenced the development of spe-
cific communities in the bays. Also, a longer water
residence time could provide more opportunities for
bacteria from other water masses or the atmosphere
to become established and common. A similar mecha-
nism could operate for organic matter compounds and
metals, which could then also influence bacterial com-
munity composition.

Diversity hypotheses

It is noteworthy that we sampled a trophic gradient
along which chl a concentration and bacterial produc-
tion varied by more than an order of magnitude (Mari
et al. 2007b, Torréton et al. 2007, Rochelle-Newall et al.
2008). Thus, the trophic gradient in the lagoon of
Noumea allows for testing predictions from hypotheses
describing the relationship between diversity and pro-
ductivity. The number of bands detected using genetic
fingerprinting is certainly an underestimation of spe-
cies richness. Thus, as the number of DGGE bands is
interpreted as an indicator of evenness, i.e. a low num-
ber of bands likely means a lower evenness and a
higher dominance of detectable phylotypes (Bonilla-
Findji et al. 2009). As such, DGGE bands can be used
to assess hypotheses on mechanisms controlling diver-
sity.

A general hypothesis assumes a unimodal distribu-
tion of diversity along a productivity gradient, with the
highest diversity at intermediate productivity (e.g.
Worm et al. 2002). Using chl a to represent productiv-
ity and the number of bands as a diversity parameter,
the number of phylotypes of free-living communities
decreased linearly with chl a concentration. Others
have found a decrease in the number of phylotypes of
free-living communities with increasing bacterial pro-
duction and respiration (Reinthaler et al. 2005, Winter
et al. 2005). This potentially suggests a common fea-
ture such as a change in evenness when trophic gradi-
ents are investigated (Worm et al. 2002). We found a
unimodal distribution for total communities; however,
this distribution showed a U-shape and not a hump
form. It has been shown before that the relationship
between chl a and the number of detected bands for
bacterioplankton can be complex. Hump-shaped, U-
shaped, and a lack of relationships between the rich-
ness of different large taxonomic groups of bacteria
and chl a concentration have been demonstrated for
freshwater systems (Horner-Devine et al. 2004a). Our
findings (PCA, regression and cluster analysis) sug-
gests that complex patterns can also originate from
differences in community composition between free-
living and attached bacteria and from varying con-
tributions of the attached to total communities. The low
dominance in offshore waters supports widely held but
not thoroughly tested ideas that dominance is lower
and species diversity is higher in oligotrophic than in
eutrophic environments. The low dominance in the
bays could then be due to a mixture of very different
free-living and attached communities.

Mortality factors such as viral lysis and protistan
grazing can also influence productivity-diversity rela-
tionships (Worm et al. 2002). For example, the number
of detected phylotypes of the free-living community
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decreased with viral abundance in the North Sea (Win-
ter et al. 2005). A decrease in the number of bands of
the free-living community with increasing viral abun-
dance was also detected in the present study. PCA-C2
suggested a positive effect of HNF on the number of
bands of the total community, and PCA-C3 indicated a
negative effect of ciliates. HNF can sustain the number
of detected phylotypes, especially when acting syner-
gistically with viral lysis (Zhang et al. 2007, Bonilla-
Findji et al. 2009). HNF and viruses can also modify the
relationship between diversity (as the number of
DGGE bands) and productivity (Bonilla-Findji et al.
2009). The PCA component matrix could thus suggest
that, at high grazing pressure by HNF, bacterial even-
ness is sustained; at low grazing pressure, i.e. when
HNF are top-down controlled by ciliates, only a few
bacterial phylotypes may dominate.

CONCLUSIONS

This study is one of the few investigating bacterial
community composition in tropical coral reef ecosys-
tems. Bacterial community composition was clearly dif-
ferent between offshore waters and the semi-enclosed
bays. Water residence time and mortality factors
seemed to be a crucial parameter structuring bacterial
communities. An unexpected potentially cascading ef-
fect of ciliate control on HNF, and thus on bacterial
community composition, was detected. Our data also
confirm the idea that it may be necessary to distinguish
between attached and free-living bacterial community
diversity and associated methods to assess productivity.
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