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Optimal Sensor Location and Mobile
Sensor Crowd Modeling for Environmental

Monitoring
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∗Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab, 38000
Grenoble, France,

(e-mail: didier.georges@grenoble-inp.fr).

Abstract: In this paper, the optimal sensor location problem is first discussed for environmental
monitoring of physical phenomena governed by some advection-diffusion partial-differential
equations. In particular, the exact derivation of the observability Gramian of an advection-
diffusion PDE is investigated. Based on the optimality criteria derived from this analysis, a
conservation law governing the behavior of a crowd of mobile sensors is proposed to ensure
convergence of the sensor density towards an optimal location. The monitoring of pollution on
a 2D domain is the case study used throughout the paper to illustrate the effectiveness of the
proposed approach.

Keywords: Pollution monitoring, optimal sensor location, sensor crowds, collective behavior,
conservation laws, approximate observability.

1. INTRODUCTION

Mobile sensors in networks (such as coordinated fleet of
drones) represent an attractive way to ensure monitoring
or tracking of time-varying spatially-distributed environ-
mental phenomena (weather events, wildfires, air, soil,
river or sea pollution ...). Presently monitoring systems
are still mostly based on static networks of sensors, see
Ghanem (2004) for instance. However the use of mobile
sensors can potentially provide more flexibility in collect-
ing distributed data when the conditions are changing.

The navigation of mobile sensors for environmental mon-
itoring is classicaly based on concentration gradient and
flow direction to track pollutant sources (Cortes (2004)).
In Demetriou (2011); Ucinski (2005), the authors derive
a stable distributed-parameter state observer by using
measurements from some mobile sensors which have to
be controlled to satisfy this goal. Following the same idea,
in Georges (2013), a nonlinear conservation law is pro-
posed to model the collective behavior of a mobile sensor
continuum used for pollution monitoring purpose. The
sensor density reaches an equilibrium corresponding to the
necessary conditions for optimality (observability maxi-
mization or trade-off between observability maximization
and obstacle avoidance in the presence of obstacles).

In the present paper the later approach is improved in
the sense that the proposed conservation law derivation is
now based on the exact infinite-dimensional observability
gramian of an advection-diffusion PDE in 2D, which
can be easily computed, rather than on an approximate
finite-dimensional observability gramian derived from a
finite-dimensional model obtained thanks to a Galerkin
method. The application field still concerns all the physical
phenomena governed by advection-diffusion PDEs. The

here-proposed approach can be closely related to the work
by Privat et al (2015) for the wave equation.

The main objective remains to get an optimal configura-
tion of the sensors suitable to enhance the performance
of state observers designed for estimation or prediction of
the distributed pollution dynamics, by mainly improving
sensor measurement output sensitivity with respect to the
initial state distribution.

The organization of the paper is now as follows: In section
2, the advection-diffusion PDE governing the pollution
dispersion phenomena is recalled. Section 3 is devoted to
both the exact derivation of both the infinite-dimensional
Gramian of a linear advection-diffusion PDE and an ob-
servability criteria used for the optimal location of sensors.
In section 4, a new nonlinear conservation law governing
a crowd of mobile sensors is derived using the results of
section 3. In section 5, a case study is investigated, which
demonstrate the effectiveness of the methodology. Finally
the paper ends with some conclusions and perspectives.

2. THE ADVECTION-DIFFUSION PDE (ADPDE)

The pollution dispersion phenomena may be well modeled
(see Zannetti (1990) for instance), in the case of air
pollution) on a domain Ω by the following advection-
diffusion partial differential equation:

∂u

∂t
(x, t) + V (x, t) · ∇u(x, t) = k4u(x, t)− βu(x, t)

+S(x, t) (1)

where x ∈ Ω ⊂ RN , with N = 1, 2 or 3, u(x, t) is the
concentration of a chemical species (the pollutant), V (x, t)
is a vector of flow velocities which is supposed to be known
(through measurements or computation of other PDEs,



such as the Saint-Venant equations governing the dynam-
ics of open-channel hydraulic systems or meteorological
models in the case of air pollution), k > 0 is a constant
diffusion coefficient which is supposed to be known, β > 0
is a reaction coefficient, and source term S(x, t) acts in
the domain Ω. ∇ and 4 stand for the gradient and the
Laplacian respectively. ” · ” denotes the standard scalar
product.

In this paper, only the 2D case will be studied. This means
that there is no concentration gradient according to the
vertical coordinate. It should be however pointed out that
the methodology proposed here can be easily extended to
the 3D case.

A rectangular domain Ω = {(x, y) : 0 ≤ x ≤ L, 0 ≤ y ≤
H} is introduced, together with the following initial and
boundary conditions 1

u(x, y, t = 0) = u0(x, y), (2)

and

u(0, y, t) = u(L, y, t) = 0, (3)

u(x, 0, t) = u(x,H, t) = 0. (4)

Now we use the following assumptions in what follows:

Assumption 1: Velocity field V (x, y, t) is supposed to be
uniform over domain Ω: V (x, y, t) = V (t).

Assumption 2: The source term S(x, y, t) is known.

Assumption 3: The time-varying velocity V (t) is replaced
by a mean velocity V̄ defined over a finite time interval
[0, T ]:

V̄ =
1

T

∫ T

0

V (t)dt. (5)

This assumption means that the velocity field V (t) is
available through measurements or predictive computation
over [0, T ].

Even if the attention will be paid to 2D air pollution
in the paper, many other applications are covered by
the methodology proposed here: Monitoring of pollution
advection-diffusion in 1D or 2D shallow water systems
(rivers, lakes, estuaries or seas), underseas pollution or
groundwater monitoring.

3. OBSERVABILITY ANALYSIS OF THE ADPDE

3.1 Background on Observability Gramian of Linear PDEs

For linear time-invariant finite-dimensional systems:

ẋ=Ax (6)

y =Cx (7)

where x ∈ Rn and y ∈ Rp, the so-called ”transient
observability function” is defined as (see Brockett (1970)
for instance)

1 Neumann Boundary Conditions can also be used without restric-
tion.

Lo(X,T ) =
1

2

∫ T

0

‖y(t)‖2dt, x(0) = X, (8)

that is the output energy generated by any initial state
X ∈ Rn in the time interval [0, T ]. Lo may be rewritten as

Lo(X,T ) =
1

2
XTW (T )X,

(9)

with

W (T ) =

∫ T

0

eA
T tCTCeAtdt. (10)

W (T ) is the so-called ”transient observability Gramian”
matrix.

A necessary and sufficient condition for observability (resp.
detectability) of the pair (C,A) is that there exists ∀t ∈
[0, T ], a positive definite (resp. non negative definite) sym-
metric matrix W (t), solution to the following differential
Lyapunov equation:

−Ẇ (t) +ATW (t) +W (t)A=−CTC,
W (0) = 0. (11)

The computation of this Lyapunov equation provides the
observability Gramian at time T .

In the case of asymptotically stable observable (resp.
detectable) linear systems defined by the pair (C,A), Lo is
finite when T → +∞ and limT→+∞W (T ) = W∞. W∞ is
obtained as the unique positive definite (resp. non negative
definite) solution to the Lyapunov problem:

ATW +WA = −CTC. (12)

It follows that W (T ) or W∞ can be used as a measure of
the observability degree of the system, since the eigenval-
ues of W or W∞ represent the sensitivity of output y with
respect to each component of any initial state x(0) = X.
Indeed, if the sensitivity of y to the intial state (denoted
∂x0

yT (t)) is given by

d

dt
(∂x0

xT (t)) =A∂x0
xT (t), ∂x0

xT (0) = Id, (13)

∂x0
yT (t) =C∂x0

xT (t), (14)

where ∂x0x
T denotes the sensitivity matrix of x with

respect to initial state x0, then the observability Gramian
can be recovered as a Fisher Information Matrix (FIM):

∂x0
yT (t) =CeAt (15)∫ T

0

∂x0y(t)∂x0y
T (t)dt=

∫ T

0

eA
T tCTCeAtdt = W (T ).

(16)

It is interesting to notice that such a sensitivity analysis
can be useful to compute the FIM of the sensitivity of
y to an unknown constant or slowly time-varying input
(source) u for the state-space system:

ẋ(t) =Ax(t) +Bu, x ∈ RN , u ∈ Rm, x(0) = x0

y(t) =Cx(t), y ∈ Rp.
Applying the previous sensitivity computation leads to:



∂ux
T (t) =

∫ t

0

eA(t−τ)Bdτ, (17)

∂uy
T (t) = CA−1(eAt − Id)B, (18)

Wu(T ) =

∫ T

0

∂uy(t)∂uy
T (t)dt

=

∫ T

0

BT (eA
T t − Id)A−TCTCA−1(eAt − Id)Bdt. (19)

Since our goal is to maximize the observability of a
physical phenomenon, we seek to maximize a norm of
the observability Gramian; for instance, the trace of the
Gramian that is the sum of the eigenvalues of the Gramian:

Io(0, T ) = trace(W (T )). (20)

This index allows to define the best location of sensors
in average, i.e. guarantees only detectability for a asymp-
totically stable system. Other criteria are possible such
the minimal eigenvalue or the determinant of W (T ) (see
for instance Van de Wal and de Jager (2001) for an
analysis for finite-dimensional systems).However the use of
such criteria may be limited due to the bad conditioning
of W (T ) for some large-scale systems. The extension of
the Gramian notion to infinite-dimensional systems has
been performed (see El Jai and Pritchard (1988) and
Curtain and Zwart (1995), p. 154-156) for linear infinite-
dimensional operators, acting as infinitesimal generators
of a C0-semigroup. If we consider the the system defined
in abstract form by

ż(t) = Az(t) (21)

y(t) = Cz(t), (22)

where A is the infinitesimal generator of a C0-semigroup
T (t) on a Hilbert space Z, and C is an output linear
and bounded operator from Z to a Hilbert space Y , the
pair (A,C) is said to be approximately observable on [0, T ]
(for some finite T > 0), if the so-called observability
map of (A,C) on [0, T ], which is the bounded linear map
CT : Z → L2([0, T ];Y ) defined by

CT z = CT (.)z (23)

is such that ker CT = {0}. Furthermore the observability
Gramian of (A,C), which is defined by the following linear
self-adjoint operator

WT = CT∗CT , (24)

is such that WT > 0.

Finding an explicit solution is not possible in general,
except for Riesz-spectral operators, whose eigenvalues and
eigenfunctions are known explicitely (for instance, the heat
equation, see Liu (2010)).

3.2 Analytical Observability Gramian of the ADPDE

In Georges (2013), a Galerkin weighted-residual method
was proposed with the goal of deriving a reduced-order
finite-dimensional model of the ADPDE. Based on this
reduced model, an finite-dimensional approximate observ-
ability Gramian is computed and then used for optimal

sensor location. Unlike the Galerkin approach which may
lead to spillover phenomena (see Privat et al (2013)),
the analytical derivation of the observability Gramian of
the ADPDE is derived in this paper, based on the exact
spectral analysis and a direct connection to approximate
observability of the operator, according to the following
procedure (see Dautray and Lions (2000) for instance):

(1) Transform the ADPDE into an equivalent purely
diffusive equation (the heat equation) thanks to an
appropriate change of coordinates.

(2) Compute the solutions to the related Sturm-Liouville
problem in the two dimensions to get the exact
eigenvalues and eigenfunctions of the equivalent heat
equation.

(3) Use the inverse transform to compute the observ-
ability map of the original ADPDE and then the
observability Gramian.

In order to transform ADPDE (1) into the following
diffusion-reaction equation with a source term S′

∂v

∂t
(x, y, t) = k

∂2v

∂x2
(x, y, t) + k

∂2v

∂y2
(x, y, t) + S′(x, y, t)

−qv(x, y, t) (25)

with q = β + 1
4 (
v2x
k +

v2y
k ), initial and boundary conditions

v(x, y, t = 0) = v0(x, y), (26)

and

v(0, y, t) = v(L, y, t) = 0, (27)

v(x, 0, t) = v(x,H, t) = 0. (28)

the following change of coordinates (Helmholtz transfor-
mation) is used:

u(x, y, t) = v(x, y, t)ep1x+p2y, (29)

where p1, and p2 are some real coefficients to be defined.

After quite lengthy but simple calculations, equation (25)
is obtained by choosing

p1 =
vx
2k
, p2 =

vy
2k
,

where vx and vy are the two components of velocity V̄ ,

with S′(x, y, t) = S(x, y, t)e−(p1x+p2y).

The problem now reduces to solving the eigenvalue prob-
lem of equation (25), using a classical variable separation:

v(x, y, t) = φ(x, y)ψ(t)

which leads to

ψ′(t)

kψ(t)
=
4φ(x, y)

φ(x, y)
= −(λ+ q/k), (30)

where λ is a constant.

A new variable separation φ(x, y) = φx(x)φy(y) leads to
solving the following set of differential equations with two-
point boundary conditions:



φ′′x + µφx = 0, φx(0) = φx(L) = 0, (31)

φ′′y + νφy = 0, φy(0) = φx(H) = 0. (32)

The eigenvalues and eigenfunctions are given by

µn =
π2n2

L2
, φnx(x) = sin(

nπx

L
), (33)

νn =
π2n2

H2
, φny (x) = sin(

nπy

H
). (34)

It follows that the general solution is given by

φnm(x, y) = sin(
nπx

L
) sin(m

πy

H
). (35)

From (30), the solution for ψ(t) is given by

ψ(t) = e−(k(µn+νm)+q)t (36)

Since the operator is Riesz-spectral, the general solution
of eqn (25) is finally given by

v(x, y, t) =

∞∑
n=1

∞∑
m=1

cnme
−(k(µn+νm)+q)tφnm(x, y), (37)

where the cnm’s are imposed by initial conditions u(x, y, 0) =
u0(x, y). Thanks to the orthogonality property of the
eigenfunctions and the fact the operator is self-adjoint,
they are given by

cnm =
4

LH

∫ L

0

∫ H

0

v0(x, y)φnm(x, y)dxdy

=
4

LH

∫ L

0

∫ H

0

u0(x, y)e−(p1x+p2y)φnm(x, y)dxdy.

(38)

Finally, the solution of ADPDE (1) is given by

u(x, y, t) =

∞∑
n=1

∞∑
m=1

cnme
(−q−k(µn+νm)t+p1x+p2yφnm(x, y)

+

∞∑
n=1

∞∑
m=1

ep1x+p2yφnm(x, y)

×
∫ t

0

e(−q−k(µn+νm))(t−τ)

×[

∫ L

0

∫ H

0

φnm(x′, y′)× S′(x′, y′, τ)dx′dy′]dτ.

(39)

If the output operator C is given by

y = Cu =

∫ L

0

∫ H

0

∆s(x− xl, y − yl)u(x, y, t)dxdy,

(40)

where ∆s(x−xl, y− yl) is a shaping function of a sensor l
located at position (xl, yl), the output map CT is given by

CTu =

∞∑
n=1

∞∑
m=1

cnm

∫ L

0

∫ H

0

∆s(x− xl, y − yl)

× sin(
nπx

L
) sin(

mπy

H
)ep1x+p2ydxdy

×e(−q−k(µn+νm))t. (41)

The observability Gramian is then given by

WT = CT∗CT . (42)

According to Theorem 4.2.3 in Curtain and Zwart (1995),
ADPDE (1) is approximately observable if and only if

Cnm(Xl) =

∫ L

0

∫ H

0

∆s(x− xl, y − yl) sin(
nπx

L
)

× sin(
mπy

H
)ep1x+p2ydxdy 6= 0, ∀n,m, (43)

where Xl = (xl, yl) is the coordinate vector of a sensor l.

3.3 Observability Index and Optimal Sensor Location

if Ns sensors are located at position Xl = (xl, yl) ∈ Ω,
l = 1, ..., Ns, In the coordinates cnm(u0) in the Riesz
basis, the approximate observability of any initial u0 can
be investigated by considering the trace of the Riesz-basis
Gramian on horizon T :

Ns∑
l=1

∫ T

0

 C11(Xl)e
(−q−k(µ1+ν1))t

...

C∞∞(Xl)e
(−q−k(µ∞+ν∞))t


×(C11(Xl)e

(−q−k(µ1+ν1))t ...

C∞∞(Xl)e
(−q−k(µ∞+ν∞))t)dt,

(44)

that is

ITo =

Ns∑
l=1

∞∑
n=1

∞∑
m=1

∫ T

0

C2nm(Xl)e
2(−q−k(µn+νm))tdt.

(45)

(45) may be interpretated as the deterministic equivalent
to the so-called randomized observability constant in Pri-
vat et al (2015). In practice, the sums in n and m have
to be truncated with large enough n = N and m = M ,
respectively.

Since the operator is exponentially stable, a truncated
I∞o (X1, ..., XNs

), when T → +∞ is well defined as

I∞o =

Ns∑
l=1

N∑
n=1

M∑
m=1

C2nm(Xl)

2(k(µn + νm) + q)
(46)

Finally, the extension of this approach to the 3D case is
possible and would follow the same derivations by using
the change of coordinates

u(x, y, z, t) = v(x, y, z, t)ep1x+p2y+p3z.

Finding an optimal sensor configuration will consists in
solving the following maximization problem:

max
X1,...,XNs

I∞o (X1, ..., XNs). (47)

subject to sensor density constraints (to avoid high sensor
density and/or to ensure communications between the
sensors (not too low density) for instance).

Here an observer can be designed by using transformation
(29) as follows



∂v̂

∂t
(x, y, t) = k

∂2v̂

∂x2
(x, y, t) + k

∂2v̂

∂y2
(x, y, t) + S′(x, y, t)

−qv̂(x, y, t) +

Ns∑
l=1

Gl(x, y)(yl − C ′l v̂(x, y, t)),

û(x, y, t) = v̂(x, y, t)ep1x+p2y,

v̂(0, y, t) = v̂(L, y, t) = v̂(x, 0, t) = v̂(x,H, t) = 0,

(48)

where the output operator is given, for each of the Ns
sensors, by

yl = C ′lv =

∫ L

0

∫ H

0

∆s(x− xl, y − yl)ep1x+p2y

×v(x, y, t)dxdy, l = 1, ...Ns, (49)

and gain operators Gl(x, y) =

N∑
n=1

M∑
m=1

Glnmφnm(x, y) are

used to tune the first N ×M eigenvalues of the estimation
error operator. Due to the paper length limitation, the
computation of the Glnm (for instance via a pole placement
technique applied to finite-dimensional operator A − GC,
where A = diag({k(λn + µm) − q}n=1,...,N,m=1,...,M ),
(N × M,Ns) matrix G = {Glnm}, and (Ns, N × M)

matrix C = {Clnm}, where Clnm =

∫ L

0

∫ H

0

∆s(x − xl, y −

yl)e
p1x+p2yφnm(x, y)dxdy), is not detailed here.

4. A CONSERVATION LAW FOR THE OPTIMAL
LOCATION OF A SENSOR CROWD

Rather than solving optimal sensor location problem (47)
by using a gradient-based navigation scheme for a limited
number of Ns sensors, and as in Georges (2013), a con-
servation law governing the behavior of a mobile sensor
crowd towards an optimal sensor configuration is now
derived, which only requires a rather simple numerical sim-
ulation. Following the same approach as in Canizo (2012)
or Colombo (2012) for crowd modeling, the following 2D
conservation law is proposed, if the conservation of sensor
density denoted ρ(X, t), X ∈ Ω, w.r.t. time is assumed:

∂ρ

∂t
(X, t) + divX(ρ(X, t)Vρ(ρ(X, t), X)) = 0, (50)

with

Vρ(ρ(X, t), X) = (1− ρ(X, t)/ρmax)(δ∇XI∞o (X)

+ µΨ(X)), (51)

where I∞o (X) =

N∑
n=1

M∑
m=1

C2nm(X)

2(k(µn + νm) + q)
as defined

by (43) and (46), and Ψ(X) = X
1+‖X‖2 can be used

to induce a radial sensor dispersion and controls the
sensor density until convergence to an equilibrium (which
maximizes the observability index). Mainly under the
rather mild assumption ∇XI∞o (X) is smooth (that is the
case here), the existence and uniqueness of the solution in
L1(R2, [0, ρmax]) to Cauchy problem

∂ρ

∂t
(X, t) + divX(ρ(X, t)Vρ(ρ(X, t), X)) = 0, (52)

ρ(X, 0) = ρ0(X) (53)

is ensured (see Colombo (2012) for instance). As in
Georges (2013) (see section 4.3), obstacle avoidance can
be also introduced by considering repulsive gradients in
(51).

5. A NUMERICAL EXAMPLE

The optimal navigation of a sensor crowd towards the
equilibrium sensor distribution corresponding to an op-
timal sensor location, on domain Ω = [0km, 2km]2, is
now considered. The ADPDE and conservation law pa-
rameters used in the simulation are given in table 1.
The truncated steady-state ADPDE solution is computed
from (39), with initial conditions equal to zero and source
term S(x, y, t) = 1

4ε2 1[xs−ε,xs+ε]×[ys−ε,ys+ε]S̄ with source
location Xs = (xs, ys) = (0.4km, 0.5km), and where

1[α,β]×[α′,β′] =

{
1, α ≤ x ≤ β and α′ ≤ x ≤ β′
0, elsewhere

, and with

constant source magnitude S̄ = 1, as

ue(x, y) =

N∑
n=1

M∑
m=1

ep1x+p2y × sin(
nπx

L
) sin(

mπy

H
)

×[

∫ L

0

∫ H

0

sin(
nπx′

L
) sin(

mπy′

H
)

× 1

4ε2
1[Xs−ε,Xs+ε]S̄e

−(p1x′+p2y
′)dx′dy′]

/(k(µn + νm) + q). (54)

The simulations of the conservation law were performed by
using a 2D Lax-Friedrichs integration scheme. The initial

density is given by ρ0(x) = e‖x−xI‖2/(2σ2), with xI =
(1km, 1km) and σ = 0.05. The results are given by Fig. 1
and 2. Fig. 1 provides the distribution of the observability
index, while Fig. 2 depicts the asymptotic sensor density
distribution provided by conservation law (50), which
strongly depends on velocity field V (x, y) and diffusion
coefficient k. In particular, a change of velocity field will
induce a change of the sensor distribution, which can be
easily recomputed via integration of (50). On Fig. 2, the
level curves with values correspond to the pollution density
levels at equilibrium, whereas the warmer colors represent
the higher sensor densities. Not surprisingly, the sensors
cluster at the higher values of the observability index.
Knowing the optimal sensor density distribution, ensuring
the actual location of the sensors has to be investigated. A
comparison of the here-proposed observability index with
the one proposed in Georges (2013), and the influence of
the number of considered modes (N ×M) have also to to
be investigated in some future works.

Table 1. Simulation parameters

Vx Vy k β N =M δ µ ρmax

50km/h 5km/h 20 0 25 0.04 0 1

6. CONCLUSIONS AND PERSPECTIVES

The analysis of the approximate observability of the
advection-diffusion PDE has been performed in this pa-



Fig. 1. Observability index I∞o (x, y) with ∆s(x
′, y′) =

δx−x′ × δy−y′ .

Fig. 2. Asymptotic sensor density distribution.

per. This analysis leads to the derivation of a Riesz-
spectral observability index which allows to solve the
optimal sensor location problem in 2D. On the basis of
the observability index, a nonlinear conservation law has
been proposed to model the collective behavior of a mo-
bile sensor crowd used for monitoring purpose, via some
convenient observers, such as the one shortly described
in the paper. The sensor density reaches an equilibrium
which maximizes the observability index. The derivation of
a Riesz-spectral index for source estimation is a reachable
perspective by considering extension of (19) to the infinite-
dimensional case should be investigated. The derivation of
an optimal sensor crowd location approach based on the
optimal tuning of an observer (as in Demetriou (2011);
Ucinski (2005)) is also an interesting perspective. Future
works will be also devoted to similar observability index
and conservation law derivations based on the infinite-
dimensional observability gramian for wave PDEs. Indeed
many applications are available, which are not limited to
the case of advection-diffusion PDEs: seismic monitoring,
or monitoring of large infrastructures in civil engineering
(dams for instance).
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