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function and its gradient
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Laurent Véron

Abstract We study local and global properties of positive solutions of −∆u = up |∇u|q in a domain Ω of

R
N , in the range p+ q > 1, p ≥ 0, 0 ≤ q < 2. We first prove local Harnack inequality and nonexistence of

positive solutions in R
N when p(N−2)+q(N−1) < N or in an exterior domain if p(N−2)+q(N−1) < N

and 0 ≤ q < 1. Using a direct Bernstein method we obtain a first range of values of p and q in which

u(x) ≤ c(dist (x, ∂Ω)
q−2

p+q−1 This holds in particular if p+q < 1+ 4

n−1
. Using an integral Bernstein method

we obtain a wider range of values of p and q in which all the global solutions are constants. Our result

contains Gidas and Spruck nonexistence result as a particular case. We also study solutions under the

form u(x) = r
q−2

p+q−1ω(σ). We prove existence, nonexistence and rigidity of the spherical component ω in

some range of values of N , p and q.
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1 Introduction

The aim of this article is to study local and global properties of positive solutions of the following
type of equations

−∆u = up |∇u|q , (1.1)

in Ω \ {0} where Ω is an open subset of RN containing 0, p and q are real exponents. In many
cases we will assume the superlinearity of the right-hand side, i.e. p+ q − 1 > 0 and 0 ≤ q ≤ 2.
Equation (1.1) is invariant under the action of the transformations Tσ defined for σ > 0 by

Tσ[u](x) = σ
2−q

p+q−1u(σx). (1.2)

If we look for radial positive solutions under the form u(x) = Λ |x|−γ we find, if q < 2 and
p+ q − 1 > 0, γ := γp,q =

2−q
p+q−1 and

Λ := ΛN,p,q = γ
1−q

p+q−1
p,q

(

N − 2p + q

p+ q − 1

) 1
p+q−1

. (1.3)

However this last quantity exists if and only if the exponents belong to the supercritical range,
that is when

(N − 2)p+ (N − 1)q > N. (1.4)

In the subcritical range of exponents i.e. when

(N − 2)p+ (N − 1)q < N, (1.5)

we prove in Theorem 2.1 that Serrin’s classical results (see [16], [17]) can be applied. We obtain
a local Harnack inequality and an a priori estimate for positive solution u in BR \{0} under the
form

u(x) + |x| |∇u(x)| ≤ c |x|2−N ∀x s.t. 0 < |x| ≤ R

2
, (1.6)

with a constant c depending on u. We also prove the following surprising result:

Theorem A Let N ≥ 2, p ≥ 0 and 0 ≤ q < 1 satisfy (1.5). If u is a nonnegative C1 function
in an exterior domain Ω = Bc

R, where it satisfies

−∆u ≥ up |∇u|q , (1.7)
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then there exists R′ > R such that u is constant in Bc
R′ .

Furthermore such solutions truly exist as the radial case shows it (see Theorem 2.3). When
q = 0, it is known since the last millenium that any nonnegative solution of (1.7) is zero, however
the proof in that case is straightforward since the spherical average of a solution satisfies the
same inequality (see [9] in the radial case). If Bc

R is replaced by R
N the fact that all nonnegative

functions satisfying (1.7) are constant is due to Mitidieri and Pohozaev [15]. For the sake of
completeness we give a slightly different proof which introduces the techniques we developed
throughout our article.

Our main results deal with the supercritical range. We prove a priori estimates of positive
solutions of (1.1) in a punctured domain and existence of ground states in R

N . There are two
approaches for obtaining these results. The direct Bernstein method and the integral Bernstein
method popularized by Lions [14] and Gidas and Spruck in [10] respectively. Both methods
are based upon differentiating the equation. The direct Bernstein method relies on obtaining
pointwise estimates of the gradient through comparison principles via algebraic computations,
an intensive use of Young’s inequality and without any integration. Our main result in this
framework is the following:

Theorem B Let N ≥ 2, 0 ≤ q < 2 and p ≥ 0 be such that p + q − 1 > 0. If u is a positive
solution of (1.1) in BR and one of the following assumptions is fulfilled,

(i) p+ q − 1 < 4
N−1 ,

(ii) 0 ≤ p < 1 and p+ q − 1 < (p+1)2

p(N−1) .

Then there exist positive constants a = a(N, p, q) and c1 = c1(N, p, q) such that

|∇ua(0)| ≤ c1R
−1−a

2−q
p+q−1 . (1.8)

The value of the exponent a is not easy to compute, however, in several applications this
difficulty can be bypassed. As a consequence of (1.8) there holds,

Corollary B-1 Under the assumptions on N , p and q of Theorem B, any positive solution of
(1.1) in R

N is constant.

Another consequence is the following,

Corollary B-2 Let Ω be a smooth domain in R
N , N ≥ 2, with a bounded boundary, 0 ≤ q < 2

and p ≥ 0 such that p+q−1 > 0 and assume one of the assumptions (i)-(ii) of Theorem B holds.
If u is a positive solution of (1.1) in Ω there exists d0 > 0 depending on Ω and c2 = c2(N, p, q) > 0
such that

u(x) ≤ c2

(

(dist (x, ∂Ω))
− 2−q

p+q−1 +max{u(z) : dist (z,Ω) = d0}
)

. (1.9)

The aim of the integral Bernstein method is to obtain estimates of the Lr-norm of the gradient
of the solutions in balls for r large enough. Combined with [16] this leads in [10] to Harnack
inequality. Here we use these integral estimates to prove the non-existence of non-constant
global solutions.
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Theorem C Assume p ≥ 0, 0 ≤ q < 2 and define the polynomial G by

G(p, q) =
(

(N − 1)2q +N − 2
)

p2 + b(q)p−Nq2,

where b(q) = N(N − 1)q2 − (N2 +N − 1)q −N − 2.
(1.10)

If the couple (p, q) satisfies the inequality G(p, q) < 0, then all the positive solutions of (1.1) in
R
N are constant.

In the range of p and q, the condition GN (p, q) < 0 is equivalent to

0 ≤ p < pc(q) :=
−b(q) +

√

b2(q) + 4Nq2 ((N − 1)2q +N − 2)

2 ((N − 1)2q +N − 2)
. (1.11)

If q = 0, the above reads reads

0 ≤ p < pc(0) :=
N + 2

N − 2
, (1.12)

which is the well known condition obtained by Gidas and Spruck in [10]. Furthermore, it can
be verified that the domain of (p, q) in which Theorem B applies is included into the set of (p, q)
where G(p, q) < 0. Our proof is extremely technical and necessitates a long appendix in which
many algebraic computations are carried out.

If we just look for radial solutions we present in Theorem 3.1 an optimal result namely:

Theorem D There exist non-constant radial positive solutions of (1.1) in R
N if and only if

p ≥ 0, 0 ≤ q < 1 and

p(N − 2) + q(N − 1) ≥ N +
2− q

1− q
. (1.13)

If equality holds in (1.13), there exists an explicit one parameter family of positive radial solutions
of (1.1) in R

N under the form

uc(r) = c

(

Kc
(2−q)2

(N−2)(1−q) + r
2−q
1−q

)−
(N−2)(1−q)

2−q

, (1.14)

for any c > 0 and some K = K(N, q) > 0.

In the last section we study the singular separable solutions of (1.1) written under the form

u(x) = u(r, σ) = r−γp,qω(σ) (r, σ) ∈ R
∗
+ × SN−1. (1.15)

Then ω satisfies the following nonlinear equation on SN−1

−∆′ω + γp,q

(

N − 2p + q

p+ q − 1

)

ω − |ω|p−1 ω
(

γ2p,qω
2 +

∣

∣∇′ω
∣

∣

2
)

q
2
= 0, (1.16)

where ∇′ and ∆′ are respectively the covariant gradient and the Laplace Beltrami operator on
SN−1. It is clear by integration that condition (1.4 ) is a necessary and sufficient condition for
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the existence of solution, and the constant function ΛN,p,q is such a solution. We introduce a
more general equation on SN−1

−∆′ω + µω − |ω|p−1 ω
(

γ2ω2 +
∣

∣∇′ω
∣

∣

2
)

q
2
= 0, (1.17)

where µ and γ are positive real numbers. We have the following universal estimate.

Theorem F Assume 0 ≤ q < 2, p ∈ R such that p+ q − 1 > 0. If

p(N − 3) + q(N − 2) < N − 1, (1.18)

holds, there exists c4 = c4(N, p, q) > 0 and a = a(N, p, q) > 0 such that for γ, µ > 0, any solution
ω of (1.17) on SN−1 satisfies

‖ω‖L∞ ≤ c4µ
aγ

− q
p+q−1 . (1.19)

We also give a rigidity result which shows that the solutions which are not too far from being
constant are indeed constant.

Theorem F Assume p ≥ 0 and p+ q − 1 > 0. Let ω be a solution of (1.17) satisfying

c22 ≤ γ2ω2 +
∣

∣∇′ω
∣

∣

2 ≤ c21, (1.20)

for some c1 > c2 > 0 and set

c∗ =

{

c
p+q−1
1 if p ≥ 1

c
p−1
2 c

q
1 if 0 ≤ p < 1.

(1.21)

If

c∗ ≤
2(N − 1 + µ)γp

q
√
N − 1 + 2(p + q)γ

, (1.22)

then ω is constant.

In the Appendix we present many technical algebraic computations which leads to the de-
limitation of the regions of the (p, q)-plane in which Theorem C holds. Many computations can
be easily verified by using Maple. Throughout the paper c denotes a generic constant depending
on some parameters, specified in some cases, the value of which may change from one occurence
to another.

Acknowledgements This article has been prepared with the support of the collaboration
programs ECOS C14E08 and FONDECYT grant 1160540 for the three authors.
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2 Local estimates

2.1 The subcritical case: Proof of Theorem A

We show how the use of Serrin’s result concerning Harnack inequality yields a blow-up estimate
of any positive solution u of (1.1) in a punctured domain.

Theorem 2.1 Let Ω ⊂ R
N be a domain containing 0, N ≥ 3, p ≥ 0, 0 ≤ q ≤ 2 and (1.5)

holds. If u ∈ C2(Ω \ {0}) is a positive solution of (1.1) in Ω \ {0}, then estimate (1.6) holds in
a neighborhood of 0.

Proof. Assume B1 ⊂ Ω. By Brezis-Lions’s result [6] there holds

u ∈M
N

N−2 (B1) , ∇u ∈M
N

N−1 (B1) , u
p |∇u|q ∈ L1(B1), (2.1)

where M r = Lr,∞ denotes the Marcinkiewicz space or Lorentz space of index (r,∞), and there
exists α ≥ 0 such that

−∆u = up |∇u|q + αδ0 in D(B1). (2.2)

We assume first pq 6= 0. In order to fit with Serrin’s formalism, we write up |∇u|q = B(u,∇u).
Hence B satisfies the estimate

|B(u,∇u)| ≤ |u|pθ + |∇u|qθ′ = c |u|+ d |∇u| , (2.3)

where θ, θ′ ≥ 1, 1
θ
+ 1

θ′
= 1, c = |u|pθ−1, d = |∇u|qθ′−1. If θ > max{1, 1

p
} and θ′ > max{1, 1

q
},

then c ∈M
N

(N−2)(pθ−1) and d ∈M
N

(N−1)(qθ′−1) . We claim that we can choose θ > 1 such that

N

(N − 2)(pθ − 1)
>
N

2
and

N

(N − 1)(qθ′ − 1)
> N. (2.4)

These inequalities are respectively equivalent to

θ <
N

p(N − 2)
and θ′ <

N

q(N − 1)
, (2.5)

which is clearly possible from (1.5) by taking θ = N(1−ǫ)
p(N−2) for ǫ > 0 small enough. Because

M r(B1) ⊂> Lr−δ(B1) for any δ > 0, we infer that c ∈ L
N
2
+δ(B1) and c ∈ LN+δ(B1) and u

verifies Harnack inequality in B \ {0} by [16, Th 5]. This implies

max
|x|=r

u(x) ≤ K min
|x|=r

u(x) ∀r ∈ (0,
1

2
]. (2.6)

The spherical average ū of u on {x : |x| = 0} is superharmonic. Hence there exists some m ≥ 0
such that

ū(r) = mr2−N . (2.7)

Combined with (2.6) it yields u(x) ≤ Km |x|2−N . The estimate on the gradient is standard, see
eg [19, Lemma 3.3.2]. �
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Remark. Estimate (1.6) is not universal since the constant K in (2.6) depends on the norms of
c and d which could depend not only on N , p, q, but on the solution itself.

The following result is not new, except in the case p = 0, q = 1. It was proved in [15, Th
15.1] for p+q−1 > 0 and extended to quasilinear operator by simulating the change of unknown
u = vb. It was used in order to derive a priori estimates [4]. Later on it was extended to more
general operator in [8] where the new cases p + q − 1 < 0 and p + q − 1 = 0 with p > 0 have
been considered using a delicate proof. We give here a very general but general proof of all
these results. Furthermore our method highlights the role of change of unknown function and
which forshadows the method used in Theorem B, is also extendeable to very general quasilinear
operators such as

−divA(x, u,∇u) ≥ B(x, u,∇u) in R
N , (2.8)

under the assumptions that 〈A(x, r, ξ), ξ〉 ≥ |ξ|m, B(x, r, ξ)r ≤ c |r|p |ξ|q, and under the corre-
sponding subcritical condition p(N −m) + q(N − 1) < N(p − 1).

Theorem 2.2 Assume N ≥ 3, p and q are nonnegative and (1.5) holds. Then the only positive
functions u ∈ C1(RN ) satisfying

−∆u ≥ up |∇u|q , (2.9)

in R
N are the constants.

Proof. Assume u is such a solution. For p+ q 6= 1, we set u = vb with b(b− 1) > 0.

−b∆v ≥ b(b− 1)
|∇v|2
v

+ |b|qvs |∇v|q ,

with
s = 1− q + b(p + q − 1).

If s > 0, then from Hölder’s inequality,

|∇v|
2s+q
s+1 =

(

|∇v|2
v

)
s

s+1

v
s

s+1 |∇v|
q

s+1 ≤ δ
s+1
s

|∇v|2
v

+ δ−1−svs |∇v|q ,

for any δ > 0. Hence, by chosing δ, we see that there exists c > 0 such that

−b∆v ≥ c |∇v|ω where ω =
2s+ q

s+ 1
=

2− q + 2b(p + q − 1)

2− q + b(p + q − 1)
. (2.10)

(i) In the case p + q − 1 > 0, we take b = 1 + ǫ, for ǫ > 0. Then s = p + ǫ(p + q − 1) > 0,
and s > 1 − q, thus ω > 1. Form assumption (1.5) we can take ǫ > 0 small enough such that
(N − 2)s+ (N − 1)q < N , which is equivalent to ω < N

N−1 .

(ii) If p+ q − 1 < 0, hence 0 ≤ q < 1, we take b = −ǫ, for ǫ > 0. Then

−|b|∆v + c |∇v|ω ≤ 0, where c > 0. (2.11)

and s = 1− q − ǫ(p + q − 1)) > 1− q > 0. hence ω = 1− p+q−1
2−q

> 1 and we can choose ǫ small

enough such that ω < N
N−1 .
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(iii) If p + q − 1 = 0, we set u = ev (where v is a signed function) and derive that for any
ω̃ ∈ (q, 2) one can find c̃ > 0 such that

−∆v ≥ |∇v|2 + ep+q−1 |∇v|q ≥ c̃ |∇v|ω̃ .

We can take in particular ω̃ < N
N−1 .

Finally, let R > 0 and ζ ∈ C∞
0 (RN ), with values in [0, 1], such that ζ = 1 on BR

2
, ζ = 0 on

Bc
R and |∇ζ| ≤ 2R−1. Then, in each of the three cases, there exists c1 > 0 such that

∫

BR

ζω
′ |∇v|ω dx ≤ c1

∣

∣

∣

∣

∫

BR

〈∇v,∇ζ〉ζω′−1dx

∣

∣

∣

∣

≤ 1

2

∫

BR

ζω
′ |∇v|ω dx+ c2

∫

BR

|∇ζ|ω′

dx,

from which follows
∫

BR

|∇v|ω dx ≤ 2C

∫

BR

|∇ζ|ω′

dx ≤ C ′RN−ω′

.

which implies the claim since ω′ > N . �

If the inequality (2.10) is considered in an exterior domain, the situation differs according
0 ≤ q > 1 or 1 ≤ q < 2. The case p = 0 is known for a long time.

Theorem 2.3 Let N ≥ 3, p ≥ 0, 0 ≤ q ≤ 2 and (1.5) holds in G := B
c
1.

(i) If 0 ≤ q < 1 any positive function u ∈ C1(G) satisfying (2.9) in G is constant on Bc
R for

some R ≥ 1.

(ii) If q ≥ 1 there exist positive functions in C1(G) satisfying (2.10) in G which are nonconstant
on Bc

R for any R > 1.

Proof. In the next two steps we prove (i).

Step 1. The function r 7→ min{u(x) : |x| = r} is nondecreasing and the following dichotomy
holds:

(ii) either r 7→ min{u(x) : |x| = r} is increasing on [1,∞),

(i) or there exists a minimal r0 ≥ 1 such that u is constant in Bc
r0
.

For proving this claim we use the transformation u = vb as in the proof of Theorem 2.2. For
τ > 0 we set

γτ (r) =



















1 if r ≥ 1

1− (1− r)2

2τ
if 1− τ ≤ r ≤ 1

r if r ≤ 1− τ,

(2.12)

and for k > 0 γτ,k(r) = kγτ (
r
τ
). Then

γ′τ,k(r) =



















0 if r ≥ k

1− k − kτ

kτ
if k(1− τ) ≤ r ≤ k

1 if r ≤ k(1− τ),

(2.13)
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We put vτ,k = γτ,k(v). Since γτ,k is concave, 0 ≤ γ′τ,k ≤ 1 and ω > 1, we derive from (2.10),

−∆vτ,k ≥ −γ′τ,k(v)∆v ≥ c
(

γ′τ,k(v)
)1−ω |∇vτ,k|ω ≥ c |∇vτ,k|ω , (2.14)

in Bc
1. For R > 2ρ ≥ 2, we consider a test function ζ ∈ C2

0 (R
N ) with value in [0, 1] such that

ζ = 1 on BR
2
, ζ = 0 in Bc

R and |∇ζ| ≤ 4
R

and we obtain with the notations of (2.10),

c

∫

BR\Bρ

ζω
′ |∇vτ,k|ω dx ≤ ω′

∫

BR\Bρ

〈∇vτ,k,∇ζ〉ζω
′−1dx−

∫

∂Bρ

∂vτ,k

∂ν
dS

≤ c

2

∫

BR

ζω
′ |∇vτ,k|ω dx+ C

∫

BR

|∇ζ|ω′

dx−
∫

∂Bρ

∂vτ,k

∂ν
dS,

which implies

c

∫

BR
2
\Bρ

|∇vτ,k|ω dx ≤ c(N)RN−ω′ − 2c

∫

∂Bρ

∂vτ,k

∂ν
dS. (2.15)

Taking b > 1 such that ω′ > N as in the proof of Theorem 2.2, we derive by letting R→ ∞,

c

∫

Bc
ρ

|∇vτ,kk|ω dx ≤ −2c

∫

∂Bρ

∂vτ,k

∂ν
dS. (2.16)

Next we choose k < min{v(x) : |x| = ρ}. Then there exists τ0 > 0 such that vτ,k(x) ≡ k for
ρ− τ ≤ |x| ≤ ρ+ τ for any τ ∈ (0, τ0] by continuity. Hence the right-hand side of (2.16) is zero,
which implies that vτ,k is constant on Bc

ρ with value k, and this means min{v(x) : |x| ≥ ρ} > k.
Letting τ ↓ 0 and k ↑ min{v(x) : |x| = ρ}, we infer that

inf{v(x) : |x| ≥ ρ} = min{v(x) : |x| = ρ} =⇒ inf{u(x) : |x| ≥ ρ} = min{u(x) : |x| = ρ},

since z 7→ z
1
b is monotone increasing on R+. As a consequence ρ 7→ min{u(x) : |x| ≥ ρ} is

nondecreasing, and if there exists r′ > r > 1 such that it is constant on (r, r′), then the minimum
of u on B

c
r is achieved at some point x0 ∈ B

c
r. Since u is superharmonic it implies that u is

locally constant; hence it is constant by connectedness. In case (i), ρ 7→ min{u(x) : |x| = ρ} is
increasing and if xρ is the point where min{u(x) : |x| = ρ} = u(xρ), then u is positive in B

c
ρ and

in achieves it minimum at xρ. By Hopf boundary lemma in implies

∂u

∂nxρ

(xρ) > 0 with nxρ = ρ−1xρ. (2.17)

In both cases there holds u(x) ≥ min
|y|=1

u(y) > 0 and up to a multiplication, we can consider

that u is a nonnegative solution of
−∆u ≥ |∇u|q , (2.18)

in Bc
1 with (N − 1)q < N .

Step 2: Construction of radial solutions when 0 < q < 1. If v is a radial solution of

−∆u = |∇u|q , (2.19)
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in Bc
1 it is nondecreasing and satisfies −(rN−1u′)′ = rN−1(u′)q in (1,∞). This equation can be

explicitely solved by setting w(r) = rN−1u′(r) which solves −w′ = r(N−1)(1−q)wq and we get

u′(r) = r1−N

(

(u′(1))1−q − 1− q

N − q(N − 1)

(

rN−q(N−1) − 1
)

) 1
1−q

, (2.20)

as long as r < r∗ for some explicit r∗. Hence to any a > 0 we denote by ra the unique r > 1
such that

a1−q =
1− q

N − q(N − 1)

(

rN−q(N−1) − 1
)

⇐⇒ ra =

(

N − q(N − 1)

1− q
a1−q + 1

) 1
N−q(N−1)

.

The mapping a 7→ ra is continuous on [0,∞), C∞ on (0,∞), increasing with limit 1 at a = 0
and infinite when a→ ∞, and if we set

µa =

∫ ra

1

(

a1−q − 1− q

N − q(N − 1)

(

sN−q(N−1) − 1
)

) 1
1−q

s1−Nds, (2.21)

a 7→ µa defines a continuous increasing function on [0,∞), C∞ on (0,∞) with limit 0 at 0 and
∞ at ∞.

Next, given µ > 0 and R > 1, the radial solution of the Dirichlet problem

−∆u = |∇u|q in BR \B1

u = 0 in ∂B1

u = µ in ∂BR,

(2.22)

can be constructed in the following way: Let a > 0 be the unique solution of µa = µ. If ra < R

the solution u of (2.22) is expressed by

u(r) =











∫ r

1

(

a1−q − 1− q

N − q(N − 1)

(

sN−q(N−1) − 1
)

)
1

1−q

s1−Nds if 0 ≤ r ≤ ra

µ if ra < r ≤ R.

(2.23)

If ra ≥ R, there holds

u(r) =

∫ r

1

(

a1−q − 1− q

N − q(N − 1)

(

sN−q(N−1) − 1
)

)
1

1−q

s1−Nds if 0 ≤ r ≤ R. (2.24)

We also notice that any radial solution v of (2.19) in Bc
1 which satisfies v′(1) < 0 is uniquely

determined by Cauchy-Lipchitz theorem. It is decreasing and tends to −∞ at infinity since it
expressed by

u(r) = u(1)−
∫ r

1

(

(−u′(1))1−q +
1− q

N − q(N − 1)

(

rN−q(N−1) − 1
)

) 1
1−q

s1−Nds ∀r > 1.

(2.25)
At en we prove that all the radial solutions of (2.19) in Bc

1 which are bounded from below
have the from (2.23) for some a > 0 with R = ∞. By Step 1, isuch a solution v is nondecreasing.
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Since u(r) ≥ u(1) > 0, we set w = rN−1u′ and derive that there holds on the interval I where
w > 0,

−w′ ≥ r(N−1)(1−q)upwq ≥ r(N−1)(1−q)up(1)wq =⇒
(

w1−q

1− q
+
rN−q(N−1)up(1)

N − q(N − 1)

)′

≤ 0.

If I = (1,∞), it yields a contradiction by letting r → ∞. Hence I = (1, r0) and u is constant on
[r0,∞).

Step 3: We first prove (i). Construction of the minorant solution. If u is not constant in Bc
R for

some R > 0 the sequence {µn} defined by µn = min{u(x) : |x| = n} is increasing. For n ∈ N,
n ≥ 2, we consider the sequence {un} defined by

−∆un = |∇un|q in Γ1,n := Bn \B1

un = µ1 on ∂B1

un = µn on ∂Brn .

(2.26)

Using Step 2, we obtain the following expression for un

un(|x|) = µ1 +

∫ |x|

1

(

(u′n(1))
1−q − 1− q

N − q(N − 1)

(

sN−q(N−1) − 1
)

) 1
1−q

+

s1−Nds. (2.27)

This expression, combined with (2.23) and (2.24) shows that n 7→ un(r) is eventually increasing
for r fixed. Next we compare u and un in Γ1,n. For ǫ > 0 un− ǫ is smaller than u on ∂Γ1,n. If we
assume that for any ǫ > 0 small enough there does not hold u ≥ un − ǫ, then there exists ǫ0 > ǫ

such that the graphs of u and un − ǫ0 are tangent at some point xρ such that 1 < |xρ| = ρ < n.
Since un is radial, there holds

u(xρ) = min{u(x) : |x| = ρ},

and by (2.17),

∇u(xρ) =
∂u

∂nxρ

(xρ)nxρ = u′n(ρ)nxρ 6= 0.

Hence we can linearize |∇u|q − |∇un|q near xρ and derive that the function w = u− un + ǫ0 is
nonnegative and satisfies

−∆w + 〈c(x),∇w〉 ≥ 0, (2.28)

in Bδ(xρ) for some δ > 0 where c(x) is some bounded vector field. Hence w is constant in this
ball. By connectedness we derive that w = 0 in Γ1,n, contradiction. Letting ǫ → 0 we obtain
that u ≥ un in Γ1,n. Furthermore since un is positive and super-harmonic in Γ1,n it satisfies for
any n ≥ 2,

un(x) ≥ u0,n(x) :=
µ1 − µn

1− n2−N
|x|2−N +

µn − n2−Nµ1

1− n2−N
∀1 ≤ |x| ≤ n. (2.29)

Hence, letting n → ∞ we infer that un increases and converges locally uniformly as well
as its gradient to a positive radial solution u∞ of (2.19) in Bc

1 which satisfies 0 ≤ u∞ ≤ u, is
nondecreasing and satisfies

lim
r→∞

u∞(r) = lim
n→∞

µn = µ∞. (2.30)
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If µ∞ = ∞, it would implies that u∞(1) = ∞ by formula (2.21) which is not compatible with
∂u

∂nxρ
(xρ) ≥ u′∞(1) since u is C1. Hence µ∞ < ∞. Since by Step 2 any radial solution of (2.19)

in Bc
1 is constant is Bc

R for some R > 1 it implies that u∞ endows this property. Furthermore
since un(n) = µn and u∞ is nondecreasing it yields u∞(r) = µ∞ for r ≥ R. This contradicts
the fact that for n > R,

µ∞ = u∞(n) ≤ u(n) = µn < u(n+ 1) = µn+1 < µ∞. (2.31)

Step 4. Proof of (ii): The function u(x) = 1 − A |x|−
2−q
q−1 is a positive radial and increasing

supersolution of (1.1 ) in Bc
R for R large enough provided 1 < q < N

N−1 and

0 < A <
1− q

2− q

(

q

q − 1
−N

) 1
q−1

. (2.32)

When q = 1 the function u(x) = 1 − Ae−α|x| is a supersolution provided α > N − 1 and A is
small enough. �

2.2 Proof of Theorem B

The next result will be useful in the sequel.

Lemma 2.4 Let q > 1 and a,R > 0. Assume υ is continuous and nonnegative on BR and C1

on the set U+ = {x ∈ BR : υ(x) > 0}. If υ satisfies

−∆υ + υq ≤ a
|∇υ|2
υ

(2.33)

on each connected component of U+, there holds

υ(0) ≤ cN,q,aR
− 2

q−1 . (2.34)

Proof. We can always suppose a > 0 and set υ =Wα for some α > 0 to be defined. Then

−∆W + (1− α)
|∇W |2
W

+
1

α
Wα(q−1)+1 ≤ aα2 |∇W |2

W
.

If we choose 1− α ≥ aα2, or equivalently 0 < α ≤ 1
a+1 we derive

−∆W +
1

α
Wα(q−1)+1 ≤ 0.

on each connected component of U+. A standard computation shows that there exists cN,α,q > 0
such that the function

x 7→ ψ(x) :=
cN,α,q(R

2α)
1

α(q−1)

(R2 − |x|2)
2

α(q−1)

satisfies

−∆ψ +
1

α
ψα(q−1)+1 ≥ 0 in BR.
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Assume that there exists a connected component G of {x ∈ BR : W (x) > ψ(x)}, then G ⊂ U+.
The function φ =W −ψ is subharmonic and continuous in G and vanishes on ∂G. Hence φ ≤ 0,
contradiction. Hence G = ∅ and W ≤ ψ in U+. Since W ≡ 0 in BR \ U+ we derive that W ≤ ψ

in BR. Therefore

W (0) ≤ cN,α,qα
1

α(q−1)

R
2

α(q−1)

(2.35)

which leads to (2.34). �

Proof of Theorem B: In any open subset U of BR where |∇u| > 0 the function u is C∞ and the
next computations are justified.

Step 1: Transformation of the equation. Set u = v−β where β is a nonzero real number to be
chosen. Then

∆v = (1 + β)
|∇v|2
v

+ |β|q−2 βv1−q−β(p+q−1) |∇v|q

= (1 + β)
z

v
+ |β|q−2 βvsz

q
2 ,

(2.36)

if we denote z = |∇v|2 and s = 1− q − β(p + q − 1). We recall that

1

2
∆ |∇v|2 =

∣

∣D2v
∣

∣

2
+ 〈∇∆v,∇v〉.

Since

∣

∣D2v
∣

∣

2 ≥ 1

N
(∆v)2 =

1

N

(

(1 + β)2
z2

v2
+ β2(q−1)v2szq + 2(1 + β) |β|q−2 βvs−1z

q
2
+1

)

,

we get

1

2
∆z ≥ 1

N

(

(1 + β)2
z2

v2
+ β2(q−1)v2szq + 2(1 + β) |β|q−2 βvs−1z

q
2
+1

)

− (1 + β)
z2

v2

+ s |β|q−2 βvs−1z
q
2
+1 + (1 + β)

〈∇z,∇v〉
v

+
q

2
|β|q−2 βvsz

q
2
−1〈∇z,∇v〉.

(2.37)

Expanding the expression we obtain

1

2
∆z ≥ 1

N

(

(1 + β)2
z2

v2
+ β2(q−1)v2szq + 2(1 + β) |β|q−2 βvs−1z

q
2
+1

)

− (1 + β)
z2

v2

+ s |β|q−2 βvs−1z
q
2
+1 + (1 + β)

〈∇z,∇v〉
v

+
q

2
|β|q−2 βvsz

q
2
−1〈∇z,∇v〉,

which can be re-written as

−1

2
∆z +

(

(1 + β)2

N
− (1 + β)

)

z2

v2
+

1

N
β2(q−1)v2szq +

(

2(1 + β)

N
+ s

)

|β|q−2 βvs−1z
q
2
+1

+ (1 + β)
〈∇z,∇v〉

v
+
q

2
|β|q−2 βvsz

q
2
−1〈∇z,∇v〉 ≤ 0.

(2.38)
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Next we set z = v−λY for some parameter λ, then

−∆z = λv−λ−1Y∆v − λ(λ+ 1)v−2λ−2Y 2 + 2λv−λ−1〈∇Y,∇v〉 − v−λ∆Y.

Since ∆v = (1 + β) z
v
+ |β|q−2 βvsz

q
2 = (1 + β)v−λ−1Y + |β|q−2 βvs−

λq
2 Y

q
2 we use

z2

v2
= v−2λ−2Y 2 , v2szq = v2s−λqY q and vs−1z1+

q
2 = vs−1−λ−λq

2 Y
q
2
+1,

and get

−∆z = λ(β − λ)v−2−2λY 2 + λ |β|q−2 βvs−1−λ−λq
2 Y

q
2
+1 + 2λv−λ−1〈∇Y,∇v〉 − v−λ∆Y.

Reporting into (2.38) yields

0 ≥ λ

2
(β − λ)v−2−2λY 2 +

λ

2
|β|q−2 βvs−1−λ−λq

2 Y
q
2
+1 + λv−λ−1〈∇Y,∇v〉 − 1

2
v−λ∆Y

+

(

(1 + β)2

N
− (1 + β)

)

v−2λ−2Y 2 +

(

2(1 + β)

N
+ s

)

|β|q−2 βvs−1−λ−λq
2 Y

q
2
+1

+
1

N
β2(q−1)v2s−λqY q + (1 + β)

(

v−λ−1〈∇Y,∇v〉 − λv−2λ−2Y 2
)

+
q

2
|β|q−2 β

(

vs−
λq
2 Y

q
2
−1〈∇Y,∇v〉 − λvs−1−λ−λq

2 Y 1+ q
2

)

,

which can be re-written under the form

−1

2
v−λ∆Y +

(

(1 + β)2

N
− (1 + β)− λ

2
(λ+ β + 2)

)

v−2λ−2Y 2

+

(

2(1 + β)

N
+ s− λ(q − 1)

2

)

|β|q−2 βvs−1−λ−λq
2 Y

q
2
+1 +

1

N
β2(q−1)v2s−λqY q

≤ −
(q

2
|β|q−2 βvs−

λq
2 Y

q
2
−1 + (λ+ 1)v−λ−1

)

〈∇Y,∇v〉.

Multiplying this relation by vλ yields

−1

2
∆Y +

(

(1 + β)2

N
− (1 + β)− λ

2
(λ+ β + 2)

)

v−λ−2Y 2

+

(

2(1 + β)

N
+ s− λ(q − 1)

2

)

|β|q−2 βvs−1−λq
2 Y

q
2
+1 +

1

N
β2(q−1)v2s−λq+λY q

≤ −
(

q

2
|β|q−2 βvs−

λq
2
+λY

q
2
−1 +

λ+ 1

v

)

〈∇Y,∇v〉.

Step 2: Estimate on Y . Let ǫ0 ∈ (0, 1). For any ǫ > 0 one has

∣

∣

∣

∣

〈∇Y,∇v〉
v

∣

∣

∣

∣

≤ 1

4ǫ

|∇Y |2
Y

+ ǫv−λ−2Y 2.
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Taking ǫ = ǫ0
|λ+1| , we get

∣

∣

∣

∣

(λ+ 1)
〈∇Y,∇v〉

v

∣

∣

∣

∣

≤ (λ+ 1)2

4ǫ0

|∇Y |2
Y

+ ǫ0v
−λ−2Y 2.

In the same way, with ǫ = 2ǫ0
q|β|q−1 ,

∣

∣

∣vs−
λq
2
+λY

q
2
−1〈∇Y,∇v〉

∣

∣

∣ = vs−
λq
2
+λY

q
2
−1Y

q−1
2

|∇Y |√
Y

≤ ǫ′v2s−λq+λY q +
1

4ǫ′
|∇Y |2
Y

,

and

−q
2
|β|q−2 βvs−

λq
2
+λY

q
2
−1〈∇Y,∇v〉 ≤ ǫ′q |β|q−1

2
v2s−λq+λY q +

q |β|q−1

8ǫ′
|∇Y |2
Y

.

We infer

−1

2
∆Y +

(

(1 + β)2

N
− (1 + β)− λ(β + λ+ 2− ǫ0)

2

)

v−λ−2Y 2

+

(

2(1 + β)

N
+ s− λ(q − 1)

2

)

|β|q−2 βvs−1−λq
2 Y 1+ q

2

+

(

β2(q−1)

N
− ǫ0

)

v2s−λq+λY q ≤ C(ǫ0)
|∇Y |2
Y

,

(2.39)

with C(ǫ0) =
(

(λ+1)2

4 + qβ2(q−1)

16

)

1
ǫ0
. Next we put

H =

(

(1 + β)2

N
− (1 + β)− λ(β + λ+ 2− ǫ0)

2

)

v−λ−2Y 2

+

(

2(1 + β)

N
+ s− λ(q − 1)

2

)

|β|q−2 βvs−1−λq
2 Y 1+ q

2 +

(

β2(q−1)

N
− ǫ0

)

v2s−λq+λY q,

and consider the trinom

Tǫ0(t) =

(

β2(q−1)

N
− ǫ0

)

t2 +

(

2(1 + β)

N
+ s− λ(q − 1)

2

)

|β|q−2 βt

+

(

(1 + β)2

N
− (1 + β)− λ(β + λ+ 2− ǫ0)

2

)

.

If its discriminant is negative there exists α = α(N, p, q, β, λ, ǫ0) > 0 such that Tǫ0(t) ≥ α(t2+1),
hence

H ≥ α
(

v−λ−2Y 2 + v2s−λq+λY q
)

. (2.40)

Assuming λ 6= −2, we introduce

S =
2s− λq + λ

λ+ 2
= 1− q − 2β(p + q − 1)

λ+ 2
, (2.41)
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then, if S > max{0, 1 − q}, we have 2S+q
S+1 > 1 and

Y
2S+q
S+1 =

(

Y 2

vλ+2

)
S

S+1

v
(λ+2)S
S+1 Y

q
S+1 ≤ Y 2

vλ+2
+ v(λ+2)SY q =

Y 2

vλ+2
+ v2s−λq+λY q.

From this we infer the key inequality

−∆Y + 2αY
2S+q
S+1 ≤ 2C(ǫ0)

|∇Y |2
Y

. (2.42)

Using Lemma 2.4, we derive

Y (0) ≤ cR
−

2(S+1)
S+q−1 = cR

−
2(s+1)−λ(q−1)

s+q−1 = cR
−2+ (2+λ)(2−q)

β(p+q−1) ,

from which follows
∣

∣

∣
∇u−

2+λ
2β (0)

∣

∣

∣
≤ |2 + λ|√c

2
R

−1+
(2+λ)(2−q)
2β(p+q−1) , (2.43)

from which it stems inequality (1.8) in Theorem B with a = −λ+2
2β > 0 from (2.41). In what

follows we shall see that under the assumptions of Theorem B we can always choose such β, λ.

Step 3: Study of the trinom Tǫ0 . The discriminant of the trinom Tǫ0 is a polynomial in its
coefficients. Hence it is sufficient to prove that the discriminant of T0 is negative to derive that
the same property holds for Tǫ0 for ǫ0 small enough. If

T0(t) =
β2(q−1)

N
t2 +

(

2(1 + β)

N
+ s− λ(q − 1)

2

)

|β|q−2 βt

+

(

(1 + β)2

N
− (1 + β)− λ(β + λ+ 2)

2

)

,

its discriminant D verifies

β2(1−q)D =

(

2(1 + β)

N
+ s− λ(q − 1)

2

)2

− 4

N

(

(1 + β)2

N
− (1 + β)− λ(β + λ+ 2)

2

)

.

Using β + 1 = p−s
p+q−1 we obtain

β2(1−q)D =

(

s− λ
q − 1

2

)2

+
4(p− s)

N(p+ q − 1)

(

s+ 1 + λ
2− q

2

)

+
2λ(λ+ 1)

N
.

Since S = 2s+λ(1−q)
λ+2 , s− λ q−1

2 = (λ+2)S
2 , hence

β2(1−q)D =
(λ+ 2)2S2

4
+

4

N(p+ q − 1)

[

−(λ+ 2)2S2

4
+

(

p− 1− λq

2

)

(λ+ 2)S

2

+

(

p− λ(q − 1)

2

)(

λ+ 2

2

)]

+
2λ(λ+ 1)

N
.

16



Set Q = p+ q − 1 and D1 = NQβ2
′1−q)D, then

D1 = (λ+ 2)2
(

NQ

4
− 1

)

S2 + 2

(

p− 1− λq

2

)

(λ+ 2) + L̃,

where miraculously,
L̃ = (2p + λ(1− q))(λ + 2) + 2λ(λ+ 1)Q

= Qλ2 + p(λ+ 2)2 > 0.

So we require that λ+ 2 6= 0 and set ℓ = λ
λ+2 ; equivalently ℓ 6= 1 and λ+ 2 = 2

1−ℓ
. We obtain

D2(S, ℓ) :=
D1

(λ+ 2)2
=

(

NQ

4
− 1

)

S2 + (p− 1−Qℓ)S +Qℓ2 + p. (2.44)

So we are led to find ℓ 6= 1 and S > (1− q)+ such that D2(S, ℓ) < 0. Indeed, S being fixed,
D2 is a trinom in ℓ:

TS(ℓ) := D2(S, ℓ) = Qℓ2 −QSℓ+

(

NQ

4
− 1

)

S2 − (1− p)S + p.

In order that TS(ℓ) < 0, we require that its discriminant is positive, which reduces to the
condition

H(S) :=

(

1− (N − 1)Q

4

)

S2 + (1− p)S − p > 0. (2.45)

(i) We first assume Q < 4
N−1 . Then we choose S large enough such that H(S) > 0 and

S > 2 > (1− q)+. Then we fix ℓ = S
2 so that ℓ > 1 and all the conditions are fulfilled.

(ii) Next we assume p < 1. Note that our assumption Q <
(p+1)2

(N−1)p is equivalent to

d = (p+ 1)2 − p ((N − 1)Q− 4) > 0 (2.46)

where d is the discriminant of H. It particular it holds if Q ≤ 4
N−1 . Next we assume Q > 4

N−1 .

Hence the coefficient of S2 in H(S) is negative, and H has two positive roots. Then we take S
as the half sum of the roots, i.e.

S = S0 :=
2(1− p)

(N − 1)Q− 4
. (2.47)

We have still to check that S0 > (1− q)+. This is clear if q ≥ 1. If q < 1 we get from (2.46)

S0 + q − 1 =
2(1− p)

(N − 1)Q− 4
+ q − 1 >

2p

1− p
+ q − 1 =

p(2− q) +Q

1− p
> 0.

At end we choose ℓ 6= 1 close enough to S0
2 so that all the conditions are satisfied (always with

a = −λ+2
2β > 0). �

Remark. In the case Q < 4
N−1 , we have fixed some ℓ > 1 so that λ+ 2 < 0 and then β > 0. If

Q < 4
N
, a much simpler possible choice is λ = ℓ = 0 so that β < 0.
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Proof of Corollary B-2. Since ∂Ω is smooth, there exists d0 > 0 such that for any z ∈ Ω
verifying dist (z, ∂Ω) ≤ d0, there exists a unique ζz ∈ ∂Ω such that dist (z, ∂Ω) = |z − ζz|. If
dist (z0, ∂Ω) = d0, we denote by nζz0

the normal inward unit vector to ∂Ω at ζz0 and we set
xt = tnζz0

, 0 < t ≤ d0. By (1.8),

|∇ua(xt)| ≤ c1t
−1−a 2−q

p+q−1 ,

hence

|ua(xt)− ua(z0)| ≤ c1

∫ d0

t

s
−1−a

2−q
p+q−1ds.

This implies

ua(xt) ≤ ua(z0) +
c1(p+ q − 1)

a(2− q)
t
−a 2−q

p+q−1 = ua(z0) +
c1(p + q − 1)

a(2− q)
(dist (xt, ∂Ω))

−a 2−q
p+q−1 .

If a ≥ 1 it yields

u(xt) ≤ u(z0) +
c1(p+ q − 1)

(2− q)
(dist (xt, ∂Ω))

− 2−q
p+q−1 ,

while, if 0 < a < 1 we can only obtain

u(xt) ≤ c2

(

(u(z0) +
c1(p + q − 1)

(2− q)
(dist (xt, ∂Ω))

− 2−q
p+q−1

)

.

In any case we derive (1.9). �

3 Global solutions

3.1 Radial solutions

In the next theorem we characterize all the positive global radial solutions of (1.1) in R
N . We

can always assume that the solutions are radial with respect to 0.

Theorem 3.1 Assume p, q ≥ 0 such that p+ q − 1 > 0. If q ≥ 1 the only positive global radial
solutions of (1.1) are the constants. If 0 ≤ q < 1 there exists positive global radial solutions if
and only if

p(N − 2) + q(N − 1) ≥ N +
2− q

1− q
. (3.1)

Furthermore, if p(N−2)+q(N−1) = N+
2− q

1− q
there exists a one parameter of solutions under

the form

uc(r) = c

(

Kc
(2−q)2

(N−2)(1−q) + r
2−q
1−q

)−
(N−2)(1−q)

2−q

with K =
(N − 2)q−1

N − (N − 1)q
. (3.2)
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Proof. The radial form of (1.1) is the following

−urr −
N − 1

r
ur = up |ur|q , (3.3)

and u′(0) = 0 since any solution is C2. Thus u can be written under the form

u(r) = u(0) +

∫ r

0
s1−N

∫ s

0
up(t) |ur(t)|q tN−1dt ∀r > 0. (3.4)

If q ≥ 1, the solution satisfying u(0) = a > 0 is the unique fixed point of the mapping v 7→ T [v]
defined in the set of functions in C([0, r0]) with value a for r = 0 by

T [v](r) := a+

∫ r

0
s1−N

∫ s

0
vp(t) |vr(t)|q tN−1dt ∀r > 0.

Clearly T is a strict contraction if r0 > 0 is small enough. Since u ≡ a is a solution in R
N it is

the unique one.

Hereafter we assume 0 ≤ q < 1. As we have noticed it in the proof of Theorem 2.3 we can
write (3.3) under the form

∆ν
mu+ (1− q)up = 0, (3.5)

where ∆ν
m is a m-Laplacian in dimension ν applied to radial functions. An important critical

value of p is the following

pc :=
ν(m− 1) +m

ν −m
=

(N − (N − 1)q) (1− q) + 2− q

(N − 2)(1 − q)
. (3.6)

For this specific value there exists an explicit family of ground states

uc(r) = c
(

K2
c + r

m
m−1

)
m−ν
m+ν

= c
(

K2
c + r

2−q
1−q

)−
(N−2)(1−q)

2−q
, (3.7)

where c > 0 and

uc(r) = c

(

Kc
m2

ν−m + r
m

m−1

)
m−ν
m

= c

(

Kc
(2−q)2

N−2−q(N+2) + r
2−q
1−q

)

(N−2)(q−1)
2−q

, (3.8)

with

K =
1

ν

(

ν −m

m− 1

)1−m

. (3.9)

Set

Fu(r) = rν

(

|ur|m
m′

+
up+1

p+ 1
+
ν −m

m

|ur|m−2 ur

r

)

= rN−(N−1)q

(

(1− q) |ur|2−q

2− q
+
up+1

p+ 1
+

(N − 2)(1− q)

2− q

|ur|−q ur

r

)

.

(3.10)
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Then

F ′
u(r) = rν−1

(

ν

p+ 1
− ν −m

m

)

up+1. (3.11)

We notice that F ′
u ≡ 0 if an only if p = pc, F

′
u > 0 (resp. F ′

u < 0) if and only if p > pc (resp.
p < pc). By [2, Th 5.2, 5.3], if p < pc all the solutions of (3.5) which have a finite limit at r = 0
oscillates around 0 when r → ∞. Hence there exists no ground state. By [2, Th 5.1], if p > pc,
for any α > 0 there exist a positive solution u of (3.5) in R

N satisfying u(0) = α. �

3.2 Proof of Theorem C

Step 1: Integral inequalities. The aim of this paragraph is to prove that under the assumptions
(1.10) the gradient of any nonnegative solution u of (1.1) in whole R

N is null. The method is
an extension of the one developped in [10], [5], in the sense that we still set u = v−β and v

satisfies (2− 1), and z = |∇v|2. The main novelty is that we multiply the equation satisfied by
z by vλze where e > 0 and λ are two real parameters (in [10] and [5] they have chosen e = 0).
The algebraic computation is heavy and we present a very technical part of it in Appendix.
Furthermore, since the exponent e is going to be smaller than 1, we have to replace ze by f(z)
where f is a smooth approximation and to consider many equations in the weak sense since u,
and hence v is merely C2,q if 0 < q < 1. We start with the following Weintzenböck inequality
already used in the proof of Theorem B, but taken here in the weak sense,

∫

RN

(

1

2
〈∇z,∇φ〉+ (∆v)2

N
φ−∆v(〈∇v,∇φ〉 + φ∆v)

)

dx ≤ 0,

for all φ ∈ C1
0 (R

N ), φ ≥ 0, hence

∫

RN

(

1

2
〈∇z,∇φ〉 − N − 1

N
φ(∆v)2 −∆v〈∇v,∇φ〉

)

dx ≤ 0. (3.12)

We choose φ = vλf(z)η where η ∈ C3
0 (R

N ), η ≥ 0 and f ∈ C1([0,∞)), f ≥ 0 and get

λ

2

∫

RN

vλ−1f(z)η〈∇v,∇z〉dx +
1

2

∫

RN

vλf ′(z) |∇z|2 ηdx− N − 1

N

∫

RN

(∆v)2vλf(z)ηdx

− λ

∫

RN

vλ−1(∆v)f(z)zηdx −
∫

RN

vλ(∆v)f ′(z)η〈∇v,∇z〉dx

≤ −1

2

∫

RN

vλf(z)〈∇z,∇η〉dx +

∫

RN

vλ(∆v)f(z)η〈∇v,∇z〉dx.

(3.13)

This inequality proved with regular functions v and f is extendable by density to v ∈ C2(RN )
and f locally Lipschitz continuous. We apply this relation to the function v which satisfies (2.36)
in the range 0 ≤ q < 2, β ∈ R\{1} and where s = 1− q−β(p+ q−1). We consider the different
terms appearing in (3.13) with the help of (2.36).

Σ =

∫

RN

(∆v)vλf ′(z)η〈∇v∇z〉dx = (1 + β)Σ1 + |β|q−2 βΣ2
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with

Σ1 = −
∫

RN

zf ′(z)vλ−1η〈∇v,∇η〉dx and Σ2 = −
∫

RN

z
q
2 f ′(z)vλ+sη〈∇v,∇η〉dx.

Then

Σ1 = −
∫

RN

η〈vλ−1∇v, zf ′(z)∇z〉dx

= −
∫

RN

η〈vλ−1∇v,∇(g(z))dx where g(t) =

∫ t

0
sf ′(s)ds

= −
∫

RN

〈vλ−1∇v,∇(ηg(z))〉dx +

∫

RN

vλ−1g(z)〈∇v,∇η〉dx

=

∫

RN

ηg(z)∇.(vλ−1∇v)dx+

∫

RN

vλ−1g(z)〈∇v,∇η〉dx

= (λ− 1)

∫

RN

vλ−2ηg(z)zdx +

∫

RN

ηg(z)vλ−1(∆v)dx+

∫

RN

vλ−1g(z)〈∇v,∇η〉dx

= (λ− 1)

∫

RN

vλ−2ηg(z)zdx + (1 + β))

∫

RN

ηg(z)zvλ−2dx+

|β|q−2 β

∫

RN

ηg(z)z
q
2 vλ−1+sdx+

∫

RN

vλ−1g(z)〈∇v,∇η〉dx.

Similarly,

Σ2 = −
∫

RN

〈vλ+s∇v, z q
2 f ′(z)∇z〉ηdx

= −
∫

RN

〈vλ+s∇v,∇h(z)〉ηdx where h(t) =

∫ t

0
s

q
2 f ′(s)ds

= −
∫

RN

〈vλ+s∇v,∇(ηh(z))〉dx +

∫

RN

vλ+sh(z)〈∇v,∇η〉dx

= (λ+ s)

∫

RN

vλ+s−1zh(z)ηdx +

∫

RN

vλ+s(∆v)h(z)ηdx +

∫

RN

vλ+sh(z)〈∇v,∇η〉dx

= (λ+ s+ β + 1)

∫

RN

vλ+s−1zh(z)ηdx + |β|q−2 β

∫

RN

vλ+2sz
q
2h(z)ηdx

+

∫

RN

vλ+sh(z)〈∇v,∇η〉dx.
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Next we compute the term

Θ1 =
λ

2

∫

RN

vλ−1f(z)η〈∇v,∇z〉dx

=
λ

2

∫

RN

vλ−1η〈∇v,∇j(z)〉dx where j(t) =

∫ t

0
f(s)ds

=
λ

2

∫

RN

vλ−1〈∇v,∇(j(z)η)〉dx − λ

2

∫

RN

vλ−1j(z)〈∇v,∇η〉dx

= −λ
2

∫

RN

j(z)η
(

vλ−1∆v + (λ− 1)vλ−2z
)

dx− λ

2

∫

RN

vλ−1j(z)〈∇v,∇η〉dx.

Finally we compute

Θ2 =
1

2

∫

RN

vλf(z)〈∇z,∇η〉dx =
1

2

∫

RN

vλ〈∇(j(z),∇η〉dx

= −λ
2

∫

RN

vλ−1j(z)〈∇v,∇η〉dx − 1

2

∫

RN

vλj(z)(∆η)dx.

Carrying forward these estimates into (3.13) yields

−λ(λ− 1)

2

∫

RN

vλ−2j(z)zηdx − λ

2

∫

RN

(∆v)vλ−1j(z)ηdx +
1

2

∫

RN

vλf ′(z) |∇z|2 ηdx

− N − 1

N

∫

RN

(∆v)2vλf(z)ηdx− λ

∫

RN

(∆v)vλ−1zf(z)ηdx

− (1 + β)(λ+ β)

∫

RN

vλ−2zg(z)ηdx + (1 + β) |β|q−2 β

∫

RN

vλ−1+sz
q
2 g(z)ηdx

+ |β|q−2 β(β + 1 + λ+ s)

∫

RN

vλ+s−1zh(z)ηdx + β2(q−1)

∫

RN

vλ+2z
q
2h(z)ηdx

≤
∫

RN

(

λj(z) + f(z)v∆v − (1 + β)g(z) − |β|q−2 βv1+sh(z)
)

vλ−1〈∇v,∇η〉dx

−
∫

RN

vλj(z)∆ηdx.

(3.14)

Next we fix e ≥ 0 and choose f(t) = te if e ≥ 1 and, for 0 < ǫ < 1, f(t) = fǫ(t) = min{te, ǫe−1t}
if 0 ≤ e < 1. Then fǫ is locally Lipschitz continuous. In order to let ǫ → 0 in (3.14), replacing
f , j, g and h respectively by fǫ, jǫ, gǫ and hǫ we notice that

fǫ(z) ↑ ze , gǫ(z) ↑
e

1 + e
z1+e , hǫ(z) ↑

2e

q + 2e
z

q
2
+e and jǫ(z) ↑

1

1 + e
z1+e.

Since vλf ′ǫ(z) |∇z|2 η converges a.e. to vλze−1 |∇z|2 η we derive by Fatou’s lemma

∫

RN

vλze−1 |∇z|2 ηdx ≤ lim inf
ǫ→0

∫

RN

vλf ′ǫ(z) |∇z|2 ηdx,
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which may not be finite. All the other terms in (3.14) converge by Lebesgue’s theorem, hence

−λ(λ− 1)

2(1 + e)

∫

RN

vλ−2z2+eηdx− λ

(

1

2(1 + e)
+ 1

)
∫

RN

(∆v)vλ−1z1+eηdx

+
e

2

∫

RN

vλze−1 |∇z|2 ηdx− N − 1

N

∫

RN

(∆v)2vλzeηdx+
e(1 + β)(λ+ β)

1 + e

∫

RN

vλ−2ze+2ηdx

+ |β|q−2 β

(

(β + 1)e

1 + e
+

2(β + 1 + λ+ s)e

q + 2e

)
∫

RN

vλ+s−1z
q
2
+1+eηdx

+
2eβ2(q−1)

q + 2e

∫

RN

vλ+2szq+eηdx ≤M0,

(3.15)

where

M0 =
2λ− (1 + β)e

1 + e

∫

RN

vλ−1z1+e〈∇v,∇η〉dx − 1

1 + e

∫

RN

vλz1+e∆ηdx

+

∫

RN

(∆v)vλze〈∇v,∇η〉dx − 2e |β|q−2 β

q + 2e

∫

RN

vλ+sz〈∇v,∇η〉dx

≤ c(M + L+R),

(3.16)

with

M =

∫

RN

vλz1+e |∆η| dx , L =

∫

RN

vλ−1z
3
2
+e |∇η| dx

R =

∫

RN

vλ+sz
q+1+2e

2 |∇η| dx;
(3.17)

Here we use |〈∇v,∇η〉| ≤ z
1
2 |∇η| and the value of ∆v given by (2.36) in order to have

∫

RN

(∆v)vλze〈∇v,∇η〉dx ≤ (1 + β)L+ |β|q R.

Set

G =

∫

RN

vλz−1+e |∇z|2 ηdx , P =

∫

RN

vλ−1+sz1+
q
2
+eηdx

F =

∫

RN

vλ−2z2+eηdx , U =

∫

RN

vλ+2szq+eηdx.

(3.18)

We replace again ∆v and (∆v)2 in the left-hand side of (3.15).

∫

RN

(∆v)vλ−1z1+eηdx = (1 + β)F + |β|q−2 βP,

∫

RN

(∆v)2vλzeηdx = (1 + β)2F + β2(q−1)U + 2 |β|q−2 (1 + β)P.

replacing these terms into the left-hand side of (3.15), we obtain

e

2
G+AF + |β|q BP + CU ≤M0 (3.19)
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with

A = −λ(λ+ β)

2(1 + e)
− λ(1 + β)− (N − 1)(1 + β)2

N
+
e(1 + β)(λ+ β)

1 + e

= −λ(λ+ β)

2(1 + e)
− (1 + β)

(

1− 1 + β

N
+
λ+ β

1 + e

)

,

βB = −λ
(

1 +
1

2(1 + e)

)

− 2(N − 1)(1 + β)

N
+
e(1 + β)

1 + e
+

2e(β + 1 + λ+ s)

q + 2e
.

and

C = β2(q−1)

(

2e

q + 2e
− N − 1

N

)

.

Next we take e = (N−1)q
2 so that C = 0, if q > 0 and e > 0 arbritrarily small so that C = β2(q−1)

N

if q = 0, i.e. 2e
q+2e = 1 and

βB = −λ
(

1

N
+

1

2(1 + e)

)

+
e(1 + β)

1 + e
− (N − 1)(βp + (β + 1)q)

N

by replacing s by 1− q − β(p + q − 1). Next we introduce δ = −λ
β
and y = 1+β

β
, hence

B = δ

(

1

N
+

1

2(1 + e)

)

+ y

(

e

1 + e
− q(N − 1)

N

)

− p(N − 1)

N
.

Step 2: Study of the coefficients A and B. Our method is to choose the real parameters δ and
y in order to ensure A and B to be positive. We set

m = δ − (2 + (N − 1)q) y. (3.20)

In the sequel we keep the parameters y and m as variables and eliminate δ.

(i) Condition A > 0. We define

E(m, y) = −(2 + (N − 1)q)A0

=
(N − 1)(Nq + 1)(2 + (N − 1)q)

N
y2 + 2 (1 + (N − 1)q) (m− 1)y +m(m− 1).

In the (m, y)-plane the set of points such that E(m, y) = 0 is a conic. Its points at infinity in
the associated projective space P

3(R) = {(ỹ, m̃, t̃)} satisfy, with t̃ = 0,

(2 + (N − 1)q)

(

(N − 1)q +
N − 1

N

)

ỹ2 + 2 (1 + (N − 1)q) m̃ỹ + m̃2 = 0.

The discriminant of this quadratic form is

∆̃ = (1 + (N − 1)q)2 − (2 + (N − 1)q)

(

(N − 1)q +
N − 1

N

)

,
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which is always negative since N ≥ 2. Hence E(m, y) = 0 is the equation of an ellipse, and it is
easy to check that

{

(m, y) ∈ R
2 : E(m, y) < 0

}

⊂
{

(m, y) ∈ R
2 : −N (1 + (N − 1)q)2

N − 2 + (N − 1)q
< m < 1

}

. (3.21)

(ii) Condition B > 0. We have

Dp(m, y) := N (2 + (N − 1)q)B

= (N + 2 + (N − 1)q)m+ 2
(

N + 2 + (N − 1)2q
)

y − (N − 1) (2 + (N − 1)q) p

The condition Dp(m, y) > 0 means that (m, y) belong to the upper half plane defined by the
line Dp with equation

y = −am+ bp (3.22)

where

a =
N + 2 + (N − 1)q

N + 2 + (N2 − 1)q
and b =

(N − 1)(2 + (N − 1)q)

N + 2 + (N2 − 1)q
. (3.23)

The problem is reduced to find the variable m so that the set E(m, y) < 0 intersects the set
y+ am− bp > 0. This means that the second degree equation E(m,−am+ bp) = 0 has two real
zeroes. Hence

0 =
(N − 1)(Nq + 1)(2 + (N − 1)q)

N
(am− bp)2

− 2(1 + (N − 1)q)(m− 1)(am− bp) +m2 −m

(3.24)

where a and b are given by (3.23). Its discriminant is given by D = − b2

N
G(p, q) where G(p, q)

is defined in (1.10). The condition reads G(p, q) < 0. If q = 0 we obtain p < N+2
N−2 , which the

optimal condition obtained in [10]. More generally the condition on p is

p < pc(q) :=
−b(p) +

√

b2(q) + 4Nq2 ((N − 1)2q +N − 2)

2 ((N − 1)2q +N − 2)
. (3.25)

Step 3: Elimination of the right-hand side. Since e < 1, in order to estimate U in (3.18) we set
γǫ(z) = min{z q

2
+e, ǫ

q
2
+e−1z} if q

2 + e < 1 and γǫ(z) = z
q
2
+e if q

2 + e ≥ 1. We multiply (2.36) by
vλ+sγǫ(z)η and get

|β|q−1
∫

RN

v2s+λz
q
2γǫ(z)ηdx ≤ |λ+ s− β − 1|

∫

RN

vs+λ−1zγǫ(z)ηdx +

∣

∣

∣

∣

∫

RN

ηvλ+sγ′ǫ(z)〈∇v,∇z〉
∣

∣

∣

∣

dx

+

∣

∣

∣

∣

∫

RN

vλ+sγǫ(z)〈∇v,∇η〉dx
∣

∣

∣

∣

.

There holds by dominated convergence

lim
ǫ→0

∣

∣

∣

∣

∫

RN

vλ+sγǫ(z)〈∇v,∇η〉dx
∣

∣

∣

∣

≤
∫

RN

vλ+sz
q+1
2

+1 |∇η| dx = R.
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We recall that fǫ(z) = ze if e ≥ 1 and fǫ(z) = min{ze, ǫe−1z} if e < 1. By Cauchy-Schwarz
inequality

∣

∣

∣

∣

∫

RN

ηvλ+sγ′ǫ(z)〈∇v,∇z〉
∣

∣

∣

∣

dx ≤
∫

RN

v
λ
2 |∇z|

√

f ′ǫ(z)
v

λ
2
+sγ′ǫ(z)

√
z

√

f ′ǫ(z)
ηdx

≤ α

∫

RN

vλ+2s(γ′ǫ(z))
2z

f ′ǫ(z)
ηdx+

4

α

∫

RN

vλ |∇z|2 f ′ǫ(z)ηdx.

We have already seen that there exists

lim
ǫ→0

∫

RN

vλ |∇z|2 f ′ǫ(z)ηdx = e

∫

RN

vλ |∇z|2 ze−1ηdx = eG <∞.

Considering separately the cases 0 < e < q
2 + e < 1, 0 < e < 1 ≤ q

2 + e and 1 ≤ e < q
2 + e, we

obtain, after some computations,

lim
ǫ→0

∫

RN

vλ+2s(γ′ǫ(z))
2z

f ′ǫ(z)
ηdx =

(q + 2e)2

4e

∫

RN

vλ+2szq+eηdx =
(q + 2e)2

4e
U,

This yields

|β|q−1 U ≤ |λ+ s− β − 1|P +R+
α(q + 2e)2

4e
U +

4e

α
G. (3.26)

Choosing α > 0 small enough we infer

U ≤ c(P +R+G), (3.27)

for some c > 0 depending on the parameters.

From now we assume that the conditions on N , p and q which ensure the positivity of A0 and
B0 are fulfilled, and that in this range of values we can find m such that

−2− (N − 1)q < m < 0. (3.28)

Combining (3.27) with (3.16) and (3.19) we derive,

G+ P + F + U ≤ c(M + L+R), (3.29)

for some c > 0 depending on N , p, β, λ, δ and q.
The method is now to absorb the terms M∗, L∗ and R∗ by F , P and U by a repeated use

of Hölder’s inequality. Following the method developed in [10] and [5] it is simpler to return to
the original function u and the original exponents, and for homogeneity reason we set η = ξκ

(κ > 0). Hence (3.29) yields

G+ F + P + U ≤ c1(M + L+R) (3.30)

where

(i) F =

∫

RN

um−2 |∇u|4+2e ξκdx =

∫

RN

um−2 |∇u|4+(N−1)q ξκdx

(ii) P =

∫

RN

um+p−1 |∇u|q+2+2e ξκdx =

∫

RN

um+p−1 |∇u|2+Nq ξκdx

(iii) U =

∫

RN

um+2p |∇u|2q+2e ξκdx =

∫

RN

um+2p |∇u|(N+1)q ξκdx

(3.31)
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and

(i) M =

∫

RN

um |∇u|2+2e
(

ξ |∆ξ|+ |∇ξ|2
)

ξκ−2dx

(ii) L =

∫

RN

um−1 |∇u|3+2e |∇ξ| ξκ−1dx

(iii) R =

∫

RN

um+p |∇u|q+1+2e |∇ξ| ξκ−1dx.

(3.32)

Absorption of L. Using Hölder’s inequality we have

L =

∫

RN

(

ξαum−1−A |∇u|B
)(

ξγuA |∇u|3+2e−B
)

(

ξκ−1−α−γ |∇ξ|
)

dx

≤
∫

RN

ξθαuθ(m−1−A) |∇u|θB dx+

∫

RN

ξtγutA |∇u|t(3+2e−B) dx

+

∫

RN

ξ2σ(κ−1−α−γ) |∇ξ|2σ dx,

with
1

θ
+

1

t
+

1

2σ
= 1. (3.33)

We choose the unknown exponents so that L ≤ F + P+ terms in ξ. We find

A =
m+ p− 1

t
, B =

4 + 2e

θ
,

for the exponents of |∇u|,

α =
κ

θ
, γ =

κ

t
and κ = 1 +

κ

θ
+
κ

t
= 2σ,

for the ones of ξ and

θ(m− 1−A) = m− 2 and t(3 + 2e−B) = q + 2e+ 2,

for the ones of u. Eliminating A and B leads to a linear system in t and θ,

m+ p− 1

t
+
m− 2

θ
= m− 1

q + 2 + 2e

t
+

4 + 2e

θ
= 3 + 2e.

(3.34)

The direct computation shows that

1

t
=

m+ 2e+ 2

(2− q)m+ 2 ((2 + e)p + q + e))
,
1

θ
=

(1−m)(q − 1) + (3 + 2e)p

(2− q)m+ 2 ((2 + e)p + q + e))
, (3.35)

hence

2σ =
(2− q)m+ 2 ((2 + e)p + q + e))

p+ q − 1
. (3.36)
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We set Y = 2σ(p + q − 1)) = θX, hence

Y = ((2− q)m+ (N − 1)pq + 4p+ (N + 1)q

and
X = (1−m)(q − 1) + (N − 1)pq + 3p.

First we check that under (3.28) Y > 0. Indeed we have

Y − 2(p+ q − 1) = (2− q)m+ (N − 1)pq + 2p + (N − 1)q + 2
≥ (2− q)m+ (N − 1)pq + 2p −m

= (1− q)m+ p(2 + (N − 1)q),
(3.37)

from (3.28). If 0 ≤ q < 1 the right-hand side of (3.37) is larger than (p + q − 1)(2 + (N − 1)q)
which is positive, while if q ≥ 1 and m ≤ 0, the right-hand side is larger than m(1−p− q) which
is nonnegative. Next we check that X > 0: if q ≥ 1 this is clear by (3.28). If 0 ≤ q < 1 we have,
also by (3.28),

X ≥ −(3 + (N − 1)q)(1 − q) + ((N − 1)q + 3)p = (3 + (N − 1)q)(p + q − 1) > 0.

As a by-product we derive that θ and t are positive and therefore larger than 1 because of (3.33).

Absorption of R. We introduce new parameters A, B, t, θ in order to absorb R by P +U+ term
in ξ.

R =

∫

RN

(

ξαum+p−A |∇u|B
)(

ξγuA |∇u|q+1+2e−B
)

(

ξκ−1−α−γ |∇ξ|
)

dx

≤
∫

RN

ξθαuθ(m+p−A) |∇u|θB dx+

∫

RN

ξtγutA |∇u|t(q+1+2e−B) dx

+

∫

RN

ξ2σ(κ−1−α−γ) |∇ξ|2σ dx,

with t, θ and σ satisfying (3.33). Hence

(m+ p−A)θ = m+ p− 1
Bθ = q + 2 + 2e
At = m+ 2p

(q + 1 + 2e−B)t = 2q + e.

(3.38)

Thus
m+ 2p

t
+
m+ p− 1

θ
= m+ p

2q + e

t
+
q + 2 + 2e

θ
= q + 1 + 2e

Mutatis mutandis it yields, always with σ = 2κ given by (3.36),

1

θ
=
m(1− q) + 2(e+ 1)p

Y
,
1

t
=
m+ p+ q + 1 + 2e

Y
, (3.39)
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where Y is unchanged. Condition (3.28) implies m+ p+ q+1+2e ≥ p+ q− 1 > 0, hence t > 0.
Furthermore

m(1− q) + 2(e+ 1)p > (m+ 2 + 2e)(1 − q) = (m+ 2 + (N − 1)q)(1 − q) > 0.

which implies θ > 0 if q ≤ 1. If q > 1 and since m < 0, then

m(1− q) + 2(e+ 1)p > 2(e+ 1)p > 0,

which again yields θ > 0.

Absorption of M . We set

M1 =

∫

RN

um |∇u|2+2e |∆ξ| ξκ−1dx

=

∫

RN

(

ξαum−A |∇u|B
)(

ξγuA |∇u|2+2e−B
)

(

ξκ−1−α−γ |∆ξ|
)

dx

≤
∫

RN

ξθαuθ(m−A) |∇u|θB dx+

∫

RN

ξtγutA |∇u|t(2+2e−B) dx

+

∫

RN

ξ2σ(κ−1−α−γ) |∆ξ|σ dx,

with
1

θ
+

1

t
+

1

σ
= 1. (3.40)

If we try to absorb M1 by F + U+ term in ξ, we obtain

(m−A)θ = m− 2
Bθ = 4 + 2e
At = m+ 2p

(2 + 2e−B)t = 2q + 2e.

(3.41)

We find
1

θ
=
m(1− q) + 2(e+ 1)p

Y
,
1

t
=
m+ 2 + 2e

Y
. (3.42)

Clearly (3.40) holds and conditions m(1 − q) + 2(e + 1)p > 0 and m + 2 + 2e > 0 are
satisfied under the same condition as for the treatment of R. The same proof works for

M2 =

∫

RN

um |∇u|2+2e |∇ξ|2 ξκ−2dx.

Step 4: End of the proof. It follows from Step 3 that there holds for any nonnegative ξ ∈
C∞
0 (RN ):

L+ F + U ≤ c3

∫

RN

(

|∆ξ|σ + |∇ξ|2σ
)

dx. (3.43)

Assuming ξ has support in B1 and applying (3.43) to ξR : x 7→ ξ( x
R
), we derive

L+ F + U ≤ c3R
N−2σ

∫

B1

(

|∆ξ|σ + |∇ξ|2σ
)

dx. (3.44)
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Hence, if 2σ > N we infer L+ F + U = 0 by letting R → ∞. It remains to prove that such an
estimate holds. The condition 2σ > N is equivalent to

m(2− pq + (N − 1)pq +N + q > (N − 4)p, (3.45)

or, equivalently,

(2− q)(m+ 2 + (N − 1)q) > (p+ q − 1)(N − 4− (N − 1)q). (3.46)

Since the left-hand side is positive by (3.28), this inequality holds at least when

N = 3, 4 or N ≥ 5 and q ≥ N − 4

N − 1
. (3.47)

The general proof of (3.28), (3.46) is technical and given in Appendix. �

4 Separable solutions

In the sequel we set n = N − 1, and consider a more general equation on Sn,

−∆′ω + µω = ωp(γ2ω2 +
∣

∣∇′ω
∣

∣

2
)
q
2 , (4.1)

where γ > 0 and µ are parameters and ∆′ and ∇′ are respectively the Laplace-Beltrami operator
and the covariant gradient, which can be assimilated to the tangential gradient on Sn. Notice
that if µ > 0 there exists a constant solution ωµ to (4.1) given by

ωµ =

(

µ

γq

) 1
p+q−1

. (4.2)

4.1 Uniform bounds: Proof of Theorem D

We set a ∨ b = max{a, b} and a ∧ b = min{a, b}. By integration on Sn and Hölder’s inequality
there holds

µ |Sn|
p+q−1
p+q

(
∫

Sn

ωp+qdS

) 1
p+q

≥ µ

∫

Sn

ωdS =

∫

Sn

ωp(γ2ω2 + |∇′ω|2) q
2 dS ≥ γq

∫

Sn

ωp+qdS.

Hence

‖ω‖Lp+q ≤
(

µ

γq

) 1
p+q−1

|Sn|
1

p+q . (4.3)

Therefore

µ

∫

Sn

ωdS =

∫

Sn

ωp(γ2ω2 + |∇′ω|2) q
2 dS ≤

(

µp+q

γq

)
1

p+q−1

|Sn| . (4.4)

30



For α > 0, we also have

∫

Sn

ωp+α
(

γ2ω2 + |∇′ω|2
)

q
2
dS =

∫

Sn

(

αωα−1 |∇′ω|2 + µωα+1
)

dS

≥ µ ∧ 4α
(α+1)2

∫

Sn

(

∣

∣

∣
∇′ω

α+1
2

∣

∣

∣

2
+ (ω

α+1
2 )2

)

dS

≥ C1

(

µ ∧ 4α
(α+1)2

)

‖ω‖α+1

L
n(α+1)
n−2

,

(4.5)

using Sobolev inequality in H1(Sn). Furthermore, by Hölder’s inequality,

∫

Sn

ωp+α
(

γ2ω2 + |∇′ω|2
)

q
2
dS =

∫

Sn

ωp+α+q 1−α
2

(

γ2(ω
α+1
2 )2 + 4

(α+1)2

∣

∣

∣
∇′ω

α+1
2

∣

∣

∣

2
)

q
2

dS

≤ γq ∨ ( 2
1+α

)q
(∫

Sn

ω
2p+q
2−q

+α
dS

)
2−q
2
(∫

Sn

(

∣

∣

∣
∇′ω

α+1
2

∣

∣

∣

2
+ (ω

α+1
2 )2

)

dS

)
q
2

.

(4.6)

It implies
∫

Sn

(

∣

∣

∣∇′ω
α+1
2

∣

∣

∣

2
+ (ω

α+1
2 )2

)

dS ≤
(

γ ∨ 2
1+α

)
2q
2−q

∫

Sn

ω
2p+q
2−q

+α
dS. (4.7)

Jointly with (4.5) it yields

‖ω‖α+1

L
n(α+1)
n−2

≤ C2

(

γ ∨ (1 + α)−1
)

2q
2−q

µ ∧ α(α+ 1)−2

∫

Sn

ω
2p+q
2−q

+α
dS. (4.8)

We define the sequence {αk} by

2p+ q

2− q
+ αk =

n(αk−1 + 1)

n− 2
⇐⇒ αk + 1 =

n(αk−1 + 1)

n− 2
− 2

p+ q − 1

2− q
. (4.9)

The value of α0 > 0 will be made precise later on. The value of αk is explicit:

αk + 1 =

(

n

n− 2

)k (

α0 + 1− (p+ q − 1)(n − 2)

2− q

)

+
(p+ q − 1)(n − 2)

2− q
. (4.10)

Notice that since (n− 2)p + (n− 1)q < n, then 1− (p+q−1)(n−2)
2−q

> 0. Asymptotically

αk + 1 = Aℓk +O(1) with ℓ =
n

n− 2
> 1. (4.11)

We set Xk = ‖ω‖
L

n(αk+1)
n−2

, hence (4.8) reads

Xk ≤



C2

(

γ ∨ (1 + αk)
−1
)

2q
2−q

µ ∧ αk(αk + 1)−2





1
1+αk

X
1+2 p+q−1

(2−q)(αk+1)

k−1 . (4.12)
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Because of (4.11),

C2

(

γ ∨ (1 + αk)
−1
)

2q
2−q

µ ∧ αk(αk + 1)−2
≤ C3α

−1
k γ

2q
2−q

=⇒



C2

(

γ ∨ (1 + αk)
−1
)

2q
2−q

µ ∧ αk(αk + 1)−2





1
1+αk

≤ C
1

1+αk
4 γ

2q
(1+αk)(2−q)

provided α0 ≥ ǫ0 > 0, hence

Xk ≤ C
1

1+αk
4 γ

2q
(1+αk)(2−q)X

1+2 p+q−1
(2−q)(αk+1)

k−1 . (4.13)

Next we construct by induction an increasing sequence Γk such that

Xk−1 ≤ Γk−1γ
− q

p+q−1 . (4.14)

Then (4.14) holds at the order k with

Γk = C
1

1+αk

4 Γ
1+2 p+q−1

(2−q)(αk+1)

k−1 , (4.15)

and Γ0 will be fixed later on. We can assume that C4 ≥ 1, therefore {Γk} is increasing. If we
put θk = lnΓk, then

θk =
1

1 + αk
lnC4 +

(

1 + 2
p+ q − 1

(2 − q)(αk + 1)

)

θk−1 =
A

1 + αk
+

(

1 +
B

1 + αk

)

θk−1

Put θ̃k = θk +
A
B
, then

θ̃k =

(

1 +
B

1 + αk

)

θ̃k−1 =⇒ θ̃k = θ̃0

k
∏

j=1

(

1 +
B

1 + αj

)

Finally

θk =

(

θ0 +
A

B

) k
∏

j=1

(

1 +
B

1 + αj

)

− A

B
, (4.16)

This infer that there exists
Γ∗ = lim

k→∞
Γk. (4.17)

By standard linear elliptic regularity theory with L1 data and (4.4),

‖ω‖
L

n
n−2 ,∞ + ‖∇′ω‖

L
n

n−1 ,∞ ≤ C5

∫

Sn

(

ωp(γ2ω2 + |∇′ω|2) q
2 + µω

)

dS

≤ 2C5

(

µp+q

γq

)
1

p+q−1

|Sn| ,
(4.18)

32



where in Lr,∞ denotes the usual Marcinkiewicz spaces (or Lorentz spaces). For any 1 < τ < n
n−1 ,

there exists C6 = C(n, τ) such that

‖ω‖W 1,τ ≤ C6

(

‖ω‖
L

n
n−2 ,∞ +

∥

∥∇′ω
∥

∥

L
n

n−1 ,∞

)

,

and by Sobolev inequality
‖ω‖Lτ∗ ≤ C7 ‖ω‖W 1,τ ,

where 1
τ∗

= 1
τ
− 1

n
. Since n(p − 2) + q(n − 1) < n is equivalent to 2p+q

2−q
< n

n−2 , we can take

1
τ
=
(

2−q
2p+q

+ α1

)−1
+ 1

n
for some α1 > 0. Using (4.9) we define the initial data of {αk} by

2p + q

2− q
+ α1 =

n(α0 + 1)

n− 2

and we derive

X0 = ‖ω‖
L

n(α0+1)
n−2

= ‖ω‖
L

2p+q
2−q +α1

≤ C8

(

µp+q

γq

)
1

p+q−1

. (4.19)

Finally, we can fix

eθ0 = Γ0 = C8µ
p+q

p+q−1 ,

and derive from (4.16)

Γ∗ = C9e
θ0

A
B

∏
∞

j=0(1+
B

1+αj
)
= c10µ

p+q
p+q−1

A
B

∏
∞

j=0(1+
B

1+αj
) (4.20)

with

C9 = e
A
B

∏
∞

j=0(1+
B

1+αj
)−A

B and c10 = C9C

A
B

∏
∞

j=0(1+
B

1+αj
)

8 .

Since
‖ω‖L∞ ≤ γ

− q
p+q−1Γ∗,

the estimate follows. �

Remark. We conjecture that the best exponent a is equal to 1 and

‖ω‖L∞ ≤ C11

(

µ

γq

) 1
p+q−1

. (4.21)

Notice that there always holds

min
Sn

ω ≤
(

µ

γq

) 1
p+q−1

≤ max
Sn

ω. (4.22)
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4.2 Rigidity and symmetry

Theorem 4.1 Assume γ, µ > 0, p+ q − 1 > 0 and ω is a solution of (4.1) on Sn such that

(i) γ2ω2 + |∇′ω|2 ≤ c21 if p ≥ 1),

(ii) c22 ≤ γ2ω2 + |∇′ω|2 ≤ c21 if 0 ≤ p < 1),
(4.23)

for some c1, c2 > 0 and set

c∗ =







c1 if p ≥ 1,

c
p−1

p+q−1

2 c
q

p+q−1

1 if 0 ≤ p < 1.
(4.24)

If c∗ satisfies

cp+q−1
∗ ≤ 2(n+ µ)

qγ−p
√
n+ 2(p + q)γ1−p

, (4.25)

then ω is constant.

Proof. If w is a function defined on Sn, we put

w̄ =
1

|Sn|

∫

Sn

w(σ)dS.

If
−∆′ω + µω − |ω|p−1ω(γ2ω2 + |∇′ω|2) q

2 = 0, (4.26)

we have
−∆′ω̄ + µω̄ − |ω|p−1ω(γ2ω2 + |∇′ω|2) q

2 = 0.

Since w − w = 0, w in the orthogonal projection in L2(Sn) of w on ker(−∆′) and n is the first
nonzero eigenvalue, we have

∫

Sn

(

ωp(γ2ω + |∇′ω|2) q
2 − ωp(γ2ω2 + |∇′ω|2) q

2

)

(ω − ω̄)dS

=

∫

Sn

(

ωp(γ2ω2 + |∇′ω|2) q
2 − ω̄p(γ2ω̄2 + |∇′ω̄|2) q

2

)

(ω − ω̄)dS

(4.27)

and
∫

Sn

(−∆′(ω − ω̄ + µ(ω − ω̄))) (ω − ω̄)dS =

∫

Sn

(

|∇′(ω − ω̄)|2 + µ(ω − ω̄)2)
)

dS

≥ (µ+ n)

∫

Sn

(ω − ω̄)2)dS

(4.28)

Set F (X,Y ) = |X|p−1X(γ2X2 + |Y |2) q
2 and

G := {(X,Y ) ∈ R× R
n : c22 ≤ γ2X2 + |Y |2 ≤ c21}.
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Then

D1F (X,Y ) = |X|p−1
(

γ2X2 + |Y |2
)

q
2
−1 (

γ2(p+ q) |X|2 + p |Y |2
)

D2F (X,Y ) = q |X|p−1X
(

γ2X2 + |Y |2
)

q
2
−1
Y

If we assume that (ω,∇′ω) ∈ G, we have, with ξ = |ω − ω̄| and η = |∇′(ω − ω̄),

sup{
∣

∣D1F (ω,∇′ω)
∣

∣ : (ω,∇′ω) ∈ G} ≤
{

(p+ q)γ1−pc
p+q−1
1 if p ≥ 1,

(p+ q)γ1−pc
p−1
2 c

q
1 if 0 ≤ p < 1.

and, since |ω||∇′ω| ≤ 1
2γ (γ

2ω2 + |∇′ω|2),

sup{
∣

∣D2F (ω,∇′ω)
∣

∣ : (ω,∇′ω) ∈ G} ≤







q

2
γ−pc

p+q−1
1 if p ≥ 1,

q

2
γ−pc

p−1
2 c

q
1 if 0 ≤ p < 1.

∫

Sn

(η2 + µξ2)dS ≤ γ1−pc
p+q−1
∗

∫

Sn

(

(p + q)ξ2 + q
2γηξ

)

dS. (4.29)

Set

Ξ :=

(
∫

Sn

ξ2dS

) 1
2

and H :=

(
∫

Sn

η2dS

) 1
2

,

and recall that c∗ is defined in (4.24 ). Then
√
nΞ ≤ H. We define the polynomials

P (Ξ,H) = H2 − q

2
γ−pcp+q−1

∗ HΞ + (µ− (p+ q)γ1−pcp+q−1
∗ )Ξ2.

and, putting T = H
Ξ when Ξ > 0, we have

P(T ) = T 2 − q

2
γ−pcp+q−1

∗ T + µ− (p + q)γ1−pcp+q−1
∗ . (4.30)

Then T ≥ √
n since n is the first nonzero eigenvalue of −∆′ in H1(Sn).

Next we suppose that P(
√
n) ≥ 0. This means

n− q

2
γ−pcp+q−1

∗

√
n+ µ− (p+ q)γ1−pcp+q−1

∗ ≥ 0, (4.31)

and it is equivalent to

(q

2
γ−p

√
n+ (p+ q)γ1−p

)

c
p+q−1
∗ ≤ n+ µ. (4.32)

We have three possibilities:

(i) either Ξ > 0 and
q2

4
γ−2pc

2(p+q−1)
∗ + 4(p + q)γ1−pc

p+q−1
∗ ≥ 4µ, (4.33)
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then the polynomial P admits two real roots T1 ≤ T2 and P(T ) ≤ 0. Jointly with the constraint
on T it means

T1 ≤ T ≤ T2 ≤
√
n ≤ T.

Then T =
√
nT , which implies ω − ω̄ = τφ1 for some τ ∈ R

∗. This is not compatible with the
fact that ω solves (4.26 ).

(ii) either Ξ > 0 and
q2

4
γ−2pc

2(p+q−1)
∗ + (p+ q)γ1−pc

p+q−1
1 < 4µ. (4.34)

Then P remains positive, which is impossible because of (4.29 ),

(iii) or Ξ = 0. In such a case ω = ω̄, ω is a constant and ∇′ω = 0. Therefore, if (4.32) holds
ω = ω̄ which ends the proof. �

Remark. We notice that if we suppose q = 0 in (4.32 ) we find back condition (2.53) in [13, Th
2.2].

4.3 Bifurcation

In this paragraph we are interested in solution of (4.1) which bifurcate from the constant solution
ωµ∗

defined by (4.2 ) with µ∗ =
n

p+q−1 .

Theorem 4.2 Assume γ > 0, p+ q− 1 > 0, and set µ∗ =
n

p+q−1 . Then there exists a neighbor-

hood O of (µ∗, ωµ∗
) in R×C1(Sn) such that if ω is a solution of (4.1) in Sn such that (µ, ω) ∈ O,

there holds either (µ, ω) = (µ, 0) or µ > 0, (µ, ω) = (µ∗+ǫ(s), ωµ∗
+s(φ1+φ(s))) where s 7→ ǫ(s)

is a C1 positive function defined on [0, τ ], vanishing at s = 0 and s 7→ φ(s) is a C1 function
defined on [0, τ ], vanishing at s = 0

Proof. We set
L(ω) = −∆′ω + µω − ωp(γ2ω2 +

∣

∣∇′ω
∣

∣

2
)
q
2 .

We look for solutions under the form ω = ωµ∗
+ φ with φ small. Then

ωp(γ2ω2 + |∇′ω|2) q
2 = (ωµ + φ)p

(

γ2(ωµ + φ)2 + |∇′φ|2
)

q
2

= γqω
p+q
µ (1 + 1

ωµ
φ)p

(

1 + 2
ωµ
φ+ 1

ω2
µ
φ2 + 1

γ2ω2
µ
|∇′φ|2

)
q
2

= γqω
p+q
µ

(

1 + p
ωµ
φ+ p(p−1)

2ω2 φ2
)(

1 + q
ωµ
φ++ q(q−1)

2ω2
∗

φ2 + q
2γ2ω2

µ
|∇′φ|2

)

+O(φ3 + φ |∇′φ|2)

= γqω
p+q
µ

(

1 + p+q
ωµ
φ+ (p+q)(p+q−1)

2ω2
µ

φ2 + q
2γ2ω2

µ
|∇′φ|2

)

+O(φ3 + φ |∇′φ|2).
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Then, because of the value of ωµ and γ,

L(ωµ + φ) = −∆′φ+ µωµ + µφ− γqω
p+q
µ

(

1 + p+q
ωµ
φ+ (p+q)(p+q−1)

2ω2
µ

φ2 + q
2γ2ω2

µ
|∇′φ|2

)

+O(φ3 + φ |∇′φ|2)

= −∆′φ+
(

µ− (p+ q)γqωp+q−1
µ

)

φ

− (p+q)(p+q−1)
2 γqω

p+q−2
µ φ2 − q

2γ
q−2ω

p+q−2
µ |∇′φ|2

+O(φ3 + φ |∇′φ|2).

Since γqωp+q−1
µ = µ

L(ωµ + φ) = −∆′φ− µφ− (p+q)(p+q−1)
2 γqω

p+q−2
µ φ2 − q

2γ
q−2ω

p+q−2
µ |∇′φ|2

+O(φ3 + φ |∇′φ|2).
(4.35)

If
µ(p + q − 1) = n⇐⇒ µ := µ∗ =

n

p+ q − 1
, (4.36)

we can take φ = ǫφ1 where ǫ is small and φ1 is the first non-zero eigenfunction (with correspond-
ing eigenvalue n). Then

L(ωµ + ǫφ1) = −ǫ2ωp+q−2
µ γq−2

(

(p+q)(p+q−1)
2 γ2φ21 +

q
2 |∇′φ1|2

)

+O(ǫ3). (4.37)

We want to apply [18, Th 13.4, 13.5, Ex 2 p. 174] and we consider solutions of

−∆′ω + µω − |ω|p−1ω(γ2ω2 + |∇′ω|2) q
2 = 0 (4.38)

depending only on the azimuthal angle θn := θ ∈ (0, π), which means

−ωθθ − (n− 1) cotθ ωθ + µω − |ω|p−1ω(γ2ω2 + ω2
θ)

q
2 . (4.39)

and denote by C2,δ
rad(S

n) (δ ∈ (0, 1)) the space of C2,δ functions depending only on the angle θ
(and thus radial with respect to the other variables (θ1, ..., θn−1)). The critical constant solution
ωµ is expressed by

ωµ∗
= (γ−qµ∗)

1
p+q−1 .

Since the bifurcation point in [18] are taken at (µ∗, ωµ∗
), we put ω = ωµ∗

+ w and

f(µ,w) = −∆′w + µ(ωµ∗
+ w)− |ωµ∗

+ w|p−1(ωµ∗
+ w)(γ2(ωµ∗

+ w)2 + |∇′w|2) q
2 .

Then
D2f(µ, 0) = −∆′ − (p+ q − 1)µI.

If (p+ q − 1)µ = n⇐⇒ µ = µ∗, then kerD2f(µ∗, 0) is spanned by φ1 : θ 7→ cos θ and

R(D2f(µ∗, 0)) =

{

ψ ∈ Cδ
rad(S

n) :

∫

Sn

ψφ1dS = 0

}

.
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Finally D1D2f(µ∗, 0)(µ, v) = −(p + q − 1)µv thus D1D2f(µ∗, 0)(µ∗, φ1) does not belong to
R(D2f(µ∗, 0)). Therefore the bifurcation theorem applies and there exists ǫ > 0 a C1 curve
s 7→ (µ(s), φ(s)) defined on [−ǫ, ǫ] with value in R×R(D2f(µ∗, ωµ)) such that

(i) µ(0) = µ∗
(ii) φ(0) = 0
(iii) f(µ(s), s(φ1 + φ(s))) = 0

(4.40)

Furthermore, there exists a neighborhood O of (µ∗, ωµ∗
) in which any solution of f(µ, 0) = 0

is either (µ, 0) or under the form (µ(s), s(φ1 + φ(s))). Equivalently, any solution of (4.39 ) is
either (µ, ωµ) or is of the form (µ(s), ωµ + s(φ1 + φ(s))).
This is this last statement which applies in our case.

In order to see in what direction the bifurcation occurs we set µ(s) = µ∗ + ǫ and ω =
ωµ∗

+ s(φ1 + φ) where ǫ = ǫ(s) and φ = φ(s). Then, from (4.35 ) with µ replaced by µ∗ + ǫ, we
get

−s∆′(φ1 + φ) + µ∗ωµ∗
+ ǫωµ∗

+ sµ∗(φ1 + φ)

+ sǫ(φ1 + φ)− γqω
p+q
µ∗

− sγqω
p+q−1
µ∗

(φ1 + φ)

=
ω
p+q−2
µ∗

s2γq

2

(

(p+ q)(p+ q − 1)(φ1 + φ)2 + γ−2q|∇′(φ1 + φ)|2
)

+ o(s2),

(4.41)

which reduces to

ǫωµ∗
+ sǫ(φ1 + φ) + s (−∆′φ− (p+ q − 1)µ∗φ)

=
ω
p+q−2
µ∗

s2γq

2

(

(p+ q)(p+ q − 1)(φ1 + φ)2 + γ−2q|∇′(φ1 + φ)|2
)

+ o(s2).
(4.42)

Since φ ∈ R(D2f(µ∗, ωµ∗
))

∫

Sn
+

φφ1dS = 0,

thus

ǫ

∫

Sn
+

(

ωµ∗
φ1 + sφ21

)

dS

=
ω
p+q−2
µ∗

s2γq

2

∫

Sn
+

(

(p + q)(p+ q − 1)(φ1 + φ)2 + γ−2q|∇′(φ1 + φ)|2
)

φ1dS + o(s2).

(4.43)

Therefore ǫ > 0 for |s| small enough and the bifurcation goes in the direction of the increasing
µ. �

5 Appendix

5.1 Position of the problem

We set for simplicity
h = 2e = (N − 1)q ∈ [0, 2(N − 1)].
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The conditions to be satisfied by the parameters (m, y) are:

A0 > 0, B0 > 0, (5.1)

with y 6= 1 and with y 6= 1 and

m < 0, m+ 2 + h > 0 (5.2)

and
(m+ h+ 2)(2N − 2− h) > (N − 4− h)((N − 1)p + h+ 1−N). (5.3)

We denote by E the ellipse of equation E(m, y) = 0, where

E(m, y) := Ky2 + 2 (h+ 1) (m− 1)y − 2 (h+ 1) y +m(m− 1)

with

K =
2 + h

N
(N − 1 +Nh).

Let Dp be the line defined by the equation Dp(m, y) = 0, where

Dp(m, y) = y + am− bp

with

a =
N + 2 + h

2((N + 1)h +N + 2)
, b =

(N − 1)(h + 2)

2((N + 1)h+N + 2)

So the conditions (5.1 ) are equivalent to

E(m, y) < 0 and Dp(m, y) > 0,

which means that the line Dp intersect the ellipse E , and (m, y) lies inside E and above Dp where
p > 0. First we write that D intersects E , that means the equation E(m,−am+ bp) = 0 has at
least one root. We obtain the equation T (m) = 0 with

T (m) =

(

Ka2 − 2
bh

N − 1

)

m2 − 2

(

bp(Ka− 1− h)− bh

N − 1

)

m+ bp(Kbp− 2(1 + h)).

It is needed that its discriminant J be nonnegative and it is convenient to express it in terms
of t = bp, hence

J =

(

tKa− bh

N − 1
− t(1 + h)

)2

−
(

Kt2 − 2(1 + h)t
)

(

Ka2 − 2
bh

N − 1

)

.

We notice that

2a(1 + h)− 1 =
2bh

N − 1
, (5.4)
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therefore

J = K2t2a2 +

(

bh

N − 1
+ t(1 + h)

)2

− 2tKa

(

bh

N − 1
+ t(1 + h)

)

−K2t2a2

+ 2(1 + h)t

(

Ka2 − 2
bh

N − 1

)

− 2
bh

N − 1
Kt2

=

(

(1 + h)2 − 2aK(1 + h)− 2
bh

N − 1
K

)

t2 + 2b

(

− h

N − 1
(1 + h)− ahK

N − 1

+(1 + h)K
a2

b

)

t+
b2h2

(N − 1)2
.

Hence J = − b2

N
G̃(p, h) where

G̃(p, h) = (K − (h+ 1)2)p2 + 2

(

h(1 + h)

N − 1
− a2

2b

)

p+
h2

(N − 1)2

= (N − 1)((N − 1)h+N − 2)p2

+
(

Nh2 − (N2 +N − 1)h −N2 −N + 2
)

p− N

N − 1
h2.

(5.5)

So we find precisely that G̃(p, (N − 1)q) = G(p, q) where the function G is given in Theorem C.
The equation G̃(p, h) = 0 has two roots with opposite sign in p, that we call = p0(q) > 0 ≥ p1(q).
Both correspond to the fact that the lines Dpi(q) are tangent to the ellipse E . The region
Dp1(q)(m, y) > 0 contains the whole region E(m, y) < 0 (the interior of E) while Dp0(q)(m, y) > 0
has an empty intersection with the region E(m, y) < 0. Hence for p > 0, the line Dp intersect
the ellipse if and only if p < p0(q). If q = 0, then we find that p0(0) = N+2

N−2 , which was the
precise optimal value obtained for the Emden-Fowler equation -∆u = up. Now for p = p0(q),
the line Dp0(q) is tangent to the ellipse at some point (m0, y0) = (m0(q), y0(q)) in the upper part
of E , given by

y0 =
1

K

(

(1−m0)(h+ 1) +
√

(1−m0)((1 −m0)(h + 1)2 +m0K
)

> 0.

Suppose that we have proved that m0(q) satisfies the conditions (5.2) and (5.3), then for a
given p < p0(q) any couple (y,m) with 0 < y < y0(q), y 6= 1, and m = m0(q) will satisfy all the
required conditions. Therefore it is sufficient to prove (5.2) and (5.3) in case m = m0(q).

Remark. If it happens that m0 + 2 + h = 0, then we can take m = m0 + ǫ with ǫ > 0 small
enough such that (m, y) stays in E . We know from [5] that it happens precisely when N = 3
and h = 0. We will see below that it is the only case.

Next we compute m0. We note here that the discriminant of p 7→ G̃(p, h) is

H =
(

Nh2 − (N2 +N − 1)h −N2 −N + 2
)2

+ 4Nh2((N − 1)h+N − 2) > 0

and it can be written under the form H = (Nh+N − 1)M, where

M = M(h) = Nh3 −
(

2N2 −N + 1
)

h2 +
(

N3 + 2N2 − 2N − 4
)

h+ (N − 1)(N + 2)2.
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Then p0 = p0(q) is given by

p0 =
−
(

Nh2 − (N2 +N − 1)h −N2 −N + 2
)

+
√

(Nh+N − 1)M
2(N − 1)((N − 1)h+N − 2)

. (5.6)

Since m0 is also the minimizer of the trinom m 7→ T (m), it is expressed by

m0 = b
(N − 1)(Ka− 1− h)p0 − h

(N − 1)Ka2 − 2bh
,

and we obtain, after some computation,

m0 =
Q1(h) + (N − 1)Q2(h)p0

M ,

where
Q1(h) = −2Nh ((N + 1) h+N + 2) , (5.7)

and
Q2(h) = Nh3 −

(

N2 − 3N + 1
)

h2 −
(

N2 −N + 4
)

h− 2 (N − 2). (5.8)

Replacing p0 by its value given in (5.6 ), we deduce after some simplifications that

2((N − 1)h+N − 2)m0M = −(Nh2 + (N + 1)h+ 2)M+Q2

√

(Nh+N − 1)M.

Hence

2((N − 1)h +N − 2)m0 = −P1 +Q2

√

Nh+N − 1

M (5.9)

with
P1(h) = Nh2 + (N + 1)h+ 2.

Note that m0 can be also obtained equivalently by expressing the fact that (m0, y0) belongs in
the upper part of E and the slope of its tangent here has value a.

Remark. When q = 0, we rediscover the values given in [5],

p0 =
N + 2

N − 2
, m0 = − 2

N − 2
, y0 =

N

N − 2
. (5.10)

5.2 Proof that m0 < 0 for h ∈ [0, 2(N − 1)]

We present a proof which avoids the heavy computation of m0. The point (m0, y0) belongs to
the upper part of E , where by concavity the slope m 7→ y′(m) is a decreasing function. Hence,

the claim will follow provided y′(m0) = −a > y′(0). We obtain directly y(0) = 2(1+h)
K

and

y′(0) [2Ky(0) − 2(1 + h)]) + 2(1 + h)y(0) − 1 = 0,

∣

∣y′(0)
∣

∣ =
1

2(1 + h)
(
4(1 + h)2

K
− 1);
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hence, from (5.4),

(1 + h)(
∣

∣y′(0)
∣

∣ − a) =
2(1 + h)2

K
− 1

2
− a(1 + h) =

2(1 + h)2

K
− (1− bh

N − 1
)

=
2(1 + h)2

K
− N + 2 + (N − 1)h − h2

N + 2 + (N + 1)h
.

It is therefore required that

2N(1 + h)2(N + 2 + (N + 1)h) − (2 + h)(Nh +N − 1)(N + 2 + (N − 1)h− h2)

= Nh4 + (N2 + 6N − 1)h3 + (2N2 + 12N − 3)h2 + (N2 + 9N)h+ 2(N + 2) > 0

which clearly holds.

5.3 Proof that m0 + 2 + h > 0 for h ∈ (0, 2(N − 1)]

From (5.9) the value of m0 + 2 + h is given by

2((N − 1)h+N − 2)(m0 + 2 + h) = P2(h) +Q2(h)

√

Nh+N − 1

M , (5.11)

with
P2(h) = ((N − 2)h2 + (5N − 9)h+ 4N − 10, (5.12)

and where we recall that

Q2(h) = Nh3 −
(

N2 − 3N + 1
)

h2 −
(

N2 −N + 4
)

h− 2N − 4.

Note that P2(h) > 0 for any h ∈ [0, 2N − 2]. Then m0 + 2 + h > 0 as soon as Q2(h) > 0. Since
Q2 can be written under the form

Q2(h) = (h+ 2)(Nh −N − 1)(h −N + 2)− 2N2,

it is an increasing function of h on [N − 2, 2N − 2].

The case N ≥ 4. Here Q2(N − 1) > 0, thus Q2(h) > 0 on [N − 1, 2N − 2]. Therefore it is
sufficient to prove the assertion when h ∈ [0, N − 1]. Our aim is to prove that there holds

P2

√
R+Q2 > 0 where R =

M
Nh+N − 1

in this interval. By division we obtain, since Nh+N − 1 < N2 − 1,

R = (N − h)2 + 6N + 2− 2(N + 2)(N + 1)

N
+

4(N − 1)(2N + 1)

N(Nh+N − 1)

≥ (N − h)2 + 6N + 2− 2(N + 2)(N + 1)

N
+

4(2N + 1)

N(N + 1)

= (N − h)2 + 4(N − 1) +
4

N + 1
.

(5.13)
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In particular
√
R ≥ N − h, thus P1

√
R+Q2 ≥ S with

S(h) = (N − h)P2 +Q2 = 2h3 − 4 (N − 2) h2 +
(

4N2 − 12N + 6
)

h+ 4 (N2 − 3N − 1).

We see that S(0) > 0 because N ≥ 4, and since

S
′

(h) = 6h2 − 2(4N − 8)h+ 4N2 − 12N + 6 > 0

is positive for any h ∈ R, S is an increasing function of h. This yields S(h) > 0 on h ∈ [0, N −1]
and completes the proof in this case.

The case N = 3. Here we cannot use the minorization of R since equality holds for h = 0, as it
was noticed above. Also, we observe that the cubic polynomial Q2(h) = 3h3−h2− 10h− 10 has
its largest root h0 in the interval (2, 3), since Q2(2) = −10 and Q2(3) = 32 and Q′

2(h) > 0 on
[2,∞). Hence we need only to prove the inequality when h ∈ (0, 3). For this aim, it is sufficient
that P2

√
R + Q2 > 0, which will be ensured provided MP 2

2 − (3h + 2)Q2
2 > 0. After some

computation it reduces to prove that

h
(

−6h6 + 5h5 + 38h4 + 35h3 + 337h2 + 484h + 160
)

> 0.

This inequality is clearly true, since 6h4 − 38h2 − 337 < 0 on (0, 3). So finally m0 + 2 + h > 0
for any h ∈ (0, 4] .

5.4 Proof that σ > N
2
for N ≥ 3

We have to prove that for any h ∈ (0, 2(N − 1)] there holds,

(m0 + h+ 2)(2N − 2− h) > (N − 4− h)((N − 1)(p0 − 1) + h). (5.14)

In the preceding step we have already shown that the left hand side is positive and that (N −
1)(p0 − 1) + h) = (N − 1)(p + q − 1) > 0, inequality (5.14) is valid for N = 3, 4 or N ≥ 5 and
h ∈ [N − 4, 2(N − 1)]. Henceforth we assume N ≥ 5 and h ∈ (0, N − 4). By replacing the value
of m0(h) + h+ 2 given the preceding section and p0 by its value, given in (5.6), we obtain after
some computation that the relation can be expressed under the form

Q3

√
R+Q4 > 0,

where

Q3(h) = (2N − 2) h2 +
(

N3 − 2N2 + 10N − 6
)

h+N3 − 3N2 + 6N − 4),

and
Q4(h) =

(

N3 + 2N2 − 6N − 2
)

h2

−
(

N4 −N3 − 17N2 + 12N + 8
)

h− (N − 1)(N3 − 8N − 8).

From (5.13), we get

R ≥ (N − h)2 + 4(N − 1) = (N − h)2
(

1 +
4(N − 1)

(N − h)2

)

≥ (N − h)2
(

1 +
4(N − 1)

N2

)

.
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Setting τ :=
√

1 + 4(N−1)
N2 , it is therefore sufficient that

Q5 := τ(N − h)Q3 +Q4 > 0.

An explicit computation yields

Q5(h) = −2 (N − 1) τh3 +
[

(1− τ)N3 + (4 τ + 2)N2 − 6 (2 τ + 1)N + 6 τ − 2
]

h2

+
[

(τ − 1)N4 + (1− 3 τ)N3 + (13 τ + 17)N2 − 12 ( τ + 1)N + 4 (τ − 2)
]

h

+ (τ − 1)N4 + (1− 3τ)N3 + (6 τ + 8)N2 − 4 τN − 8

The function Q5 is a cubic with a negative leading coefficient. We claim that it is positive for
h = 0 and for h = N − 4 and increasing near 0. Indeed

Q5(0) = (τ − 1)N4 + (1− 3τ)N3 + (6 τ + 8)N2 − 4 τN − 8

= (N − 1)(τN(N2 − 2N + 4)− (N3 − 8N − 8)).

Since τ2 = N2+4N−4
N2 , the inequality Q5(0) > 0 is equivalent to

(N2 + 4N − 4)(N2 − 2N + 4)2 − (N3 − 8N − 8)2 > 0,

which can be easily verified since N ≥ 5. Next

Q5(N − 4) = τ(4N4 − 12N3 − 12N2 + 32N − 48)− 2N4 + 8N3 + 6N2 − 40N − 8

> 2N4 − 4N3 − 6N2 − 8N − 56 > 0

For the derivative, we compute

Q′
5(0) = (τ − 1)N4 + (1− 3 τ)N3 + (13 τ + 17)N2 − 12 ( τ + 1)N + 4 (τ − 2)

= τ(N4 − 3N3 + 13N2 − 12N + 4)− (N4 −N3 − 17N2 + 12N + 8).

Replacing τ by its value, the sign of Q′
5(0) is the same as the one of

(N2 + 4N − 4)
(

N4 − 3N3 + 13N2 − 12N + 4
)2 −N2

(

N4 −N3 − 17N2 + 12N + 8
)2

which is equal to

40N8 + 4N7 − 580N6 + 1492N5 − 1964N4 + 2432N3 − 1424N2 + 448N − 64

and is clearly positive since N ≥ 5. At end Q5 stays positive on [0, N − 4] and the proof is
achieved.

5.5 Comparison of the regions of Theorem B and Theorem C

In the variable h := (N − 1)q these curves are given by

(N − 1)p+ h = N + 3 for p > 1, (5.15)

(N − 1)p+ h = N − 1 +
(p+ 1)2

p
for p ∈ [0, 1]. (5.16)
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In order to show that the curve G̃(p, h) = 0, where G̃ is defined at (5.5), is above them, we only
need to show that G̃(p, h) < 0 on the curves. For the first curve defined by (5.15), using that
(h− 2)(h − 3) ≥ −1

4 for all h, we obtain that for h ∈ [0, 2(N − 1)] ,

(N − 1)G

(

N + 3− h

N − 1
, h

)

= −h3 + 3h2 − 4N + 4h− 12

= −(h+ 2)(h− 2)(h − 3)− 4N

≤ h+ 2

4
− 4N

≤ N

2
− 4N < 0.

As for the second curve, we check that

(N − 1)
p2

(p + 1)2
G̃

(

p,N − 1 +
(p+ 1)2

p
− (N − 1)p

)

= −p(p− 1)2N2 + (3p3 − 2p2 − p− 1)N − p2(2p + 1) < 0

for p ∈ [0, 1], because 3p3 − 2p2 − p− 1)N − p2(2p + 1) ≤ p2 − p− 1 ≤ −1.

5.6 Final remark about the parameter β

When we set u = v−β then y = β+1
β

a natural question is about the sign of β. We have seen
that y0 > 0, and when p < p0 we have chosen y = y0 if y0 6= 1, or y = y0 − ǫ in case y0 = 1 (or
in the special case N = 3, where m0 = −2, so we have taken m = −2 + ǫ). So either y0 > 1,
β > 0; or y0 ≤ 1, β < 0. We can remark that for q = 0, we have β > 0, since y0 = N

N−2 from
(5.10 ). But for q = 2 we find

p0 =
4

2N − 3
= −m0, y0 =

2

2N − 3

hence y0 < 1, thus β < 0.
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