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This work is devoted to the study of scaling limits in small mutations and large time of the solutions u ε of two deterministic models of phenotypic adaptation, where the parameter ε > 0 scales the size of mutations. The first model is the so-called Lotka-Volterra parabolic PDE in R d with an arbitrary number of resources and the second one is an adaptation of the first model to a finite phenotype space. The solutions of such systems typically concentrate as Dirac masses in the limit ε → 0. Our main results are, in both cases, the representation of the limits of ε log u ε as solutions of variational problems and regularity results for these limits. The method mainly relies on Feynman-Kac type representations of u ε and Varadhan's Lemma. Our probabilistic approach applies to multi-resources situations not covered by standard analytical methods and makes the link between variational limit problems and Hamilton-Jacobi equations with irregular Hamiltonians that arise naturally from analytical methods. The finite case presents substantial difficulties since the rate function of the associated large deviation principle has non-compact level sets. In that case, we are also able to obtain uniqueness of the solution of the variational problem and of the associated differential problem which can be interpreted as a Hamilton-Jacobi equation in finite state space.

Introduction

We are interested in the dynamics of a population subject to mutations and selection driven by competition for resources. Each individual in the population is characterized by a quantitative phenotypic trait x ∈ R (for example the size of individuals, their mean size at division for bacteria, their rate of nutrients intake or their efficiency in nutrients assimilation).

The partial differential equations we study are mutation-competition models taking the form of reaction-diffusion equations, with non-local density-dependence in the growth rate and which have been studied in various contexts by a lot of authors. The general equation takes the form

∂ t u ε (t, x) = ε 2 ∆u ε (t, x) + 1 ε u ε (t, x)R (x, v ε t ) , ∀t > 0, x ∈ R d (1.1)
where x corresponds to the phenotypic traits characterizing individuals, u ε (tx) is the density of population with trait x at time t and v ε t = v 1,ε t , . . . , v r,ε t with

v i,ε t = R d Ψ i (x) u ε (t, x) dx, 1 ≤ i ≤ r,
for some functions Ψ i : R d → R + . In (1.1), the Laplace operator models mutation and R(x, v ε t ) is the growth rate of individuals with trait x at time t. Competition occurs through the functions v i,ε t , which depend on u ε . A typical example of function R is given by

R(x, v) = r i=1 c i Ψ i (x) 1 + v i -d(x), (1.2) 
where the first term models births which occur through the consumption of r resources whose concentrations at time t are given by c i /(1 + v i ) and with a trait-dependent consumption efficiency given by the function Ψ i (x), and the second term corresponds to deaths without competition at traitdependent rate d(x). This form of the function R is relevant for populations of micro-organisms in a chemostat, and has been studied for related models in lots of works [START_REF] Diekmann | The dynamics of adaptation: An illuminating example and a Hamilton-Jacobi approach[END_REF][START_REF] Champagnat | Convergence to equilibrium in competitive Lotka-Volterra and chemostat systems[END_REF][START_REF] Champagnat | The evolutionary limit for models of populations interacting competitively via several resources[END_REF][START_REF] Champagnat | Adaptation in a stochastic multi-resources chemostat model[END_REF]. The parameter ε > 0 in (1.1) introduces a scaling (in the limit ε → 0) of small or rare mutations (this is the same for the Laplace operator) and of large time, which was introduced in models of adaptive dynamics in [START_REF] Diekmann | The dynamics of adaptation: An illuminating example and a Hamilton-Jacobi approach[END_REF], and has been used since a long time to study front propagation in standard reaction-diffusion problems [START_REF] Fleming | PDE-viscosity solution approach to some problems of large deviations[END_REF][START_REF] Barles | Wavefront propagation for reaction-diffusion systems of PDE[END_REF][START_REF] Freidlin | Limit theorems for large deviations and reaction-diffusion equations[END_REF][START_REF] Mark | Semi-linear PDEs and limit theorems for large deviations[END_REF]. In our model, the qualitative outcome is that solutions concentrate as Dirac masses, and this concentration is studied using the WKB ansatz

u ε (t, x) = exp ϕ ε (t, x) ε
in [START_REF] Diekmann | The dynamics of adaptation: An illuminating example and a Hamilton-Jacobi approach[END_REF][START_REF] Barles | Concentrations and constrained Hamilton-Jacobi equations arising in adaptive dynamics[END_REF][START_REF] Perthame | Dirac concentrations in Lotka-Volterra parabolic PDEs[END_REF][START_REF] Barles | Concentration in Lotka-Volterra parabolic or integral equations: a general convergence result[END_REF][START_REF] Lorz | Dirac mass dynamics in multidimensional nonlocal parabolic equations[END_REF][START_REF] Champagnat | The evolutionary limit for models of populations interacting competitively via several resources[END_REF][START_REF] Mirrahimi | Evolution of species trait through resource competition[END_REF] for different particular cases of (1.1) and also in [START_REF] Perthame | Concentration in the nonlocal Fisher equation: the Hamilton-Jacobi limit[END_REF][START_REF] Desvillettes | On selection dynamics for continuous structured populations[END_REF][START_REF] Jabin | On selection dynamics for competitive interactions[END_REF][START_REF] Gaël | Long time evolution of populations under selection and vanishing mutations[END_REF][START_REF] Lorz | Dirac mass dynamics in multidimensional nonlocal parabolic equations[END_REF] for models with competitive Lotka-Volterra competition. Several of these works prove the convergence along a subsequence (ε k ) k≥1 converging to 0 of ϕ ε to a solution ϕ of the Hamitlon-Jacobi problem

∂ t ϕ(t, x) = R(x, v t ) + 1 2 |∇ϕ(t, x)| 2 , (1.3) 
where v t is expected to take the form

v i t = R d Ψ i (x)µ t (dx),
where µ t is some (measure, weak) limit of u ε k (t, x). Due to the fact that, under general assumptions, the total mass of the population R d u ε (t, x)dx is uniformly bounded and bounded away from 0, the function ϕ satisfies the constraint sup x∈R d ϕ(t, x) = 0 for all t ≥ 0, and the measure µ t is expected to have support in {ϕ(t, •) = 0}. In addition, the measure µ t is expected to be metastable in the sense that R(x, v t ) ≤ 0 for all x such that ϕ(t, x) = 0 and R(x, v t ) = 0 for all x in the support of µ t (to preserve the condition sup x∈R d ϕ(t, x) = 0). However, the study of the Hamilton-Jacobi problem (1.3) with (some or all of) the previous constraints is a difficult problem. For example, uniqueness is only known in general in the case r = 1 [START_REF] Mirrahimi | A class of Hamilton-Jacobi equations with constraint: uniqueness and constructive approach[END_REF][START_REF] Mirrahimi | Uniqueness in a class of Hamilton-Jacobi equations with constraints[END_REF] (see also [START_REF] Perthame | Dirac concentrations in Lotka-Volterra parabolic PDEs[END_REF]). In addition, all the previous references only prove the convergence to (1.3) for r = 1, except in [START_REF] Champagnat | The evolutionary limit for models of populations interacting competitively via several resources[END_REF] where the very specific model (1.2) is studied for any values of r ≥ 2. Yet, the case r ≥ 2 is of particular biological interest since it is the only case where a phenomenon of diversification known as evolutionay branching [START_REF] Metz | Adaptive dynamics, a geometrical study of the consequences of nearly faithful reproduction[END_REF][START_REF] Dieckmann | On the origin of species by sympatric speciation[END_REF] can occur (see [START_REF] Champagnat | Adaptation in a stochastic multi-resources chemostat model[END_REF]Prop. 3.1]).

In this article, after describing the general model and the standing assumptions and recalling its basic properties in Section 2, we propose a different approach to study the convergence of ε log u ε (t, x) as ε → 0. This approach is based on a probabilistic interpretation of the solution of the PDE (1.1) through a Feynman-Kac formula involving some functional of the stochastic process corresponding to mutations, here Brownian motion (see Section 3). This formula suggests to use large deviations, and more specifically Varadhan's lemma, to study the convergence of ε log u ε (t, x), giving in the limit a variational problem which takes the standard form of variational problems associated to Hamilton-Jacobi equations, in Section 4. This general idea is actually not new since it goes back to works of Freidlin [START_REF] Freidlin | Limit theorems for large deviations and reaction-diffusion equations[END_REF][START_REF] Mark | Semi-linear PDEs and limit theorems for large deviations[END_REF] on reaction-diffusion equations. In [START_REF] Freidlin | Tunneling soliton in the equations of reaction-diffusion type[END_REF], Freidlin also studied similar questions for models close to (1.1) (with different initial conditions), but only for a single ressource (r = 1) and under the assumption that, for all x ∈ R d , there exists a unique a(x) ∈ R r such that R(x, a(x)) = 0. This condition is also assumed in the more recent works [START_REF] Perthame | Dirac concentrations in Lotka-Volterra parabolic PDEs[END_REF][START_REF] Barles | Concentration in Lotka-Volterra parabolic or integral equations: a general convergence result[END_REF][START_REF] Lorz | Dirac mass dynamics in multidimensional nonlocal parabolic equations[END_REF][START_REF] Mirrahimi | Evolution of species trait through resource competition[END_REF]. These assumptions are not needed in our study. We also present our results in a more unified framework, avoiding in particular the use of precise properties of the heat semi-group. It is therefore easy to extend our results to other mutation operators in (1.1), as discussed in Section 5. In cases where the convergence to the Hamilton-Jacobi problem is known, we also deduce as a side result the equality between the solution to the Hamilton-Jacobi problem and its variational formulation (see Section 6). Interestingly, this result does not seem to be covered by existing general results on this topic because of the possible discontinuities of the coefficients of the Hamilton-Jacobi problem.

A natural extension is the case of finite trait space E (instead of R d ), in which the large deviations scaling suggests to consider

uε (t, i) = j∈E exp - T(i, j) ε (u ε (t, j) -u ε (t, i)) + 1 ε u ε (t, i)R(i, v ε t ), ∀t ∈ [0, T ], ∀i ∈ E
for positive T(i, j). The extension needs some care since in this case the large deviations principle for the mutation process is not standard (in particular, the rate function has non-compact level sets). This is done in Section 7. Since the variational problem is simpler in this case, we can study it in detail. In Section 8, we prove that, under assumptions ensuring that one can associate a unique metastable measure µ t to any set of zeroes of ϕ(t, •), the variational problem and the associated Hamilton-Jacobi problem both have a unique solution with appropriate regularity. Hence the full family (ε log u ε (t, x)) ε>0 converges to this limit. A key point consists in proving that one can characterize any accumulation point of v ε t+s for small s > 0 only from the zeroes of ϕ(t, •).

Problem statement and preliminray results

We consider the following partial differential equation in R + × R d :

∂ t u ε (t, x) = ε 2 ∆u ε (t, x) + 1 ε u ε (t, x)R (x, v ε t ) , ∀t > 0, x ∈ R d u ε (0, x) = exp -hε(x) ε , ∀x ∈ R d (2.1) with v ε t = v 1,ε t , . . . , v r,ε t , where v i,ε t = R d Ψ i (x) u ε (t, x) dx, 1 ≤ i ≤ r, R is a map from R d × R r to R and Ψ i and h ε are maps from R d to R.
Let us state our assumptions of R, ψ i and h ε .

Assumptions on Ψ i

• There exist Ψ min and Ψ max , two positive real numbers such that

Ψ min ≤ Ψ i (x) ≤ Ψ max , ∀x ∈ R d and Ψ i ∈ W 2,∞ R d , ∀1 ≤ i ≤ r. (2.2) 2. Assumptions on R (a) R is continuous on R d × R r .
(b) There exists A a positive real number such that

-A ≤ ∂ v i R (x, v 1 , . . . , v r ) ≤ -A -1 , ∀i ∈ {1, • • • , r}, x ∈ R d , v 1 , . . . , v r ∈ R.
(c) There exist two positive constants v min < v max such that

min x∈R d R(x, v) > 0 as soon as v 1 < v min , and 
max x∈R d R(x, v) < 0 as soon as v 1 > v max ,
where

v 1 = |v 1 | + • • • + |v r |. (d) Let H denotes the annulus B (x, 2v max ) \B(x, v min /2) (w.t.r. to the • 1 norm). Then sup v∈H R(•, v) W 2,∞ < M.
Note that the constant 2 in the definition of H could be replaced by any constant strictly larger than 1.

Assumptions on h

ε (a) h ε is Lipschitz-continuous on R d , uniformly with respect to ε > 0. (b) h ε converges in L ∞ (R d ) as ε → 0 to a function h.
(c) For all ε > 0 and all

1 ≤ i ≤ d, v min ≤ R d Ψ i (x) exp - h ε (x) ε dx ≤ v max .
In particular, u ε (0, x) is bounded in L 1 (R d ).

Note that the limit h of h ε is continuous, and hence, in order to satisfy Assumption 3c, it must satisfy h(x) ≥ 0 for all x ∈ R d .

This type of assumptions is standard in this domain [START_REF] Perthame | Dirac concentrations in Lotka-Volterra parabolic PDEs[END_REF][START_REF] Barles | Concentration in Lotka-Volterra parabolic or integral equations: a general convergence result[END_REF][START_REF] Lorz | Dirac mass dynamics in multidimensional nonlocal parabolic equations[END_REF][START_REF] Mirrahimi | A class of Hamilton-Jacobi equations with constraint: uniqueness and constructive approach[END_REF], but the previous references only studied the case r = 1. They are nearly identical (except for h ε and for linear or quadratic bounds at infinity, see Corollary 6.1 in Section 6) as those of [START_REF] Lorz | Dirac mass dynamics in multidimensional nonlocal parabolic equations[END_REF]. The case r ≥ 2 was only studied in [START_REF] Champagnat | The evolutionary limit for models of populations interacting competitively via several resources[END_REF], but for a very specific form of the function R, and in [START_REF] Perthame | Dirac concentrations in Lotka-Volterra parabolic PDEs[END_REF] but without the convergence to the Hamilton-Jacobi problem. Now, we present some preliminary results which are needed to study the asymptotic behaviour of the solution of (2.1). The first result, Proposition 2.1, gives preliminary estimates on the solution of (2.1). The second one, Theorem 2.2, provides the existence and uniqueness of the solution of the equation. These two results are direct adaptations of the results of [START_REF] Perthame | Dirac concentrations in Lotka-Volterra parabolic PDEs[END_REF][START_REF] Barles | Concentration in Lotka-Volterra parabolic or integral equations: a general convergence result[END_REF][START_REF] Lorz | Dirac mass dynamics in multidimensional nonlocal parabolic equations[END_REF]. We detail the proof of the first one for sake of completeness.

Proposition 2.1. (A priori estimates) Suppose that there exists a weak solution u ε in C R + ; L 1 R d . We have, for all positive time t and all i ∈ {1, . . . , r},

v min - Aε 2 Ψ min Ψ i W 2,∞ ≤ v i,ε t ≤ v max + Aε 2 Ψ min Ψ i W 2,∞ , v min - Aε 2 Ψ min inf 1≤i≤r Ψ i W 2,∞ ≤ v ε t 1 ≤ v max + Aε 2 Ψ min inf 1≤i≤r Ψ i W 2,∞ (2.3) 
and

Ψ -1 max v min - Aε 2 Ψ min inf 1≤i≤r Ψ i W 2,∞ ≤ R d u ε (t, x)dx ≤ v max + Aε 2 Ψ min inf 1≤i≤r Ψ i W 2,∞ Ψ -1 min (2.4)
Proof. Usual localization techniques for integration by parts entails, for all

1 ≤ i ≤ r, ∂ t v i,ε t = ε R d ∆Ψ i (x)u ε (t, x)dx + 1 ε R d Ψ i (x)u ε (t, x)R (x, v ε t ) dx. Assumptions (2.2) on Ψ i leads to - ε Ψ i W 2,∞ Ψ min R d Ψ i (x)u ε (t, x)dx + 1 ε v i,ε t min x∈R d R(x, v ε t ) ≤ ∂ t v i,ε t ≤ ε Ψ i W 2,∞ Ψ min R d Ψ i (x)u ε (t, x)dx + 1 ε v i,ε t max x∈R d R(x, v ε t ), that is - ε Ψ i W 2,∞ Ψ min v i,ε t + 1 ε v i,ε t min x∈R d R(x, v ε t ) ≤ ∂ t v i,ε t ≤ ε Ψ i W 2,∞ Ψ min v i,ε t + 1 ε v i,ε t max x∈R d R(x, v ε t ). Now, if v i,ε t > v max + Aε 2 Ψ min Ψ i W 2,∞ (we recall that M is the upper bound on the derivatives of R w.r.t. v), then R(x, v ε t ) < -ε 2 Ψ min Ψ i W 2
,∞ for all x, which means that the derivative of v i,ε t becomes negative. Because of Assumption 3c, we deduce that

v i,ε t ≤ v max + Aε 2 Ψ min Ψ i W 2,∞ .
The second bound is obtained similarly and the last bound follows easily from the first one in conjunction with (2.2).

Theorem 2.2. For ε > 0 small enough, there exists a unique solution

u ε in C 1 (R + , L 1 (R d )) of (2.1).
Proof. We do not detail the proof since it is a direct adaptation of the unidimensional case given in [START_REF] Barles | Concentration in Lotka-Volterra parabolic or integral equations: a general convergence result[END_REF]. We simply mention that, because of (2.4),

∂ t u ε (t, x) = ε∆u ε (t, x) + 1 ε u ε (t, x) R (x, v ε t ) (2.5) 
where

R(x, v) =      R(x, v) if v 1 ∈ [v min /2, 2v max ], R(x, 2v max ) if v 1 > 2v max , R(x, v min /2) if v 1 < v min /2.
Since R is bounded, the non-linearity in (2.5) is Lipschitz, so we can use Theorem 3.13 in [START_REF] Perthame | Parabolic equations in biology[END_REF] to obtain the existence and uniqueness of a solution in C([0, T ], L 1 (R d )).

Since R(x, v ε t ) is a Lipschitz function, one can actually get higher regularity from the regularizing effect of the Laplace operator. However, since we plan to extend our method to more general mutation operators, we shall only make use in the sequel of the fact that

u ε ∈ C 1 (R + , L 1 (R d )).

Feynman-Kac representation of the solution

The purpose of this section is to prove the following integral representation of the solution of (2.1) through the so-called Feynman-Kac formula. Theorem 3.1. (Feynman-Kac representation of the solution of (2.1)) Let u ε be the unique weak solution of (2.1), then

u ε (t, x) = E x exp - h ε (X ε t ) ε + 1 ε t 0 R(X ε t , v ε t-s )ds , ∀(t, x) ∈ R + × R d , (3.1) 
where for all x ∈ R d , E x is the expectation associated to the probability measure P x , under which X ε 0 = x almost surely and the process

B t = (X ε t -x)/ √ ε is a standard Brownian motion in R d .
Before proving this result, we recall usual notions of weak solutions to problem (2.1) (cf. e.g. [START_REF] Pazy | Semi-groups of linear operators and applications to partial differential equations[END_REF][START_REF] Lunardi | Analytic semigroups and optimal regularity in parabolic problems[END_REF][START_REF] Engel | One-parameter semigroups for linear evolution equations[END_REF][START_REF] Perthame | Parabolic equations in biology[END_REF]). We say that a function u in C(R + , L 1 (R d )) is a mild solution of problem (2.1) if it satisfies the following integral equation

u(t, x) = P ε t g ε (x) + 1 ε t 0 P ε t-s (u(s, x)R(x, v ε s )) ds, (3.2) 
where g ε (x) = exp(-h ε (x)/ε) and (P ε t ) t∈R + is the standard heat semi-group defined on L 1 (R d ) by

P ε t f (x) = R d 1 (2πtε) n/2 e -x-y 2 2tε f (y) dy, ∀f ∈ L 1 (R d ).
We also say that a function

u in C(R + , L 1 (R d )) is a weak solution of problem (2.1) if for any compactly supported test function ϕ of C ∞ ([0, ∞) × R d ), we have R + ×R d u(t, x) -∂ t ϕ(t, x) - ε 2 ∆ϕ(t, x) dx dt = 1 ε R + ×R d u(t, x)R(x, v ε t )ϕ(t, x)dx dt+ R d g ε (x)ϕ(0, x)dx.
We point out that the notion of weak solution given above is the one for which existence and uniqueness hold in Theorem 2.2.

Lemma 3.2. Let ūε be defined as the right-hand-side of (3.1). The function ūε belongs to

C(R + , L 1 (R d ))
and is a mild solution of problem (2.1).

Proof. Let t and h be two positive real numbers.

ūε (t + h, •) -ūε (t, •) L 1 (R d ) = R d E x g ε (X ε t+h ) exp 1 ε t 0 R(X ε s , v ε t+h-s ) ds exp 1 ε h 0 R(X ε t+s , v ε h-s ) ds -g ε (X ε t ) exp 1 ε t 0 R(X ε s , v ε t-s ) ds dx ≤ R d E x exp 1 ε t 0 R(X ε s , v ε t+h-s ) ds exp 1 ε h 0 R(X ε t+s , v ε h-s ) ds g ε (X ε t+h ) -g ε (X ε t ) dx + R d E x g ε (X ε t ) exp 1 ε t 0 R(X ε s , v ε t+h-s ) ds -exp 1 ε t 0 R(X ε s , v ε t-s ) ds dx.
Using to Hypothesis (2d), we get

ūε (t + h, •) -ūε (t, •) L 1 (R d ) ≤ R d e M t ε E x g ε (X ε t+h ) e M h ε -1 + E x g ε (X ε t+h ) -g ε (X ε t ) dx + M ε e M t ε R d E x [g ε (X ε t )] t 0 v ε t+h-s -v ε t-s ds dx.
Since (P t ) t∈R + preserves the L 1 (R d ) norm, we obtain

ūε (t + h, •) -ūε (t, •) L 1 (R d ) ≤ g ε L 1 (R d ) e M t ε e M h ε -1 + M ε t 0 v ε s+h -v ε s ds + e M t ε E R d |P ε h g ε (x + X ε t ) -g ε (x + X ε t )| dx .
Since v ε is continuous and using the translational invariance of Lebesgue measure, this finally leads to

ūε (t + h, •) -ūε (t, •) L 1 (R d ) ≤ o h (1) + e M t ε P ε h g ε -g ε L 1 (R d ) ---→ h→0 0, which proves that ūε is in C(R + , L 1 (R d )).
We now prove that ūε is a mild solution of problem (2.1). First, Markov property gives

E x g ε (X ε t ) exp t t-s R(X ε θ , v ε t-θ ) dθ R(X ε t-s , v ε s ) = E x E X ε t-s g ε (X ε s ) exp s 0 R(X ε θ , v ε s-θ ) dθ R(X ε t-s , v ε s ) = E x u(s, X ε t-s )R(X ε t-s , v ε s ) . (3.3)
Now, we have that

ūε (t, x) = E x g ε (X ε t ) exp 1 ε t 0 R(X ε s , v ε t-s ) ds -1 + E x [g ε (X ε t )] and exp t 0 R(X ε s , v ε t-s ) ds -1 = t 0 exp t t-s R(X ε u , v ε t-u ) du R(X ε t-s , v ε s )ds. Hence (3.3) entails ūε (t, x) = t 0 E x ūε (s, X ε t-s )R(X ε t-s , v ε s ) ds + E x [g ε (X ε t )] = P ε t g ε (x) + t 0 P ε t-s (ū ε (s, x)R(x, v ε s )) ds.
This ends the proof that ūε is a mild solution of problem (2.1).

Lemma 3.3. Let u ∈ C(R + , L 1 (R d
)) be a mild solution of problem (2.1), then u is a weak solution of problem (2.1).

Proof. We begin the proof by showing that the mild formulation (3.2) of problem (2.1) admits a unique solution in C(R + , L 1 (R d )). This is standard calculations for mild solutions (cf. e.g. [START_REF] Pazy | Semi-groups of linear operators and applications to partial differential equations[END_REF][START_REF] Lunardi | Analytic semigroups and optimal regularity in parabolic problems[END_REF]) Let u and v be two solutions lying in this space such that u(0, •) = v(0, •). We have

u(t, •) -v(t, •) L 1 (R d ) = t 0 P ε t-s [u(s, •)R (•, v ε s ) -v(s, •)R (•, v ε s )] ds L 1 (R d ) ≤ t 0 P ε t-s [u(s, •)R (•, v ε s ) -v(s, •)R (•, v ε s )] L 1 (R d ) ds
Now, since (P ε t ) t∈R + is a contractive semi-group in L 1 (R d ), we get, using also Assumption (2d),

u(t, •) -v(t, •) L 1 (R d ) ≤ M t 0 u(s, •) -v(s, •) L 1 (R d ) ds.
This proves the assertion through Gronwall lemma.

Now, assume that u is the weak solution of problem (2.1), and consider the following Cauchy problem

∂ t w = ε∆w + 1 ε u(t, x)R (x, v ε t ) , w(0, x) = exp -hε(x) ε =: g ε (x).
(3.4)

Since the inhomogeneous term belongs to L 1 (R d ), it is well known that this problem admits a unique weak solution which is given by Duhamel's formula:

w(t, x) = P ε t g ε (x) + 1 ε t 0 P ε t-s u(t, x)R (x, v ε s ) ds.
Since u is the solution of the above problem, we obtain that

u(t, x) = P ε t g ε (x) + 1 ε t 0 P ε t-s u(t, x)R (x, v ε s ) ds.
Hence, the lemma is proved by uniqueness of mild solutions for problem (2.1).

Small diffusion asymptotic

Recall from Theorem 3.1 that

u ε (t, x) = E x exp -ε -1 h (X ε t ) + 1 ε t 0 R X ε s , v ε t-s ds , (4.1) 
where X ε t = x + √ εB t under P x . This formula suggests to apply Varadhan's lemma to study the convergence of ε log u ε (t, x) as ε → 0. Let us fix t > 0.

Lemma 4.1. The function

Φ ε : C ([0, t]) → R defined by Φ ε (ϕ) = t 0 R (ϕ s , v ε s ) ds is Lipschitz continuous on C([0, t]
) endowed with the L ∞ -norm, uniformly w.t.r. to ε for ε small enough.

Moreover, there exists a kernel M on R + ×B(R k ) such that, along a subsequence (ε k ) k≥1 converging to 0, we have

Φ (ϕ) := lim k→∞ Φ ε k (ϕ) = t 0 R k R(ϕ s , y) M s (dy) ds, ∀ϕ ∈ C([0, t]) We recall that a kernel M is a function from R + × B(R d ) into R + such that, for all t ∈ R + , M s is a measure on B(R d ) and, for all A ∈ B(R d ), the function s → M s (A) is measurable.
Proof. We begin by showing that Φ ε (ϕ) is continuous for all ε, uniformly w.r.t. ε. Since R(•, v) lies in W 2,∞ , it follows that it is Lipschitz continuous, uniformly for v is the annulus H (see Assumption 2d). Hence, for ψ, ϕ ∈ C ([0, t]), it follows from Morrey's inequality that

t 0 |R(ϕ s , v ε s )-R(ψ s , v ε s )|ds ≤ t 0 R(•, v ε s ) W 1,∞ ϕ s -ψ s ds ≤ t sup s∈[0,t] R(•, v ε s ) W 1,∞ ϕ-ψ L ∞ ([0,t]) .
Hence, the result follows from (2.3). Now, fix T > 0, and let Γ ε T , for all ε, be the measure defined on

([0, T ] × H, B ([0, T ]) ⊗ B (H)) by Γ ε T (A × B) = A 1 v ε s ∈B ds, ∀A ∈ B ([0, T ]) , B ∈ B (H) .
Since (Γ ε T ) ε>0 is a family of finite measures defined on a compact metric space, it is weakly precompact. Hence, there exists a subsequence ε T k k≥1 such that, the sequence of measures Γ

ε T k T k≥1
converges weakly to some measure denoted by Γ T . It follows from a diagonal argument that there exists a sequence (ε k ) k≥1 such that, for any positive integer n, Γ ε k n converges weakly to a measure Γ n . Now, if one wants to define a measure on R + using the family (Γ n ) n≥1 , he needs that for m < n, the restriction of Γ n on [0, m] coincides with Γ m .

To prove this we first remark that, for all k ∈ N and δ > 0,

Γ ε k n ((m -δ, m + δ) × H) = m+δ m-δ 1 v ε k s ∈H ds = 2δ. (4.2)
Let f be a bounded and continuous function on

[0, m] × H and (f ) ≥1 a sequence of uniformly bounded continuous function on [0, n] × H such that f (t, x) ---→ →∞ f (t, x)1 t∈[0,m] , ∀(t, x) ∈ [0, n] × H,
and f = f on [0, m -δ) × H and f l = 0 on (m + δ, n] × H. Using (4.2) we have, for all k, ∈ N, |Γ ε k m (f ) -Γ ε k n (f )| ≤ cδ,
where the constant c does not depend on k and and µ(f ) is the integral of a function f w.r.t. a measure µ on the corresponding space. Since, in addition,

Γ ε k m (f ) converges to Γ m (f ), Γ ε k n (f ) converges to Γ n (f )
when k goes to infinity and, by Lebesgue's theorem, Γ n (f ) converges to Γ n (f ) when goes to infinity, we deduce

|Γ m (f ) -Γ n (f )| ≤ cδ.
Since δ was arbitrary we have proved that the restriction of Γ n on [0, m] coincides with Γ m . As a consequence, we can define on

R + × H a measure Γ whose restrictions on [0, n] × H is Γ n for all n ∈ N.
In particular, for all t, Γ ε k t converges weakly to the restriction of Γ to [0, t] × H. In addition, for all function ϕ continuous on [0, t], the map (s, x) → R(ϕ s , x) is continuous and hence

Φ (ϕ) := lim k→∞ t 0 R (ϕ s , v ε k s ) ds = [0,t]×R d R(ϕ s , x) Γ(ds, dx), ∀t ≤ T.
It remains to show that Γ can be disintegrated along (R + , B (R + ) , λ). Let A be a null set of [0, T ], for a fixed positive time T . It follows that there exists, for all η > 0, a denumerable family of open ball

(B η n ) n≥1 such that A ⊂ ∞ n=1 B η n and λ ∞ n=1 B η n < η.
Let H be a measurable set of H, then

Γ (A × H) ≤ Γ T (∪ n≥1 B η n × H) ≤ lim inf k→∞ Γ ε k T ∞ n=1 B η n × H < Cη which implies that Γ(A × H) = 0.
According to Radon-Nikodym's theorem, there exists, for all H, an integrable function s → M s (H) such that

Γ (A × H) = R + M s (H) ds.
Usual theory (cf. e.g. [START_REF] Bogachev | Measure theory[END_REF]) ensures that there exists a modification of this map such that

H ∈ B(H) → M s (H) is a measure for almost all s ∈ R + . Theorem 4.2. For all (t, x) in R + × R d , V (t, x) := lim k→∞ ε k log u ε k (t, x) = sup ϕ∈Gt,x {-h(ϕ 0 ) + Φ(ϕ) -I t (ϕ)} (4.3) with I t (ϕ) = t 0 ϕ (s) 2 ds if ϕ is absolutely continuous, +∞ otherwise, G t,
x denotes the set of continuous functions from [0, t] to R d such that ϕ t = x, and Φ and (ε k ) k≥1 are defined in Lemma 4.1.

Proof. The proof of Theorem 4.2 is a simple adaptation of the classical proof of Varadhan's Lemma (cf. e.g. [START_REF] Dembo | Large deviations techniques and applications[END_REF]). The main difference is due to the dependence on ε of the functions h ε and Φ ε involved in formula (4.1). We give the details for completeness and for future reference in Section 7. Let µ x the law of (X ε s , s ∈ [0, t]), when X ε 0 = x almost surely on C ([0, t]). Let ϕ ∈ C([0, t]) such that ϕ 0 = x, and δ > 0. Since, Φ ε and h ε are both continuous uniformly w.r.t. ε and h ε converges uniformly to h, there exists a neighborhood G ϕ of ϕ in C([0, t]) such that, for ε small enough (independent of ϕ),

sup ψ∈Gϕ -h ε (ψ t ) + Φ ε ( ψ) -δ ≤ h(ϕ t ) + Φ ε ( φ) ≤ inf ψ∈Gϕ -h ε (ψ t ) + Φ ε ( ψ) + δ, (4.4) 
where we use the notation φs = ϕ t-s . In addition, Lemma 4.1 implies that, for k large enough,

Φ( φ) -δ ≤ Φ ε k ( φ) ≤ Φ( φ) + δ.
We start with the lower bound: for k large enough,

u ε k (t, x) ≥ E x exp - h ε k (X ε k t ) ε k + 1 ε k t 0 R X ε k s , v ε k t-s ds 1 X ε k ∈Gϕ ≥ P x (X ε k ∈ G ϕ ) exp -h (ϕ t ) + Φ ( φ) -3δ ε k ,
Schilder's theorem (large deviation principle for the Brownian motion [START_REF] Dembo | Large deviations techniques and applications[END_REF]) gives

lim inf k→∞ ε k log(u ε k (t, x)) ≥ -h(ϕ t ) + Φ( φ) -I(ϕ) -3δ = -h( φ0 ) + Φ( φ) -I( φ) -3δ.
Since this holds for all δ > 0, we have proved the lower bound of Varadhan's Lemma along the sequence (ε k ) k≥1 .

For the upper bound, we use the fact that I is a good rate function, i.e. it is lower semi-continuous with compact level sets. Let a be such that

a ≤ sup ϕ∈Gt,x {-h(ϕ 0 ) + Φ(ϕ) -I(ϕ)} . The set K = {ϕ ∈ C([0, t]) : ϕ 0 = x, I(ϕ) ≤ M t + δ -a}
is compact, where the constant M is defined in Assumption 2d. Hence there exists a finite family of functions ϕ 1 , . . . , ϕ n (for some integer n), such that ϕ i (0) = x for all 1 ≤ i ≤ n and

K ⊂ n i=1 G ϕ i .
Using equation (4.4) and Lemma 4.1, we get

lim sup k→∞ ε k log E x exp - h ε (X ε k t ) ε k + 1 ε k t 0 R X ε k s , v ε k t-s ds 1 X ε k ∈Gϕ i ≤ h(ϕ i (t)) + Φ( φi ) -I(ϕ i ) + 2δ
and, using the fact that -h ε ≤ -h + δ ≤ δ for ε small enough,

lim sup k→∞ ε k log E x exp - h ε (X ε k t ) ε k + 1 ε k t 0 R X ε k s , v ε k t-s ds 1 X ε k ∈K c ≤ M t + δ + lim sup k→∞ ε k log(P(X ε k / ∈ K)) ≤ a. Therefore lim sup k→∞ ε k log(u ε k (t, x)) ≤ max a, sup 1≤i≤n h( φi (0)) + Φ( φi ) -I( φi ) + 2δ ≤ sup ϕ∈Gt,x {h(ϕ 0 ) + Φ(ϕ) -I(ϕ)} + 2δ.
This ends the proof of the upper bound.

Thanks to the representation (4.1) of the solution of problem (2.1) the convergence given above can be enhanced.

Theorem 4.3. The convergence stated in Theorem 4.2 holds uniformly on compact sets and the limit

V (t, x) is Lipschitz w.r.t. (t, x) ∈ R + × R d .
This result is an immediate consequence of the following lemma.

Lemma 4.4. The function 

R + × R d → R (t, x) → ε log u ε (t, x), is Lipschitz w.r.t. (t, x) ∈ R + × R d ,
u ε (t + δ, x + y) = E exp - h ε (x + y + √ εB t+δ ) ε + 1 ε t+δ 0 R(x + y + √ εB s , v ε t+δ-s )ds .
Now, Markov's property entails

u ε (t + δ, x + y) = E exp 1 ε δ 0 R(x + y + √ εB s , v ε t+δ-s )ds × E x+y+ √ εB δ exp - h ε (X ε t ) ε + 1 ε t 0 R(X ε s , v ε t-s )ds = E exp 1 ε δ 0 R(x + y + √ εB s , v ε t+δ-s )ds u ε (t, x + y + √ εB δ ) .
Hence, using Assumption 2d, we get

e -M δ ε E u ε (t, x + y + √ εB δ ) ≤ u ε (t + δ, x + y) ≤ e M δ ε E u ε (t, x + y + √ εB δ ) . (4.5)
In addition, taking into account that x → R(x, v) is Lipschitz uniformly w.r.t. v ∈ H with Lipstchiz norm bounded by M , we have

u ε (t, x + y) = E exp - h ε (x + y + √ εB t ) ε + 1 ε t 0 R(x + y + √ εB s , v ε t-s )ds ≤ u ε (t, x)E exp - h ε (x + y + √ εB t ) -h ε (x + √ εB t ) ε + tM y ε ,
and

u ε (t, x + y) ≥ u ε (t, x)E exp - h ε (x + y + √ εB t ) -h ε (x + √ εB t ) ε - tM y ε . Since h ε is Lipstchiz uniformly w.r.t. ε > 0, u ε (t, x + y) ≤ u ε (t, x)e tM +sup ε hε Lip ε y .
Now, using (4.5), we get

u ε (t + δ, x + y) ≤ u ε (t, x)e M δ ε E e tM +sup ε hε Lip ε y+ √ εB δ .
Then, using the inequality y + √ εB δ ≤ y +C √ ε i |B i δ | and elementary computations, we obtain

u ε (t + δ, x + y) ≤ u ε (t, x)e M δ ε e tM +sup ε hε Lip ε ( y +nCδ) .
Hence,

ε log u ε (t + δ, x + y) -ε log u ε (t, x) ≤ M δ + tM + sup ε h ε Lip ( y + nCδ) .
The lower bound is obtained similarly and ends the proof.

In the last results, one would like to be able to characterize the limit measure M s in terms of the zeroes of V (s, •), in order to obtain a closed form of the optimization problem. Results on this question are known in models with a single resource (r = 1) [START_REF] Perthame | Dirac concentrations in Lotka-Volterra parabolic PDEs[END_REF][START_REF] Barles | Concentration in Lotka-Volterra parabolic or integral equations: a general convergence result[END_REF][START_REF] Lorz | Dirac mass dynamics in multidimensional nonlocal parabolic equations[END_REF], but the known results when r ≥ 2 [START_REF] Champagnat | The evolutionary limit for models of populations interacting competitively via several resources[END_REF][START_REF] Champagnat | Stochastic and deterministic approaches in Biology: adaptive dynamics, ecological modeling, population genetics and molecular dynamics; Well-posedness for ordinary and stochastic differential equations[END_REF] require stringent assumptions on the structure of the model, and indeed, it is possible to construct examples where there exist several measures M s satisfying the metastability condition of [START_REF] Champagnat | The evolutionary limit for models of populations interacting competitively via several resources[END_REF]. Since our assumptions are more general, we cannot expect to obtain such results in full generality, so we will focus in Sections 7 and 8 on a case where precise results can be obtained, granting uniqueness for the optimization problem (4.3).

Extensions of Theorem 4.2

The proof of Theorem 4.2 only makes use of few properties of the Brownian motion and of the Laplace operator used to model mutations in (2.1). In particular, one expects that it may hold true for partial differential equations of the form

∂ t u ε (t, x) = L ε u ε (t, x) + 1 ε u ε (t, x)R (x, v ε t ) , ∀t > 0, x ∈ R d , (5.1) 
where L ε is a linear operator describing mutations.

For our approach to work in this situation, the probabilistic interpretation of Theorem 3.1 must extend to this case, and Varadhan's lemma must be applied as in the proof of Theorem 4.2. For this, one needs that 1. the operator L ε is the infinitesimal generator of a Markov process (X ε t , t ≥ 0);

2. existence and uniqueness of a weak solution hold for the partial differential equation (5.1) in an appropriate functional space, for example in

C 1 (R + , L 1 (R d ))
as in Theorem 2.2, and any C(R + , L 1 (R d )) mild solution to the PDE must be a weak solution;

3. the method used to prove the Feynman-Kac formula of Theorem 3.1 applies, in other words the function

ūε (t, x) = E x exp - h ε (X ε t ) ε + 1 ε t 0 R(X ε s , v ε t-s )ds (5.2)
can be shown to be C(R + , L 1 (R d )) (note that the proof that ū is a mild solution to the PDE only relies on the Markov property, so it is true in general);

4. the family of Markov processes (X ε ) ε>0 must satisfy a large deviations principle with rate ε -1 and a good rate function, i.e. a lower semicontinuous function with compact level sets.

Note that the compactness argument of Lemma 4.1 does not depend on the mutation operator. It only follows from our assumptions on R.

For example, all these points apply to the problem

∂ t u ε (t, x) = 1 ε R n [u ε (t, x + εz) -u ε (t, x)] K(z)dz + 1 ε u ε (t, x)R (x, v ε t ) , (5.3) 
where

K : R n → R + is such that R n zK(z)dz = 0 and R n e a,z 2 K(z)dz < ∞ for all a ∈ R n .
This form of mutation operator has already been studied in [START_REF] Champagnat | The evolutionary limit for models of populations interacting competitively via several resources[END_REF][START_REF] Barles | Concentrations and constrained Hamilton-Jacobi equations arising in adaptive dynamics[END_REF][START_REF] Barles | Concentration in Lotka-Volterra parabolic or integral equations: a general convergence result[END_REF]. Similar equations are also considered in [START_REF] Jabin | On selection dynamics for competitive interactions[END_REF][START_REF] Gaël | Long time evolution of populations under selection and vanishing mutations[END_REF][START_REF] Desvillettes | On selection dynamics for continuous structured populations[END_REF]. In this case, we can check all the points above as follows:

1. The Markov process X ε is a continuous-time random walk, with jump rate

K L 1 ε
and i.i.d. jump steps distributed as εZ, where the random variable Z has law K(z) K L 1 dz.

2. Existence and uniqueness of the solution to

(5.3) in C 1 (R + , L 1 (R d ))
follows from [START_REF] Barles | Concentration in Lotka-Volterra parabolic or integral equations: a general convergence result[END_REF] (this is the point where the finiteness of quadratic exponential moments of K is needed).

3. Since random walks are shift-invariant as Brownian motion, the regularity of (5.2) can be proved exactly as in the proof of Theorem 3.1.

4.

It is well-known (see [START_REF] Feng | Large deviations for stochastic processes[END_REF]Section 10.3]) that, under the previous assumptions, the family (X ε ) ε>0 satisfies a large deviation principle with rate ε -1 and good rate function on D([0, t], R n ), the set of càdlàg functions from [0, t] to R n , given by

I t (ϕ) = t 0 R d e z, φs -1 K(z)dz ds if ϕ is absolutely continuous, +∞ otherwise.
We will give in Section 7 another example of extension, in the case where the Markov processes X ε take values in a finite set. However, this case will raise specific difficulties because the rate function of the associated large deviations principle has non-compact level sets.

Links between the variational and Hamiltom-Jacobi problems

As explained in the introduction, the convergence of ε log u ε has been studied in various works using PDE approaches, with a limit solving a Hamilton-Jacobi problem with constraints. With our approach, instead of a Hamilton-Jacobi equation, we obtain a variational characterization of the limit, under assumptions on R slightly weaker than those of [START_REF] Perthame | Dirac concentrations in Lotka-Volterra parabolic PDEs[END_REF][START_REF] Barles | Concentration in Lotka-Volterra parabolic or integral equations: a general convergence result[END_REF][START_REF] Lorz | Dirac mass dynamics in multidimensional nonlocal parabolic equations[END_REF] and valid for any value of the parameter r, biologically interpreted as a number of resources (see the introduction). Therefore, we obtain naturally the identification between a solution to Hamilton-Jacobi problems and a variational problem. For example, the next result is a consequence of [START_REF] Lorz | Dirac mass dynamics in multidimensional nonlocal parabolic equations[END_REF]Eq. (5.8)]. Corollary 6.1. In addition to the assumptions of Section 2, assume that r = 1, h ε is C 2 uniformly in ε > 0 and there exist constants A, B, C, D such that, for all

x ∈ R d , v min ≤ v 1 ≤ v max and ε > 0, -A|x| 2 ≤ R(x, v) ≤ B -A -1 |x| 2 , -B + A -1 |x| 2 ≤ h ε (x) ≤ B + A|x| 2 , -CId ≤ D 2 R(x, v) ≤ -C -1 Id, C -1 Id ≤ D 2 h ε (x) ≤ CId, ∆(Ψ 1 R) ≥ -D,
where the third oud fourth inequalities have to be understood in the sense of symmetric matrices and Id is the n-dimensional identity matrix. Then, v ε k converges in L 1 loc (R + ) to a nondecreasing limit v along the subsequence ε k of Lemma 4.1, the kernel M satisfies M s (dy) = δ v(s) (dy), ∀s ≥ 0, (6.1)

and the limit V of Theorem 4.2 solves in the viscosity sense

∂ t V (t, x) = R(x, vt ) + 1 2 |∇V (t, x)|, ∀t ≥ 0, x ∈ R d , max x∈R d V (t, x) = 0, ∀t ≥ 0. (6.2)
The only point of this corollary that is not a direct consequence of [START_REF] Lorz | Dirac mass dynamics in multidimensional nonlocal parabolic equations[END_REF] is the convergence of the full sequence (v ε k ) k≥1 to v. We known from [START_REF] Lorz | Dirac mass dynamics in multidimensional nonlocal parabolic equations[END_REF] that such a convergence is true for a subsequence and hence (6.1) holds true. Since, again from [START_REF] Lorz | Dirac mass dynamics in multidimensional nonlocal parabolic equations[END_REF], any subsequence of v ε k admits a subsequence converging in L 1 and any accumulation point in L 1 must be v by (6.1), the result is clear.

The last corollary provides a variational interpretation (4.3) for the solution to (6.2) given by the limit of ε k log u ε k . Since uniqueness for (4.3) is not known in general (note however that it is known under additional assumptions, see [START_REF] Mirrahimi | A class of Hamilton-Jacobi equations with constraint: uniqueness and constructive approach[END_REF]), we cannot deduce that any solution to (6.2) admits a variational formulation.

Note that Hamilton-Jacobi equations are known to be related to variational problems appearing in control theory. However, this link is known in general in cases with continuous and time-independent coefficients in the Hamilton-Jacobi equation [START_REF] Lions | Generalized solutions of Hamilton-Jacobi equations[END_REF][START_REF] Fleming | Controlled Markov processes and viscosity solutions[END_REF]. In our case, it is known that v may be discontinuous in general, hence Corollary 6.1 cannot be deduced from these general results. Hamilton-Jacobi problems with discontinuous coefficients were studied in several works but none covers the form of the optimization problem given by our results: first, the question of appropriate notion of viscosity solutions of irregular Hamilton-Jacobi problems has been studied by several authors starting from [START_REF] Lions | Remarks on Hamilton-Jacobi equations with measurable timedependent Hamiltonians[END_REF][START_REF] Bardi | Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations[END_REF]. In the later reference, these notions are only used to study variational problems without integral term and with continuous Hamiltonian without time-dependencies. In the book [START_REF] Clarke | Functional analysis, calculus of variations and optimal control[END_REF], problems of calculus of variation with irregular Lagrangian are studied, providing existence of optimal solutions but no link with the Hamilton-Jacobi problem. Finally, in the article [START_REF] Vinter | Hamilton-Jacobi theory for optimal control problems with data measurable in time[END_REF], optimal control problems with measurable in time Hamiltonian are studied but without the integral term in the optimisation problem as in (4.3). Hence Corollary 6.1 seems to give, through an indirect approach, an original optimization formulation for Hamilton-Jacobi problems with constraints as those of [START_REF] Diekmann | The dynamics of adaptation: An illuminating example and a Hamilton-Jacobi approach[END_REF][START_REF] Lorz | Dirac mass dynamics in multidimensional nonlocal parabolic equations[END_REF].

Other mutation operators were also studied with the PDE approach. Up to our knowledge, the only work providing the Hamilton-Jacobi limit with several resources is [START_REF] Champagnat | The evolutionary limit for models of populations interacting competitively via several resources[END_REF]. In this case, we obtain the following corollary. Corollary 6.2. Assume that d = 1, r ≥ 1 is arbitrary and R is given by Equation (1.2) with d(x) ≡ 1. Consider the solution u ε of the PDE (5.3) with this function R and with a function K in C ∞ c and such that R zK(z) dz = 0. Assume that the assumptions of Section 2 are satisfied, that

Ψ i is C 2 b for all 1 ≤ i ≤ r, that r i=1 c i Ψ i (x) ≥ 1 for all x ∈ R and ∃r ≤ r, ∀v 1 ∈ [0, c 1 ], . . . , v r ∈ [0, c r ], the function x → r i=1 v i Ψ i (x)
-1 has at most r roots, ∀x 1 , . . . , x r distinct, the r vectors Ψ(x 1 ), . . . , Ψ(x r) are linearly independent,

where

Ψ(x) = (Ψ 1 (x), . . . , Ψ r (x)). Assume also that h ε is C 2 for all ε > 0, h ε -h converges to 0 in W 1,∞ (R), sup ε>0 ∂ x h ε L ∞ (R) < ∞ and inf ε>0 inf x∈R ∂ xx h ε (x) > -∞.
Then, v ε k converges in L 1 loc to v along the subsequence ε k of Lemma 4.1, where v(t) = F ({V (t, •) = 0}) for an explicit function F (see [8, Prop. 1.1]), the kernel M satisfies M s (dy) = δ v(s) (dy), ∀s ≥ 0, and the limit V of Theorem 4.2 is such that ϕ(t, x) = V (t, x) -r i=1 t 0 vi (s)ds Ψ i (x) solves in the viscosity sense

   ∂ t ϕ(t, x) = H ∂ x ϕ(t, x) + r i=1 t 0 vi (s)ds Ψ i (x) , ∀t ≥ 0, x ∈ R d , max x∈R d ϕ(t, x) + r i=1 t 0 vi (s)ds Ψ i (x) = 0, ∀t ≥ 0, where H(p) = R (e pz -1)K(z) dz.

The finite case

We consider here another extension of Theorem 4.2 to processes satisfying a large deviation principle, in the case where the trait space if finite. Since in this case the equation satisfied by the limit V is simpler, we are able to study it in details in Section 8. We consider a finite set E and the system of ordinary differential equations

   uε (t, i) = j∈E\{i} exp -T(i,j) ε (u ε (t, j) -u ε (t, i)) + 1 ε u ε (t, i)R(i, v ε t ), ∀t ∈ [0, T ], ∀i ∈ E u ε (0, i) = exp -h ε (i) ε , (7.1) 
where T(i, j) ∈ (0, +∞] for all i = j ∈ E, R(i, u) :

E × R r → R, h ε : E → R and v ε t = (v 1,ε t , . . . , v r,ε ) is defined by v i,ε t = j∈E u(t, j)Ψ i (j), ∀1 ≤ i ≤ r,
for some functions Ψ i : E → (0, +∞). The term e -ε -1 T(i,j) corresponds to the mutation rate from trait i to trait j. Its value is by convention 0 when T(i, j) = +∞, which means than mutations are impossible from state i to state j.

The standing assumptions on Ψ, R and h ε given in Section 2 are still assumed to hold true here replacing R d by E (except of course for the assumptions of regularity in the trait space). We also need the following assumption.

Assumption on T

For all distinct i, j, k ∈ E,

T(i, j) + T(j, k) > T(i, k) (7.2) 
(with the convention ∞ > ∞) and we set

η := inf i,j,k∈E distinct s.t. T(i,k)<∞ T(i, j) + T(j, k) -T(i, k) > 0. (7.3) 
Similarly as for problem (1.1), the solution of problem (7.1) remains bounded. This is given in the following Lemma. Lemma 7.1. We have for all t ≥ 0

v min -A -1 (|E| -1)e -β/ε Ψ max ≤ i∈E u ε (t, i) ≤ v max + A(|E| -1)e -γ/ε Ψ min
holds true for any positive t as far as it holds for t = 0, where |E| stands for the cardinality of E,

γ = inf{T(i, j) | i, j ∈ E, i = j} > 0, β = sup{T(i, j) | i, j ∈ E, i = j}
and the constants A, v min , v max , Ψ min and Ψ max are defined in Section 2.

Hence we shall also assume in the sequel that

v min -A -1 (|E| -1)e -β/ε Ψ max ≤ i∈E e -hε(i)/ε ≤ v max + A(|E| -1)e -γ/ε Ψ min .
We also define the compact set

H := u ∈ R E + : v min -A -1 (|E| -1)e -β/ε Ψ max ≤ u 1 ≤ v max + A(|E| -1)e -γ/ε Ψ min
which is invariant for the dynamics (7.1).

Proof. Set, for any positive real number t,

u ε (t) = i∈E u ε (t, i).
According to (7.1), we get

uε (t) ≤ u ε (t) max i∈E R(i, v ε t ) + i∈E j∈E\{i} exp - T(i, j) ε (u ε (t, j) -u ε (t, i)).
Hence

uε (t) ≤ u ε (t) max i∈E R(i, v ε t ) + (|E| -1)e -γ ε .
Now, using Hypothesis (2b) and (2c), we obtain that

max i∈E R(i, v ε t ) < -(|E| -1)e -γ ε as soon as v i,ε t > v max + A(|E| -1)e -γ ε
, for some i in {1, . . . , r}. Using Hypothesis (2.2), we deduce that

u (t) ≤ 1 Ψ min v max + A(|E| -1)e -γ ε
as soon as this holds at time t = 0. The proof of the lower bound is similar.

Our first goal is to describe the solution u ε of the system using an integral representation similar to (4.1). Let (X ε s , s ∈ [0, T ]) be the Markov processes in E with infinitesimal generator

L ε f (i) = j∈E (f (j) -f (i))e -T(i,j) ε ,
i.e. the Markov process which jumps from state i ∈ E to j = i with rate exp(-T(i, j)/ε).

Proposition 7.2. (Integral representation) For any positive real number t and any element i of E, we have

u ε (t, i) = E i exp - h ε (X ε t ) ε + 1 ε t 0 R X ε s , v ε t-s ds .
Proof. First note that the part of the proof of Lemma 3.2 showing that (4.1) is a mild solution of problem (2.1) do not rely in any manner on the Brownian nature of B ε . As a consequence, one can directly deduce that u ε (t, i) statifies

u ε (t, i) = P ε t (e -h ε /ε )(i) + t 0 P ε t-s (u ε (s, i)R(i, v ε s )) ds,
where (P ε t , t ∈ R + ) now stands for the semigroup generated by L ε (i.e. a simple exponential of matrix since E is finite). This last expression is the Duhamel formulation of (7.1).

The next result proves a weak large deviations principle (i.e. a large deviations principle with upper bounds only for compact sets of D([0, T ], E)) for the laws of X ε . Proposition 7.3. (Weak LDP) (X ε ) ε≥0 satisfies a weak LDP with rate function

I T : D([0, T ], E) → R ϕ → Nϕ l=1 T ϕ t ϕ l -, ϕ t ϕ l ,
where D([0, T ], E) is the space of càdlàg functions from [0, T ] to E and N ϕ is the number of jumps of ϕ and (t ϕ l ) 1≤l≤Nϕ the increasing sequence of jump times of ϕ.

We shall also make use of the notation

I T (ϕ) = 0<s≤T T(ϕ s-, ϕ s )
with the implicit convention that T(i, i) = 0 for all i ∈ E.

Before proving this result, we focus on the following lemma which provides a convenient topological basis of the space D([0, T ], E) equipped with the Skorohod topology. 

B Sko (ϕ, δ) = {ψ ∈ D([0, T ], E) | N ϕ = N ψ , |t ϕ i -t ψ i | < δ, ϕ 0 = ψ 0 , and ϕ t ϕ i = ψ t ψ i .}
Then, the set

{B Sko (ϕ, ε) | ε ∈ [0, 1), ϕ ∈ D([0, T ], E)} is a topological basis of D([0, T ], E).
Proof. To prove the result it is enough to show that, for all δ < 1 and ϕ ∈ D([0, T ], E) the set B Sko (ϕ, δ) is exactly the δ neighborhood of ϕ for a particular metric inducing the Skorokhod topology. We recall (see e.g. [START_REF] Billingsley | Weak convergence of measures: Applications in probability[END_REF]) that the Skorokhod topology can be defined through the metric d S given by

d S (ϕ, ψ) = inf λ∈Λ max λ -I L ∞ ([0,T ]) , sup t∈[0,T ] d(ϕ t , ψ • λ t )
where Λ is the set of continuous increasing functions on [0, T ] with λ 0 = 0 and λ T = T and the distance d on E is defined as d(i, j) = 1 i =j . Let ψ and ϕ be such that d S (ϕ, ψ) < δ for some δ < 1, then there exists λ in Λ such that

|λ s -s| < δ, ∀s ∈ [0, T ], d(ϕ s , ψ(λ s )) < δ, ∀s ∈ [0, T ].
Since inf i,j∈E, i =j d(i, j) = 1, we have

ϕ t = ψ(λ t ), ∀t ∈ [0, T ].
Hence, it follows that N ϕ equals N ψ and t ϕ i = λ(t ψ i ), for all i. Consequently, |t ϕ i -t ψ i | < δ, for all i, and ϕ t ϕ i = ψ t ψ i .

We can now prove the weak large deviations principle for X ε .

Proof of Proposition 7.3. Let (S i ) i≥0 be the discrete time Markov chain associated to X ε and let T i be the i-th inter-jump time, i.e. T i = J i+1 -J i for all i ≥ 0, where J i is the i-th jump time of X ε , for i ≥ 1 and J 0 = 0. We recall that the Markov chain (T i , S i ) i≥0 has transition kernel given by

P ((t, i), ds, dj) = exp - T(i, j) ε exp(-c ε (i)s) ds ⊗ C(dj), ∀(t, i) ∈ [0, T ] × E,
where

c ε (i) = j∈E, j =i exp - T(i, j) ε
and C(dj) is the counting measure on E and initial value (T 0 , S 0 ) = (0, i) P i -almost surely.

Let ϕ be an element of D([0, T ], E) such that ϕ(0) = i and δ < 1. We set t ϕ 0 = 0. According to Lemma 7.4,

P i (X ε ∈ B Sko (ϕ, δ)) ≤ P i   Nϕ-1 =0 T ∈ [t ϕ +1 -t ϕ -2δ, t ϕ +1 -t ϕ + 2δ], S = ϕ t ϕ T Nϕ ≥ T -t Nϕ -δ, S Nϕ = ϕ t ϕ Nϕ   .
Hence,

P i (X ε ∈ B Sko (ϕ, δ)) ≤   Nϕ-1 =0 t ϕ +1 -t ϕ +2δ (t ϕ +1 -t ϕ -2δ)∨0 exp   - T ϕ t ϕ , ϕ t ϕ +1 ε   exp -c ε (ϕ t ϕ )s ds   × ∞ (T -t ϕ Nϕ -δ)∨0 c ε ϕ t ϕ Nϕ exp -c ε ϕ t ϕ Nϕ s ds = Nϕ-1 =0 exp   - T ϕ t ϕ , ϕ t ϕ +1 ε   e -c ε ϕ t ϕ (t ϕ +1 -t ϕ -2δ)∨0 1 -e -4δc ε ϕ t ϕ c ε ϕ t ϕ × e -c ε ϕ t ϕ Nϕ T -t ϕ Nϕ -δ ∨0 . Now, using the facts that c ε (i) ≤ e -c ε with c > 0 and (1 -exp(-4δc ε (ϕ t ϕ )))/c ε (ϕ t ϕ ) → 4δ when ε → 0, we get lim sup ε→0 ε log P i (X ε ∈ B Sko (ϕ, δ)) ≤ - Nϕ-1 =0 T ϕ t ϕ , ϕ t ϕ +1 .
Similarly, for δ > 0 small enough, using the bound

P i (X ε ∈ B Sko (ϕ, δ)) ≥ P i   Nϕ =0 T ∈ t ϕ +1 -t ϕ - δ N ϕ , t ϕ +1 -t ϕ , S = ϕ t ϕ   , we obtain lim inf ε→0 ε log P i (X ε ∈ B Sko (ϕ, δ)) ≥ - Nϕ-1 =0 T ϕ t ϕ , ϕ t ϕ +1 .
Hence

lim ε→0 ε log P i (X ε ∈ B Sko (ϕ, δ)) = - Nϕ-1 =0 T ϕ t ϕ , ϕ t ϕ +1 .
This classically entails (see e.g. [START_REF] Dembo | Large deviations techniques and applications[END_REF]Thm. 4.1.11]) that X ε satisfies a weak large deviations principle with rate function I t .

Usually, a full large deviations principle is deduced from a weak one using exponential tightness of the laws of X ε . However, in our case, exponential tightness does not hold. This is due to the fact that the function I T is not a good rate function, as can be seen from the following example: let i and j be two elements of E and s a real number in (0, T ). Now, define for any positive integer n large enough,

ϕ n (u) =      i if u ∈ [0, s) j if u ∈ [s, s + 1 n ) i if u ∈ [s + 1 n , T ]. Then, the subset {ϕ n | n ∈ N\{0}} is clearly non compact in D([0, T ], E) while I T is bounded on this set.
To prove the full large deviations principle, we need the following lemma.

Lemma 7.5. For all N ≥ 1 and t > 0, we denote by N ε t the number of jumps of X ε before t. There exists a constant C N,t ≥ 0 such that, for all i ∈ E,

lim sup ε→0 ε log P i (N ε t ≥ N ) ≤ -C N,t ,
and for all t > 0, lim

N →∞ C N,t = +∞.
Proof. Let us fix x 0 , x 1 , . . . , x N ∈ E such that T(x i , x i+1 ) > 0 for all i. We compute

P x 0 (N ε t ≥ N, X ε J i = x i , ∀i ∈ {0, . . . , N }) = t 0 exp - T(x 0 , x 1 ) ε exp(-c ε (x 0 )s 0 ) ds 0 . . . . . . t-s 0 -...-s N -2 0 exp - T(x N -1 , x N ) ε exp(-c ε (x N -1 )s N -1 ) ds N -1 ≤ exp - T(x 0 , x 1 ) + . . . + T(x N -1 , x N ) ε t 0 ds 0 . . . t-s 0 -...-s N -2 0 ds N -1 = t N N ! exp - T(x 0 , x 1 ) + . . . + T(x N -1 , x N ) ε .
Therefore,

lim sup ε→0 ε log P x 0 (N ε t ≥ N, X ε J i = x i , ∀i ∈ {0, . . . , N }) ≤ -T(x 0 , x 1 ) -. . . -T(x N -1 , x N ) ≤ -N inf i,j∈E T(i, j)
Since the number of choices of x 0 , x 1 , . . . , x N ∈ E is finite, we have proved Lemma 7.5.

We can now prove that X ε satisfies (a strong version of) the full LDP.

Theorem 7.6. For any measurable set

F of D([0, t], E), lim sup ε→0 ε log P i (X ε ∈ F ) ≤ -inf ϕ∈F I t (ϕ) ≤ -inf ϕ∈ F I t (ϕ).
In particular, X ε satisfies the large deviation principle with rate ε -1 and rate function I t .

Proof. Let F ⊂ D([0, t], E) be measurable. Set, for any positive integer n,

F + n = {ϕ ∈ F | N ϕ ≥ n} and F - n = F \F + n .
We have

P i X ε ∈ F - n = n-1 =0 (x 1 ,...,x )∈E P i X ε J k = x k , ∀k ≤ N ε t , N ε t = ∩ F .
According to the computations made in the proof of Lemma 7.5, we have

lim sup ε→0 ε log P i X ε J k = x k , ∀k ≤ N ε t , N ε t = ≤ -T(i, x 1 ) + -1 k=1 T(x k , x k+1 ) , which leads to lim sup ε→0 ε log P i X ε ∈ F - n ≤ max -T(i, x 1 ) + -1 k=1 T(x k , x k+1 ) ,
where the maximum is taken with respect to ∈ {0, . . . , n -1} and to the elements

(x 1 , . . . , x ) of ∪ n =0 E such that X ε J k = x k , ∀k ≤ N ε t , N ε t = ∩ F = ∅.
This implies that lim sup ε→0

ε log P i X ε ∈ F - n ≤ -inf ϕ∈F I t (ϕ).
Finally, using Lemma 7.5, we obtain

lim sup ε→0 ε log P i (X ε ∈ F ) ≤ max -inf ϕ∈F I t (ϕ), -C n,t .
The result is now obtained by sending n to infinity.

The next theorem corresponds to Theorem 4.2 in the discrete case situation. Unfortunately, as seen above, I T is not a good rate function. This prevents us from applying directly Varadhan's lemma and leads to substantial difficulties. This is the place where we need the assumption (7.2) on T. This result makes use of the sequence (ε k ) k≥1 constructed in Lemma 4.1, which holds true without modification in our discrete case. To avoid heavy notations, we shall write M s (i) for M s ({i}), where M s is the measure constructed in Lemma 4.1.

Theorem 7.7. For all (t, i) in (0, +∞) × E,

V (t, i) := lim k→∞ ε k log u ε k (t, i) = sup ϕ∈D([0,t],E) s.t. ϕ 0 =i    -h(ϕ t ) + t 0 j∈E R(ϕ s , j)M t-s (j)ds - 0<s≤t T (ϕ s-, ϕ s )    . (7.4) 
Proof. Let us fix a positive time t. To avoid heavy notations, we shall write ε instead of ε k in this proof. Since the only part of the proof of Varadhan's Lemma relying on the compactness of the level sets of the rate function is the upper bound, we restrict ourself to this bound. As in the proof of Theorem 4.2, let a ∈ R be smaller than the right-hand side of (7.4) and C satisfying |Φ(ϕ) -h(ϕ(t))| ≤ C(t + 1). We define K as the (non-necessarily compact) level set

K = {ϕ ∈ D([0, t], E) | ϕ 0 = i, I t (ϕ) ≤ C(t + 1) -a}.
First, as in the proof of Theorem 4.2, we deduce from the LDP that lim sup

ε→0 ε log E exp 1 ε -h ε (X ε t ) + t 0 R(X ε s , v ε t-s )ds 1 X ε ∈K c ≤ C(t + 1) + lim sup ε→0 ε log P (X ε ∈ K c ) ≤ C(t + 1) -inf x∈K c I(x) ≤ a. (7.5)
Second, by the definition of I t (ϕ), we have

N ϕ ≤ I t (ϕ) min i,j∈E T(i, j) . (7.6) 
Hence, according to (7.6), there exists N such that for all ϕ in K, N ϕ ≤ N . Fix γ > 0. We deduce that K = K N,δ ∪ L N,δ , where

K N,γ = {ϕ ∈ K | N ϕ ≤ N and inf i (t ϕ i+1 -t ϕ i ) ≥ γ} and L N,γ = {ϕ ∈ K | N ϕ ≤ N and inf i (t ϕ i+1 -t ϕ i ) < γ}.
Let ∆ β (T ) be the set of subdivisions of [0, t] with mesh greater that β. Since, for all ϕ ∈ K N,γ and all β < γ, we have inf

s∈∆ β (T ) max 1≤i≤|s| sup u,v∈[s i ,s i+1 ) |ϕ u -ϕ v | = 0,
we deduce from Arzela-Ascoli's theorem for the Skorokhod space that K N,γ is compact. Fix δ > 0. We deduce that there exist n ≥ 1 and ϕ γ 1 , . . . , ϕ γ n ∈ K N,γ such that

K N,γ = n i=1 G ϕ γ i ,
where the neighborhood G ϕ γ i of ϕ γ i is chosen such that, for ε small enough,

-h(ϕ γ i (t)) + Φ ε (ϕ γ i ) + δ ≥ sup ϕ∈G ϕ γ i -h ε (ϕ γ (t)) + Φ ε (ϕ). (7.7) 
Because of Lemma 7.4, we can also assume without loss of generality that I t is constant on G ϕ γ i for all i. Moreover, for all i in {1, . . . , n} and ε small enough, we have

Φ(ϕ γ i ) -δ ≤ Φ ε (ϕ γ i ) ≤ Φ(ϕ γ i ) + δ. (7.8)
Following the lines of Theorem 4.2, we obtain

lim sup ε→0 ε log E exp 1 ε -h ε (X ε t ) + t 0 R(X ε s , v ε t-s )ds 1 X ε ∈K N,γ ≤ max 1≤i≤n    -h(ϕ γ i (t)) + t 0 j∈E R(ϕ γ i (s), j)M t-s (j)ds + 2δ -I t (ϕ γ i )    ≤ max ϕ∈K N,γ    -h(ϕ(t)) + t 0 j∈E R(ϕ(s), j)M t-s (j)ds -I t (ϕ)    + 2δ. (7.9) 
We now prove a similar inequality when X ε lies in L N,γ . We first introduce some notations : for any ϕ ∈ D([0, T ], E), in the case where t ϕ Nϕ ≤ t -γ, we define

Γ γ ϕ(s) =    ϕ(s) if s ∈ [t ϕ i , t ϕ i+1 ) for 0 ≤ i ≤ N ϕ and t ϕ i+1 -t ϕ i ≥ γ ϕ t ϕ inf{i≤j≤Nϕ|t ϕ j+1 -t ϕ j ≥γ} if s ∈ [t ϕ i , t ϕ i+1 ) for 0 ≤ i ≤ N ϕ and t ϕ i+1 -t ϕ i < γ,
with the convention that t ϕ 0 = 0 and t ϕ Nϕ+1 = t. In the case where t -γ < t ϕ Nϕ ≤ t, we set Γ γ ϕ := Γ γ ϕ where

ϕ := ϕ(t) if s ∈ [t -γ, t], ϕ(s) if s < t -γ.
Now, for all ϕ in L N,γ , Γ γ ϕ lies in K N,γ . Indeed, by construction, Γ γ ϕ has inter-jumps times larger than γ and, because of Hypothesis (7.3), I t (Γ γ ϕ) ≤ I t (ϕ) since Γ γ ϕ is obtained by suppressing jumps in ϕ. Hence, we get

E exp 1 ε -h ε (X ε t ) + t 0 R(X ε s , v ε t-s )ds 1 X ε ∈L N,γ ≤ n i=1 E exp 1 ε -h ε (X ε t ) + t 0 R(X ε s , v ε t-s )ds 1 X ε ∈L N,γ 1 Γ γ X ε ∈G ϕ γ i .
For all ϕ in L N,γ , we necessarily have Γ γ ϕ(t) = ϕ(t), hence, it follows from the definition of Γ γ that

-h ε (ϕ(t)) + t 0 R(ϕ(s), v ε t-s )ds = -h ε (Γ γ ϕ(t)) + t 0 R(Γ γ ϕ(s), v ε t-s )ds + t ϕ j+1 -t ϕ j <γ t ϕ j+1 t ϕ j R(ϕ(s), v ε t-s ) -R(Γ γ ϕ(s), v ε t-s ) ds ≤ -h ε (Γ γ ϕ(t)) + t 0 R(Γ γ ϕ(s), v ε t-s )ds + 2N γ R ∞ .
Using this last inequality, (7.7) and (7.8), we get

E exp 1 ε -h ε (X ε t ) + t 0 R(X ε s , v ε t-s )ds 1 x∈L N,γ ≤ n i=1 E exp 1 ε -h ε (Γ γ X ε t ) + t 0 R(Γ γ X ε 0 , v ε t-s )ds exp 2 ε N γ R ∞ 1 x∈L N,γ 1 Γ γ X ε ∈G ϕ γ i ≤ n i=1 exp   1 ε   -h(ϕ γ i (t)) + t 0 j∈E R(ϕ γ i (s), j)M t-s (j)ds + 2δ     exp 2 ε N γ R ∞ P X ε ∈ L N,γ , Γ δ X ε ∈ G ϕ γ i .
It follows from Theorem 7.6 that

lim sup ε→0 ε log E exp 1 ε -h ε (X ε t ) + t 0 R(X ε s , v ε t-s )ds 1 X ε ∈L N,γ ≤ max 1≤i≤n   -h(ϕ γ i (t)) + t 0 j∈E R(ϕ γ i (s), j)M t-s (j)ds + 2δ + 2N γ R ∞ -inf ϕ∈A ϕ γ i I t (ϕ)  
(with the convention inf ϕ∈∅ I t (ϕ) = +∞), with

A ϕ γ i = {ϕ ∈ L N,γ | Γ γ ϕ ∈ G ϕ γ i }
. Now, using Lemma 7.4 and I t (Γ γ ϕ) ≤ I t (ϕ), we have for all i such that A ϕ γ i = ∅,

I t (ϕ γ i ) = inf ϕ∈A ϕ γ i I t (Γ γ ϕ) ≤ inf ϕ∈A ϕ γ i I t (x),
which gives

lim sup ε→0 ε log E exp 1 ε -h ε (X ε t ) + t 0 R(X ε s , v ε t-s )ds 1 X ε ∈L N,γ ≤ max 1≤i≤n   -h ε (ϕ γ i (t)) + t 0 j∈E R(ϕ γ i (s), j)M t-s (j)ds + 2δ + 2N γ R ∞ -I t (ϕ γ i )   ≤ max ϕ∈K N,γ    -h(ϕ(t)) + t 0 j∈E R(ϕ(s), j)M t-s (j)ds -I t (ϕ)    + 2δ + 2N γ R ∞ .
Combining the last inequality with (7.5) and (7.9), we obtain

lim sup ε→0 ε log E exp 1 ε -h ε (X ε t ) + t 0 R(X ε s , v ε t-s )ds ≤ max    a; max ϕ∈K N,γ   -h(ϕ(t)) + t 0 j∈E R(ϕ(s), j)M t-s (j)ds -I t (ϕ)   + 2δ + 2N γ R ∞    ≤ sup ϕ∈D([0,t],E) s.t. ϕ 0 =i    -h(ϕ(t)) + t 0 j∈E R(ϕ(s), j)M t-s (j)ds -I t (ϕ)    + 2δ + 2N γ R ∞ .
Since δ and γ are arbitrary, we have proved Theorem 7.7.

Our goal is now to obtain a version of Theorem 4.3. Since its proof makes use of the translation invariance of Brownian motion, we cannot use the same method. In particular, we will see that the function t → ε log u ε (t, i) may not be uniformly Lipschitz for particular initial conditions. Hence we shall prove directly the Lipschitz regularity of the limit V . For this, we first need the following lemma.

Lemma 7.8. For all subsequence (ε k ) k≥1 as in Theorem 7.7, the limit V (t, i) of ε k log u ε k (t, i) satisfies, for all t > 0 and all i = j ∈ E, V (t, i) ≥ V (t, j) -T(i, j).

In particular, this inequality is satisfied for all t ≥ 0 if and only if h(i) ≤ h(j) + T(i, j) for all i = j.

Proof. Fix i = j, t > 0 and η > 0. Because of (7.4), we can choose a function φ ∈ D([0, t], E) such that φ0 = j and

V (t, j) ≤ η -h( φt ) + t 0 k∈E R( φs , k)M t-s (k)ds - 0<s≤t T( φs-, φs ).
For all n ∈ N such that 1 n < t φ 1 ∧ t, we define ϕ (n) ∈ D([0, t], E) as

ϕ (n) s = i if 0 ≤ s < 1/n φs if 1/n ≤ s ≤ t.
Using (7.4) again, we have

T(i, j) + V (t, i) ≥ V (t, ϕ (n) t ) + t 0 k∈E R(ϕ (n) s , k)M t-s (j)ds - 1/n<s≤t T(ϕ (n) s-, ϕ (n) s ) ≥ V (t, φt ) - R H n + t 1/n k∈E R( φs , k)M t-s (j)ds - 0<s≤t T( φs-, φs ) ≥ V (t, j) -η -2 R H n ,
where R H := sup i∈E, x∈H |R(i, x)|. This concludes the proof letting η → 0 and n → +∞.

We can now state our result on the regularity of V .

Theorem 7.9. For all subsequence (ε k ) k≥1 as in Theorem 7.7, the limit V (t, i) of ε log u ε (t, i) is Lipschitz with respect to the time variable t on (0, +∞). In addition, if h(i) ≤ h(j) + T(i, j) for all i = j, the function V is Lipschitz on R + .

Proof. Fix t ≥ 0 and i ∈ E. For all δ > 0 and ε > 0, proceeding as in the proof of Theorem 4.3, Markov's property entails

e -M δ ε E i [u ε (t, X ε δ )] ≤ u ε (t + δ, i) ≤ e M δ ε E i [u ε (t, X ε δ )].
We can now estimate the distribution of X ε δ as follows. Let N ε be the number of jumps of X ε on the time interval [0, δ]. For all j = i, δe -|E|δ e -T(i,j)

ε ≤ P i (X ε δ = j, N ε ≤ 1) = δ 0 e -T(i,j) ε e -c ε (i)s e -c ε (j)(δ-s) ds ≤ δe -T(i,j) ε
where |E| is the cardinality of E. Similarly,

1 -|E|δ ≤ P i (X ε δ = i, N ε = 0) ≤ 1 and 0 ≤ P i (N ε ≤ 2) ≤ j =i c ε (j)e -T(i,j) ε δ 0 (δ -s)ds ≤ |E| 2 2 δ 2 .
Putting all these inequalities together, we obtain

(1 -|E|δ)u ε (t, i) + j =i δe -|E|δ e -T(i,j) ε u ε (t, j) ≤ E i [u ε (t, X ε δ )] ≤ u ε (t, i) + j =i δe -T(i,j) ε u ε (t, j) + δ 2 C |E| 2 2 ,
where C is the right-hand side of the main result in Lemma 7.1. Taking ε log of both sides of the last inequality and sending ε to 0, we obtain max V (t, i); max

j =i V (t, j) -T(i, j) -M δ ≤ V (t + δ, i) ≤ max V (t, i); max j =i V (t, j) -T(i, j) + M δ.
(7.10) Since δ > 0 was arbitrary, the result follows from Lemma 7.8.

Study of the variational problem in the finite case

Assume as above that E is a finite set. Our goal here is to study the limit problem

V (t, i) = sup ϕ(0)=i -h(ϕ(t)) + t 0 R r R(ϕ(u), y) M t-u (dy) du -I t (ϕ) , (t, i) ∈ R + × E. (8.1)
A direct adaptation of Theorem 7.7 to obtain the dynamic programming version of (8.1): for any 0 ≤ s ≤ t, the limit of ε k log u ε k satisfies

V (t, i) = sup ϕ(s)=i V (s, ϕ(t)) + t s R r R(ϕ(u), y) M s+t-u (dy) du -I s,t (ϕ) ,
where, for all ϕ in D([s, t], E) I s,t (ϕ) = u∈(s,t]

T(ϕ(u-), ϕ(u)).

In the sequel, we make use of the following assumptions on the dynamical systems related to problem (7.1). For all A ⊂ E, we define the dynamical system in R A

+ := {(u i , i ∈ A) : u i ≥ 0 for all i ∈ A} denoted S A by ui = u i R i   j∈A Ψ l (j)u j , 1 ≤ l ≤ r   , i ∈ A, (8.2) 
where R i (x) stands for R(i, x).

Hypothesis (H)

For all A ⊂ E, let Eq A be the set of steady states of S A . Assume that all element of Eq A are hyperbolic steady states and S A admits a unique steady state

u * A = (u * A,i ) i∈A , such that, for all i in A u * A,i = 0 =⇒ R i   j∈E Ψ l (j)u * A,j , 1 ≤ l ≤ r   < 0.
Assume also that there exists a strict Lyapunov function L A : R A + → R for the dynamical system S A , which means that L A is C 1 , admits as unique global minimizer on R A + and satisfies, for any solution u(t) to S A ,

dL A (u(t)) dt = i∈A ∂L A ∂u i (u(t))u i (t)R i   j∈A Ψ l (j)u j (A), 1 ≤ l ≤ r   < 0.
for all t ≥ 0 such that u(t) ∈ Eq A .

The hyperbolicity assumption means that for all steady state u * , u * i = 0 implies that

R i   j∈E Ψ l (j)u * j , 1 ≤ l ≤ r   = 0.
For finite dimensional dynamical systems, it is well known that the hyperbolicity condition is generic under perturbation (see [START_REF] Demazure | Geometry of solutions to nonlinear problems[END_REF]). Since hyperbolic equilibria are isolated, Hypothesis (H) implies that Lemma 8.1. Assume Hypothesis (H). For all A ⊂ E and all ρ > 0 small enough, the first hitting time t * A (u(0), ρ) of the ρ-neighborhood of u * A by a solution u(t) to S A satisfies

t * A (u(0), ρ) ≤ C * ρ (1 + sup i∈A -log u i (0))
for some constant C * ρ only depending on ρ.

This lemma means that, when one coordinate u i (0) of u(0) is close to zero, the time needed to converge to u * A grows linearly with the logarithm of (u i (0)) -1 .

Proof. Let A be a non-empty subset of E and u be a solution of the dynamical system S A . Without loss of generality, we can assume that L A (u 

d := min u * ,v * ∈U * ∪{u * A } |u * -v * | and α 0 > 0 such that i∈A ∂ i L A (x)x i R i   j∈A Ψ l (j)x j , 1 ≤ l ≤ r   < -α 0 , ∀x / ∈ u * ∈U * ∪{u * A } B(u * , d/4
L A (u) -inf u∈B(u * ,δ) L A (u) < α 0 d 2 R H .
Hence, defining for all k ∈ N,

H k A := u ∈ H A | k α 0 d 2 R H ≤ L A (u) < (k + 1) α 0 d 2 R H ,
the solution u(t) can only visit at most one ball of type B(u * , δ) for some u * ∈ U * during its travelling time through H k A .

Step 2. Time spent in H k A According to Hypothesis (H), for any steady state u * ∈ U * , we have

R i   j∈A Ψ l (j)u * j , 1 ≤ l ≤ r   > 0, for at least one i(u * ) ∈ A such that u * i(u * ) = 0.
Consequently, reducing δ > 0 if necessary, there exists a positive real number R -such that, for all

u * ∈ U * , ∀x ∈ B(u * , δ), R i(u * )   j∈A Ψ l (j)u * j , 1 ≤ l ≤ r   > R -. (8.3) 
In addition, since L A is a strict Lyapunov function, there exists a positive real number α such that

i∈A ∂ i L A (x)x i R i   j∈A Ψ l (j)x j , 1 ≤ l ≤ r   < -α, ∀x / ∈ u * ∈U * ∪{u * A } B(u * , δ). (8.4) 
Now, let c be a positive real number satisfying

c -1 < α -1 R H .
Let k 0 such that u 0 ∈ H k 0 A . For any 0 ≤ k ≤ k 0 , let t k be the hitting time of H k and t -1 the first hitting time of B(u * A , δ), and define for all k ≥ 0

F k (t) =    L A (u(t)) if u(t) / ∈ u * ∈U * ∪{u * A } B(u * , δ) for all t ∈ [t k , t k-1 ], L A (u(t)) -c log u i(u * ) (t) if ∃t ∈ [t k , t k+1 ], ∃u * ∈ U * such that u(t) ∈ B(u * , δ).
Note that Step 1 implies that, for all k ≥ 0, there exists at most one u * ∈ U * such that u(t) ∈ B(u * , δ) for some t ∈ [t k , t k+1 ]. Using (8.4), (8.3), the fact that d dt L A (u(t)) ≤ 0 and the definition of R H , we have for all t ∈ [t k , t k+1 ], dF k (t) dt ≤ (-cR -) ∨ (-α + c R H ) < 0.

Therefore, for all t ∈ [t k , t k+1 ],

F k (t) ≤ (k + 1) α 0 d 2 R H -c inf i∈A log u i (t k ).
In addition it follows from Lemma 7.1 that

F k (t) ≥ k α 0 d 2 R H -log v max + A(|E| -1)e -γ/ε Ψ min .
Setting k = k 0 , we deduce that there exists a constant C k 0 -1 > 0 such that

t k 0 -1 ≤ C k 0 -1 (1 -inf i∈A log u i (0))
and, since ui

u i ≤ R H , -inf i∈A log u i (t k 0 -1 ) ≤ -inf i∈A log u i (0) + R H C k 0 -1 (1 -inf i∈A log u i (0)).
Proceeding by induction, it follows that there exist constants C k and D k depending only on k 0 and u(0) such that, for all k ≥ 1, This lemma entails the following property.

Proposition 8.2. Assume Hypothesis (H). Let (ε k ) k≥1 be as in Theorem 7.9. For any t ≥ 0, there exists ρ t > 0 such that, for all s ∈ (t, t + ρ t ], v ε s converges to F ({V (t, •) = 0}), where the convergence is uniform in all compact subsets of (t, t + ρ t ] and where

F (A) =   r j=1 η i (j)u * A,j   1≤i≤r , ∀A ⊂ E.
In particular, the weak limit M s of δ vε k (s) obtained in Lemma 4.1 satisfies M s = δ F ({V (t,•)=0}) , for almost all s ∈ (t, t + ρ t ). and the function t → F ({V (t, •) = 0}) is right-continuous.

Note that, because the set E is finite, the range of the function F is finite, and thus, assuming that t → F ({V (t, •) = 0}) is right-continuous implies that the union of the time intervals where this function is constant is equal to R + . We emphasize that this is not true in general for measurable functions taking values in finite sets.

Proof. Let us fix t ≥ 0 and define A = {i ∈ E | V (t, i) = 0}. Since, at time t, we have V (t, i) = lim k→∞ ε k log u ε k (t, i), it follows that, for all δ > 0, for all k large enough,

u ε k (t, i) ≥ e -δ ε k , ∀i ∈ A.
(8.5)

In addition, if t > 0, using the continuity of V at time t (see Theorem 7.9), there exists some positive real numbers η t and α such that V (t + s, i) < -α for all i ∈ E \ A and all s ∈ [0, η t ]. If t = 0, setting β = max max i∈E\A -h(i), max i =j -h(j) -T(i, j) < 0 and -α ∈ (β, 0), it follows from the upper bound of (7.10) that V (t + s, i) ≤ -α for all i ∈ E \ A and all s ∈ [0, η t ] where

η t = β -α M .
In both cases, we obtain Now, let (u i (s), s ∈ R + ) i∈A be the solution of the dynamical system S A , as defined in (8.2), with initial conditions u i (0) = u ε k (t, i), for all i in A. According to (8.2) and (7.1), we have, for any time s and any i in A,

|u ε k (t + s, i) -u i (s/ε k )| ≤ 1 ε k s 0 u ε k (t + u, i)R(i, v ε k t+u ) -u i (u/ε k )R i   j∈A Ψ l (j)u j (u/ε k ), 1 ≤ l ≤ k   du + s 0 j∈E e - T(i,j) ε k |u ε k (u, j) -u ε k (u, i)| du.
Using Hypothesis (2d), in conjunction with Lemma 7.1, we get

|u ε k (t + s, i) -u i (s/ε k )| ≤ D ε k s 0 |u ε k (t + u, i) -u i (u/ε k )| du + 2Cse -γ ε k ,
with γ defined in Lemma 7.1 and some positive constants C and D. Hence, Gronwall Lemma entails that

|u ε k (t + s, i) -u i (s/ε k )| ≤ C ε k exp Ds -γ ε k , (8.7) 
for some positive constant C. Now, let us compare u ε k (t + s, i) with the expected limit u * i,A which gives 

u ε k (t +
u ε k (t + s, i) -u * i,A < ρ, ∀i ∈ A.
Since ρ and δ were arbitrary, the desired uniform convergence follows from (8.6) with ρ t = γ 2D ∧ η t . The remaining statements follow easily.
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 74 For all ϕ ∈ D([0, T ], E) and δ < 1 define

t k- 1 -

 1 t k ≤ C k (1 -inf i∈A log u i (0)) and -inf i∈A log u i (t k-1 ) ≤ D k (1 -inf i∈A log u i (0)).Similarly, there exist constants C k and D k such thatt -1 -t 0 ≤ C 0 (1 -inf i∈A log u i (0)) and -inf i∈A log u i (t -1 ) ≤ D 0 (1 -inf i∈A log u i (0)).Since L is a strict Lyapunov function, for all ρ < δ, the time needed to enter B(u * A , ρ) starting from any point in B(u * A , δ) is bounded by a constant depending only on ρ. The result follows.

  sup s∈[0,ηt] u ε k (t + s, i) ≤ e -α ε k , ∀i ∈ E \ A. (8.6) 

  uniformly w.r.t. ε (at least for ε small enough).

	Proof. Let (t, x) and (δ, y) in R + × R d . Using (4.1), and writing X ε t = X ε 0 +	√	εB t for a Brownian
	motion B, we get		

  A ) = 0, i.e. min u∈R E + L A (u) = 0. Let H A be the set of u ∈ R A + such that ū ∈ H, where ū ∈ R E+ is obtained from u by setting to zero the coordinates with indices in E \ A and the set H was defined in Lemma 7.1. Let U * = (Eq A ∩ H A ) \ {u * A }.Step 1. Descrease of L A (u(t)) between the visits of two neighborhoods of steady states Let

* 

  ).

	Hence, setting R

H := sup i∈E, x∈H |R(i, x)|, the decrease of L A (u(t)) between two visits by u(t) of two distinct balls B(u * , d/4) for u * ∈ U * ∪ {u * A } is at least α 0 d 2 R H . Now, let δ < d/4 be small enough to have, for all u * ∈ U * , sup u∈B(u * ,δ)

  s, i) -u * i,A ≤ |u ε k (t + s, i) -u i (s/ε k )| + u i (s/ε k ) -u * i,A .This last inequality gives, for all k large enough,s > 2δC * ρ =⇒ u i (s/ε k ) -u * i,A < ρ.

	According to Lemma 8.1, we have, for any postive real number ρ,
	s ε k	> C * ρ (1 + sup
			-log u i (0) ≤	δ ε k	, ∀i ∈ A..
	This entails in conjonction with (8.7) that
	lim sup	sup
	k→+∞	s∈[2δC * ρ ,γ/2D]

i∈A -log u i (0)) =⇒ u i (s/ε k ) -u * i,A < ρ.

However, according to

(8.5)

, for all δ > 0, for k large enough,

Acknowledgments Nicolas Champagnat benefited from the support of the Chair "Modélisation Mathématique et Biodiversité" of Veolia Environnement -École Polytechnique -Muséum National d'Histoire Naturelle -Fondation X and from the support of the French National Research Agency for the project ANR-14-CE25-0013, "Propagation phenomena and nonlocal equations" (ANR NONLO-CAL).

Eq A is finite. The global minimizer of L A is necessarily a stable steady state of S A , hence it must be u * A (since all the other steady states are not stable). In addition, the equilibrium u * A is globally asymptotically stable, in the sense that, for all initial condition u(0) = (u i (0)) i∈A in (0, +∞) A , the solution to (8.2) converges to u * A . Indeed, since ui /u i is uniformly bounded, u(0) ∈ (0, +∞) A implies that u(t) ∈ (0, +∞) A for all t > 0. Now, the existence of a strict Lyapunov function implies that u(t) converges to an equilibrium u * . If u * = u * A , because of Hypothesis (H), there exists i such that u * i = 0 and ui (t)/u i (t) ≥ 1 2 R i j∈E Ψ l (j)u * j , 1 ≤ l ≤ r > 0 for all t large enough. This is a contradiction with the convergence of u(t) to u * .

General classes of dynamical systems satisfying Hypothesis (H) have been given in [START_REF] Champagnat | Convergence to equilibrium in competitive Lotka-Volterra and chemostat systems[END_REF]. We give here two examples. Example 1 Our first example corresponds to indirect competition for environmental resources and is an extension of the chemostat model (1.2):

where d i , c i , α l are positive real numbers satisfying c i r l=1 α l Ψ l (i) > d i , for all i in E.

Example 2 This example corresponds to direct competition of Lotka-Volterra (or logistic) type: we assume that E = {1, . . . , r} and

with the hypothesis that there exist positive constants c 1 , . . . , c r such that c i Ψ i (j) = c j Ψ j (i), ∀i, j ∈ E, and i,j∈E

In this example the matrix (Ψ i (j)) i,j∈E is interpreted as a competition matrix between the different types of individuals. The last positivity assumption is satisfied for various competition matrices [START_REF] Champagnat | Convergence to equilibrium in competitive Lotka-Volterra and chemostat systems[END_REF][START_REF] Champagnat | Stochastic and deterministic approaches in Biology: adaptive dynamics, ecological modeling, population genetics and molecular dynamics; Well-posedness for ordinary and stochastic differential equations[END_REF], for example, if

Another example is given by

for all positive measure π on R d with support having non empty interior. Hypothesis (H) implies a key property given in the next lemma.

Corollary 8.3. Assume Hypothesis (H). Any limit V of ε k log u ε k along a subsequence as in Theorem 7.9 satisfies V (0, i) = -h(i) for all i ∈ E and for all t ≥ 0

and its dynamic programming version

In addition, the problem (8.8) admits a unique solution such that t → F ({V (t, •) = 0}) is rightcontinuous. In particular, the full sequence (ε log u ε ) ε>0 converges to this unique solution when ε → 0.

Proof. The only non-obvious consequence of Proposition 8.2 is the uniqueness of a solution to (8.8) with t → F ({V (t, •) = 0}) right-continuous. To prove this, observe that, by continuity of V for t > 0 and using (7.10) for t = 0, the set A = {t ≥ 0 | there exists a unique solution up to time t} cannot have a finite upper bound.

We conclude by giving the discrete Hamilton-Jacobi formulation of the variational problem solved by V . Theorem 8.4. Under Hypothesis (H) and assuming that h(i) ≤ h(j) + T(i, j) for all i = j, the problem

(with the convention T(i, i) = 0) admits a unique solution such that t → F ({V (t, •) = 0}) is rightcontinuous which is the unique solution to the variational problem (8.8).

The result also extends to cases where the condition h(i) ≤ h(j) + T(i, j) is not satisfied for some i = j. In this case, one must replace the initial condition in (8.9) by

and the solution of (8.9) coincides with the solution to the variational problem (8.8) for positive times only.

Proof. We first prove the uniqueness part and then that the solution of (8.8) also solves (8.9).

Step 1: Uniqueness for (8.9).

Let t ∈ [0, +∞] be the largest time such that there is uniqueness for (8.9) up to time t and assume t < ∞. Let i ∈ E be such that V (t, i) = 0. Since T(j, i) > 0 for all j = i and because of the Lipschitz regularity of any solution V of (8.9), V (s, i) = R i (F ({V (t, •) = 0})) for all s ∈ [t, t + δ t ] for some δ t > 0. Hence V (s, i) is uniquely determined for all i such that V (t, i) = 0 and s ∈ [t, t + δ t ]. We proceed similarly for all the i ∈ E such that V (t, i ) ∈ [-inf i =j T(i, j)/2, 0): their dynamics is determined only by F ({V (t, •) = 0}) and V (s, i) for all i such that V (t, i) = 0, for s ≥ t in the time interval [t, t + δ t ]. We obtain a similar result inductively for all the i ∈ E such that

) for all k ≥ 1. This contradicts the finiteness of t and hence uniqueness for (8.9) is proved.

Step 2: The function V of Corollary 8.3 solves (8.9). Let t ≥ 0 and i ∈ E be fixed and let us prove that the solution V of (8.8) is right-differentiable with respect to time at (t, i) with derivative given by (8.9). According to Corollary 8.3, we have for all δ > 0

and there exists δ t > 0, such that F ({V (t + δ, •) = 0}) = F ({V (t, •) = 0}) for all δ < δ t .

We know from Lemma 7.8 that V (t, i) ≥ V (t, j) -T(i, j) for all i = j. If the inequality is strict for all j = i, it is clear that the supremum in (8.10) is attained for the constant function ϕ ≡ i for sufficiently small δ > 0 and hence V (t + δ, i) = R i (F ({V (t, •) = 0}), which entails (8.9).

If there exists j = i such that V (t, i) = V (t, j)-T(i, j), let j * ∈ E be such that R j (F ({V (t, •) = 0}) is maximal among all j ∈ E such that V (t, i) = V (t, j) -T(i, j). Since the supremum in (8.10) cannot be attained for functions ϕ jumping two times or more in [t, t + δ] for δ > 0 small enough, considering all possible choices for ϕ with less than one jump, one easily checks that, for δ > 0 small enough,