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Comment: If these data could talk
Thomas Pasquier1, Matthew K. Lau2, Ana Trisovic3,4, Emery R. Boose2, Ben Couturier3,
Mercè Crosas5, Aaron M. Ellison2, Valerie Gibson4, Chris R. Jones4 & Margo Seltzer1

In the last few decades, data-driven methods have come to dominate many fields of scientific inquiry.
Open data and open-source software have enabled the rapid implementation of novel methods to
manage and analyze the growing flood of data. However, it has become apparent that many scientific
fields exhibit distressingly low rates of reproducibility. Although there are many dimensions to this
issue, we believe that there is a lack of formalism used when describing end-to-end published results,
from the data source to the analysis to the final published results. Even when authors do their best to
make their research and data accessible, this lack of formalism reduces the clarity and efficiency of
reporting, which contributes to issues of reproducibility. Data provenance aids both reproducibility
through systematic and formal records of the relationships among data sources, processes, datasets,
publications and researchers.

Reproducibility
The success and power of science depends on the transparency and validation of its findings. However,
issues with reproducibility have surfaced across a broad swath of scientific disciplines. Reports of such
issues have emanated from fields ranging from the social sciences to physics and the life-sciences,
including medicine1. Although the lack of reproducibility does not necessarily imply incorrect results2, it
remains a worrisome issue. This comes at a time when the rate of scientific publication is increasing
exponentially3. At the same time, the data and the processes that produce results are becoming more
computationally demanding.

Reproducibility is the cornerstone of science, so it is imperative that we improve the quality and
reliability of publications by going beyond the publication of results and data to making analytical
processes, not only available, but more importantly, intelligible4. Too often, despite the best efforts of
authors, transparency, adequate for the replication of computational processes, is elusive. We advocate
open-data, open-source and open-process, which we define as the formal record of the workflow that
produced a result. Changes to the pipeline that transforms raw data to results can lead to non-trivial
differences in results, which are impossible to explain without sufficient reporting. For example, a re-
examination of studies of carbon flux in forested ecosystems in the Amazon detected differences in
estimates up to 140%, which could mean as much as 7 metric tons of carbon per year in an area roughly
the size of a football field, resulting from small differences in analytical pipelines5. Also, seemingly simple
details, such as the version of the initial (raw) data or versions of the analytical software programs, are
often difficult to identify, and their absence makes replication of analyses impossible, even if the code is
available.

Provenance-Aware Research
We suggest that there is an opportunity for the implementation of formalized (following mathematical
reasoning) methods for collecting analytical details. Such methods are essential for transparent scientific
research as promoted by the data policies of many funding agencies, including the UK Engineering and
Physical Sciences Research Council and the US National Science Foundation. Implementation of such
methods can be achieved only by systematically capturing computational processes and presenting this
information in a machine-actionable format. One possible solution is the use of data provenance, which is
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a formal representation of computational processes. The sheer quantity of data produced for analysis
necessitates the use of complex computational tools for data management and analysis. This, in turn,
creates a need for more precise descriptions of the origin of data, the transformations that have been
applied to those data, and the implications of the results. Data provenance contains the information
necessary to document these processes. However, it should be collected automatically in a manner
amenable to automated reasoning, so that data origin, data processing, and results presentation are
communicated to a user in an intelligible manner.

Provenance data is most frequently represented as a directed, acyclic graph. Interactions are recorded
as a set of edges that relate data-items, transformations (computations), and persons or organizations
associated with the data, all represented as vertices (see Fig. 1). This model has been standardized for
interoperability by the World Wide Web Consortium (W3C) as the PROV data model (https://www.w3.
org/TR/prov-dm/). While metadata standards with a related purpose have emerged in various fields
(e.g. ISA-Tab in the biomedical space), the emergence of a common standard is important to avoid
duplication of effort and to encourage interdisciplinary collaboration. This vision seems to be shared by
part of the community as, for example, tools are being developed to convert between the previously
mentioned ISA-Tab format and the W3C PROV standard model (see http://isa-tools.github.io/
linkedISA/). Work is also in progress to support the upload of PROV-formatted provenance data on the
Dataverse open-source repository platform. While no standard is perfect, we see the adoption of a
common standard as a necessary step.

Exploiting data provenance is a multi-stage process. First, it involves the capture of data provenance
during code execution. Next, the provenance must be stored in an efficient manner. Last, the provenance
is queried and analysed either by machines (algorithmically) or by humans, most frequently through
visualization.

Provenance capture can be divided into two broad categories: observed and disclosed6. Disclosed
provenance consists of modifying an existing application so that it publishes the provenance resulting
from its execution. One example of disclosed provenance is the Earth System Science Workbench7, used
to process satellite imagery. Observed provenance consists of modifying the system on top of which the
computation runs, so that it systematically and automatically records how data are generated. PASS8,
which captures provenance in the operating system, is an observed provenance system. It produces a
record of the execution of unmodified programs that run on top of it. The tension between these two
approaches lies between in-depth domain specific knowledge for disclosed provenance and systematic,
ubiquitous capture for observed provenance. PASS v29 was the first system to allow both approaches to be
used simultaneously. PASS pre-dates the W3C PROV standard by a few years; however, recent efforts for
a modernised implementation of a similar concept, which adopts current best practices, is available
online under an open-source licence (see http://camflow.org/).

A second aspect of provenance management is its storage. Numerous systems have been developed
over the years to accomplish this. Some are domain-specific, whereas others have been intended for more
general application. For example, the Core Provenance Library10 provides an interface between
provenance generating applications and various database back-ends (a W3C PROV conforming open-
source implementation is available at https://github.com/jacksonokuhn/prov-cpl). It enables the
integration of provenance information from diverse sources into a coherent whole. Other issues, such
as the scale of provenance generated by large scale systems, are being addressed using Big Data storage11.

The last aspect concerns the analysis, query and use of the provenance data. For example, visualization
tools that present provenance data in an intelligible manner have been created by projects, such as
Orbiter12 or VisTrails13. Another use of provenance is to render the analytical process transparent. By
examining provenance records, one can learn how a team went from the raw collected data to the
published results. Provenance can be seen in this context as a way to share this knowledge. Tools such as
ReproZip14 have been built to automatically reproduce computational environments. Others have
envisioned using these data to produce executable papers15 to allow readers and reviewers to repeat a
computational experiment or conduct related experiments. Additionally, they can be used to verify a
claim or test new hypotheses with less engineering effort. Examples of executable papers from the
Association for Computing Machinery (a leading Computer Science publisher) Special Interest Group on
Management of Data 2008 to 2011 conferences are available online http://event.cwi.nl/SIGMOD-RWE/.
A maintained and updated list of existing provenance tools is available at https://projects.iq.harvard.edu/
provenance-at-harvard.

Data Pipelines from Particles to Ecosystems
As computer scientists have been developing tools to collect provenance, many fields are dealing with an
explosion of data and software and the ensuing impacts on transparency and reproducibility1. Although
there are field-specific issues that cannot be addressed by any single set of recommendations for
transparency, the common issue is the need for a sharable record of computation. As we suggest above, a
significant part of this challenge can be addressed across all fields via automated capture of formalized
data provenance. To illustrate this, we have selected two case studies from our personal experiences, of
research conducted at vastly different scales of inquiry: particle physics and ecology (see Fig. 2).

The European Organization for Nuclear Research (CERN) operates one of the world’s largest and
most complex scientific instruments: the Large Hadron Collider (LHC). The LHC accelerates and collides
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protons and heavy ions to measure properties of elementary particles. By recreating the conditions that
existed moments after the Big Bang inside the LHC, the physicists hope to discover how the early
Universe evolved. At the other end of the spectrum of physical organization is Harvard Forest (HF), an
ecological research site composed of over 1,600 hectares of forest and facilities for ecological education
and research. Founded in 1,907, researchers have been actively collecting data at HF for over a hundred
years. Data collected by researchers have historically focused on the abundance and distribution of
species (trees and understory plants).

Both CERN and HF are experiencing rapid increases in computational demands. The lifetime of a
CERN experiment is several decades, including active runs, periods of maintenance and system upgrades.
The experimental components (particle detectors) are improved yearly, with the major advancements
taking place every several years. Those changes modify both hardware and software resulting in changes
in the data, which need to be documented16. The amount of data produced (up to 40 TB s−1) at an LHC
experiment is impossible to store due to technological limitations. Data streams are filtered through a
constantly improving selection system to extract information of scientifically significant particle decays17.
The context of the measurements provided by the data provenance is crucial to the successful
interpretation and analysis of the data themselves. For example, small changes in the experimental
settings can bias the data, which can skew measurements. Furthermore, the energy at which the protons
collide has been increasing over time, and has resulted in incompatibilities between data collected at
different points in time16. Thus, details, such as what selection was being performed on the collision data
and the detector conditions, directly impact what was being recorded during a LHC run.

At HF the volume of data and computational sophistication of studies have increased dramatically in
recent years. Several study areas are contributing to this. Landscape-scale studies18, ecological genomics19,
ecological simulations20, and sensor networks21 all produce large amounts of data that can be orders of
magnitude greater in size than what was historically collected by ecologists. In addition to data volume,
the diffuse nature of data collection, via field-based instruments (streamflow sensors22 and phenology
cameras23), has lead to the removal of direct human observation from the data stream. Lastly, in addition
to data driven issues, both for the purpose of data analysis and simply handling large quantities of data,
ecologists have begun to produce a large amount of software with a proper version control system not
always in place.

Currently, both CERN and HF are actively working to integrate capture and utilization of data
provenance at different levels of completeness and formalization. At CERN, due to the extraordinary
volume, the data are optimized and transformed to include particle identification and particle track
reconstruction before they become available to physicists. The experiments at CERN capture data
provenance that includes detector and beam conditions, selection system settings, and software used in
data transformation and optimization17. All data from research activities at HF are curated in the
Harvard Forest Data Archive, which has operated for nearly 30 years, guided by the site’s participation in
two long-term U.S. National Science Foundation (NSF) programs: the Long Term Ecological Research
(LTER) network and the National Earth Observatory Network (NEON). Although all projects submitted
to the repository must adhere to the archive’s guidelines (largely determined by the LTER and NEON
requirements), the submission format of the archive is flexible, and researchers are able to submit
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Figure 1. A simple W3C PROV-DM compliant provenance graph. In this example, two processes

(Process 1) and (Process 2), use the data from the inputs File 1 and File 2, respectively. The processes are

associated respectively with the users Alice and Bob, respectively. Process 1 informed (transferred information

to) Process 2, which generated the output File 3.
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formalized provenance files as a part of their projects. However, this is currently not required nor is it
generally done by researchers22.

These two examples, CERN and HF, provide a window into the utility of data provenance from
tracking sub-atomic particles to recording the dynamics of whole ecosystems of interacting organisms.
We find, regardless of the apparent differences between particle physics and ecology, that there is a
common thread that spans these distinctions: the imperative to generate research that is intelligible to
other investigators and to those that conducted it in the first place24,25. Ecology and physics, as well as all
other scientific disciplines, have had methods for communicating findings and determining the veracity
of data, such as notebooks, peer-review, metadata and culture (researcher, laboratory or institutional
esteem); however, the current computationally-driven nature of these fields both necessitates and enables
new ways to provide useful information in this regard.

Conclusion & Discussion
Research reproducibility affects many fields. We suggest that providing access to data and source code are
only the first two of many steps. Data-provenance formalizes and contextualizes the relationships among
publications, data and software artifacts. Furthermore, publishing provenance increases the quality of a
publication by providing the complete context of data collection and transformation. For example, as
provenance promotes comparison across publications, it aids in comprehension between interesting new
results and errors in analyses. Tools are being actively developed to help scientists capture those data in
an unobtrusive manner with little disruption to their workflows.

The scientific community has an important, active part to play in how these tools are developed and
deployed. As exemplified by CERN and Harvard Forest, scientists in a broad array of scientific discpilines
are recognizing the need and utility of provenance capture tools. However, integrating the necessary
technology requires broad cultural shifts that extend beyond disciplinary boundaries. Scientists, publishers,
and educators must push for further transparency and formalism when describing computational analysis.
Many existing open-data repositories host references to scripts—not to mention the open-source
community with its own venues—while some, including Dataverse (http://dataverse.org/) and DataOne
(http://dataone.org/), have been working on deploying solutions to support the contribution of data
provenance alongside datasets and analytical scripts.

Figure 2. Research teams across the sciences are integrating data provenance methods into their research

practices in response to increases in computational demands. On the left: (Photo Credit: A. Trisovic) The

Compact Muon Solenoid (CMS) experiment at CERN during the technical stop in February 2017. On the right:

(Photo Credit: M.K. Lau) One of several research towers used for ecological data collection at Harvard Forest.

In addition to providing infrastructure for researchers to view the forest at multiple levels in the forest canopy,

many instruments for automated observations, such as wind speed, CO2 flux, and leaf phenology, are placed on

these towers. Data are relayed to a controlling computer via a wireless network.
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If data provenance becomes a well-established convention, eventually the provenance metadata
associated with each dataset will provide the complete data record. Such a record enables data users to
give credit to both the authors of a referenced dataset as well as all the contributors of datasets and
software from which the data were derived. As a result, this provides incentives for researchers to share
resources (data, code, and process) as it will increase the visibility and recognition of their work.
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