N

N

Evaluation and Aggregation Properties of Thermal
Infra-Red-Based Evapotranspiration Algorithms from
100 m to the km Scale over a Semi-Arid Irrigated
Agricultural Area
Malik Bahir, Gilles Boulet, Albert Olioso, Vincent Rivalland, Belen
Gallego-Elvira, Maria Mira, Julio-Cesar Rodriguez, Lionel Jarlan, Olivier
Merlin

» To cite this version:

Malik Bahir, Gilles Boulet, Albert Olioso, Vincent Rivalland, Belen Gallego-Elvira, et al.. Evaluation
and Aggregation Properties of Thermal Infra-Red-Based Evapotranspiration Algorithms from 100 m
to the km Scale over a Semi-Arid Irrigated Agricultural Area. Remote Sensing, 2017, 9 (11), pp.1178.
10.3390/rs9111178 . hal-01651305

HAL Id: hal-01651305
https://hal.science/hal-01651305
Submitted on 28 Nov 2017

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche frangais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-01651305
https://hal.archives-ouvertes.fr

remote sensin N
?J & bpy

Article

Evaluation and Aggregation Properties of Thermal
Infra-Red-Based Evapotranspiration Algorithms from
100 m to the km Scale over a Semi-Arid Irrigated
Agricultural Area

Malik Bahir 12, Gilles Boulet I'* ¢/, Albert Olioso 2 */, Vincent Rivalland 1,
Belen Gallego-Elvira 3, Maria Mira 2 (, Julio-Cesar Rodriguez %, Lionel Jarlan !
and Olivier Merlin !

1 CESBIO, Université de Toulouse, CNES/CNRS/IRD/UPS, 31401 Toulouse, France;
malikbahir@gmail.com (M.B.); vincent.rivalland@cesbio.cnes.fr (V.R.); lionel jarlan@ird.fr (L.J.);
olivier.merlin@cesbio.cnes.fr (O.M.)

2 EMMAH, INRA, Université d’Avignon et des Pays de Vaucluse, 84000 Avignon, France;
albert.olioso@inra.fr (A.O.); maria.mira@uab.cat (M.M.)

3 NERC Centre for Ecology & Hydrology, Wallingford OX10 8BB , Oxfordshire, UK; belgal@ceh.ac.uk

Grumets Research Group, Department of Geography, Universitat Autonoma de Barcelona (UAB),

08193 Bellaterra, Catalonia, Spain

Departamento de Agricultura y Ganaderia, Universidad de Sonora, 83000 Hermosillo, Sonora, Mexico;

jerod@guayacan.uson.mx (J.C.R.)

*  Correspondence: gilles.boulet@ird.fr; Tel.: +33-561-558543

Received: 23 August 2017; Accepted: 10 November 2017; Published: 17 November 2017

Abstract: Evapotranspiration (ET) estimates are particularly needed for monitoring the available
water of arid lands. Remote sensing data offer the ideal spatial and temporal coverage needed
by irrigation water management institutions to deal with increasing pressure on available water.
Low spatial resolution (LR) products present strong advantages. They cover larger zones and are
acquired more frequently than high spatial resolution (HR) products. Current sensors such as
Moderate-Resolution Imaging Spectroradiometer (MODIS) offer a long record history. However,
validation of ET products at LR remains a difficult task. In this context, the objective of this study is
to evaluate scaling properties of ET fluxes obtained at high and low resolution by two commonly
used Energy Balance models, the Surface Energy Balance System (SEBS) and the Two-Source Energy
Balance model (TSEB). Both are forced by local meteorological observations and remote sensing data
in Visible, Near Infra-Red and Thermal Infra-Red spectral domains. Remotely sensed data stem from
Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and MODIS sensors,
respectively, resampled at 100 m and 1000 m resolutions. The study zone is a square area of 4 by 4 km?
located in a semi-arid irrigated agricultural zone in the northwest of Mexico. Wheat is the dominant
crop, followed by maize and vegetables. The HR ASTER dataset includes seven dates between
the 30 December 2007 and 13 May 2008 and the LR MODIS products were retrieved for the same
overpasses. ET retrievals from HR ASTER products provided reference ET maps at LR once linearly
aggregated at the km scale. The quality of this retrieval was assessed using eddy covariance data at
seven locations within the 4 by 4 km? square. To investigate the impact of input aggregation, we first
compared to the reference dataset all fluxes obtained by running TSEB and SEBS models using ASTER
reflectances and radiances previously aggregated at the km scale. Second, we compared to the same
reference dataset all fluxes obtained with SEBS and TSEB models using MODIS data. LR fluxes
obtained by both models driven by aggregated ASTER input data compared well with the reference
simulations and illustrated the relatively good accuracy achieved using aggregated inputs (relative
bias of about 3.5% for SEBS and decreased to less than 1% for TSEB). Results also showed that MODIS
ET estimates compared well with the reference simulation (relative bias was down to about 2% for
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SEBS and 3% for TSEB). Discrepancies were mainly related to fraction cover mapping for TSEB and to
surface roughness length mapping for SEBS. This was consistent with the sensitivity analysis of those
parameters previously published. To improve accuracy from LR estimates obtained using the 1 km
surface temperature product provided by MODIS, we tested three statistical and one deterministic
aggregation rules for the most sensible input parameter, the surface roughness length. The harmonic
and geometric averages appeared to be the most accurate.

Keywords: energy balance; Thermal Infra-Red; scaling

1. Introduction

Monitoring water uptakes from groundwater reservoirs is important for water resources managers
as well as water allocation and water rights regulation authorities. This is especially true in semi-arid
lands where many aquifers face an average depletion of 0.5 to 1.5 m/year due to unsustainable
pumping for irrigation [1]. EvapoTranspiration (ET) is the largest water loss of most agricultural areas.
In many cases, it represents the only loss of water on the long term if one assumes that irrigation
excess mostly contributes to deep drainage and that the corresponding water flux eventually reaches
the groundwater table and participates to recharge. Groundwater uptake can therefore be scaled to
total cumulative ET on an annual basis at least. Up to now, regional scale evaluation of ET relies
on distributed information obtained either through hydrological modeling, Remote Sensing (RS) or
a combination of both [2].

In order to estimate ET from the sole RS and meteorological data, methods based on Thermal
Infra-Red (TIR) information are therefore increasingly used in the context of irrigation monitoring [3,4].
Due to its tight coupling with surface energy balance and water stress, surface temperature information
provides a way to estimate ET independently from any knowledge on the various components of
the water balance.

Two kinds of methods are implemented to retrieve water stress and actual ET rates from
a combination of TIR as well as Visible (VIS) and Near Infra-Red (NIR) RS data: those generally
referred to as “contextual” methods, and those known as “residual” or “single pixel” methods [5].

“Contextual” methods estimate the water status of a given pixel by scaling its value between
non-evaporating and fully-evaporating conditions according to maximum and minimum surface
temperature values observed on the image. It assumes that cold and hot pixels correspond to wet and dry
conditions, respectively. Since those extremes depend as well on the surface conditions, particularly the
amount of vegetation, extremes are derived for each class of either the Normalized Differential Vegetation
Index (NDVI) [6], albedo [7] or both [8]. These methods have operational applications for irrigated lands
with large fields and high-resolution (HR) TIR data (hectometric resolution data from sensors on board
LANDSAT platforms or from the ASTER sensor). Their applicability drops in the context of dryland
agriculture and low-resolution (LR) data (e.g., kilometric resolution data from MODIS sensors) [9-11].
Those methods are therefore more adapted to HR TIR data, which are available at a weekly interval only,
and usually at lower frequencies due to cloud conditions. In order to use the routinely available LR data
acquired daily over the globe with a revisit consistent with typical timescales of the hydrological cycle
(droughts of few days to several weeks), data sharpening techniques [12-17] can be used to infer surface
temperature at a higher spatial resolution, but they all rely on an a priori link between vegetation cover
and surface water status, whose validity can be challenged.

“Residual” or “single pixel” methods, on the other hand, derive an evaporation rate in actual
conditions for each pixel independently from the others. Latent heat is computed as the residual
term of the surface energy balance equation. The various terms of that energy balance (net radiation,
soil heat flux, sensible heat flux) are derived for a single source representing the soil vegetation
composite (single source models, e.g., SEBS [18,19]) or for two sources with two separate energy
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budgets for the soil and the vegetation (e.g., TSEB [20,21]). The latter is often considered as more
realistic and provides acceptable estimates of water stress levels [22]. Those methods are more easily
applicable to derive operational products because they can be fed with a combination of LR sensors
and reanalysis data. There is a growing number of LR ET products based on TIR data ([3,23]) acquired
by LR sun-synchronous satellite platforms such as MODIS or geostationary satellites. Contrarily to
“contextual” methods, which are rather insensitive to systematic errors on Land Surface Temperature
(LST) estimates, the “residual” methods add the uncertainties related to each flux (net radiation,
soil heat flux, sensible heat flux) computed from an error prone estimate of the LST. Because they
use aerodynamic equations for the computation of the sensible heat flux, they are also sensitive to
the quality of the available information on surface roughness and meteorological data such as air
temperature and wind speed on a pixel basis. Their validity remains therefore questionable.

The Simple Energy Balance System (SEBS) is a single-source model that uses the Monin—-Obukhov
Similarity Theory (MOST) to estimate the sensible heat flux (H) as the transfer of heat from the surface
to the height of atmospheric parameters measurements (air temperature and relative humidity, wind
speed, incoming shortwave radiation). Its specificity lies in the relationship between the roughness
length for heat transfer and the roughness length for a momentum transfer, which is derived from
the crop height parameters through the kB~! parameter.

The Two-Source Energy Balance (TSEB) is a two-source model, which achieves two energy
budgets separately, one for the soil and one for the vegetation. It partitions the available energy
between the two compartments according to the vegetation fraction cover. The two-source approach
has the advantage of not requiring the inclusion of the kB~! parameter used in the calculation of
turbulent fluxes to relate the aerodynamic and surface temperatures [18].

Performance assessment of HR retrievals of latent heat fluxes is usually achieved through
intercomparison with flux measurements obtained from local measurements (lysimeters, Bowen
Ratio ...), nowaday mainly from eddy covariance (EC) systems [22]. For LR data, the amount of EC
stations to be installed, ideally for each field within a pixel, requires a multiplication of EC towers,
which is largely intractable. Therefore, a limited amount of validation exercises of ET products at LR
have been carried out. There are mostly three ways of validating LR ET products at scales representative
of LR products, i.e., the km scale and above: (1) using one flux tower for an homogeneous landscape
(generally natural vegetation or forests), (2) by scintillometry [24-27], or (3) through water balance
modelling at the catchment scale [28,29]. Regarding the first category, many studies have evaluated ET
products on FLUXNET biomes with large extension, almost never in intensive agricultural areas [30-32].
Concerning the second category, scintillometer applications have been limited by the number of dates
or models involved, therefore lacking any generalization of their outcomes. The third category is
only applicable for large catchments with well-known water budget components and limited surface
water-groundwater interactions.

LR ET products need to be better evaluated. In the absence of observed latent heat flux data at
the relevant scale, one can rely on comparing aggregated HR ET retrievals at the Landsat or ASTER
overpass times (airborne sensors have been used also) and those retrieved at LR. These methods
have been often used for the evaluation of other biophysical products such as Leaf Area Index (LAI),
fraction of absorbed photosynthetically active radiation or albedo [33,34]. It can also be useful to
combine HR and LR ET products in order to maximize revisit frequency while taking advantage
of the field-scale outputs from the HR products. Multiscale evaluation has rarely been carried out.
The method proposed here to evaluate LR ET retrievals consists in validating HR retrievals using EC
data for the main land use classes, and comparing LR and HR retrievals aggregated to the LR pixel.

Parameter estimation at LR is also an issue. In particular, deriving all parameters necessary to
run ET retrieval algorithms at the km scale proves to be difficult [35]. This is particularly the case
for the roughness length parameterization. The validity at LR of the methods initially used to derive
surface parameters from HR RS data is questionable. In particular, estimating an effective vegetation
height over various fields within the kilometer square is difficult and cannot be simply derived from
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an average reflectance value obtained at low resolution. On the other hand, HR data in the VIS and
NIR wavelengths are routinely available and lead to more robust methods to estimate land use and
crop cover types as well as their corresponding biophysical parameters such as crop height. There is
therefore a need to apply scaling procedures to some surface variables such as crop height or minimum
surface resistance, which cannot be easily derived directly from existing LR RS data.

Moreover, since HR and LR products are not available at the same frequency, producing
continuous ET though temporal interpolation will likely result in combining products at both scales.
To do so, one must ensure the consistency in scaling products from HR to LR. Those products should
at least be unbiased, i.e., aggregated HR fluxes to LR should match the LR ET products generated from
LR data on the same date. Scaling properties are frequently studied by using LR RS data generated
from HR data to get rid of discrepancies in the input variables from different sensors on different
platforms. To analyse scaling properties and the subsequent biases, radiances are linearly aggregated
to generate surface temperatures and reflectances at LR. McCabe and Wood [36] for one date only and,
more recently Ershadi, McCabe et al. [37], for several dates within a season, have used the single-source
model SEBS to assess those biases, and found scale discrepancies on instantaneous LE retrieval of up
to 15%. They attributed this difference to a change in the roughness length parameters of the land
surface due to the aggregation.

Similar work, within a theoretical frame (aggregation between contrasted patches rather than
real RS data), were carried out by Kustas and Norman [38] using the dual source model TSEB.
They concluded that, for those very contrasted conditions, there was a bias up to 50 W/m? on
the instantaneous retrieval between the aggregated latent heat fluxes and the latent heat flux computed
from surface average parameters at the km scale. On the other hand, the same authors have performed
similar work on real data for a mixture of riparian trees and stressed shrubs [39] and a realistic
contribution (fraction cover f.) of both patches to the LR pixel (with a contribution of the most extreme
conditions of less than 20%). They concluded that divergence was significantly less than 50 W /m?,
which is the typical precision of most Energy Balance (EB) models [40] for retrieving instantaneous
latent heat flux. They also found that simple averaging of displacement height and an averaging of
roughness length based on a lognormal to the power —2 reduced the bias down to less than 10 W/m?.
Both studies pointed out the need to use proper efficient scaling relationships in parameter estimation
at LR. There has been abundant literature on the subject from back in the 1990s, mostly based on
theoretical works deriving deterministic [41] or statistical [42] relationships between local and regional
parameters for land—atmosphere exchange modelling. For roughness length, Wassenaar et al. [43]
conclude that a geometric averaging of the roughness length is performing best; this is also the scaling
proposed by Taylor [44].

Previous studies with SEBS [45,46] agree on the important role of roughness parameters in
the estimation of ET. They provide at least three main findings: (1) that, for SEBS, the main uncertainty
is linked to roughness estimation [47]; (2) that the original formulation of the roughness length for heat
transfer tends to overestimate ET with the original use of the soil component of the kB~! parameter [48];
and (3) that the limited accuracy of height estimate (and subsequently the roughness length for
momentum transfer) from RS data is rarely taken into account, with few empirical relationships that
tend to diverge for high NDVI values [49]. The latter becomes more significant when LR RS data are
used to derive surface roughness lengths. However, none of those aggregation rules (apart from [43])
have been evaluated with actual data acquired at LR on very heterogeneous land surfaces.

TSEB appears to provide good ET estimates and to be less sensitive to roughness length
parameters [22]. One expects flux conservation between HR and LR. The relative contribution of
the soil and the vegetation temperatures through the vegetation fraction cover parameter can be
the issue at LR and the separated soil and vegetation fluxes conservation would be affected [50].

Up to now, most studies on scaling properties have focused on one of the most common models
only (SEBS, TSEB or SEBAL). The widely used SEBS and TSEB “single pixel” models have not
been compared on the same landscape [22,51]. Furthermore, intercomparison has been carried out
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usually for a limited amount of HR images [46,52,53]. In addition, few studies were dedicated to
the comparison of separate satellite sensors.
In this paper, we address two objectives:

e To investigate ET flux scaling properties from HR to LR using data from the same sensor
(i.e., ASTER), as well as data stemming from different sensors onboard the same platform (i.e.,
ASTER, MODIS).

e To develop and evaluate new and existing scaling relationships based on easily obtainable RS
quantities to relate local HR and LR roughness lengths.

We use two of the most common ‘single-pixel’ models, TSEB and SEBS, to estimate ET fluxes at
the satellite overpass time and aggregate the values to a daily time scale using the algorithm presented
in Delogu et al. [54]. The results are analyzed for seven dates throughout an entire growing season in
a semi-arid irrigated area in northwest Mexico, for which both models have been evaluated using EC
measurements in [22].

2. Data

2.1. Study Area

The study area is located in the Yaqui region (27.4°N, 19.9°W), Sonora, in the northwest Mexico.
The region covers 225,000 ha between the Cortez Sea (northeast) and the Sierra Madre mountains
(southwest), and is the largest agricultural area in the country (Figure 1). More than half of the fields
are cultivated with winter wheat, the dominant crop, and the rest with a mix of broccoli, beans, chili,
potatoes, peas, safflower, orange trees and maize. When considering the type of crops and the spatial
patterns, the study area is representative of the region and supports the idea that the results presented
here can be extended to the whole agricultural region. The climate is considered as semi-arid with
an annual potential ET of 2233 mm (mean value between years 1971 and 2000) and a low annual
precipitation rate of 290 mm essentially spread between June and September. Only 42.8 mm of rain falls
between January and June. About 90% of the water use concern irrigation, the water being withdrawn
from the Alvaro Obregon Reservoir with a capacity of 3 km?. In this hydrological context, an accurate
method to estimate water losses by ET is essential for managing the water resources at the regional
scale. Between December 2007 and May 2008 an international field measurement campaign was set up
on a4 x 4 km? zone located in the South of Obregon city and an important HR and LR RS dataset
covering the same period and area was collected.

Figure 1. Study zone location in North America (a); the Sonora state (b); and the irrigated perimeter (c).
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2.2. In Situ Measurements

The meteorological dataset was acquired at a height of 10 m from an automatic weather station
located at the center of the 4 by 4 km? square (Figure 1c). Half hourly global solar and atmospheric
incoming radiations, air temperature and relative humidity as well as wind speed were recorded. Eddy
covariance data was acquired at 2 to 3 m at seven sites located on different crop plots to represent
the diversity of crop types and phenological stages as well as contrasted simultaneous soil water
conditions related to irrigation patterns (Figure 2). At each site, net radiation, soil heat flux (at 0.05 m
depth), surface temperature and soil moisture (at 0.05 and 0.3 m depth) were measured each 10 s
before being averaged over 30 min periods. The latent and the sensible heat fluxes were acquired at
a frequency of 10 Hz, processed using the FLUXNET guidelines [55] and converted to 30 min flux
average. The devices used for all the automatic measurements at the different EC and meteorological
stations as well as the fluxes quality analysis were described in Chirouze et al. [22].

- |
A wheat [2] L A wheat [1] A
broccoli
/beans [3]

A chickpea[4]!
chili pepper [5] A '

A

potatoes / sorghum [6]

A\ safflower [7]

Figure 2. Satellite view of the study zone with respective positions of the eddy covariance flux
towers and their associated crop type (Imagerie© 2012 Cnes/Spot Image. DigitalGlobe. Données
cartographiques© 2012 Google (City, US State abbrev., Country ; Inst. Nat. Estat. y Geog, INEGI).

2.3. Remote Sensing Data

The ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) sensor on
board the Terra satellite provided a dataset made of four products and eight dates (30 December 2007,
23 February 2008, 10 March 2008, 11 April 2008, 27 April 2008, 6 May 2008, 13 May 2008 and 29 May
2008) covering the 2007-2008 cereals growing period. The first three products consisted of surface
reflectances in different spectral ranges and the last one was a top of the canopy radiative surface
temperature product at 90 m resolution (Table 1). All products are atmospherically corrected and
include LST retrieval includes emissivity correction. The local overpass time was between 10:30 a.m.
and 11:00 a.m. and the swath of each product was always the same (60 by 60 km?).

The MODIS (MODerate resolution Imaging Spectroradiometer) sensor also onboard the Terra
satellite offered a daily global coverage at LR. The MODIS dataset was a blend of four products at 1 km
resolution directly usable in both energy balance models (Table 1). They were extracted for the same
dates as the ASTER dataset. ASTER and MODIS overpass times are approximately coincident since
they both are onboard the same satellite platform.
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Table 1. ASTER and MODIS products used in this study.

Sensor Products Frequency Resolution [m] Bands/Product/Subdatasets
Band1
AST07XT—VNIR 15 Band2
Band3N
Band4
Band5
Band6
Band?7
Band8
Band9
AST05 90 Surface emissivity [-]
AST08 90 Surface temperature [°K]
Surface temperature [°K]
Emissivity Band31
Emissivity Band32
QC_Day (Quality control)
NDVI
VI Quality QA (Quality control)
Lai_1 km
FparLai_QC (Quality control)
Black Sky Albedo SW
White Sky Albedo SW

ASTO7XT—SWIR

ASTER 16 days 30

MOD11A1 Daily ~1000

1 ~
MODIS MOD13A2 6 days 1000

MOD15A2 8 days ~1000

MCD43B3 16 days ~1000

2.4. Remote Sensing Data Preprocessing

The quality information contained in each product was taken into account and led to the removal
of the last acquisition date reducing the ASTER dataset to seven dates. Concerning MODIS, all
synthesis products (NDVI, albedo) were linearly interpolated between the available dates.

In order to provide easier comparison, ASTER images and MODIS images were resampled at 100 m
and 1 km resolution, respectively [16]. All ASTER products were resampled using a bicubic interpolation
and reprojected to the UTM12 system on a ~100 m resolution (100.49 m x 101.46 m) grid that fitted
the study area. MODIS products were resampled at 1 km resolution on a grid based on the largest
zone covered by the ASTER images using a bicubic method and reprojected in the UTM12 projection
system. This projected the data on a squared regular grid instead of the irregular parallelepipoidal pixel
shape of the original sinusoidal projection of the MODIS products. The grid defined by the sinusoidal
projection of the MODIS products is centered on the intersection between the Equator and the Greenwich
meridian where the sinusoidal grid produces square-like pixels, whereas our study area is located far
from both latitudinal and longitudinal references. This resulted in a native resolution of about 900
by 1800 m?. Therefore, in what follows, the aggregation performance for MODIS will be assessed at
a more representative 2000 m spatial resolution instead of the usual 1 km resolution, in agreement with
previous work on surface temperature disaggregation using the same dataset and on the same area [16].

3. Energy Balance Models Parameterization and ET Calculation

3.1. Available Energy

In both TSEB and SEBS, the available energy is considered as the difference between the total net
radiation (R,) and the ground heat flux (G). The net radiation is estimated with the same equation [22]:

Ry = (1 — )R + €Rjyy — €0 Ty 5" (1)

where Ry, and Ry, are, respectively, the shortwave and longwave surface incoming radiation,
« the albedo, ¢ the emissivity and Ty, the radiative temperature of the surface. Ry is taken from
the meteorological station and Ry, = 1.24(e,/Ts)0 T.*, where ¢, and T, are the actual vapour pressure
and the temperature of the air measured by the meteorological station. The ground heat flux (G) is
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estimated according to the SEBAL model formulation [4], which proved to be the more accurate in this
context [22]:
G= [Tsu,f (0.0038 + 0.0074 &) (1 ~ 098 NDVI‘*)} R 2)

3.2. SEBS Model

The SEBS model [19] derives the latent heat (LE) flux as the residual term of the energy balance
equation, LE = R, — G — H, where H is the sensible heat flux.

SEBS computes turbulent exchanges between the source at the aerodynamic level and the reference
level z, where atmospheric forcing data is available, usually just a few meters above the crop height.
Heat transfers are based on the Monin-Obukhov Similarity Theory (MOST) in the Atmospheric
Boundary Layer (ABL). Bulk ABL similarity functions proposed by Brutsaert 1999 [56] describe
the wind and temperature profiles in the turbulent environment (Equations (3) and (4) (see [56,57]):

_ Taero — Ta Taero — Ta z—do z—do Zon
H=pc T P [ln( Z0n ) lFh( L jUth(T) ’ ©)

Uy z —do z —dy Z0m
1) ~ Y (), 4
o= () - () ()] @
where 7, is the aerodynamic resistance to heat transfer at the surface-atmosphere interface, u is the wind
velocity at level z, k = 0.4 is the von Karman’s constant, dy is the displacement height (dy ~ h, x 2/3,

h¢ being the crop height), zgy, is the roughness length for heat transfer and zy,, the roughness height
for momentum transfer (zg,, ~ he X 0.123). T, and Tgeyo are the temperature of the air at reference and

aerodynamic levels, respectively, p is the density of the air and c, is the specific heat capacity of air.
¥, and ¥, are the stability correction functions for momentum and sensible heat transfer and L is
the Monin—-Obukhov length.

The main originality of SEBS lies in the derivation of an equation that relates the roughness length
for heat transfer to the roughness length for momentum transfer according to the soil and vegetation
individual drag coefficients:

_ Z0m
ZOh - exp(kB_l)/ (5)
kB~ = Ay f2+ A, fo fs + kB! 2, (6)

where f; is the vegetation fraction cover (in a pixel), and f; the bare soil fraction cover with f. + fs = 1.
A1 describes the vegetation aerodynamic properties, kB; ~! the bare soil properties, and A, represents
the interactions between vegetation and bare soil. All these terms are estimated as in Su et al. [19].

The second originality of SEBS is that the model provides bounding relationships to constrain
the latent heat flux between two hypothetical extreme surface wetness conditions (dry and wet, which
correspond to non-evaporative and potential conditions respectively):

Hdry =R, —G; LEdry =0, )

R, — G— PCp (Es;ea)}
Tew
Hwet = Rn -G— LEwet = ’ (8)

()

where LEgy, and LEy are the latent heat fluxes in dry and wet conditions, e; the saturation vapor

pressure temperature T, 7y the psychrometric constant and A the slope of the saturation vapor pressure
at temperature T,.
The relative evaporation (A;) is then computed to estimate LE as LE = Ay LEy;:

H— Hwet

N=1— ———,
' Hdry - Hwet

)
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which corresponds to the residual calculation of LE bounded by the dry and wet conditions’ values.
This potentially induces thresholds, which can affect the nonlinearity of the scaling properties between
HR and LR (a threshold locally encountered at HR is possibly not present for average conditions at BR).

3.3. TSEB Model

TSEB [20] solves two different energy budgets for the soil and the vegetation components. The net
radiation flux, estimated as described in Equation (1), is partitioned according to the vegetation and
bare soil cover fractions following:

Rn,s = Hs + LEs +G = Rn fs/ (10)
Rn,c = Hc + LEc = Rn fc/ (11)
T, — T, T. — T,
Hs =pcp 1’; r: and Hc = p ¢y Cra 2. (12)

H,. and LE, are the sensible and latent heat fluxes at the vegetation/atmosphere interface and
H; and LE; the same heat fluxes at the bare soil/atmosphere interface. T, and T; are, respectively,
the vegetation and bare soil temperature, s [21] is an additional resistance to describe the resistance to
heat transfer in the ABL at the bare soil/atmosphere interface, and r, the atmospheric resistance to
heat transfer at the surface-atmosphere interface is expressed according to MOST.

TSEB computes the soil and the vegetation temperatures from their respective energy
balance equation as well as the link between the total radiative surface temperature and
the component temperatures:

Turp = [fT8 £ (13)

TSEB first assumes that the vegetation is unstressed and transpires at a potential rate defined by
the Priestley-Taylor formulation:

A
LEc =13 fg 5 Rue, (14)

where f, is the relative fraction of the vegetation that is green. Since LAl is estimated through the NDVI,
which is an indicator of the green vegetation development, and f, is here fixed to 1.

The canopy energy budget (Equation (11)) provides a first estimate of T by introducing LE. in
potential conditions (Equation (14)) in Equation (11). When T, is known, Ts can be computed from
Equation (13) and then H; from its formulation detailed in Equation (12). Finally, LE; is calculated as
the residual term of the soil energy balance (Equation (10)). If the resulting LE; is positive, the solution
is reached and the hypothesis of an unstressed vegetation is considered as valid even if neither the soil
or the vegetation evaporate at a potential rate. If the resulting LE; is negative, the unstressed vegetation
assumption is challenged, so LE; value is decreased until LE; is equal to 0. Then, new H; and T;
values are computed from Equations (10) and (12) and new T, H. and LE. values from Equation (13),
Equation (12) and Equation (11), respectively. If LE, is positive, a new solution is reached. In addition, if
LE, is negative, the vegetation part is also considered as fully stressed and dry and LE, is set to 0. H. can
then be computed from Equation (11) and a new T, value from Equation (12). Ts can then be estimated
according to Equation (13) and new H; and G values from Equation (12) and Equation (10), respectively.

3.4. Daily ET Fluxes Generation

The latent heat fluxes computed by SEBS and TSEB are obtained at the time of satellite overpass.
In order to compute daily evapotranspiration ET;, we used an extrapolation algorithm based on
an empirical diurnal shape of the evaporative fraction during a day in clear sky conditions (see [54]).
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If one obtains an instantaneous value of the ET flux and owns a daytime dataset that allows
computing a cumulative available energy, the corresponding daily ET can be estimated as:
ET;

1
aF, % AEs (15)

ETd:EPXAEd:

where ETj is the daily cumulative ET value, ET; the instantaneous evapotranspiration flux, which
corresponds to the latent heat flux ET; = % (with A being the latent heat of vaporisation), EF = EE
is the evaporative fraction (considered as constant during daytime) defined as the ratio between
the instantaneous ET value and the instantaneous available energy value, and AE; is the daily
cumulative available energy computed as the daily cumulative net Radiation flux (R,,4), considering

that the cumulative soil heat flux at the daily scale can be neglected. R,,; is estimated assuming that

the R;;/R;; ratio has a sinusoidal evolution along the year as stated in Gomez et al. [58]:

2r(JD
AE; =R,y = [al + apsin (7-[(]365—'—613)) ] Ry, (16)

where R,;; is the instantaneous net radiation flux, /D is the day of the year and a1, a2 and a3 are obtained
for each hour of the day using mean local measurement to calibrate the relationship (not shown).

4. Methods

4.1. General Design of the Experiments

In order to evaluate the impact of spatial resolution on flux estimates by the two models, SEBS
and TSEB, we designed several numerical experiments based on the MODIS and the ASTER data.
Figure 3 describes the flowchart of the four flux processing chains with each Energy Balance (EB)
model (aggregated ASTER, LR ASTER, MODIS). The sole difference between those chains is the type
and scale of the RS input data. The way one obtains those inputs is described in Sections 4.2—4.4 at and
eventually the way one aggregates those inputs in the case of SEBS (Section 4.5).

e Ina preliminary step, HR maps of ET were computed with both models from ASTER products
(dataset named ‘HR-ASTER’ including spectral surface reflectances, spectral surface emissivities,
radiative surface temperature and surface fluxes). ET maps were evaluated against the eddy
correlation measurements performed in seven crop fields. These maps were aggregated at
the kilometric resolution to be used in the following steps as a reference dataset to evaluate ET
maps obtained at low resolution. This aggregation was done considering that surface fluxes can
be averaged using a simple arithmetic mean. The reference dataset at low resolution was named
‘agg-ASTER'.

e In the second step, LR maps of ET were produced from the high-resolution ASTER products
aggregated at the kilometric resolution (equivalent to MODIS resolution). LR RS products
were used for all inputs of both models. This dataset was named ‘LR-ASTER’. ET maps at LR
were evaluated against ‘agg-ASTER” ET maps. Since both input datasets at LR and HR came
from the same sensor, the biases between the two estimations of ET were only related to how
the nonlinear relationships in the model translates the variability of inputs at HR into an average
LR outputs that can be significantly different than the one generated using LR inputs.

e Ina third step, LR maps of ET were produced from the MODIS products (surface temperature,
emissivities, albedo, NDVI) at 2 km resolution, as it would be done in a standard application
of SEBS and TSEB using MODIS data. These dataset (named ‘MODIS’) was evaluated against
‘agg-ASTER’ ET maps. In this case, differences between ET maps were related to a combination of
the differences in products, input parameter derivations and heterogeneity /nonlinearity issues.

e In a fourth step, we analysed the possibility to derive SEBS and TSEB input parameters at
low resolution by aggregating parameters estimated from high-resolution data. This scenario
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considered the possible use of high-resolution images in the solar domain from Earth observation
satellites for deriving model inputs at the kilometric resolution. Decametric information are now
increasingly available, in particular thanks to Sentinel? satellites. We expected that this scenario
would provide a deeper analysis of the potential source of biases in deriving ET and to develop
more adequate aggregation rules for the relevant inputs.

Output aggregation to LR Aggregated
ASTER

Applied at HR Appplied at LR

Input aggregation to LR
(averaging)

Input aggregation to LR
(effective roughness)

LR input EB
model

ASTER input aggregation to LR 3]
(effective roughness) model

Figure 3. Model application rationale (energy balance model is either SEBS or TSEB).

Several aggregation rules were tested by comparing the three LR ET maps generated by each
model (‘MODIS’, 'LR-ASTER’ with input parameters derived from LR-inputs and ‘LR-ASTER’ with
effective values of the input parameters, derived from HR data) with the reference ‘agg-ASTER” ET
map for the same model.

The aggregation rules tested with ASTER input data were also evaluated with the MODIS inputs
dataset. It means that aggregated (“effective”) surface roughness lengths values derived from ASTER
data were used with the other MODIS inputs to produce ET maps. The results of this comparison will
be useful to many MODIS data users, which, in general, benefit from a HR VIS/NIR dataset extracted
from Landsat, for example. It can lead them to derive effective LR surface roughness lengths from HR
data in order to improve the parameterization of the EB models at LR and then the ET output fluxes.

7

4.2. Estimating Surface Parameters at HR from ASTER Products

Reflectances for each band were combined to estimate the land surface properties (Figure 3)
required by both models. Albedo («) was computed according to Liang [59]:

aA5TER — 0.484 o1 +0.335 pp — 0.324 p5 + 0.551 pg + 0.305 pg — 0.367 pg — 0.0015, (17)

where p; referred to the spectral reflectance from band i.
Broadband emissivity (¢) was computed from spectral emissivities ¢; following Ogawa et al. [60]):

eASTER — 0121 &17 + 0.194 £15 + 0.323 14 + 0.242. (18)

NDVI was calculated from the NIR (psy) and red-VIS (p;) bands as:

NDVIASTER _ P3N — 2. (19)
P3N + 02
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LAI and fraction cover (f;) were estimated from NDVI values following [61]:

1 NDVIe — NDVI
LATASTER — __— © 20
114 "NDVIey — NDVIy’ (20)

with NDVIy = 0.94 and NDVIj = 0.14, and:

(21)

NDVIw — NDVIy’

To ensure that all distributed parameters were derived from the sole remotely sensed information,
crop heights (h) were also estimated from NDVI values. Knowing the repartition of the different
land use classes on the 4 x 4 km? square, it was clear that the majority of the area was covered
by cereals. Hence, for each pixel (i), crop height was estimated as a linear regression between its
temporal maximum and minimum NDVI values (respectively, ND V1, (i) and NDVI,,;,,(i)) and realistic
maximum and minimum cereal crop heights” values. The period covered by the ASTER dataset
contained dates from the whole winter cereal growing period from seeding to harvesting. Therefore,
the minimum height was that of a ploughed bare soil of 0.05 m equivalent height and a realistic
maximum was set to 1.3 m, which led to:

13 — 005 — x NDVI(i). (22)

")) = NDVipm (i) = NDVIp (1)

All ASTER data obtained from the original ASTER products constituted the hereafter called
"HR-ASTER’ input dataset (~100 m resolution). Vegetation height translates directly into roughness
length z,,, using the simple rule of the thumb: z,, (i) = 0.123 x h(3).

4.3. Estimating Surface Parameters at LR from ASTER Product

To compute the fluxes at LR using the Energy Balance (EB) models and low resolution ASTER
data, ASTER products were linearly aggregated to ~1000 m resolution, so that they approached
the original MODIS product resolution (Figure 3). Special care was taken for the aggregation of surface
temperature: radiative fluxes were linearly aggregated (e0Ts,?, with o = 5.67 x 1078 Wm 2K~}
the Stefan-Boltzmann constant) before estimating the surface temperatures at LR by inverting
the Stefan-Boltzman equation.

In order to account for geolocation errors between the two sensors, ASTER NDVI and surface
temperature data at low resolution were compared to the equivalent MODIS products by seeking
the maximum correlation considering different spatial shifts from —1000 m to +1000 m. A maximum
of correlation was reached for a unique spatial shift, on each direction, for each date and each product.
This spatial shift was applied to the product when the maximum of correlation was obtained with
coefficient exceeding 0.8. For dates with lower correlation coefficients, an average of the spatial shift
obtained on the other dates was applied to each direction and each product.

The spatial shifts were applied before resampling. Final surface temperature products were then
computed using resampled emissivity and radiances and led to the ASTER input dataset (Figure 3).

Eventually, input parameters for the two models (albedo, emissivity, LAI, fraction cover,
vegetation height) were derived using the same procedures as used at HR. This new dataset was called
‘LR-ASTER'.

4.4. Estimating Surface Parameters at LR from MODIS Product

Because MODIS LAI presented abnormally large values when compared to ASTER, it was
estimated from the MODIS NDVI product using the same relationships as for the ASTER datasets.
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This also applied to fractional cover f.. Albedo (blue sky value) was estimated from black-sky and
white-sky MODIS values according to [62,63]:
aMOPIS — (1 — S) agack sty + S @wite sky» (23)
where apjycksiy (directional hemispherical reflectance) was the direct component and was a function of
the solar zenith angle and aypjesy, (bihemispherical reflectance) was the diffuse component. Black-sky
and white-sky albedos corresponded to the extreme cases of purely direct or diffuse illumination. S is
the fraction of diffuse solar radiation, which varied according to the atmospheric content in aerosol
and water vapor and the solar zenith angle. S was fixed to 0.15 for all dates. The use of a constant value
for S can introduce discrepancies in albedo and then in the available energy fluxes estimates. It could
be estimated from MODIS aerosol product (MODO04-L2), but, in our area in dry season, it was usually
low and had only a small impact on blue-sky albedo values. Broadband emissivity was computed
from the emissivity products in band 31 and band 32 (g,31 and €,3;) with the relationship detailed in
Liang [64]:
eMODIS — (04587 ;51 4 0.5414 €43,. (24)

Crop height values at MODIS scale were computed similarly as for ASTER values using MODIS
NDVI product (Equation (24)).

4.5. Aggregation Rules for the Input Parameters

The possibility to monitor ET with a daily time step relies on the use of LR data in the thermal
infrared such as those provided by MODIS sensors (with a spatial resolution in the order of 1 km).
Other required information can be derived at the same resolution from MODIS data, but other sensors
with a higher spatial resolution, in particular on board of Earth Observation satellites such as Sentinel-2,
Landsat 8, FORMOSAT or others, can be very useful to introduce the representation of the spatial
variability within the MODIS pixels. This offers the possibility of deriving input parameters at LR
from their estimation at HR. When combining several platforms or using both Sentinel-2 satellites,
time revisit can be down to just a few days.

The spatial aggregation of input parameters may follow different rules depending on the linearity of
the equations. Concerning surface energy balance, we expected that roughness length was a significant
parameter in this issue, as its behaviour is nonlinear either in the calculation of the turbulent fluxes
or in its estimation from remote sensing data [43,47,65]. We also know from the literature review in
Section 1 that SEBS is known for its sensitivity to the parameterization of surface roughness lengths. It
was therefore important to assess the impact of aggregation rules for this parameter. In the case of other
parameters such as albedo, fraction cover or emissivities, an almost linear behaviour was expected.

First, three simple aggregation methods were used to generate LR roughness length from HR
data: simple linear average, geometric mean (Equation (25)) and harmonic mean (Equation (26)) [66]:

10 (zomy;) = Yooy 1og (zom), o5
and 1
n o
B ’ 26
Zomeff Zl:l ngi ( )

where «; is the relative pixel area of each individual roughness (or HR roughness). All three aggregation
rules were implemented to derive effective input parameters at LR.

We also wanted to test more deterministic methods such as those proposed by [43,47], which were
based on the inversion of the momentum flux equations in the boundary layer at LR over heterogeneous
areas. Here, we considered the inversion of the sensible heat flux, which made it possible to estimate
effective parameters by considering the aggregation of the aerodynamic conductance. If one assumes
that surface temperatures were close to air temperature T,, the aerodynamic resistance in neutral
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conditions is a good approximation of the aerodynamic conditions with true stability corrections.
In these conditions, the sensible heat flux expression reduces to:

H=p ¢y o (Tors = Ta), @7)

1 K*u
0 " n(=2) (in(2d) + kb))

where g, is the aerodynamic conductance to heat transfer at the surface-atmosphere interface in

(28)

neutral conditions (inverse of the aerodynamic resistance 7,9 in the same conditions). If one assumed
that, in those conditions, surface temperatures were similar at HR and LR, and our purpose was to
find effective roughness values reducing as much as possible the difference between the HR and LR
aerodynamic conductances g;9. The solutions were reached numerically by finding the effective (LR)
surface roughness lengths that solves Equation (30):

Y | %iga0i A Sateffs (29)

or:

n - id i _ z—d _
Y, [ln(w) + kB 11} — (In <W> — kB 55 =0, (30)

XiZOmi Z0mef f

where g,; is the aerodynamic conductance of HR pixel , g,0.¢ the effective value at LR, and kB~1 off
the effective kB~!, which allows deriving the effective roughness Zomefr at LR (Equation (5)). Once
computed, the effective surface roughness lengths were used as input into the models at low resolution
together with the ‘LR-ASTER’ input dataset. The new ET maps were compared to the ‘agg-ASTER’
ET maps.

For each model, the fluxes conservation at LR was quantified by looking at the difference
between ‘LR-ASTER’ and ‘agg-ASTER’ ET maps when using either the LR roughness estimated
at LR or effective parameter values produced from HR data using a simple linear averaging as well as
Equations (25), (26) or (30).

5. Results

5.1. Preliminary Step: Evaluation of Flux Estimations at High Resolution from ASTER Data

In a previous study [22], ET maps were obtained on the same area using SEBS and TSEB driven
by a combination of the ASTER temperature product and the Vis-NIR Formosat satellite reflectances,
as well as in situ crop height measurements. The resulting fluxes were evaluated against the eddy
correlation (EC) measurements over seven crop fields whose size is large enough to respect fetch
requirements for all dates. This gave an indication of the expected performances for considering
the HR fluxes maps as reliable: absolute relative biases were about 18% for SEBS and 23% for TSEB.

In the present study, for a better consistency, ASTER products were used to derive all of
the input parameters of SEBS and TSEB, including crop height. The parameters of the f.(NDVI)
and LAI(NDVI) relationships (Equations (20) and (21), respectively) were drawn empirically from
the in situ measurements performed in [61]. A comparison to the same EC measurements showed
an absolute relative bias lower than 1% for SEBS and about 20% for TSEB (see Figure 4). We thus
considered the HR ASTER fluxes as realistic. Moreover, we checked that the available energy fluxes
compared well to the measured values (relative bias of 5% and 9% for R, and G, respectively).
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Figure 4. Validation of SEBS (a) and TSEB (b) HR latent heat fluxes obtained using our simple approach
to derive crop heights.

5.2. Flux Estimation at Low Resolution from ASTER LR Data and MODIS Data

ET was estimated using SEBS and TSEB by considering input data at LR derived from ASTER
products or MODIS products in a similar way. ET maps at LR were compared to the reference maps
obtained by aggregating ET obtained at high resolution from ASTER products (‘agg-ASTER’).

5.2.1. Available Energy

Available energy was computed with the same method in both models. Very good performances
were obtained at LR as well from LR ASTER data as from MODIS data: when compared to ‘Agg-ASTER’
fluxes, relative biases were smaller than 0.001 (ASTER and MODIS) for R,, and 0.04 (ASTER) and 0.002
(MODIS) for G. The relative bias is the mean relative difference between both estimates normalized
to the mean value of the reference value ("Agg-ASTER’ in our case). The corresponding Root Mean
Square Error (RMSE) values were 0.03 mm-day ! for R, (ASTER and MODIS) and 0.09 mm-day !
(ASTER) and 0.11 mm-day~! (MODIS) for G. These good performances implied that, for both models,
evaluating ET retrievals corresponded to evaluate their capacity to partition the available energy
between sensible and latent heat fluxes.

5.2.2. Estimation of ET from LR ASTER with SEBS

The comparison of ‘LR-ASTER’ ET maps obtained using SEBS to the reference ET maps
agg-ASTER’ showed fairly good performances over the entire dataset, with a relative bias of —0.044
and an RMSE value of 1.0 mm-day .

Those performances decreased for individual dates along the season, showing larger biases and
RMSE values. More precisely, ‘LR ASTER’ ET values were smaller than ‘agg-ASTER” ET during
vegetation growth and higher when the vegetation was senescent (Figure 5). The relative biases were
—0.10 on the 30 December 2007, —0.11 on the 23 February 2008, —0.20 on the 10 March 2008, —0.12
on the 11 April 2008, 0.045 on the 27 April 2008, 0.18 on the 6 May 2008 and 0.10 on the 13 May
2008. Those differences globally offset each other and explained the good average performance at
the seasonal scale.

’
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Figure 5. ‘agg-ASTER’ (agg AST) and 'LR-ASTER’ (LR AST) SEBS latent heat flux, along with ASTER
NDVI (AST NDVI) time series.

5.2.3. Estimation of ET from LR ASTER with TSEB

The averaged results showed that TSEB fluxes at low resolution were more conservative across
the different scales than SEBS, with a relative bias of 0.009 and an RMSE of 0.44 mm-day’l, so that
daily ET can be derived with a satisfying precision from LR inputs (Figure 6).
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Figure 6. (a) ‘agg-ASTER’ and ‘LR-ASTER’ TSEB latent heat fluxes time series; (b) partition between
evaporation LE; and transpiration LE,.

However, if the total flux was accurately retrieved using the same parameterizations at high
and low resolutions, this did not fully apply to the partition between soil evaporation and plant
transpiration, which both presented higher biases (Figure 6). The transpiration obtained from LR
inputs was higher than the aggregated HR fluxes (relative bias = 0.065 and RMSE = 0.46 mm-day!)
and the soil evaporation was lower (relative bias = —0.066 and RMSE = 0.38 mm-day~!). Compensation
between evaporation and transpiration bias resulted in a very low bias for ET.

5.2.4. Estimation of ET from MODIS Data with SEBS

Results averaged for the seven dates over the 4 km by 4 km (i.e., 2 by 2 pixels at 2000 m spatial
resolution) showed performances very close to those obtained with ‘LR ASTER’. When SEBS was
used to estimate evapotranspiration with MODIS inputs, the relative bias was —0.08 and the RMSE
was 1.03 mm-day !, which was quite similar to the results obtained with ‘LR-ASTER’ (in particular
when considering RMSE). Again, the low biases at the seasonal scale did not reflect the date to
date performances and, as for ‘LR-ASTER’, more contrasted results were obtained for the different
vegetation development stages as shown on Figure 7. The resulting relative bias reached high values
such as —0.32 on the 10 March 2008, —0.26 on the 11 April 2008 and 0.12 on the 13 May 2008.
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Figure 7. ‘agg-ASTER’ and MODIS SEBS latent heat flux time series.

5.2.5. Estimation of ET from MODIS Data with TSEB

The averaged results for the 4 x 4 km? showed fairly good performances when TSEB was
used to estimate ET with MODIS inputs: relative bias on daily ET was 0.03, RMSE 0.96 mm-day .
However, these results were significantly less favourable than those obtained with ‘LR-ASTER’. Model
performances regarding soil evaporation and transpiration separately were of similar magnitude as for
the total flux when considering RMSE: 0.81 and 1.04 mm-day ! for daily evaporation and transpiration,
respectively (Figure 8). As for the results obtained with LR ASTER, the transpiration calculated from
MODIS input was higher than the aggregated HR fluxes (relative bias was 0.21) and the evaporation
was lower (relative bias was —0.19). Again, compensation between evaporation and transpiration
bias resulted in a lower bias for ET. As for the total flux (ET), transpiration and evaporation obtained
from MODIS products presented higher discrepancies than from ‘LR-ASTER” when compared to

‘agg-ASTER’.
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Figure 8. (a)