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HYPERCYCLIC SETS
S. CHARPENTIER, R. ERNST

ABSTRACT. We completely characterize the finite dimensional subsets A of any separa-
ble Hilbert space for which the notion of A-hypercyclicity coincides with the notion of
hypercyclicity, where an operator 7" on a topological vector space X is said to be A-
hypercyclic if the set {T"x, n > 0, z € A} is dense in X. We give a partial description
for non necessarily finite dimensional subsets. We also characterize the finite dimensional
subsets A of any separable Hilbert space H for which the somewhere density in H of
{T"xz,n > 0, z € A} implies the hypercyclicity of T. We provide a partial description
for infinite dimensional subsets. These improve results of Costakis and Peris, Bourdon
and Feldman, and Charpentier, Ernst and Menet, and answer a number of related open
questions.

1. INTRODUCTION

At the core of Linear Dynamics is the notion of hypercyclicity. A bounded linear operator
T from a topological vector space X into itself is said to be hypercyclic if there exists a
vector « in X whose orbit Orb(z,T') := {T"x, n > 0} is dense in X. Such an z is called a
hypercyclic vector for T'. In the following we will assume that X is a complex topological
vector space. The translation operator T, : f — f(- —a), a # 0, acting on the Fréchet
space of entire functions H(C) is known after Birkhoff as the first example of hypercyclic
operator [6]. Later, natural operators such as the differentiation operator or the dilation
of the backward shift were shown by MacLane [22] and Rolewicz [25] to be hypercyclic
on H(C) and the space of square summable sequences (*(N) respectively. The systematic
study of the abstract notion of hypercyclicity became quite active since the early eighties,
after Kitai stated a useful criterion for hypercyclicity [19]. What is now referred to as the
Hypercyclicity Criterion, a refinement by Bes [5] of the initial Kitai’s one, has been proven
by De La Rosa and Read [12] to be not satisfied by every hypercyclic operator. Later,
Bayart and Matheron [3] refined De la Rosa and Read’s counterexample and exhibited
one on any classical Banach spaces, including the Hilbert space. This result answered a
rather long standing open problem posed by Herrero in 1993, which led at the time to
some natural questions about the definition of hypercyclicity. We may state two of them:
Does the density of the union of finitely many orbits imply the density of one orbit? Does
the somewhere density of one orbit imply its density everywhere? We refer to the very
nice books [3] and [17] for a quite rich insight about linear dynamics and for (much) more
details on these questions.
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2 S. CHARPENTIER, R. ERNST

The rigidity imposed by the linearity of the operators makes these kinds of questions
relevant. Indeed Costakis and Peris independently gave a positive answer to the first
one [11,24]. Later on, Leén and Miiller [21] proved that the density of the orbit

Orb(Tz,T') :={\T"x, n > 0, |\| = 1}

of the one dimensional uncountable set Tz := {Az, |A\| = 1} under T" automatically implies
the density of Orb(z, T') itself; a corollary of that result is that 7" is hypercyclic if and only
if \T" is for every complex number A of modulus 1. The proof of Costakis-Peris’ result
contained the foundations of the stronger and beautiful result by Bourdon and Feldman [7]
asserting that only the somewhere density of the orbit Orb(x,T’) is needed to ensure the
hypercyclicity of x for T'. The proof of Leén-Miiller’s result exploited the group structure
of the unit circle T, an idea which was then developed and extended to statements in terms
of groups and semigroups [23,26], see also [3, Chapter 3].

Recently, Leén-Miiller and Bourdon-Feldman’s results have been improved by a complete
description of the subsets I' of C satisfying one of the following two properties [10]:

(P) for every complex Banach space X, for every operator T on X and for any = € X

Orb(T'z, T) := {yT"x, n > 0, v € '} is dense in X iff Orb(z,T') is dense in X;

(P’) for every complex Banach space X, for every operator 7" on X and for any = € X,
Orb(I'z, T') is somewhere dense in X iff Orb(z, T) is dense in X.

The sets I' satisfying Property (P) turn out to be exactly those which are bounded and
bounded away from 0 (after removing the single point 0) [10, Theorem A], and the sets I'
satisfying Property (P’) are those satisfying (P) and such that the set I'T := {y\, v €
I, |\| = 1} is nowhere dense in C [10, Theorem B]. The notion of I-supercyclicity was
introduced: given I' C C, an operator 1" on X is said to be I'-supercyclic if there exists x
in X such that the orbit Orb(I'z, T") is dense in X. I'-supercyclicity extends the notions
of hypercyclicity and supercyclicity - introduced by Hilden and Wallen [18] - which corre-
sponds to I' = C. Thus [10, Theorem A] says that for some good non-empty subsets A of
a one dimensional subspace of X, possibly open in this subspace, the density in X of the
set {T"x, n > 0, x € A} implies the hypercyclicity of T. However neither this result nor
Costakis and Peris’ one implies the other and we may expect a positive statement covering
both multihypercyclicity and I'-supercyclicity. The following natural question arises:

Question 1. Let x1,...,zy be a family of pairwise distinct vectors in X and I'y,..., 'y
be subsets of C* which are bounded and bounded away from zero. If Orb (Ufilfixi, T) =
UN ,Orb (T;z;, T) is dense in X, is some z; hypercyclic for T'?

We shall mention that a positive answer to this question cannot be obtained, as for
the classical Costakis and Peris’ result, as an application of some Bourdon-Feldman type
Theorem. The reason is [10, Theorem B| according to which subsets of C of the form
[a,b]T - bounded and bounded away from 0, but somewhere dense in C whenever a < b -
do not satisfy the property (P’).
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Question (1| eventually gives rise to an extended notion of I'-supercyclicity for multi-
dimensional I' C C!, or even for subsets of spaces of infinite sequences. Without going
into details now, we are naturally led to introduce what we call hypercyclic scalar sets (see
Paragraph and Bourdon-Feldman scalar sets (see Paragraph. Roughly speaking,
they are those multi-dimensional scalar sets which satisfy a property similar to (P) and
(P?) respectively. The following question was already mentioned in [10].

Question 2. Does there exist a characterization of multi-dimensional hypercyclic scalar
sets and Bourdon-Feldman scalar sets?

Now, let us briefly come back to the complete description of one dimensional hypercyclic
scalar sets (i.e. of subsets of C satisfying Property (P)) given in [10]. It allows for instance
to assert that given any fixed separable Banach space X and any fixed non-zero x € X, the
density of Orb ([1,2]z,T) in X automatically implies that of Orb (z,T"); but it does not
say whether Orb ([0, 1]z, T) = X does not imply Orb (2,T) = X. It only says that there
exist some X, some T € L(X) and some x € X such that the previous implication does
not hold. This is actually rather unsatisfying as one may prefer an answer to the much
more precise questions: Given X and A C X,

e does the density of {T"x, n >0, x € A} in X imply that T is hyperyclic?
e on the contrary, does there exist a non-hypercyclic T € L(X) such that {T"z, n >
0, z € A} is dense in X7
Similar questions related to the Bourdon-Feldman Theorem make also sense. Thus the

notion of I'-supercyclicity is, at least from this point of view, a bit soft and one may want
to replace it with a notion which depends on the ambient space.

Definition 1.1. Let X be a Banach space and A be a subset of X. We say that an
operator T" on X is A—hypercycli(ﬂ if

Orb(A,T) :={T"z,n >0, x € A}
is dense in X.

If A is a single point, we recover the classical notion of hypercyclicity; if A is a finite
union of points, that of multihypercyclicity considered in [11,24]. Given a fixed x € X
and I' C C, any I'z-hypercyclic operator is in particular I'-supercyclic (but a I'-supercyclic
operator is not necessarily I'z-hypercyclic...). Regarding to the previous, the main notions
of this paper are the following.

Definition 1.2. Let A be a subset of a separable Banach space X.

(1) We say that A is a hypercyclic setﬂ if A\ {0} is non-empty and any A-hypercyclic
operator on X is hypercyclic.

IThe terminology A-hypercyclic operator already appeared in [8] with a different meaning, see also [4].
There, A is a family of subsets of N. Thanks to the context, we think that no confusion is possible.
ZNot to be confused with the notion of hypercyclicity set as introduced in [8]
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(2) We say that A is a Bourdon-Feldman set if A\ {0} is non-empty and it satisfies the
following property: for any operator T € £(X), the somewhere density in X of the
set Orb(A, T') implies that T is hypercyclic.

The following question - partially posed in [10] - completes Questions [1| and .
Question 3. Does there exist a characterization of hypercyclic and Bourdon-Feldman sets?

This direction of research was pursued by several authors in different contexts. Most of
them, like Costakis and Peris [11,24], Leén-Miiller [21] or Charpentier-Ernst-Menet [10,
Theorem A], give examples of hypercyclic sets. Also, Feldman [13] proved that in the case
where T is a weighted backward shift on ¢*(N), if 7" has a bounded set with dense orbit
then T is hypercyclic. His result asserts that any bounded set is a hypercyclic set if we
restrict ourselves to weighted shifts on ¢?(N). A few papers give non-trivial examples of
sets which are not hypercyclic sets. Among them, it is worth mentioning [13] which is
interested in the notion of countably hypercyclic operators, namely in those T' such that
Orb({zy}n,T) is dense in X for some (infinite) bounded separated sequence ()., where
separated means that there exists § > 0 such that ||z, — z,,,|| > ¢ for any n # m. Remark
that a countably hypercyclic operator for a separated sequence (z,),en is a A-hypercyclic
operator with A = {x,, },en. In [13], the following question was posed.

Question 4. Does there exist a countably hypercyclic operator being not hypercyclic?

We recall that by Costakis and Peris’ result the answer is no if one only considers
finite sequences. At the end of [13], the author mentions that a positive answer to his
question was given by Peris in a private communication. For an explicit example solving
this question by the positive, see [17, Exercise 6.3.3]. Here again, the answer may look a
bit disappointing, as it consists in exhibiting a specific Hilbert space, a specific bounded
separated sequence (z,),, and a non-hypercyclic T € L£(X) such that Orb({x,},,T) is
dense in X. What about any fixed bounded separated sequences in any Banach spaces
and the following very general question?

Question 5. Given a bounded separated sequence (z,),en in a separable Banach space
X, does there always exist a countably hypercyclic operator T' for (z,),eny which is not
hypercyclic?

The purpose of this paper is to attack Questions [I] to [f} We will obtain a complete
answer to Question (Theorem and Question [2] (Theorems and . The proof of
Theorem will consist in an adaptation of that given by Peris for multihypercyclicity [24].
The ”only if parts” in Theorems and are partially based on geometric arguments
in Hilbert spaces. These results will surprisingly turn out to be very useful in order to
obtain, thanks to the fact that (quasi-)conjugacy preserves the dynamical properties of
operators, an almost complete answer to Question |3| (Theorems A and B below) when X
is a separable Hilbert space. As a corollary of Theorem A, we will get a positive answer
to Question [5| in the Hilbert setting. In particular, it will tell us that the most natural
bounded separated sequence in a Hilbert space - namely an orthonormal basis - is not a
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hypercyclic set (see Question . In order to state Theorems A and B, we introduce the
following terminology, which will repeatedly appear throughout the paper.

Definition 1.3. We say that a subset A of X is a vector annulus if there exist x in X and
0 <a<b< oo such that

A= [a,b|Tz = {7’6191', a§r§b,0§9§27r}.

Theorem A. Let A be a subset of a separable Hilbert space H.

(1) We assume that A is contained in a finite dimensional subspace of H. Then A is a
hypercyclic set if and only if A\ {0} is non-empty and contained in a finite union
of vector annuli.

(2) If A is not contained in a finite dimensional subspace of H and if it contains a
sequence (), of linearly independent vectors satisfying

(1.1) Codim(Span(x,, n > 0)) = oo,
then A is not a hypercyclic set.

The first part of Theorem A gives a complete characterization of hypercyclic sets among
finite dimensional subsets of a separable Hilbert space. It also answers Question 6 from [10]
and provides with a wide class of examples of sets which are not hypercyclic. For example,
in the Hilbert setting, a segment joining two linearly independent points, a non-trivial
sphere, or a non-empty open set of X is never a hypercyclic set. The second part of
Theorem A tends to suggest that a hypercyclic set is necessarily contained in a finite
dimensional subspace. Actually Theorem A, Part 2, can equivalently be stated in terms
of almost overcomplete sequences (see Section [ for details). Thus Theorem A does only
let open the following question: Are there almost overcomplete sequences in a separable
Hilbert space which are hypercyclic sets? We refer the reader to the last section devoted
to open questions. The proof of the second part of Theorem A, like that of the first one,
is based on a construction made in the proof of Theorem [3.15] An obstruction occurs
when we deal with linearly independent sequences spanning closed subspaces with finite
codimension.

Finally, the previous considerations combined with [10, Theorem B] will allow us to
obtain an almost complete description of Bourdon-Feldman scalar sets and, at end, to
obtain the following.

Theorem B. Let A be a subset of a separable Hilbert space H.

(1) If A is finite dimensional, A is a Bourdon-Feldman set if and only if A\ {0}
18 non-empty and there exist x1,...,xy in X and I'y,..., 'y subsets of C, with
[\ {0} bounded and bounded away from 0 and I';T nowhere dense in C for every
i€{l,...,N}, such that

N

=1
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(2) If A is infinite dimensional and if A contains a sequence (x,,), of linearly indepen-
dent elements satisfying

Codim (Span (x,,, n > 0)) = oo,
then A is not a Bourdon-Feldman set.

We mention that even if our results are stated in complex Banach or Hilbert spaces,
they hold as well for real spaces, up to adequate changes. Also those of our results which
are given for separable Banach spaces hold for separable Fréchet spaces as well. This is in
particular the case for Theorem [2.1]

The paper is organized as follows. The first section consists in the positive answer to
Question (1| (Theorem [2.1)). The second section is devoted to the multi-dimensional notion
of I'-supercyclicity, that is to Question [2| and the description of hypercyclic scalar sets and
Bourdon-Feldman scalar sets (Theorems [3.8] and [3.30)). The third section deals with
Questions and o, which are partially or completely answered in Theorems A and B.
The last section contains some open questions.

2. A SUFFICIENT CONDITION FOR A SET IN X TO BE A HYPERCYCLIC SET

For the notion of hypercyclic set, we refer to Definition [I.2] The following result gives a
sufficient condition for a set in a given Banach space X to be a hypercyclic set.

Theorem 2.1. Let (x1,...,zx) be a finite family of vectors in X and let b > 1. If the set

Orb(LNJ[l,b]Txi,T) = LNJ Orb([1, b)Tz;, T')

i=1
is dense in X, then some x; is hypercyclic for T.

We recall that Theoremwith b = 1is a consequence of [3, Theorem 3.11], a semigroup
version of the Bourdon-Feldman Theorem. Yet, it is worth saying that we cannot apply a
Bourdon-Feldman type Theorem to prove the whole Theorem . Indeed, by [10], the orbit
of [1,b]Tx under some non-hypercyclic operator 7', on some Banach space X, and for some
x € X, may be somewhere dense in X but not everywhere dense (see also Theorem B).
Instead we will generalize the original proof of Costakis-Peris’ result, as it is given in [24].
For this purpose, we need the following two classical lemmas.

Lemma 2.2. We keep the previous notations. If the orbit of Ufil[l, b|Txz; under T is dense
in X, then the point spectrum o,(T*) of the adjoint T* of T is empty. In particular, for
every polynomial p # 0, p(T) has dense range.

Proof of Lemma[2.9 The proof of this lemma is an easy combination of that of [24, Lemma
1] and [10, Lemma 3.5]. O
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Lemma 2.3. Let b > 1 and x,y € X. Fither the interior of the closure of the orbits of
[1,b]Tx and of [1,b]Ty under some operator T on X do not intersect, or we have

S — 1
int (Orb([1,b]Tz,T)) C int <Orb([g, b’| Ty, T))
S — 1
and int (Orb([1,b]Ty,T)) C int (Orb([g, bQ]Tx,T)) :
Proof of Lemma[2.3 Observe first that if I' C C is compact, then
Orb(T'z, T) = I'Orb(z, T).
Here and after, we will use the notation
I y(z,T) = int (Orb([1,b]Tz, T)) .

Let assume that I} 4(x, T) and I (y, 7)) do intersect. Because they are open, it implies
for example that there exist v € [1,b]T and n; € N such that

yT™ 2 € Orb([1,b]Ty, T).
Multiplying each side of the previous by [1,b]T/~, we get
11— — 1
[1,0)T{T™z} € —Orb([1,b*|Ty, T) C Orb([g,b2]TI‘y,T),
Y

hence

Iy (2, T) = int (Orb([l, O[Tz, TY\ [L,0)T{ 1"z, n =0, ..., 11 — 1}) C Ly (4. T),

where the first equality holds because [1,b]T{7T"z, n = 0,...,n; — 1} has empty interior
in X. The other inclusion is obtained in the same way. U

We are now ready to prove Theorem [2.1

Proof of Theorem [2.1. First observe that up to taking b even bigger, we may suppose that
the vectors z1, ..., x N are pairwise independent. Let us first assume that N is minimal in
the sense that

N-1
Orb([1,8]Tz;, T) but | J Orb([L, c|Ty;, T) # X,

=1

X =

-

s
Il
—

forany y; € X,i=1,...,N — 1, and any ¢ > 1. Then, we are going to prove that N = 1.
Suppose that this has already been proven for a while. Then, if N is not minimal, there
exists 1 <M < N,a>b>1and z,...,zy linearly independent such that:

M M-1

X = JOrb([1,a]Tz,T) but | J Orb([1,dTy;, T) # X,

i=1 i=1
foranyy; € X,1=1,..., N—1,and any ¢ > 1. Thus, by assumption, M has to be equal to
one. Then, by [10, Theorem A], z; is hypercyclic for T', and thus Iy (21, T) N[ g (@i, T) #
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() for some 1 <4 < N. Then, by Lemma , Ina)(21,T) C Ipjae)(2i, T). By [10, Theorem
A] again, it follows that z; is hypercyclic for T and the proof is done.

Thus, from now on, we assume that N is minimal and, by contradiction, that N > 1.
We claim that this implies the following two assertions:

(1) Inp(zi, T) # 0 for every i =1,..., N;

(2) For every ¢, > 1 and any i # j,
(21) [[l/c,c](xu T) N [[l/c’,c’] (QZJ7 T) = @
Indeed, first, if I3 y(21,T) = 0 for example, then

| JOrb([1, 8] T, T) = |_J Orb([1, b]Ta;, T)

which contradicts the minimality of N and gives (1). Second, assume for instance that
Injee (21, T) intersects Ip /e (22, 1) for some ¢, > 1. Without loss of generality, we
may suppose that ¢ > b. If ¢ > ¢, then I (21, T) and Ijj e o)(22,T) do intersect
too, and so do Iy o2y(1,T) and Iy (22, T); by Lemma 2.3} Iy (21, T) C Iy erj(21,T) C
It1 o2 041 (22, T') hence, since ¢’ > b,

N N
X = JOrb([1,8]Ta;, T) | JOrb([1, ¢|Ta;, T) U Orb([1/c?, ¢ Tas, T).
i=1 =3
Up to a dilation by some positive number, we get another contradiction to the minimality
of N. If ¢ < ¢, we just interchange the roles of z; and x,.

Let us now observe that if z € X is such that Iy y(x, T) # 0, then by Lemma , there
exists some ¢ € {1,..., N} such that

(22) ][17(,] (ZL’i, T) C ][%762](ZE, T)
We infer that the latter inclusion implies the following one:
(2.3) Orb([L, 0] Tz, T') C L1 yoy(x, T).

Otherwise, by (2.2)), Orb([1,b]Tz,T) ¢ Ij14(x;, T) and there must exist v € [1,b] and
n € N such that yT"x € Orb([1,b]Tz;,T) for some j # i. Proceeding as in the proof of
Lemma [2.3] it follows that

I[%Jﬂ}(f, T) C ][b%VbS](l’j, 7—‘)7
hence, by (2.2)) again,
(2.4) ][1’b](l’i,T) C ][b%’bg](xj’ T) C ][b%,bﬂ(xﬁ T),

which contradicts (2.1)).
Moreover, Lemma [2.2] yields, for any non-zero polynomial p,

X = Up (Orb([1, b T, )):Um([l,b]Tp(T)(xi),T),
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so that, by minimality of N, Iy (p(T)(z;), T) # 0 for every i = 1,..., N. Therefore
Span (Orb([1, 6Tz, 7)) \ {0} = U Orb([1, 0] Tp(T)(x1),T)

p#0
C U ][%7b2}(p(T)(171)7T> by "
p#0
T)(x
C UI[Lbs](w,T)
p#0

N
C U I[b%’b(s} (;,T) by Lemma [2.3
i=1

N
- U I[b%,bﬁ}(qu)'
i=1

Since Span (Orb([1,b]Tx,T)) \ {0} is connected and since, by (2.1)),
][b%,bf"}(xi?T) N [[b%be](l’j,T) = @,
for any ¢ # j, it follows that there exists 1 < ¢ < N such that
Span (Orb([1, 0] Tz, T)) \ {0} C Ijx y(x:, T)
for some ¢ > b. Finally, since Orb([1,b]Ta;,T) has non-empty interior by minimality of
N, we get
X = Span (Orb([1,0]Tz,T))
C Span (Orb([1,5|Tzy,T))
C Orb([1/c,c|Ta;, T).

We conclude that the set Orb([1/¢, ¢]Tz;, T) is dense in X, which contradicts the minimality
of N. g

3. CHARACTERIZATIONS INDEPENDENT OF THE AMBIENT SPACE

3.1. Hypercyclic scalar sets. In this paragraph we extend the formalism and the main
result of [10] to subsets ' of ¢*(N). For reasons which will become clear later, we will
distinguish the case where I' C C, [ finite, from that where I' C /*(N).

3.1.1. Hypercyclic scalar sets of C'. We first introduce the formalism for subsets I' of C!,
[ finite. Let [ > 1 and ey,...,e be the canonical basis of C'. Let also X be a separable
Banach space and let z1,...,27; € X be a linearly independent family. For I' C C!, we
denote by I';, ., the set

77777
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The notion of T-supercyclicity introduced in [10] naturally extends as follows.

Definition 3.1. LetT' C C', I > 1. We say that T € L(X) is T'-supercyclic if T is Uy, .2, -
hypercyclic in the sense of Definition for some linearly independent family x4, ..., x,
of vectors in X, i.e. if the set

Orb(Ly, ... 2, T)
1s dense i X.

When I" = C, we recover the notion of supercyclic operator [18]; more generally, when
[ = C!, I > 1, that of I-supercyclic operator [14]. If I' C C is not empty and not reduced
to {0}, any hypercyclic operator is trivially I'-supercyclic. The fact that this holds for
I c C, T\ {0} #0, with [ > 1 requires a brief explanation.

Proposition 3.2. Let ' € C!, | > 1, be such that T\ {0} is non-empty. Then, any
hypercyclic operator is I'-supercyclic.

Proof. Let x € X be a hypercyclic vector for T" and let (xy,...,x;) be any linearly inde-
pendent family in X. We pick any z € I';, _,, and consider an isomorphism of X mapping
z to x. Then (F(x1),...,F(x;)) is linearly independent and

reF (Fxl,...,xl) - FF(x1),...,F(xl)7

hence T"is I'p(a,),... F(z,)-SUpercyclic. O

geoe

Remark 3.3. The previous proposition points out an important difference between the
understanding of I'-supercyclicity and A-hypercyclicity according to Definitions[3.1]and
Indeed, the first definition is independent of the ambient space while the second one clearly
depends on the space. As a consequence, while any hypercyclic operator is I'-supercyclic
(T'\ {0} # 0), there obviously exist non-empty subsets A of X and hypercyclic operators
on X which are not A-hypercyclic. Nevertheless if A is a subset of X with A\ {0} # () then
doing like in the proof of Proposition [3.2| one may remark that every hypercyclic operator
is conjugate to a A-hypercyclic operator.

We now extend the definition of hypercyclic scalar set introduced in [10] to subsets of
C.

Definition 3.4. Let ' ¢ C', | > 1. T is said to be a hypercyclic scalar set if for every
separable infinite dimensional complex Banach space X, any I'-supercyclic operator on
X is hypercyclic (or, equivalently, if for every X and every linearly independent family
x1,..., o € X, every Uy, o, -hypercyclic operator T € L(X) is hypercyclic).

Remark 3.5. In view of Proposition [3.2] if I" is a hypercyclic scalar set, then an operator
T € L£(X) is hypercyclic if and only if it is I'-supercyclic.

At this point, we shall remark that the definition of the sets I';, . ,, apparently depends
on the choice of the canonical basis (which fixes the coordinates of points in I'), and then
both definitions of I'-supercyclicity and hypercyclic scalar sets may depend also on that
choice. Fortunately, this is not the case. Indeed, a simple algebraic computation gives the
following.
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Proposition 3.6. LetI' c C', 1 > 1, f := (f1,..., f;) be a basis of C and (xy, ..., 1) a lin-
early independent family in X. We denote by F the isomorphism from C to Span (x4, ..., ;)
such that F(e;) = x; and set z; := F(f;) for every 1 <1 <. Then

le,...,zl = Ff

2140045217

(1) T € L(X) is I'-supercyclic if and only if there exists a (or equivalently for any)
basis f = (f1,..., fi) of C, there exists a linearly independent family (21, ..., %)
in X such that T is F,chl,...,zl -hypercyclic;

(2) T is a hypercyclic scalar set if and only if for any X, for any (or equiv. some) basis
f=(f1,-.., fi) of C', and any linearly independent family (z1,...,z) in X, every
! . -hypercyclic operator T € L(X) is hypercyclic.

1,

Let us reformulate the main result of [10].

Theorem 3.7 (Theorem A of [10]). A subset I of C is a hypercyclic scalar set if and only
if I'\ {0} is non-empty and contained in a vector annulus (see Definition[1.).

Our extension to any [ finite reads as follows.

Theorem 3.8. Let | > 1. A subset ' of C! is a hypercyclic scalar set if and only if '\ {0}
s non-empty and contained in a finite union of vector annuli.

Note that if [ C I" and T is a hypercyclic scalar set, then I is also a hypercyclic scalar
set, as well as ul" for any non-zero complex number y. Moreover it is straightforward to
check that I' C C' is contained in a finite union of vector annuli if and only if so is | I
for any linearly independent family x1,...,2z; of X. Thus the ”if” part of Theorem has
already been proven, this is Theorem 2.1} The proof of the necessary part is postponed to

Paragraph

3.1.2. Hypercyclic scalar sets of (*(N). The formalism of the previous paragraph makes
sense in any Fréchet space X (or more generally in any topological vector space), because
any finite dimensional subspace of such X is isomorphic to C' for some [. If one wants
to extend this formalism to infinite dimensional subsets I', the most natural way is to
restrict ourselves to separable Hilbert spaces and to use the fact that any closed infinite
dimensional subspace of a separable Hilbert space is isomorphic to ¢?(N).

Let then (e,),>0 be the canonical basis of (*(N). Let H be a separable Hilbert space
and let (2,,)n,>0 C X be an orthonormal family. For I' C £*(N), we denote by I',,), the set

L, = {Z Vi Z%ei € F} .

i>0 i>0

Definition [3.1| naturally extends in the following way.
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Definition 3.9. Let I' C (*(N). We say that T € L(H) is T-supercyclic if T is '), -
hypercyclic in the sense of Deﬁm’tion for some orthonormal family (x,), in H, i.e. if
the set

OTb(F(xn) T)

n?

s dense in X.
As in the case of subsets of C!, the following easily holds true. We omit the proof.

Proposition 3.10. Let I' C ((N) be such that T\ {0} # 0. Then, any hypercyclic operator
1s I'-supercyclic.

Remark 3.11. As previously observed, there obviously exist non-empty subsets A of a
Hilbert space H and hypercyclic operators on H which are not A-hypercyclic. Yet, if A
is a subset of H with A\ {0} # () then every hypercyclic operator on H is conjugate to a
A-hypercyclic operator.

We can now extend the notion of hypercyclic scalar set to subsets of (?(N).

Definition 3.12. Let I' C (*(N). T is said to be a hypercyclic scalar set if for every
separable infinite dimensional complex Hilbert space H, any I'-supercyclic operator on H
is hypercyclic (or, equivalently, if for every separable infinite dimensional complex Hilbert
space H and every orthonormal family (x,), C X, every I'(,,),-hypercyclic operator T' €
L(H) is hypercyclic).

Remark 3.13. In view of Proposition if I is a hypercyclic scalar set, then an operator
T € L(H) is hypercyclic if and only if it is [-supercyclic.

Here again, the definition of the sets I',,,), depends on the choice of the Hilbert basis of
(*(N), and then both definitions of I'-supercyclicity and hypercyclic scalar sets may depend
also on that choice. For the same reasons as in the finite dimensional setting, this is not
the case and we have:

Proposition 3.14. Let I C (*(N), f := (fn)n be an orthonormal basis of (*(N) and (z,)n
an orthonormal family in H. We denote by F' the isomorphism from (*(N) to Span ((z,,),)
such that F(e;) = x; and set z; :== F(f;) for every i € N. Then

Loy, =T

(Zn)n ’

where F{Zn)n = {> >0 vz, > is0 ~f f; € TY. In particular,
(1) T € L(H) is I'-supercyclic if and only if there exists an (or equivalently for any)
orthonormal basis f of (*(N), there exists an orthonormal family (z,), in H such
that T is T

(2n

(2) T is a hypercyclic scalar set if and only if for any complex separable Hilbert space
H, for any (or equiv. some) orthonormal basis f of (*(N), and any orthonormal

family (z,)n in H, every F{ n -hypercyclic operator T € L(H) is hypercyclic.

Zn

n -hypercyclic;

We get a complete characterization of hypercyclic scalar sets of £2(N) as follows.
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Theorem 3.15. A subset T' of (*(N) is a hypercyclic scalar set if and only if T'\ {0} is
non-empty and contained in a finite union of vector annuli.

Here again, the sufficiency is Theorem 2.1} The proof of the necessary part is given in
Paragraph

3.2. Proof of the ”only if” part of Theorem [3.8 We aim to prove the following.

Proposition 3.16. IfI" C C' is not contained in a finite union of vector annuli, then there
exists a Hilbert space H and a I'-supercyclic operator T' on H which is not hypercyclic.

We need two lemmas. In the sequel, we will say that a sequence (x,), in a vector space
consists of pairwise independent vectors if x,, and x,, are linearly independent, whenever
n#m.

Lemma 3.17. Let I' be a subset of C' which is not contained in a finite union of one
dimensional vector subspaces. Then there exist a sequence (Ap)reny C I' of pairwise inde-
pendent vectors, a basis f = {f1,...,fi} of C', and L € {1,...,1}, such that if we denote

by )\,(f) the i-th coordinate of A\, with respect to f, then for every k € N:
(1) for every 1 <i < L, )\,(;) #0;
(2) for every L+ 1 <1i <1, )\,(;) =0;
(3) for every 2 <i <1, limg_ )\,(;) =0 if I is bounded;
(4) limg_o )\,(:) = oo if I' is unbounded.

For the next lemma, we will use the notation I'/  introduced in Proposition .

T L

Lemma 3.18. Let ' = (\,), C C,, I > 1, and let f := {fm,m € [} U{fm,m € I} be a
basis of C' such that {fm,m € I} is a basis of Span (\,, n > 0). We denote by A the
i-th coordinate of the n-th sequence \,, with respect to f. We assume that AP # 0 for any
n >0 and any v € I, and that

lim [A0)] =0 or co

n—oo

for someig € Iy. Then there exist a separable Hilbert space H, a non-hypercyclic operator T’
on H and a linearly independent family (z1, ..., z); in H such that T is Fgl,...,zl -hypercyclic.

Let us briefly admit the two previous lemmas and deduce the proof of Proposition |3.16

Proof of Proposition [3.16. Observe first that if there exists a family {gy,...,gn} C C' such
that I' = UY,T;g; with some T, \ {0} not bounded or not bounded away from 0, then
we are back to the 1-dimensional case treated in [10]: we can exhibit a non-hypercyclic
operator T' on ¢*(N) or ¢?(Z) which is T';-supercyclic, and a fortiori T-supercyclic.

Let us now assume that we are not in the previous situation and that I' is not included in
a finite union of complex lines. By Lemma([3.17] there exist a sequence (),,), C I’ consisting
of pairwise independent vectors, a basis f := (fi,..., f;) of C!, and L € {1,...,1}, such
that items (1) and (2) hold, and (3) or (4) as well. Thus, the assumptions of Lemma
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[3.1§8] are satisfied and we deduce that there exist a separable Hilbert space H, a non-
hypercyclic T' € L(H) and a linearly independent family (zi,...,2) in H such that T is
thn_’zl—hypercyclic. By Proposition , (An)n is not a hypercyclic scalar set, and I is not
either. U

We now come back to the proofs of Lemma and |3.18|

Proof of Lemma[3.17. Let T C C! be not contained in a finite union of one complex lines.
If I' is bounded, then it is relatively compact and there exist a non-zero vector f; € C! and
a sequence (A;)r C I'\ Cf; of pairwise independent vectors, such that the distance from
Ax to Cf; tends to 0 as k — co. Let us complete f; to form a basis {fi,..., fi} of C' and

for every k € N, let )\,(;) denote the coordinates of \; in this basis. Since, the distance from
M to Cf tends to 0 as k — oo then is satisfied. Moreover, conditions and are
also satisfied up to take a subsequence of (Ax)ren and to reorder {fs,..., fi}.

The proof is similar if I" is unbounded. Let (M) C I' be a sequence of pairwise inde-
pendent vectors such that ||Az|]| — oo as k — oo. By compactness, we can assume that
the sequence (A/||M]|)x is convergent to some non-zero vector f; in C!, that we complete
to form a basis {fi,..., fi} of C'. Now it is clear that the conditions , and (4)) are
satisfied, up to reorder {fs,..., fi}. O

Let us now turn to the proof of Lemma [3.18

Proof of Lemma[3.18 Observe first that given a linearly independent family (z1,. .., z) in
a Hilbert space H,

!
F£1,...,zl = {Z AS)Zﬁ n = 0} = {Z )ng)zi, n > 0} )
=1

i€lq
Thus, without loss of generality, we may assume that I, = ) and I, = {1,...,l}. We
assume that )\SO) — 0, n — oo. Up to reorder [, we can also suppose that 7qg = [.
We consider the operator 7' := B, ® --- @& B, ® B,, defined on H := (52(2))17 where

the weighted backward shifts B, appears [ — 1 times, and the weights v and w are given
respectively by

2 if1>0 2 ifi>0
Vi=91 ... and w; = o .
3 1fi<0 1 ifi<0

Let (y,gl))keN, ce (y,gl))keN be [ sequences in cyo(Z) such that the sequence (y,(cl), . ,y,(f))keN

is dense in H = ((%(Z))". We also define the degree dj, of an element of this sequence by

dp = max(|j| : Is < k, I <i <[ ygz)(j) # 0). In what follows, we denote by F1 (resp.

F'1) the weighted forward shift being the inverse of B, (resp. B,). In other words, F1 is
sifi>0

the weighted forward shift F; where v; = o
2if1 <0

and F'1 is the weighted forward
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Lifi>0
shift F,, where w; = i ,lf Z ; 0 Remark that T is not hypercyclic on H, since B,, is
if 4
expansive and so not hypercyclic on ¢%(Z).

From now on, we construct by induction [ subsequences ()\g()k)) ren of ()\g)) ren, 1 < <,

and an increasing sequence (my)reny C N satisfying:

< 27 for every 1 <i < [;

: my,, (4)
() || Frof

p(k) v
(if) ||~ A Frey Dl ok,
tp(k) w

RO o
(iii) /\ég” F™ mjy,(;) < 27% for every 1 < i < [ and every j < k;
w(k) v
AD .
o) [y <2
k) W
)‘E)k mg—m; (i) k ; ;
(v) /\f() 2B,y | < 27F for every 1 <i < [ and every j < k;

e (4)

RO |
(vi) Z’}()k)B " Jy](l) < 27" for every j < k.

w(])

Once this construction has been made until step £ — 1, since for every j < k and every
m > 0,

| Br=may V|| < 2%+ maXHys”H

it suffices to choose (k) large enough so that )\ggk) is a small enough element of the

converging to 0 sequence ()\(l Jnen to ensure that is satisfied. Moreover, one can choose

my, sufficiently large for ., . . and . to hold, since for every y € cqo(Z),

F'y — 0, Fi'y — 0Oand B)'y — 0.

w m—-+00 v m—-+oo m—-+00

This finishes the construction of the sequences (A(l()k))keN, e ()\ggk))keN and (my)gen-
Now, thanks to (i) and (i) we define the orthogonal family (Z1,...,%) in H by

00,305 A FY yj(."),o,...,o) if 1<i<l,

z = el v

Zi =
0,275 <z) Iy y]()> iti=1,

) w

where the only non-zero coordinate of z; is at position i. We claim that T is I’; s
hypercyclic. Indeed, for & € N, we have
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!
m 7 (1
T "Z)\ k)zz ),...,yli))
=1
-1 © x 2
_ (i) pm (4) (4) 1) pm ™m; (‘) O]
- Aoy Bo™ Z F1 Y = )69()\p(k)Bwk Z )\(TF Wi =)
=1 7=0 ( /) 3=0 "p(j)
-1 © 9 2 © 2
_ (i) pm mj (i) _ . (9) ) pm mj (1) _ (1)
o )‘w(k)Bv * Z NG F ]yy Y )\ap(k B,* Z 0 Ff] Y
=1 3=0 “p(4) 7=0 "p(5)

Now using and , we get for every 1 <i <,

% m = 1 m 7
/\() B kz : Flyy]()_yl(f)

(k) NCE
J=0 "o(j)
Aol Aot Aol -
<SG B E Y| | S BT |+ | S B
i<k so(J) e(k) J>k ()
z)
<Z )\(z B JJ +Z (z)FJ y]
Jj<k 10 j>k so(J)
by Lt
i<k i>k

On the other hand, similar computations with and yield

[e.9]

) pm 1 m;  (4) 0
/\w(k)BwkZ 0} F{yj ~ Yk
3=0 "o(4)

Altogether we obtain, for every k € N,
l
m i) ~ 1 l
T ’“(Zf\i,()k)zi)—(y;(g),m7y£))

Since the sequence (yk RN T )) ey 18 dense in A, we conclude that 7' is Fiil =-hypercyclic.

E+1
= o

k+1
AN
- 2k k—-4o00

.....

Finally setting z; IIZH for 1 < i <[, consider an isomorphism S of H sending z; to z;.

Then, it is plain that the operator SoT o S~ is Fgl,__’zl—hypercyclic.
The proof works likewise under the assumption |>\7(f0)| — 00, up to changing the weight
w. We refer the reader to the more technical proof of Theorem (see next paragraph),

where all the cases will be treated in details.
O
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Remark 3.19. In the previous proof, the family (zi,..., %) is orthogonal, and can be
chosen as an orthonormal family, up to a finite number of dilations. Therefore I' C C' is a
hypercyclic scalar set in the sense of Definition [3.4]if and only if it is a hypercyclic scalar
set with respect to every complex separable Hilbert space and any orthonormal family; more
precisely if and only if for every complex separable Hilbert space H and every orthonormal
family (z1,...,2), every I, .,-hypercyclic operator on H is hypercyclic.

3.3. Proof of the ”only if” part of Theorem [3.15 We intend to prove the following
analogue to Proposition |3.16

Proposition 3.20. If T' C (*(N) is not contained in a finite union of vector annuli, then
there exists a Hilbert space H and a I'-supercyclic operator T’ on H which is not hypercyclic.

According to Proposition [3.16] we need only to prove the previous proposition for subsets
I" of (?(N) which are not contained in any finite dimensional subspace of ¢?(N). Thus we
are reduced to prove the following.

Proposition 3.21. Let T' = (\,),>0 C (2(N) be a linearly independent family. There exist
a separable infinite dimensional complex Hilbert space H and a I'-supercyclic operator T
on H which is not hypercyclic.

The proof will follow the same scheme as that of Proposition|3.16/in the finite dimensional
setting. For this, we need two lemmas. The first one generalizes Lemma [3.17] to any subset
of %(N).

Lemma 3.22. Let T’ be a subset of (*(N) which is not contained in a finite union of
vector annuli. Then, from any linearly independent family in I', we can extract a linearly
independent sequence (\)y, such that there exist an orthonormal basis (fm)m of (*(N), a

partition N = I; U I, and some i € Iy, such that if we write \y =), <, )\ém)fm, then for
every k € N:

(1) for every m € I, )\,(cm) #0;

(2) for every m € Iy, )\,(Cm) =0;

(3) |)\,(j°)| — 0 as k — oo if (A\)x is bounded;

(4) |)\,(f°)| — 00 as k — oo if (A\x)r s unbounded.

The second lemma extends Lemma [3.18| to subsets of ¢*(N). We will use the notation
F{aﬁ introduced in Proposition |3.14}

Lemma 3.23. Let I' = (\,), C (N) and let f := {fm,m € L} U {fm,m € L}
be an orthonormal basis of (*(N) such that {fm,m € L} is an orthonormal basis of

Span (A,, n > 0). We denote by D the i-th coordinate of the n-th sequence \,, with
respect to f. We assume that A #0 for anyn >0 and any i € I, and that

lim [A%)] =0 or co

n—oo
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for some ig € I;. Then there exist a separable Hilbert space H, a non-hypercyclic operator
T on H and an orthonormal family (z;); in H such that T is F{Zi)i—hypercyclz’c, where

F{Zi)i = {Z Az n > O} .

i>0

The proofs of those lemmas are postponed in Paragraphs [3.3.1] and |3.3.2 respectively.
Let us first see how we use them in order to complete the proof of Proposition [3.21].

Proof of Proposition[3.21. Let I' = (\,), be as in Proposition [3.21] By Lemmal[3.22] there
exist an orthonormal basis f := (f,)m of £2(N), a partition N = I; U I, and some ig € Iy,
such that items (1) and (2) hold, and (3) or (4) as well. In particular, the assumptions
of Lemma [3.23] are satisfied. It follows that there exist a separable Hilbert space H, a
non-hypercyclic T € L£(H) and an orthonormal family (z;); in H such that T is P{Zi)i-
hypercyclic. By Proposition we conclude that I' is not a hypercyclic scalar set. U

Now, we have to prove Lemmas and [3.23]
3.3.1. Proof of Lemma[3.23 Tt is based on two geometric sublemmas.

Lemma 3.24. Let (z,,)n>0 C (*(N) be a linearly independent family. Given any norm 1
vector fo € (*(N) with z, ¢ Cfy and (z,, fo) # 0 for any n > 0, there exists fn, m > 1,
in F':= Span (fo; xn, n > 0) such that (fm)m>o is an orthonormal basis of F' and

(Tn, fm) #£0

for any n,m > 0.

Proof of Lemma(3.2 We consider an enumeration ¢ : N — N such that for any integer
k > 0 there exist infinitely many m > 0 such that ¢(m) = k. Let (£,,)m be a sequence
of real numbers tending to 0 with e; = dist(x4(1), Cfo). fo being given, we proceed by
induction and assume that fi,..., f,,_1 have been built in such a way that, if we let
G, :=Span (f;, 0 < j <i) for any 0 <i <m — 1, then

(1) il =Tand (fi, f;) =0, 1 <i#j<m—1

(ii) For any n >0, z,, ¢ Gp,—1;

(ili) For any 1 <@ < m — 1, dist(zy(), Gi) < &; (where dist(z, G) stands for the distance

from z to G).

Let us now write F' = G,,_1 ® G_, and build f,, in the Hilbert space G ;. We denote
by P,,_1 the orthogonal projection on G5, and by V"' := CP,,_1(z,), n > 0. Note that
G:._, is an infinite dimensional subspace of F, since F is infinite dimensional while G, 4
is finite dimensional. For any k£ > 0, we define

A=y € Gy \ UV (y, @) # 0}
We claim that each set AF | is a Gs-dense subset of the Hilbert space G ;. Indeed
observe that

A = (V0 {y € Gy, (v a) # 0}

n>0
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Now, because of Property above, any V"~ n >0, is a proper and closed subspace of
G- _,. So its complement (V/"71)¢ is open and dense in G} _;, hence by Baire Category
Theorem Ny»o(V," )¢ is residual in Gy,_;. Also the set {y € Gr_;, (y, 1) # 0}, which is
L., is open and dense in G,_;.
Thus, again by Baire Category Theorem, A | is residual in G _,. Applying another (and
last) time Baire Category Theorem we get that the set

M An

k>0

the complement of the subspace orthogonal to Czy in G

is residual in G-, so that we can pick £ in Ni>0AF | such that ||};7,_Pm—1(x¢(m)) | <ém

and set fr, := fin /|l finl]-

By construction, we immediately get that f,, satisfies (). For (which is the needed as-
sumption to do the induction), let assume by contradiction that x, € G,, := Span (f;, 0 <
Jj < m) and decompose z,, in the unique way z, = z. + P,_i(z,) where z) € G,,_1.

Then by uniqueness of this decomposition f,, must belong to CP,,_1(x,) = V™! but this
contradicts the fact that f,, is in A* . Finally, comes from

diSt(qu(m)v Gm) < diSt(mel(xQS(m))? Gm)
(31) < diSt(Pm—l(x¢(m))> Cfm)
< H,/]Fr/n - mel(w(b(m))H < Em.-

To conclude that the family { f,,, m > 0} satisfies the conclusion of the lemma, we only
need to check that it is total in F', or that

x, € Span (f,, m > 0).

But this is straightforward from Property (which is now satisfied by G, for any
m > 1). Indeed, let (my)x be an increasing sequence of integers such that ¢(my) = n for
every k > 0. As in (3.1)) we have

dist(x,, Span (f,,, m > 0)) < dist(zp(my), Gmy,) < €m, — 0.

k—o0

The proof of the lemma is complete. O
The second lemma is as follows.

Lemma 3.25. Let (z,), be a sequence of independent vectors in a separable Hilbert space
H. There exist a subsequence (xy, )k of (xn)n and a vector a € H such that for any k > 0,
Tn, & Ca and (x,,,a) # 0, and such that

(p,,a) — 0 oroco, ask— oo.
Proof. 1t is based on the following claim.

Claim. Let (x,), be a sequence of pairwise independent vectors in H. There ezist two
orthogonal normed 1 vectors fo and fi in H such that x,, ¢ Cf; and (x,, f;) #0,i=0,1,
and such that, if we denote by P the orthogonal projection onto Span (fy, f1), the vectors
P(z,) are still pairwise independent.
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Proof of the claim. By the Baire Category Theorem, we can choose fy in H, with norm 1,
such that (z,, fo) # 0 and z, ¢ Cfy, n > 0. We have to show the existence of f; such as
desired. Let us fix n # m. By assumption z,, and x,, are linearly independent. For b € f3-
nonzero and P, the orthogonal projection onto Span (fy,b), we have

Pb(xn> = <xm f0> Jo+ <$m b> b and Pb(xm) = <xm7 f0> fo+ <xm’ b> b.

Let us denote by A, ,, the subset of those b in f;- such that Py(x,) and Py(z,,) are linearly
independent. It corresponds to the set of b € f;- such that

(Tn, fo) (Tms 0) = (Tms fo) (Tn, 0) = ((Tns fo) T — (Tms fo) 70y b) # 0.

Now A, ., is the complement of the orthogonal to (x,, fo) Zm — (¥m, fo) o in fi, and
therefore is an open dense set of f;- whenever (x,, fo) Tm — (Tm, fo) Tn ¢ Cfo. Since z,
and z,, are linearly independent, (z,, fo) Zm — (Tm, fo) Tn is equal to 0 only if (z,, fi) =
(Tm, fo) = 0 which is not the case, by the choice of fy. Moreover,

<<$n7 f0> Ty — <xma f0> Tn, fO) = 07
hence (x,, fo) Tm — (Tm, fo) xn & Cfo. Then, by the Baire Category Theorem, the set

A=) Aum

n#m

is a dense Gs-subset of fg.

Now, as we saw in the proof of Lemma [3.24] by the choice of f; and the Baire Category
Theorem, the set B of those vectors b in H such that b is orthogonal to fy and satisfies
(1,,,b) # 0 and x,, ¢ Cb for any n > 0 is a dense Gs-subset of f3-. It still follows from the
Baire Category Theorem that A N B is not empty. Finally one can check that any f; in
AN B satisfies the desired property, which concludes the proof of the claim. O

Let us turn to the proof of the lemma. Since (z,,), is linearly independent, we can apply
the claim and pick fo and f; such that x,, ¢ Cf; and (x,, f;) # 0, i = 1,2, and such that
(P(xy,))n is pairwise independent, where P is the orthogonal projection onto Span ( fo, f1).
For n > 0, let us write

T, = P(z,) + P (),
where P, is the orthogonal projection onto Span (fo, f1)*. If || P(z,)| is unbounded, then
one may extract a subsequence (z,, ) of (z,), such that (z,, fo) — oo or (z,, fi) — oo, as
k — o0, and then choose a = fy or a = f;. If not, by compactness of bounded sets in the 2-
dimensional subspace Span (fy, f1), there exists a subsequence (ny)r and w € Span (fo, f1)
such that P(x,,) — w as k — oco. Let us pick a nonzero in Span ( fo, f1), orthogonal to w.
It follows

<xnk’a> = <P(xnk)’a> + <PL($nk)7a> = <P(xnk)va> —0, k— o0

Now, since Span ( fy, f1) is 2-dimensional, the orthogonal to a in Span ( fo, f1) is 1-dimensional.
Thus, because (P(z,)), is pairwise linearly independent, we may assume, up to take a sub-
sequence, that for any & > 0, x,,, ¢ Ca and (z,,,a) = (P(z,,),a) # 0. This finishes the
proof of the lemma. O
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We can now turn to the proof of Lemma [3.22]

Proof of Lemma[3.24. We do the proof in the case where (\g)x is bounded. The case (Ag)y
unbounded is done similarly and left to the reader. Let then (Ag); be a bounded linearly
independent sequence in ¢*(N). By Lemma one gets a subsequence that we still denote
(Ax)r and one can pick fy := a such that, (g, fo) # 0 and A\, ¢ Cfy for any k£ > 0, and
(Mg, fo) — 0 as k — oo. By Lemma , we can complete fy into an orthonormal basis
(fom)m of H := Span (fo, A, K > 0) , such that (g, fa,) # 0 for any k,m > 0. To finish,
we complete (fa,,)n into an orthonormal basis (f,,)., of £2(N) by choosing an orthonormal
basis of (H)*. It then suffices to set I; = {2m,m € N}, I, = {2m + 1,m € N} and
19 = 0. O

Remark 3.26. The proof of Lemma based on that of Lemmas [3.24] and [3.25] is
actually a refinement of that of Lemma |3.17, The compactness of the finite dimensional
unit sphere used in the proof of Lemma [3.17 remains the very key-point in the infinite
dimensional setting of Lemma [3.25

3.3.2. Proof of Lemma [3.23 Tt consists in a technically involved adaptation of Lemma
BI8

Proof of Lemma[3.23 Let (An)nen € £2(N) be as in the statement of the lemma. In order
to simplify the notations, we may and shall assume that 0 € I; and that ¢c = 0. Now,
observe that given an orthonormal family (z;); in a Hilbert space H,

F{Zi)i - {Z/\g)zi’ nz O} = {Z/\q(j)zi; n > 0} .

>0 i€l

In other words, in the orthonormal family (z;);ey, the elements z; with ¢ € I play no role
and can be chosen arbitrarily. Then, since the case I; finite has been treated in Lemma
[3.18, we will also assume that /; = N.

We assume first that )\%0) — 0, n — oo. We consider the operator T := B, D, B,
defined on the ¢? direct sum of (*(Z) spaces H := (®2,(*(Z)),., where the weighted
backward shifts B, and B,, are defined by weights v and w given respectively by

{2 ifi>0 {2 ifi>0
v = and w; =

5 ifi<o0 1 ifi<0

Let (yn)nen be a dense sequence in H satisfying the following notations and properties:
(1) For every n € N, ¥, = (Yn.k ) k>0

(2) For every n € N, every k > n, y,; = 0;

(3) For every n,k € N and every |j| > n, y,x(j) = 0;

(4) For every n,k,j € N, |y, x(5)| < n.

It should be clear that such a sequence exists in H. We also define the degree d,, of an
element of this sequence by

d, :=max (max([j| : I <n, Ik € N:y1(7) #0),max(k : I <n:yx #0)).
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Then, with our assumptions on the sequence (y,)nen We deduce that d, < n for every
n € N. In what follows, we denote by Fi (resp. F1) the weighted forward shift being

the inverse of B, (resp. B,). In other words, F1 is the weighted forward shift F, where

3ifi=0 Lifi>0
v, = {2 1 Z - and F1 is the weighted forward shift F,, where w; = { 2 1 Z -
2ifi <0 w life<0
Remark that T" cannot be hypercyclic since B,, is expansive and then not hypercyclic on

*(Z).
From now on, we construct by induction an increasing function ¢ : N — N and an
increasing sequence (my)reny C N satisfying:

(i) ||%F71nkykz\| < 27% for every i > 1;

so(k) v
(i) o F1*yroll < 27"
w(k) w

A0)

(iii) | fg”Fink "l < 27%F) for every i > 1 and every j < k;
so(k) v
RO

(iv) || 2‘;()”FT’C "ol < 27F for every j < k;

so(k) w
(v) I8 2 BTy || < 270D for every i > 1 and every j < k;

()

RO)

(vi) || (()()k) Bu* " y,0ll < 27F for every j < k;

<P(J)

(vii) (Fl ’“y;“> (0) = 0 for every i > 1;
(vii) (F’f%yk,o) Ch

(i) H( k))

Once this constructlon has been made until step k£ — 1, since for every j < k and every
m >0

m—mgj,, di+1
1B 0l < 2% maxlyol],

then it suffices to choose ¢(k) so that )\ff()k) is a small enough element of the converging to 0

sequence (A%O))neN to ensure that is satisfied. Moreover, one can choose m;, sufficiently
large for and and to hold, since for every y € coo(Z),

Fy — 0.

w  Mm—+00
Furthermore, thanks to property of the sequence (y,)neny We can take my even larger
in order to satisfy (), and ([v)) since for every y € co(Z),

'y — Oand B'y — 0.

v m—-+00 m—-+00

Finally, up to take m; bigger again, and can be satisfied because d;, < k. This
finishes the construction of the sequences ()‘gzk))keN for i > 0 and (mg)gen-
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Now, thanks to | . and . we define the orthogonal family {Z;};cn in H by

- 1
z20 = <€0+Z)\(T)Fi]yj,07oa"')
J=0 "*¢(j)

and for every ¢ > 1

N R
Zi = 07.."07€0+ZTF%]?J]'J’O’..‘

i times J=0 "o(4)

We deduce from , , and 1) that for every i ey, 1 < ||z;]| < 1 —I—ZOO 277 =3.
Now, we normalize this family z; := ” H to obtain an orthonormal family {z;};en in H.

Observe now that the diagonal operator D : H — H defined by D ((z;)ien) = (||Z:]| " 2:)
is well-defined since for every i € N, ||Z;]| > 1, has dense range and commutes with 7.

We claim that T is F{Zi)i—hypercyclic. Thus, it suffices to prove that the orbit of
{Zfoo)\p(k } under 7' is dense in H. Furthermore, from the properties of D, we
keN

remark that for every m € N,

r () < oo (Sa3).
1=0

Then, by density of the range of D, we deduce that the orbit of {ZZ 0 /\ggk)zz}k under
eN

T is dense in H whenever the orbit of {ZZ 0 (p ,}k under 7" is dense in H. Thus, it
eN

suffices to prove that T is F{%)i—hypercychc. Let k € N,

(E:Awk~>
_ <A‘%Bmk< i O yﬂo)_ )@

= A ()
= >\ k)Bmk (60+Z 0) F1 y]0>_yk0 +Z

Jj=0 so(J

2

Now using and , we get for every ¢ > 1,

z) Bmk (60 + Z (Z 1 ‘yj,i) - Z/k,i>
w(a)
Bmk (60 + Z ijyj 7,> — Yk,

2

2
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)\c(; Bm’c (eo -+ Z 1 y] Z) — Yk,
)

‘ A( i Aot Aot

< [t B o) | + D2 SH B F | 4+ (| B FT s — ]| || S B FL
J<k “o(j) e(k) 3>k Te(j)

(i) Aoty (%

< /\;(]g)BZ;nk (eO)H + Z Z) Bmk mjyj,i + Z Z) 1 kyj,i
j</f ©(J) 3>k 1 ()

()

S )‘so(k ) omy—1 Z k-i—z + Z 2]+z
>k

() 1 k‘ +1 1
S Ao gmet| T E X g0
On the other hand, similar computations with and yield,

k —|— 1
)\(0) Bm’C (60—1—2 1 yyO) — Ykol|| < 2|)‘
Altogether we obtain, for every k € N ,
e kol 1 1 ’
m @ = ) + ™
i=0 =S ID)

(1) @ 1
<2+ ww—w_l),ﬂ

1

2m1€—1 :

k+1 H k+1 1

2

Th+1 »
<MWl + 5z H (¥l0)

Now we use the fact that )\( ) tends to 0 and to remark that the preceding expression
tends to 0 as k tends to mﬁmty. Since the sequence (yx)gen is dense in X, we conclude
that T is F{%)Z_—hypercyclic.

Let us now deal with the second case that is ])\7(10)\ — 00, n — 00. The proof resemble
to the previous one, yet we prefer to include all the details. As before we consider the
operator T' = B, @,-, B, defined on the ¢? direct sum of (*(Z) spaces H = (®&°(*(Z)) 2,
where the weight v is the same as before (i.e. v; = 2 if i > 0; v; = 1/2 if i < 0), but w is

now given by
1 ife>0
W; = e .
% ifi <0
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We also define (y,)nen and (d,)nen as in the previous case and still denote by Fi (resp.
F'1) the inverse of B, (resp. By), i.e the weighted forward shift F, (resp. F,) with

L $ifi>0 (res Lo Jrifi=0 )
"T2ifi<0 P 2iti<o

T is not hypercyclic since ||B,| < 1. Now, as in the previous case, we construct an
increasing function ¢ : N — N and an increasing sequence (mg)reny C N satisfying:

(i) H (z() )kaysz < 27 for every i > 1;
p(k v
(if) | <0<>)F1 Fyroll <275
k w
Af) N ,
(iii) | (Z)J>F7 el < 275 for every i > 1 and every j < k;
O
: Aio()w my—m; —k ‘
(iv) || o Yrol| < 27" for every j < k;
w(k) w
(v) | /\f()k) B, "yl < 27#F) for every i > 1 and every j < k;
»(J)
RO
(vi) || /\fé’“) Buw* " y;0ll < 27F for every j < k;
(vii) (Fm’“ym) = 0 for every i > 1;
(viii) ( 1 yk0> = 0;
) 2mklL.
( ) < Tk

0 ()], = =5

Once this construction has been made until step £ — 1, since for every 5 < k and every
m >0

IFT ™yl < 2% na

then it suffices to choose (k) such that )\ff()k) is a large enough element of the converging

to 0o sequence (A,(lo))neN to ensure that and are satisfied. Moreover, one can choose
my, sufficiently large for and () to hold and also (vi), since for every y € coo(Z),

By — 0.

m—-+00

Furthermore, thanks to property of the sequence (y,)nen We can take my even larger
in order to satisfy (), and for every y € coo(Z),

'y — Oand B)'y — 0.

v m—-+00 m—-+00

Finally, up to take m; bigger again, and can be satisfied because d;, < k. This
finishes the construction of the sequences ()‘gzk))keN for i > 0 and (mg)gen-
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Now, thanks to . and . we define the orthogonal family {Z;};cn in H by

1
Zo = <€0+Z ©) 1 y%g,(),...)
=0 A(j)

and for every ¢ > 1,

N ~ 1 m,
%= 0,...70,60+Z>\(i) F1y;5:0;..
i times J=0 "0(j)
We deduce from , , and that 1 < [[Z]| < 1+372,277 = 3 for every i € N.
Now, we normalize this family z; := HE_EH to obtain an orthonormal family {z;}ien in H.

Observe now that the diagonal operator D : H — H defined by D ((z;)ien) = (||Z:]| " 2:)
is well-defined since for every i € N, ||z;|| > 0, has dense range and commutes with 7.
As in the previous case, the properties of D ensure that it suffices to prove that T is
F{z_)i—hypercyclic. For k e N,

2

(52003 -

1=0

— )\( k)BL)nk <60+Z F Z/go>—3/k0
)

Now using and , we get for every i > 1,

2

£

=1

)‘s(; By (&H—Z (i) 1 ?Jm) — Yk,i
»(4)
' A% Ao Aol
< [0y B o)+ |30 SEE B P |+ | B s = |+ | S0 SE B
J<k () k) 7>k ()
(2) /\(ng) (k)
Swﬁ%wzzwwwﬁz<>lm
J'<’f e(9) j>k m)
@ _ 1
= )\W(k ) 9my—1 Z 2ks+z + Z 2]4_1
i>k
(4) 1 /C +1 1

On the other hand, similar computations with and give,

7 m ]'
A B k<€0+z 5 ygz> — Yk
b

2
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0
P‘fo()k)’ n kE+1
— 9m;—1 2k :

)\fp()()k Bmk (60 + Z 1 yj 0) — Yk,0
])

Altogether we get, for every k € N,

_ Al B+ 2 kel 1 L i
— ka—1+ 2k: + 2k: X§+| <p(k)|2mk—1 o1

T™ () A 2) — i

=0 2
(0)
- 2me—l i (k) lome—1 |
i>1 9
0
< |>‘<(p()k)| 7k+1 1
= 9gmy—1 3 ok ka 1

Now we use and @ to remark that the preceding expression tends to 0 as k tends to

infinity. Since the sequence (yx)ren is dense in X, we conclude that T is F{%)i—hypercychc.
O

Remark 3.27. Given I' not contained in a finite union of vector annuli, the previous
proof provides us explicitly with a Hilbert space H, a non-hypercyclic operator T' € L(H)
and an orthonormal family (z,), in H such that T is I'(,, -hypercyclic. But it is quite
transparent that the construction imposes that Span (z,, n > 0) has infinite codimension.
This is the technical obstruction which won’t allow us to obtain a complete characterization
of hypercyclic sets (see Section 4] and the proof of Theorem A).

3.4. Bourdon-Feldman scalar sets. Let X be a separable complex Banach space and
T € L(X). We recall that the Bourdon-Feldman Theorem [7] asserts that any somewhere
dense orbit of a single vector z € X under the action of T' is actually dense. In view of
this important result, we introduce the following definitions.

Definition 3.28. Let [ > 1. We say that I' C C! (resp. I' C /3(N)) is a Bourdon-Feldman
scalar set if for every separable Banach space X (resp. separable Hilbert space H), for
every T' € L(X) (resp. T € L(H)) and every linearly independent family (z1,...,2;) in X
(resp. any orthonormal family (x,,), in H),

Orb(I'y, . 4, T) somewhere dense in X = Orb(z;, T) = X for some i € {1,...,(}
(resp.
Orb(L' (.., T) somewhere dense in H = Orb(x;,T) = H for some i > 0).

The Bourdon-Feldman Theorem says that any non-zero scalar A € C is a Bourdon-
Feldman scalar set. This result was improved in [10], where Bourdon-Feldman scalar
subsets of C were characterized. The statement is as follows.
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Theorem 3.29. A non-empty subset T' # {0} of C is a Bourdon-Feldman scalar set if and
only if I'T is a nowhere dense hypercyclic scalar set, i.e. there exist 0 < a < b < oo such

that T'\ {0} C [a,b]T and In(TT) = 0.

The only known example of a multidimensional Bourdon-Feldman scalar set is a finite
union of sets of the form Tf, f € C' (or £2(N)) non-zero. It can be deduced from [3,
Theorem 3.11]. Theorems and together with Theorem [3.29] allow us to obtain a
complete characterization of Bourdon-Feldman scalar sets in C! and in /?(N).

Theorem 3.30. A non-empty subset I' of C!, [ > 1, (resp. (*(N)) is a Bourdon-Feldman
scalar set if and only if T\ {0} # 0 and there exist N € N, gy,...,gn in C' (resp. (*(N)),
[',...I'xy € C with Int(T;T) =0 for any 1 <i < N, and 0 < a < b < 00, such that

M\ {0} c UFigi-

Proof. We first deal with the ”if part”. Let I'y,..., 'y be as in the theorem. It is enough
to check that for any zi,...,xny € X, if the orbit of the set Uf\il [';x; is somewhere dense
in X, then Orb(z,,,T) is dense in X for some iy € {1,..., N}. Now, by [10, Theorem B,
if none of the Orb(z;,T) is dense in X, 1 < ¢ < N, then each of the orbit Orb(I';z;, T),
1 <i < N, is nowhere dense in X, hence Ufil [';z; as well.

Let us now turn to the "only if part”. We only give the proof for I' C /*(N), that for
I' ¢ C! being similar and a bit simpler. Let then I' be a Bourdon-Feldman scalar set
in /*(N). Since I is in particular a hypercyclic scalar set, there exist pairwise distinct
elements gy, ..., gy in £2(N) and 'y, ...,y non-empty subsets of C, with T bounded and
bounded away from 0 for any ¢ = 1,..., N, such that

M\ {0} = U Ligs.

Remark first that [10, Theorem B] contains the case N = 1, thus we may assume that
N > 2. Assume by contradiction that there exist 1 < iy < N so that I';,T is somewhere
dense in C for some iy and set without loss of generality 7o = 1. Recall that we are looking
for a Hilbert space H, an operator 7" on H and an orthonormal sequence (z,), in H so
that Orb(I'y, . .y, T) is somewhere dense but 7" is not hypercyclic.

Let H=C® (*(Z) and T = ¢? @ B,, where ¢ is the rotation operator on C with
0 € R\ 7Q, and w is a weight defined by

2 ifi>0
w; = 1 AP
5 i <0.

T is not hypercyclic, but B, satisfies the Hypercyclicity Criterion on £2(Z). Moreover since
the rotation ¥ is universal on T C C, it is well-known that e x B, acting on T x (*(%Z)
is universal with universal vector (1,z), where x denotes a hypercyclic vector for B, (see
the proof of [10, Proposition 4.2] for example). We can assume that ||z|| > ||g1]]. Then,
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for some A € R%, let F : (*(N) — H be an isometry such that F'(g;) = (), z), and set
(2n)n := (F(en))n. Observe that I',,), = F(T') = T1(\, z) UY, T';F(g;) so that

Orb(l“l()\, ZL‘), T) g Ol"b(r(wn)n, T)

Consider the open set U := AV @ (?(Z) where V is an open set contained in I'; T and take
(a,y) € U. Then, by definition of U and by compactness of T, there exist a sequence (V)
la]

in I'y and p € [0, 27[ such that v, — e, Then by universality of " x B,,, there exists

a sequence (ny) such that e — are " and B () — y as k — oo. This yields

W™ (A x) = (™, we Bl (7)) — (a,9)

and proves that Orb(I'1 (), z),T) is somewhere dense in H, finishing the proof. O

4. APPLICATIONS: HYPERCYCLIC SETS AND BOURDON-FELDMAN SETS

We recall that T € £(X) and T € L(X) are conjugate to each other if there exists an

isomorphism S : X — X such that To S = SoT. The following proposition can be easily
checked.

Proposition 4.1. Let X be a Banach space, A a non-empty subset of X, and T € L(X)
and T € L(X) be conjugate to each other. Then T is A-hypercyclic if and only if T is
S(A)-hypercyclic, where S € L(X, X) is such that T oS = SoT.

The next proposition gives an equivalent, but apparently stronger, definition of a hyper-
cyclic set in X.

Proposition 4.2. Let X be a separable Banach space and A a non-empty subset of X. A
is a hypercyclic set (in the sense of Definition if and only if for any T € L(X),

T is hypercyclic iff T is conjugate to a A-hypercyclic operator.

Proof. Suppose first that A is a hypercyclic set. Then if T is hypercyclic, the argument
is the same as in the proof of Proposition [3.2] Let z be a hypercyclic vector for X and
z € A. We consider a topological isomorphism S of X which maps z to x and define
T := S'oToS. By Proposition again, T is hypercyclic with z = S~l(x) as a
hypercyclic vector. Since z € A, T is also A-hypercyclic. For the other way round, we
need only use that hypercyclicity is preserved by conjugacy.

For the sufficiency, we need only remark that any operator is conjugate to itself. U

We now re-state and prove Theorem A.

Theorem A. Let A be a subset of a separable Hilbert space H.

(1) We assume that A is contained in a finite dimensional subspace of H. Then A is a
hypercyclic set if and only if A\ {0} is non-empty and contained in a finite union
of vector annul.
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(2) If A contains a sequence (x,,), of linearly independent vectors satisfying
(4.1) Codim(Span(x,, n > 0)) = oo,
then A is not a hypercyclic set.

Proof. (1) The if part is just Theorem and then has already been proven. The proof of
the only if part is quite simple now and will be done by conjugacy. We start by fixing a
separable Hilbert space H and a finite dimensional subset A in H which is not contained
in a finite union of vector annuli. Moreover, we suppose without loss of generality that
0 ¢ A. We denote by [ the dimension of Span (A), choose a basis (x1,...,2;) of Span (A),
and we denote by F the isomorphism from Span (A) onto C! which maps x; to e;, 1 <1i <1
(here again ey, . .., ¢;) stands for the canonical basis of C'). We now define I' = F(A) C C!
and observe that obviously A =T',, .. Then I' is not included in a finite union of vector
annuli in C' (we already used such 1mphcat10n before the statement of Theorem [2.1]) so
that by Theorem . there exist a separable Hilbert space . H, an operator T € L(H ) and
a linearly independent family (z1,..., ) in H such that T is I'., .. z-supercyclic but not
hypercyclic. Since (z1,...,2;) and (21, ..., z) are finite, there is a topological isomorphism
S from H onto H which maps z; to x; for every 1 < i <[. In particular we have

A = Fxl,...,azl = S<ley~~~yzl)'

To finish we define 7 := SoT 0 S~ in L(H), observe that T and T are conjugate to each
other, and use Proposition to get that T is A-hypercyclic but not hypercyclic. This
concludes the proof of (1).

(2) We need only prove that an infinite linearly independent sequence (z,), such that
Codim (Span (x,, n > 0)) = oo is not a hypercyclic set. We fix such a sequence (z,), in
some separable Hilbert space H. By assumption, there exists an orthonormal basis ( f,,)men
of H such that ( fo,,)men is an orthonormal basis of Span ((z,,, n > 0)). We then denote by
F the isomorphism from Span ((z,,, n > 0)) onto £>(N) which maps fa,, to e,,, m € N (here
again (e,,),, stands for the canonical basis of £?(N)). We now define I' = F((z,,),) C *(N)
and observe that obviously (zn)n = I'(f,,.),n-

Since (z,,), is linearly independent in H, I' is not contained in a finite union of vector
annuli and, by Theorem [3.15 T' is not a hypercyclic scalar set. So there exist a separable
Hilbert space H, a non-hypercyclic operator 7" € L(H) and an orthonormal sequence

(Zm)men C H such that
Orb(Piz),, T) = H.
As mentioned in Remark [3.27]
Codim (Span (z,,, m > 0))) = Codim (Span (fam, m > 0))) = oo.

Thus there exists a topological isomorphism S from H onto H which maps z, to fom,
m € N. In particular we have

(@n)n = Tfom)m = S(Czm)m)-
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Finally we define T := S o ToS'in L(H), observe that T and T are conjugate to each
other, and use Proposition to infer that T is (z,),-hypercyclic but not hypercyclic.
This concludes the proof of (2). 0

Remark 4.3. The previous proof does not allow to extend Theorem A to any given
separable Banach space. The reason is simply that two given separable Hilbert spaces are
always topologically isomorphic, what may not be the case for arbitrary separable Banach
spaces.

In the Hilbert setting, the only case that Theorem A does not cover is that of those
linearly independent sequences whose any subsequence spans a subspace with finite codi-
mensional closure. This kind of pathological objects are known as almost overcomplete
sequences.

Definition 4.4. A sequence in a Banach space is called overcomplete (resp. almost over-
complete) if the closed linear span of each of its subsequences has codimension 0 (resp. has
finite codimension).

Such sequences have been for instance studied by Klee [20], and more recently by Fonf
and Zanco, see [15,16] and the references therein; see also [1,9]. We mention that Klee
proved that every separable Banach space contains an overcomplete sequence. The second
part of Theorem A can be equivalently restated in terms of almost overcomplete sequences
as follows.

Corollary 4.5. Let A be a subset of a separable Hilbert space H. If A contains a sequence
(Xn)n of linearly independent vectors which is not an almost overcomplete sequence, then
A is not a hypercyclic set.

The first part of Theorem A provides with various new examples of natural sets which
are not hypercyclic sets.

Corollary 4.6. Let H be a separable Hilbert space. The following subsets of H are not
hypercyclic sets.

o A segment containing 0

o A segment joining two linearly independent vectors;

e More generally, any sets containing a finite dimensional continuous curve joining
two linearly independent vectors;

e Open sets or spheres with positive radius, as examples of sets of the previous type.

Remark 4.7. As far as we now, even the first example in Corollary is new. Indeed, [10,
Theorem A] tells that a segment of the form [a, bz is a hypercyclic set if 0 ¢ [a,b] and
x # 0, and that [a,b] is not a hypercyclic scalar set if 0 € [a,b], but we do not know a
reference stating that given any Hilbert space H, any x € H non-zero, the set [a, b|x is
not a hypercyclic set whenever it contains 0.

The second part of Theorem A also gives rather nice examples of non hypercyclic sets
which are not covered by the first part. Among them, the most natural ones are probably
infinite orthonormal families.
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Corollary 4.8. In a separable Hilbert space, an infinite orthonormal family is never a
hypercyclic set.

This corollary is a satisfying answer to Feldman’s question about countable hypercyclic-
ity (see Question [4|in the introduction). We shall mention that the counterexample given
in [17, Exercise 6.3.3] is not an orthonormal family. Yet, in fact, Theorem A gives a positive
answer to Question [f] that is a completely positive answer to Question [l The reason is
that almost overcomplete bounded sequences enjoy a very strong property, as shown by
the following.

Theorem 4.9 (Theorem 2.1 of [15]; see also Theorem 3.2 of [9]). Each almost overcomplete
bounded sequence in a separable Banach space is relatively norm-compact.

This theorem implies that a bounded infinite separated sequence in a Banach space
cannot be almost overcomplete. Moreover, by compactness, it cannot be contained in any
finite dimensional subspace of H. Thus it needs to contain a linearly independent sequence
which is not an almost overcomplete sequence. Therefore, by Corollary 4.5 we get:

Corollary 4.10. A bounded separated sequence in a separable Hilbert space is a hypercyclic
set if and only if it is finite and not reduced to {0}.
Now, a natural question is whether any hypercyclic set contains hypercyclic vectors.

Theorem A together with Theorem [2.1] gives an answer in the finite dimensional case.

Corollary 4.11. Let A be a subset of a separable Hilbert space H. We assume that A
is finite dimensional. If A is a hypercyclic set, then any A-hypercyclic operator admits a
hypercyclic vector in A.

Proof. Since A is a hypercyclic set, Theorem A gives N > 1,0 <a<b< ocand xy,...,TxN
in H such that

N
AcC U[a, b|Tx;.
i=1

We can assume that

N
(4.2) A ¢ |, b)Tz;

=
for any 1 < 7 < N. By Theorem Ax; is hypercyclic for T" for some 1 < ¢ < N and any
A # 0. Now by (4.2) there is some A # 0 such that \z; € A. O

We finish this paragraph by telling that, as in the proof of Theorem A, and without any
extra difficulties, a conjugacy argument can be combined to Theorem [3.30]in order to get
a characterization of finite dimensional Bourdon-Feldman sets. Moreover, since Bourdon-
Feldman sets are also hypercyclic sets, the second point is clear by Theorem A. We leave
the details to the reader and re-state Theorem B.

Theorem B. Let A be a subset of a separable Hilbert space H.
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(1) If A is finite dimensional, A is a Bourdon-Feldman set if and only if A\ {0} is
non-empty and if there exists x1,...,xy in X and I'y,..., 'y subsets of C, with

[\ {0} bounded and bounded away from 0 and I';T nowhere dense in C for every
ie{l,...,N}, such that

N
i=1
(2) If A is infinite dimensional and if A contains a sequence (x,,), of linearly indepen-
dent elements satisfying
Codim (Span (x,, n > 0)) = oo,
then A s not a Bourdon-Feldman set.

This theorem provides with examples of hypercyclic sets which are not Bourdon-Feldman
sets (for e.g. the sets of the form [a, b]Tx with 0 < a < b < oo and z € H \ {0}).

5. OPEN QUESTIONS

Regarding to Theorem A, an answer to the following question would provide with a
complete description of hypercyclic sets in separable Hilbert spaces.

Question 6. Are almost overcomplete sequences hypercyclic sets?

The authors think that this question has a negative answer but the technical obstruction
mentioned in Remark makes our construction probably inefficient.

A description of hypercyclic sets in Banach or Fréchet spaces still remains unknown.

Question 7. Is there a characterization of hypercyclic sets in some/any Banach or Fréchet
spaces?

We recall that Feldman [13] proved that if 7" is a unilateral weighted shift then T is
hypercyclic if and only if there exists a bounded set having dense T-orbit. This is a partial
answer to Question |7| for 7" in some specific class.

Related to I'-supercyclicity with I' € C'! is the notion of n-supercyclicity introduced by
Feldman [14] in 2002. We recall that an operator 7' € £(X) is said to be n-supercyclic,
n > 1, if there exists an n-dimensional subspace E of X such that T"is E-hypercyclic. In
particular any I'-supercyclic operator, I' C C!, is l-supercyclic. So a general problem is the
following.

Question 8. Given n, | two positive integers, is it possible to describe those subsets I' C C!
for which an operator is n-supercyclic if and only if it is ['-supercyclic?

Since Feldman proved in [14] that n-supercyclicity and (n — 1)-supercyclicity differ, the
above problem need only be considered for n < [. Actually this question has already been

attacked for n = [ = 1, in which situation no complete solution has been formulated,
see [10] and the references therein.

In connection with Theorem B, the following question makes also sense.
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Question 9. Is it possible to characterize those subsets A of a separable Banach space X
such that the somewhere density in X of Orb(A,T") implies its everywhere density?

The interactions between linear dynamics and ergodic theory is of great interest in linear
dynamics. This is represented by the notions of frequent hypercyclicity and U-frequent
hypercyclicity introduced by Bayart and Grivaux [2] and Shkarin [27], respectively.

Question 10. What can be said about frequent or U-frequent hypercyclicity?
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