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HYPERCYCLIC SETS

S. CHARPENTIER, R. ERNST

Abstract. We completely characterize the finite dimensional subsets A of any separa-
ble Hilbert space for which the notion of A-hypercyclicity coincides with the notion of
hypercyclicity, where an operator T on a topological vector space X is said to be A-
hypercyclic if the set {Tnx, n ≥ 0, x ∈ A} is dense in X. We give a partial description
for non necessarily finite dimensional subsets. We also characterize the finite dimensional
subsets A of any separable Hilbert space H for which the somewhere density in H of
{Tnx, n ≥ 0, x ∈ A} implies the hypercyclicity of T . We provide a partial description
for infinite dimensional subsets. These improve results of Costakis and Peris, Bourdon
and Feldman, and Charpentier, Ernst and Menet, and answer a number of related open
questions.

1. Introduction

At the core of Linear Dynamics is the notion of hypercyclicity. A bounded linear operator
T from a topological vector space X into itself is said to be hypercyclic if there exists a
vector x in X whose orbit Orb(x, T ) := {T nx, n ≥ 0} is dense in X. Such an x is called a
hypercyclic vector for T . In the following we will assume that X is a complex topological
vector space. The translation operator Ta : f 7→ f(· − a), a 6= 0, acting on the Fréchet
space of entire functions H(C) is known after Birkhoff as the first example of hypercyclic
operator [6]. Later, natural operators such as the differentiation operator or the dilation
of the backward shift were shown by MacLane [22] and Rolewicz [25] to be hypercyclic
on H(C) and the space of square summable sequences `2(N) respectively. The systematic
study of the abstract notion of hypercyclicity became quite active since the early eighties,
after Kitai stated a useful criterion for hypercyclicity [19]. What is now referred to as the
Hypercyclicity Criterion, a refinement by Bès [5] of the initial Kitai’s one, has been proven
by De La Rosa and Read [12] to be not satisfied by every hypercyclic operator. Later,
Bayart and Matheron [3] refined De la Rosa and Read’s counterexample and exhibited
one on any classical Banach spaces, including the Hilbert space. This result answered a
rather long standing open problem posed by Herrero in 1993, which led at the time to
some natural questions about the definition of hypercyclicity. We may state two of them:
Does the density of the union of finitely many orbits imply the density of one orbit? Does
the somewhere density of one orbit imply its density everywhere? We refer to the very
nice books [3] and [17] for a quite rich insight about linear dynamics and for (much) more
details on these questions.
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The rigidity imposed by the linearity of the operators makes these kinds of questions
relevant. Indeed Costakis and Peris independently gave a positive answer to the first
one [11,24]. Later on, León and Müller [21] proved that the density of the orbit

Orb(Tx, T ) := {λT nx, n ≥ 0, |λ| = 1}

of the one dimensional uncountable set Tx := {λx, |λ| = 1} under T automatically implies
the density of Orb(x, T ) itself; a corollary of that result is that T is hypercyclic if and only
if λT is for every complex number λ of modulus 1. The proof of Costakis-Peris’ result
contained the foundations of the stronger and beautiful result by Bourdon and Feldman [7]
asserting that only the somewhere density of the orbit Orb(x, T ) is needed to ensure the
hypercyclicity of x for T . The proof of León-Müller’s result exploited the group structure
of the unit circle T, an idea which was then developed and extended to statements in terms
of groups and semigroups [23,26], see also [3, Chapter 3].

Recently, León-Müller and Bourdon-Feldman’s results have been improved by a complete
description of the subsets Γ of C satisfying one of the following two properties [10]:

(P) for every complex Banach space X, for every operator T on X and for any x ∈ X,

Orb(Γx, T ) := {γT nx, n ≥ 0, γ ∈ Γ} is dense in X iff Orb(x, T ) is dense in X;

(P’) for every complex Banach space X, for every operator T on X and for any x ∈ X,

Orb(Γx, T ) is somewhere dense in X iff Orb(x, T ) is dense in X.

The sets Γ satisfying Property (P) turn out to be exactly those which are bounded and
bounded away from 0 (after removing the single point 0) [10, Theorem A], and the sets Γ
satisfying Property (P’) are those satisfying (P) and such that the set ΓT := {γλ, γ ∈
Γ, |λ| = 1} is nowhere dense in C [10, Theorem B]. The notion of Γ-supercyclicity was
introduced: given Γ ⊂ C, an operator T on X is said to be Γ-supercyclic if there exists x
in X such that the orbit Orb(Γx, T ) is dense in X. Γ-supercyclicity extends the notions
of hypercyclicity and supercyclicity - introduced by Hilden and Wallen [18] - which corre-
sponds to Γ = C. Thus [10, Theorem A] says that for some good non-empty subsets A of
a one dimensional subspace of X, possibly open in this subspace, the density in X of the
set {T nx, n ≥ 0, x ∈ A} implies the hypercyclicity of T . However neither this result nor
Costakis and Peris’ one implies the other and we may expect a positive statement covering
both multihypercyclicity and Γ-supercyclicity. The following natural question arises:

Question 1. Let x1, . . . , xN be a family of pairwise distinct vectors in X and Γ1, . . . ,ΓN
be subsets of C∗ which are bounded and bounded away from zero. If Orb

(
∪Ni=1Γixi, T

)
=

∪Ni=1Orb (Γixi, T ) is dense in X, is some xi hypercyclic for T?

We shall mention that a positive answer to this question cannot be obtained, as for
the classical Costakis and Peris’ result, as an application of some Bourdon-Feldman type
Theorem. The reason is [10, Theorem B] according to which subsets of C of the form
[a, b]T - bounded and bounded away from 0, but somewhere dense in C whenever a < b -
do not satisfy the property (P’).
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Question 1 eventually gives rise to an extended notion of Γ-supercyclicity for multi-
dimensional Γ ⊂ Cl, or even for subsets of spaces of infinite sequences. Without going
into details now, we are naturally led to introduce what we call hypercyclic scalar sets (see
Paragraph 3.1) and Bourdon-Feldman scalar sets (see Paragraph 3.1.2). Roughly speaking,
they are those multi-dimensional scalar sets which satisfy a property similar to (P) and
(P’) respectively. The following question was already mentioned in [10].

Question 2. Does there exist a characterization of multi-dimensional hypercyclic scalar
sets and Bourdon-Feldman scalar sets?

Now, let us briefly come back to the complete description of one dimensional hypercyclic
scalar sets (i.e. of subsets of C satisfying Property (P)) given in [10]. It allows for instance
to assert that given any fixed separable Banach space X and any fixed non-zero x ∈ X, the
density of Orb ([1, 2]x, T ) in X automatically implies that of Orb (x, T ); but it does not
say whether Orb ([0, 1]x, T ) = X does not imply Orb (x, T ) = X. It only says that there
exist some X, some T ∈ L(X) and some x ∈ X such that the previous implication does
not hold. This is actually rather unsatisfying as one may prefer an answer to the much
more precise questions: Given X and A ⊂ X,

• does the density of {T nx, n ≥ 0, x ∈ A} in X imply that T is hyperyclic?
• on the contrary, does there exist a non-hypercyclic T ∈ L(X) such that {T nx, n ≥

0, x ∈ A} is dense in X?

Similar questions related to the Bourdon-Feldman Theorem make also sense. Thus the
notion of Γ-supercyclicity is, at least from this point of view, a bit soft and one may want
to replace it with a notion which depends on the ambient space.

Definition 1.1. Let X be a Banach space and A be a subset of X. We say that an
operator T on X is A-hypercyclic1 if

Orb(A, T ) := {T nx, n ≥ 0, x ∈ A}

is dense in X.

If A is a single point, we recover the classical notion of hypercyclicity; if A is a finite
union of points, that of multihypercyclicity considered in [11, 24]. Given a fixed x ∈ X
and Γ ⊂ C, any Γx-hypercyclic operator is in particular Γ-supercyclic (but a Γ-supercyclic
operator is not necessarily Γx-hypercyclic...). Regarding to the previous, the main notions
of this paper are the following.

Definition 1.2. Let A be a subset of a separable Banach space X.

(1) We say that A is a hypercyclic set2 if A \ {0} is non-empty and any A-hypercyclic
operator on X is hypercyclic.

1The terminology A-hypercyclic operator already appeared in [8] with a different meaning, see also [4].
There, A is a family of subsets of N. Thanks to the context, we think that no confusion is possible.

2Not to be confused with the notion of hypercyclicity set as introduced in [8]
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(2) We say that A is a Bourdon-Feldman set if A\{0} is non-empty and it satisfies the
following property: for any operator T ∈ L(X), the somewhere density in X of the
set Orb(A, T ) implies that T is hypercyclic.

The following question - partially posed in [10] - completes Questions 1 and 2.

Question 3. Does there exist a characterization of hypercyclic and Bourdon-Feldman sets?

This direction of research was pursued by several authors in different contexts. Most of
them, like Costakis and Peris [11, 24], León-Müller [21] or Charpentier-Ernst-Menet [10,
Theorem A], give examples of hypercyclic sets. Also, Feldman [13] proved that in the case
where T is a weighted backward shift on `2(N), if T has a bounded set with dense orbit
then T is hypercyclic. His result asserts that any bounded set is a hypercyclic set if we
restrict ourselves to weighted shifts on `2(N). A few papers give non-trivial examples of
sets which are not hypercyclic sets. Among them, it is worth mentioning [13] which is
interested in the notion of countably hypercyclic operators, namely in those T such that
Orb({xn}n, T ) is dense in X for some (infinite) bounded separated sequence (xn)n, where
separated means that there exists δ > 0 such that ‖xn − xm‖ ≥ δ for any n 6= m. Remark
that a countably hypercyclic operator for a separated sequence (xn)n∈N is a A-hypercyclic
operator with A = {xn}n∈N. In [13], the following question was posed.

Question 4. Does there exist a countably hypercyclic operator being not hypercyclic?

We recall that by Costakis and Peris’ result the answer is no if one only considers
finite sequences. At the end of [13], the author mentions that a positive answer to his
question was given by Peris in a private communication. For an explicit example solving
this question by the positive, see [17, Exercise 6.3.3]. Here again, the answer may look a
bit disappointing, as it consists in exhibiting a specific Hilbert space, a specific bounded
separated sequence (xn)n, and a non-hypercyclic T ∈ L(X) such that Orb({xn}n, T ) is
dense in X. What about any fixed bounded separated sequences in any Banach spaces
and the following very general question?

Question 5. Given a bounded separated sequence (xn)n∈N in a separable Banach space
X, does there always exist a countably hypercyclic operator T for (xn)n∈N which is not
hypercyclic?

The purpose of this paper is to attack Questions 1 to 5. We will obtain a complete
answer to Question 1 (Theorem 2.1) and Question 2 (Theorems 3.8 and 3.15). The proof of
Theorem 2.1 will consist in an adaptation of that given by Peris for multihypercyclicity [24].
The ”only if parts” in Theorems 3.8 and 3.15) are partially based on geometric arguments
in Hilbert spaces. These results will surprisingly turn out to be very useful in order to
obtain, thanks to the fact that (quasi-)conjugacy preserves the dynamical properties of
operators, an almost complete answer to Question 3 (Theorems A and B below) when X
is a separable Hilbert space. As a corollary of Theorem A, we will get a positive answer
to Question 5 in the Hilbert setting. In particular, it will tell us that the most natural
bounded separated sequence in a Hilbert space - namely an orthonormal basis - is not a
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hypercyclic set (see Question 5). In order to state Theorems A and B, we introduce the
following terminology, which will repeatedly appear throughout the paper.

Definition 1.3. We say that a subset A of X is a vector annulus if there exist x in X and
0 < a ≤ b <∞ such that

A = [a, b]Tx :=
{
reıθx, a ≤ r ≤ b, 0 ≤ θ ≤ 2π

}
.

Theorem A. Let A be a subset of a separable Hilbert space H.

(1) We assume that A is contained in a finite dimensional subspace of H. Then A is a
hypercyclic set if and only if A \ {0} is non-empty and contained in a finite union
of vector annuli.

(2) If A is not contained in a finite dimensional subspace of H and if it contains a
sequence (xn)n of linearly independent vectors satisfying

(1.1) Codim(Span(xn, n ≥ 0)) =∞,

then A is not a hypercyclic set.

The first part of Theorem A gives a complete characterization of hypercyclic sets among
finite dimensional subsets of a separable Hilbert space. It also answers Question 6 from [10]
and provides with a wide class of examples of sets which are not hypercyclic. For example,
in the Hilbert setting, a segment joining two linearly independent points, a non-trivial
sphere, or a non-empty open set of X is never a hypercyclic set. The second part of
Theorem A tends to suggest that a hypercyclic set is necessarily contained in a finite
dimensional subspace. Actually Theorem A, Part 2, can equivalently be stated in terms
of almost overcomplete sequences (see Section 4 for details). Thus Theorem A does only
let open the following question: Are there almost overcomplete sequences in a separable
Hilbert space which are hypercyclic sets? We refer the reader to the last section devoted
to open questions. The proof of the second part of Theorem A, like that of the first one,
is based on a construction made in the proof of Theorem 3.15. An obstruction occurs
when we deal with linearly independent sequences spanning closed subspaces with finite
codimension.

Finally, the previous considerations combined with [10, Theorem B] will allow us to
obtain an almost complete description of Bourdon-Feldman scalar sets and, at end, to
obtain the following.

Theorem B. Let A be a subset of a separable Hilbert space H.

(1) If A is finite dimensional, A is a Bourdon-Feldman set if and only if A \ {0}
is non-empty and there exist x1, . . . , xN in X and Γ1, . . . ,ΓN subsets of C, with
Γi \ {0} bounded and bounded away from 0 and ΓiT nowhere dense in C for every
i ∈ {1, . . . , N}, such that

A ⊂
N⋃
i=1

Γixi.
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(2) If A is infinite dimensional and if A contains a sequence (xn)n of linearly indepen-
dent elements satisfying

Codim (Span (xn, n ≥ 0)) =∞,

then A is not a Bourdon-Feldman set.

We mention that even if our results are stated in complex Banach or Hilbert spaces,
they hold as well for real spaces, up to adequate changes. Also those of our results which
are given for separable Banach spaces hold for separable Fréchet spaces as well. This is in
particular the case for Theorem 2.1.

The paper is organized as follows. The first section consists in the positive answer to
Question 1 (Theorem 2.1). The second section is devoted to the multi-dimensional notion
of Γ-supercyclicity, that is to Question 2 and the description of hypercyclic scalar sets and
Bourdon-Feldman scalar sets (Theorems 3.8, 3.15 and 3.30). The third section deals with
Questions 3, 4 and 5, which are partially or completely answered in Theorems A and B.
The last section contains some open questions.

2. A sufficient condition for a set in X to be a hypercyclic set

For the notion of hypercyclic set, we refer to Definition 1.2. The following result gives a
sufficient condition for a set in a given Banach space X to be a hypercyclic set.

Theorem 2.1. Let (x1, . . . , xN) be a finite family of vectors in X and let b ≥ 1. If the set

Orb(
N⋃
i=1

[1, b]Txi, T ) =
N⋃
i=1

Orb([1, b]Txi, T )

is dense in X, then some xi is hypercyclic for T .

We recall that Theorem 2.1 with b = 1 is a consequence of [3, Theorem 3.11], a semigroup
version of the Bourdon-Feldman Theorem. Yet, it is worth saying that we cannot apply a
Bourdon-Feldman type Theorem to prove the whole Theorem 2.1. Indeed, by [10], the orbit
of [1, b]Tx under some non-hypercyclic operator T , on some Banach space X, and for some
x ∈ X, may be somewhere dense in X but not everywhere dense (see also Theorem B).
Instead we will generalize the original proof of Costakis-Peris’ result, as it is given in [24].
For this purpose, we need the following two classical lemmas.

Lemma 2.2. We keep the previous notations. If the orbit of
⋃N
i=1[1, b]Txi under T is dense

in X, then the point spectrum σp(T
∗) of the adjoint T ∗ of T is empty. In particular, for

every polynomial p 6= 0, p(T ) has dense range.

Proof of Lemma 2.2. The proof of this lemma is an easy combination of that of [24, Lemma
1] and [10, Lemma 3.5]. �
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Lemma 2.3. Let b ≥ 1 and x, y ∈ X. Either the interior of the closure of the orbits of
[1, b]Tx and of [1, b]Ty under some operator T on X do not intersect, or we have

int
(
Orb([1, b]Tx, T )

)
⊂ int

(
Orb([

1

b
, b2]Ty, T )

)
and int

(
Orb([1, b]Ty, T )

)
⊂ int

(
Orb([

1

b
, b2]Tx, T )

)
.

Proof of Lemma 2.3. Observe first that if Γ ⊂ C is compact, then

Orb(Γx, T ) = ΓOrb(x, T ).

Here and after, we will use the notation

I[1,b](x, T ) = int
(
Orb([1, b]Tx, T )

)
.

Let assume that I[1,b](x, T ) and I[1,b](y, T ) do intersect. Because they are open, it implies
for example that there exist γ ∈ [1, b]T and n1 ∈ N such that

γT n1x ∈ Orb([1, b]Ty, T ).

Multiplying each side of the previous by [1, b]T/γ, we get

[1, b]T{T n1x} ⊂ 1

γ
Orb([1, b2]Ty, T ) ⊂ Orb([

1

b
, b2]Ty, T ),

hence

I[1,b](x, T ) = int
(

Orb([1, b]Tx, T ) \ [1, b]T{T nx, n = 0, . . . , n1 − 1}
)
⊂ I[ 1

b
,b2](y, T ),

where the first equality holds because [1, b]T{T nx, n = 0, . . . , n1 − 1} has empty interior
in X. The other inclusion is obtained in the same way. �

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. First observe that up to taking b even bigger, we may suppose that
the vectors x1, . . . , xN are pairwise independent. Let us first assume that N is minimal in
the sense that

X =
N⋃
i=1

Orb([1, b]Txi, T ) but
N−1⋃
i=1

Orb([1, c]Tyi, T ) 6= X,

for any yi ∈ X, i = 1, . . . , N − 1, and any c ≥ 1. Then, we are going to prove that N = 1.
Suppose that this has already been proven for a while. Then, if N is not minimal, there
exists 1 ≤M < N , a ≥ b ≥ 1 and z1, . . . , zM linearly independent such that:

X =
M⋃
i=1

Orb([1, a]Tzi, T ) but
M−1⋃
i=1

Orb([1, c]Tyi, T ) 6= X,

for any yi ∈ X, i = 1, . . . , N−1, and any c ≥ 1. Thus, by assumption, M has to be equal to
one. Then, by [10, Theorem A], z1 is hypercyclic for T , and thus I[1,a](z1, T )∩I[1,a](xi, T ) 6=
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∅ for some 1 ≤ i ≤ N . Then, by Lemma 2.3, I[1,a](z1, T ) ⊂ I[1/a,a2](xi, T ). By [10, Theorem
A] again, it follows that xi is hypercyclic for T and the proof is done.

Thus, from now on, we assume that N is minimal and, by contradiction, that N > 1.
We claim that this implies the following two assertions:

(1) I[1,b](xi, T ) 6= ∅ for every i = 1, . . . , N ;
(2) For every c, c′ ≥ 1 and any i 6= j,

(2.1) I[1/c,c](xi, T ) ∩ I[1/c′,c′](xj, T ) = ∅.
Indeed, first, if I[1,b](x1, T ) = ∅ for example, then

N⋃
i=1

Orb([1, b]Txi, T ) =
N⋃
i=2

Orb([1, b]Txi, T )

which contradicts the minimality of N and gives (1). Second, assume for instance that
I[1/c,c](x1, T ) intersects I[1/c′,c′](x2, T ) for some c, c′ ≥ 1. Without loss of generality, we
may suppose that c′ ≥ b. If c′ ≥ c, then I[1/c′,c′](x1, T ) and I[1/c′,c′](x2, T ) do intersect
too, and so do I[1,c′2](x1, T ) and I[1,c′2](x2, T ); by Lemma 2.3, I[1,c′](x1, T ) ⊂ I[1,c′2](x1, T ) ⊂
I[1/c′2,c′4](x2, T ) hence, since c′ ≥ b,

X =
N⋃
i=1

Orb([1, b]Txi, T ) ⊂
N⋃
i=3

Orb([1, c′]Txi, T ) ∪Orb([1/c′2, c′4]Tx2, T ).

Up to a dilation by some positive number, we get another contradiction to the minimality
of N . If c′ < c, we just interchange the roles of x1 and x2.

Let us now observe that if x ∈ X is such that I[1,b](x, T ) 6= ∅, then by Lemma 2.3, there
exists some i ∈ {1, . . . , N} such that

(2.2) I[1,b](xi, T ) ⊂ I[ 1
b
,b2](x, T ).

We infer that the latter inclusion implies the following one:

(2.3) Orb([1, b]Tx, T ) ⊂ I[ 1
b
,b2](x, T ).

Otherwise, by (2.2), Orb([1, b]Tx, T ) 6⊂ I[1,b](xi, T ) and there must exist γ ∈ [1, b] and

n ∈ N such that γT nx ∈ Orb([1, b]Txj, T ) for some j 6= i. Proceeding as in the proof of
Lemma 2.3, it follows that

I[ 1
b
,b2](x, T ) ⊂ I[ 1

b2
,b3](xj, T ),

hence, by (2.2) again,

(2.4) I[1,b](xi, T ) ⊂ I[ 1
b2
,b3](xj, T ) ⊂ I[ 1

b3
,b3](xj, T ),

which contradicts (2.1).

Moreover, Lemma 2.2 yields, for any non-zero polynomial p,

X =
N⋃
i=1

p(T )
(
Orb([1, b]Txi, T )

)
=

N⋃
i=1

Orb([1, b]Tp(T )(xi), T ),
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so that, by minimality of N , I[1,b](p(T )(xi), T ) 6= ∅ for every i = 1, . . . , N . Therefore

Span (Orb([1, b]Tx1, T )) \ {0} =
⋃
p 6=0

Orb([1, b]Tp(T )(x1), T )

⊂
⋃
p 6=0

I[ 1
b
,b2](p(T )(x1), T ) by (2.3)

⊂
⋃
p 6=0

I[1,b3](
p(T )(x1)

b
, T )

⊂
N⋃
i=1

I[ 1
b3
,b6](xi, T ) by Lemma 2.3

⊂
N⋃
i=1

I[ 1
b6
,b6](xi, T ).

Since Span (Orb([1, b]Tx1, T )) \ {0} is connected and since, by (2.1),

I[ 1
b6
,b6](xi, T ) ∩ I[ 1

b6
,b6](xj, T ) = ∅,

for any i 6= j, it follows that there exists 1 ≤ i ≤ N such that

Span (Orb([1, b]Tx1, T )) \ {0} ⊂ I[ 1
c
,c](xi, T )

for some c ≥ b. Finally, since Orb([1, b]Tx1, T ) has non-empty interior by minimality of
N , we get

X = Span
(
Orb([1, b]Tx1, T )

)
⊂ Span (Orb([1, b]Tx1, T ))

⊂ Orb([1/c, c]Txi, T ).

We conclude that the set Orb([1/c, c]Txi, T ) is dense inX, which contradicts the minimality
of N . �

3. Characterizations independent of the ambient space

3.1. Hypercyclic scalar sets. In this paragraph we extend the formalism and the main
result of [10] to subsets Γ of `2(N). For reasons which will become clear later, we will
distinguish the case where Γ ⊂ Cl, l finite, from that where Γ ⊂ `2(N).

3.1.1. Hypercyclic scalar sets of Cl. We first introduce the formalism for subsets Γ of Cl,
l finite. Let l ≥ 1 and e1, . . . , el be the canonical basis of Cl. Let also X be a separable
Banach space and let x1, . . . , xl ∈ X be a linearly independent family. For Γ ⊂ Cl, we
denote by Γx1,...,xl

the set

Γx1,...,xl
=

{
l∑

i=1

γixi;
l∑

i=1

γiei ∈ Γ

}
.
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The notion of Γ-supercyclicity introduced in [10] naturally extends as follows.

Definition 3.1. Let Γ ⊂ Cl, l ≥ 1. We say that T ∈ L(X) is Γ-supercyclic if T is Γx1,...,xl
-

hypercyclic in the sense of Definition 1.1, for some linearly independent family x1, . . . , xn
of vectors in X, i.e. if the set

Orb(Γx1,...,xl
, T )

is dense in X.

When Γ = C, we recover the notion of supercyclic operator [18]; more generally, when
Γ = Cl, l ≥ 1, that of l-supercyclic operator [14]. If Γ ⊂ C is not empty and not reduced
to {0}, any hypercyclic operator is trivially Γ-supercyclic. The fact that this holds for
Γ ⊂ Cl, Γ \ {0} 6= ∅, with l > 1 requires a brief explanation.

Proposition 3.2. Let Γ ⊂ Cl, l ≥ 1, be such that Γ \ {0} is non-empty. Then, any
hypercyclic operator is Γ-supercyclic.

Proof. Let x ∈ X be a hypercyclic vector for T and let (x1, . . . , xl) be any linearly inde-
pendent family in X. We pick any z ∈ Γx1,...,xl

and consider an isomorphism of X mapping
z to x. Then (F (x1), . . . , F (xl)) is linearly independent and

x ∈ F (Γx1,...,xl
) = ΓF (x1),...,F (xl),

hence T is ΓF (x1),...,F (xl)-supercyclic. �

Remark 3.3. The previous proposition points out an important difference between the
understanding of Γ-supercyclicity and A-hypercyclicity according to Definitions 3.1 and 1.1.
Indeed, the first definition is independent of the ambient space while the second one clearly
depends on the space. As a consequence, while any hypercyclic operator is Γ-supercyclic
(Γ \ {0} 6= ∅), there obviously exist non-empty subsets A of X and hypercyclic operators
on X which are not A-hypercyclic. Nevertheless if A is a subset of X with A\{0} 6= ∅ then
doing like in the proof of Proposition 3.2 one may remark that every hypercyclic operator
is conjugate to a A-hypercyclic operator.

We now extend the definition of hypercyclic scalar set introduced in [10] to subsets of
Cl.

Definition 3.4. Let Γ ⊂ Cl, l ≥ 1. Γ is said to be a hypercyclic scalar set if for every
separable infinite dimensional complex Banach space X, any Γ-supercyclic operator on
X is hypercyclic (or, equivalently, if for every X and every linearly independent family
x1, . . . , xl ∈ X, every Γx1,...,xl

-hypercyclic operator T ∈ L(X) is hypercyclic).

Remark 3.5. In view of Proposition 3.2, if Γ is a hypercyclic scalar set, then an operator
T ∈ L(X) is hypercyclic if and only if it is Γ-supercyclic.

At this point, we shall remark that the definition of the sets Γx1,...,xl
apparently depends

on the choice of the canonical basis (which fixes the coordinates of points in Γ), and then
both definitions of Γ-supercyclicity and hypercyclic scalar sets may depend also on that
choice. Fortunately, this is not the case. Indeed, a simple algebraic computation gives the
following.
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Proposition 3.6. Let Γ ⊂ Cl, l ≥ 1, f := (f1, . . . , fl) be a basis of Cl and (x1, . . . , xl) a lin-
early independent family in X. We denote by F the isomorphism from Cl to Span (x1, . . . , xl)
such that F (ei) = xi and set zi := F (fi) for every 1 ≤ i ≤ l. Then

Γx1,...,xl
= Γfz1,...,zl

,

where Γfz1,...,zl
:= {

∑l
i=1 γ

f
i zi,

∑l
i=1 γ

f
i fi ∈ Γ}. In particular,

(1) T ∈ L(X) is Γ-supercyclic if and only if there exists a (or equivalently for any)
basis f := (f1, . . . , fl) of Cl, there exists a linearly independent family (z1, . . . , zl)
in X such that T is Γfz1,...,zl

-hypercyclic;
(2) Γ is a hypercyclic scalar set if and only if for any X, for any (or equiv. some) basis

f := (f1, . . . , fl) of Cl, and any linearly independent family (z1, . . . , zl) in X, every
Γfz1,...,zl

-hypercyclic operator T ∈ L(X) is hypercyclic.

Let us reformulate the main result of [10].

Theorem 3.7 (Theorem A of [10]). A subset Γ of C is a hypercyclic scalar set if and only
if Γ \ {0} is non-empty and contained in a vector annulus (see Definition 1.3).

Our extension to any l finite reads as follows.

Theorem 3.8. Let l ≥ 1. A subset Γ of Cl is a hypercyclic scalar set if and only if Γ \{0}
is non-empty and contained in a finite union of vector annuli.

Note that if Γ′ ⊂ Γ and Γ is a hypercyclic scalar set, then Γ′ is also a hypercyclic scalar
set, as well as µΓ for any non-zero complex number µ. Moreover it is straightforward to
check that Γ ⊂ Cl is contained in a finite union of vector annuli if and only if so is Γx1,...,xl

for any linearly independent family x1, . . . , xl of X. Thus the ”if” part of Theorem 3.8 has
already been proven, this is Theorem 2.1. The proof of the necessary part is postponed to
Paragraph 3.2.

3.1.2. Hypercyclic scalar sets of `2(N). The formalism of the previous paragraph makes
sense in any Fréchet space X (or more generally in any topological vector space), because
any finite dimensional subspace of such X is isomorphic to Cl for some l. If one wants
to extend this formalism to infinite dimensional subsets Γ, the most natural way is to
restrict ourselves to separable Hilbert spaces and to use the fact that any closed infinite
dimensional subspace of a separable Hilbert space is isomorphic to `2(N).

Let then (en)n≥0 be the canonical basis of `2(N). Let H be a separable Hilbert space
and let (xn)n≥0 ⊂ X be an orthonormal family. For Γ ⊂ `2(N), we denote by Γ(xn)n the set

Γ(xn)n =

{∑
i≥0

γixi;
∑
i≥0

γiei ∈ Γ

}
.

Definition 3.1 naturally extends in the following way.
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Definition 3.9. Let Γ ⊂ `2(N). We say that T ∈ L(H) is Γ-supercyclic if T is Γ(xn)n-
hypercyclic in the sense of Definition 1.1, for some orthonormal family (xn)n in H, i.e. if
the set

Orb(Γ(xn)n , T )

is dense in X.

As in the case of subsets of Cl, the following easily holds true. We omit the proof.

Proposition 3.10. Let Γ ⊂ `2(N) be such that Γ\{0} 6= ∅. Then, any hypercyclic operator
is Γ-supercyclic.

Remark 3.11. As previously observed, there obviously exist non-empty subsets A of a
Hilbert space H and hypercyclic operators on H which are not A-hypercyclic. Yet, if A
is a subset of H with A \ {0} 6= ∅ then every hypercyclic operator on H is conjugate to a
A-hypercyclic operator.

We can now extend the notion of hypercyclic scalar set to subsets of `2(N).

Definition 3.12. Let Γ ⊂ `2(N). Γ is said to be a hypercyclic scalar set if for every
separable infinite dimensional complex Hilbert space H, any Γ-supercyclic operator on H
is hypercyclic (or, equivalently, if for every separable infinite dimensional complex Hilbert
space H and every orthonormal family (xn)n ⊂ X, every Γ(xn)n-hypercyclic operator T ∈
L(H) is hypercyclic).

Remark 3.13. In view of Proposition 3.10, if Γ is a hypercyclic scalar set, then an operator
T ∈ L(H) is hypercyclic if and only if it is Γ-supercyclic.

Here again, the definition of the sets Γ(xn)n depends on the choice of the Hilbert basis of
`2(N), and then both definitions of Γ-supercyclicity and hypercyclic scalar sets may depend
also on that choice. For the same reasons as in the finite dimensional setting, this is not
the case and we have:

Proposition 3.14. Let Γ ⊂ `2(N), f := (fn)n be an orthonormal basis of `2(N) and (xn)n
an orthonormal family in H. We denote by F the isomorphism from `2(N) to Span ((xn)n)
such that F (ei) = xi and set zi := F (fi) for every i ∈ N. Then

Γ(xn)n = Γf(zn)n
,

where Γf(zn)n
:= {

∑
i≥0 γ

f
i zi,

∑
i≥0 γ

f
i fi ∈ Γ}. In particular,

(1) T ∈ L(H) is Γ-supercyclic if and only if there exists an (or equivalently for any)
orthonormal basis f of `2(N), there exists an orthonormal family (zn)n in H such

that T is Γf(zn)n
-hypercyclic;

(2) Γ is a hypercyclic scalar set if and only if for any complex separable Hilbert space
H, for any (or equiv. some) orthonormal basis f of `2(N), and any orthonormal

family (zn)n in H, every Γf(zn)n
-hypercyclic operator T ∈ L(H) is hypercyclic.

We get a complete characterization of hypercyclic scalar sets of `2(N) as follows.
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Theorem 3.15. A subset Γ of `2(N) is a hypercyclic scalar set if and only if Γ \ {0} is
non-empty and contained in a finite union of vector annuli.

Here again, the sufficiency is Theorem 2.1. The proof of the necessary part is given in
Paragraph 3.3.

3.2. Proof of the ”only if” part of Theorem 3.8. We aim to prove the following.

Proposition 3.16. If Γ ⊂ Cl is not contained in a finite union of vector annuli, then there
exists a Hilbert space H and a Γ-supercyclic operator T on H which is not hypercyclic.

We need two lemmas. In the sequel, we will say that a sequence (xn)n in a vector space
consists of pairwise independent vectors if xn and xm are linearly independent, whenever
n 6= m.

Lemma 3.17. Let Γ be a subset of Cl which is not contained in a finite union of one
dimensional vector subspaces. Then there exist a sequence (λk)k∈N ⊂ Γ of pairwise inde-
pendent vectors, a basis f = {f1, . . . , fl} of Cl, and L ∈ {1, . . . , l}, such that if we denote

by λ
(i)
k the i-th coordinate of λk with respect to f , then for every k ∈ N:

(1) for every 1 ≤ i ≤ L, λ
(i)
k 6= 0;

(2) for every L+ 1 ≤ i ≤ l, λ
(i)
k = 0;

(3) for every 2 ≤ i ≤ l, limk→∞ λ
(i)
k = 0 if Γ is bounded;

(4) limk→∞ λ
(1)
k =∞ if Γ is unbounded.

For the next lemma, we will use the notation Γfx1,...,xL
introduced in Proposition 3.6.

Lemma 3.18. Let Γ = (λn)n ⊂ Cl, l ≥ 1, and let f := {fm,m ∈ I1} ∪ {fm,m ∈ I2} be a

basis of Cl such that {fm,m ∈ I1} is a basis of Span (λn, n ≥ 0). We denote by λ
(i)
n the

i-th coordinate of the n-th sequence λn, with respect to f . We assume that λ
(i)
n 6= 0 for any

n ≥ 0 and any i ∈ I1, and that

lim
n→∞

|λ(i0)
n | = 0 or ∞

for some i0 ∈ I1. Then there exist a separable Hilbert space H, a non-hypercyclic operator T
on H and a linearly independent family (z1, . . . , zl)i in H such that T is Γfz1,...,zl

-hypercyclic.

Let us briefly admit the two previous lemmas and deduce the proof of Proposition 3.16.

Proof of Proposition 3.16. Observe first that if there exists a family {g1, . . . , gN} ⊂ Cl such
that Γ = ∪Ni=1Γigi with some Γi0 \ {0} not bounded or not bounded away from 0, then
we are back to the 1-dimensional case treated in [10]: we can exhibit a non-hypercyclic
operator T on `2(N) or `2(Z) which is Γi0-supercyclic, and a fortiori Γ-supercyclic.

Let us now assume that we are not in the previous situation and that Γ is not included in
a finite union of complex lines. By Lemma 3.17, there exist a sequence (λn)n ⊂ Γ consisting
of pairwise independent vectors, a basis f := (f1, . . . , fl) of Cl, and L ∈ {1, . . . , l}, such
that items (1) and (2) hold, and (3) or (4) as well. Thus, the assumptions of Lemma
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3.18 are satisfied and we deduce that there exist a separable Hilbert space H, a non-
hypercyclic T ∈ L(H) and a linearly independent family (z1, . . . , zl) in H such that T is
Γfz1,...,zl

-hypercyclic. By Proposition 3.6, (λn)n is not a hypercyclic scalar set, and Γ is not
either. �

We now come back to the proofs of Lemma 3.17 and 3.18.

Proof of Lemma 3.17. Let Γ ⊂ Cl be not contained in a finite union of one complex lines.
If Γ is bounded, then it is relatively compact and there exist a non-zero vector f1 ∈ Cl and
a sequence (λk)k ⊂ Γ \ Cf1 of pairwise independent vectors, such that the distance from
λk to Cf1 tends to 0 as k →∞. Let us complete f1 to form a basis {f1, . . . , fl} of Cl and

for every k ∈ N, let λ
(i)
k denote the coordinates of λk in this basis. Since, the distance from

λk to Cf1 tends to 0 as k →∞ then (3) is satisfied. Moreover, conditions (1) and (2) are
also satisfied up to take a subsequence of (λk)k∈N and to reorder {f2, . . . , fl}.

The proof is similar if Γ is unbounded. Let (λk)k ⊂ Γ be a sequence of pairwise inde-
pendent vectors such that ‖λk‖ → ∞ as k → ∞. By compactness, we can assume that
the sequence (λk/‖λk‖)k is convergent to some non-zero vector f1 in Cl, that we complete
to form a basis {f1, . . . , fl} of Cl. Now it is clear that the conditions (1), (2) and (4) are
satisfied, up to reorder {f2, . . . , fl}. �

Let us now turn to the proof of Lemma 3.18.

Proof of Lemma 3.18. Observe first that given a linearly independent family (z1, . . . , zl) in
a Hilbert space H,

Γfz1,...,zl
=

{
l∑

i=1

λ(i)
n zi, n ≥ 0

}
=

{∑
i∈I1

λ(i)
n zi, n ≥ 0

}
.

Thus, without loss of generality, we may assume that I2 = ∅ and I1 = {1, . . . , l}. We

assume that λ
(i0)
n → 0, n→∞. Up to reorder I1, we can also suppose that i0 = l.

We consider the operator T := Bv ⊕ · · · ⊕ Bv ⊕ Bw defined on H := (`2(Z))
l
, where

the weighted backward shifts Bv appears l − 1 times, and the weights v and w are given
respectively by

vi =

{
2 if i > 0
1
2

if i ≤ 0
and wi =

{
2 if i > 0

1 if i ≤ 0
.

Let (y
(1)
k )k∈N, . . . , (y

(l)
k )k∈N be l sequences in c00(Z) such that the sequence (y

(1)
k , . . . , y

(l)
k )k∈N

is dense in H = (`2(Z))
l
. We also define the degree dk of an element of this sequence by

dk := max(|j| : ∃s ≤ k,∃1 ≤ i ≤ l : y
(i)
s (j) 6= 0). In what follows, we denote by F 1

v
(resp.

F 1
w

) the weighted forward shift being the inverse of Bv (resp. Bw). In other words, F 1
v

is

the weighted forward shift Fν where νi =

{
1
2

if i ≥ 0

2 if i < 0
and F 1

w
is the weighted forward
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shift Fω where ωi =

{
1
2

if i ≥ 0

1 if i < 0
. Remark that T is not hypercyclic on H, since Bw is

expansive and so not hypercyclic on `2(Z).

From now on, we construct by induction l subsequences (λ
(i)
ϕ(k))k∈N of (λ

(i)
k )k∈N, 1 ≤ i ≤ l,

and an increasing sequence (mk)k∈N ⊂ N satisfying:

(i)

∥∥∥∥ 1

λ
(i)
ϕ(k)

Fmk
1
v

y
(i)
k

∥∥∥∥ < 2−k for every 1 ≤ i < l;

(ii)

∥∥∥∥ 1

λ
(l)
ϕ(k)

Fmk
1
w

y
(l)
k

∥∥∥∥ < 2−k;

(iii)

∥∥∥∥ λ(i)
ϕ(j)

λ
(i)
ϕ(k)

F
mk−mj
1
v

y
(i)
k

∥∥∥∥ < 2−k for every 1 ≤ i < l and every j < k;

(iv)

∥∥∥∥ λ(l)
ϕ(j)

λ
(l)
ϕ(k)

F
mk−mj
1
w

y
(l)
k

∥∥∥∥ < 2−k;

(v)

∥∥∥∥λ(i)
ϕ(k)

λ
(i)
ϕ(j)

B
mk−mj
v y

(i)
j

∥∥∥∥ < 2−k for every 1 ≤ i < l and every j < k;

(vi)

∥∥∥∥λ(l)
ϕ(k)

λ
(l)
ϕ(j)

B
mk−mj
w y

(l)
j

∥∥∥∥ < 2−k for every j < k.

Once this construction has been made until step k − 1, since for every j < k and every
m > 0,

‖Bm−mj
w y

(l)
j ‖ < 2dk+1 max

s≤k
‖y(l)

s ‖,

it suffices to choose ϕ(k) large enough so that λ
(l)
ϕ(k) is a small enough element of the

converging to 0 sequence (λ
(l)
n )n∈N to ensure that (vi) is satisfied. Moreover, one can choose

mk sufficiently large for (i), (ii), (iii), (iv) and (v) to hold, since for every y ∈ c00(Z),

Fm
1
w
y −→
m→+∞

0, Fm
1
v
y −→
m→+∞

0 and Bm
v y −→

m→+∞
0.

This finishes the construction of the sequences (λ
(1)
ϕ(k))k∈N, . . . , (λ

(l)
ϕ(k))k∈N and (mk)k∈N.

Now, thanks to (i) and (ii) we define the orthogonal family (z̃1, . . . , z̃l) in H by

z̃i :=


(

0, . . . , 0,
∑∞

j=0
1

λ
(i)
ϕ(j)

F
mj
1
v

y
(i)
j , 0, . . . , 0

)
if 1 ≤ i < l,(

0, . . . , 0,
∑∞

j=0
1

λ
(l)
ϕ(j)

F
mj
1
w

y
(l)
j

)
if i = l,

where the only non-zero coordinate of z̃i is at position i. We claim that T is Γfez1,...,fzL
-

hypercyclic. Indeed, for k ∈ N, we have
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∥∥∥∥∥Tmk(
l∑

i=1

λ
(i)
ϕ(k)z̃i)− (y

(1)
k , . . . , y

(l)
k )

∥∥∥∥∥
2

=

∥∥∥∥∥
l−1⊕
i=1

(λ
(i)
ϕ(k)B

mk
v

∞∑
j=0

1

λ
(i)
ϕ(j)

F
mj
1
v

y
(i)
j − y

(i)
k )
⊕

(λ
(l)
ϕ(k)B

mk
w

∞∑
j=0

1

λ
(l)
ϕ(j)

F
mj
1
w

y
(i)
j − y

(l)
k )

∥∥∥∥∥
2

=
l−1∑
i=1

∥∥∥∥∥λ(i)
ϕ(k)B

mk
v

∞∑
j=0

1

λ
(i)
ϕ(j)

F
mj
1
v

y
(i)
j − y

(i)
k

∥∥∥∥∥
2

+

∥∥∥∥∥λ(l)
ϕ(k)B

mk
w

∞∑
j=0

1

λ
(l)
ϕ(j)

F
mj
1
w

y
(l)
j − y

(l)
k

∥∥∥∥∥
2

.

Now using (iii) and (v), we get for every 1 ≤ i < l,∥∥∥∥∥λ(i)
ϕ(k)B

mk
v

∞∑
j=0

1

λ
(i)
ϕ(j)

F
mj
1
v

y
(i)
j − y

(i)
k

∥∥∥∥∥
≤

∥∥∥∥∥∑
j<k

λ
(i)
ϕ(k)

λ
(i)
ϕ(j)

Bmk
v F

mj
1
v

y
(i)
j

∥∥∥∥∥+

∥∥∥∥∥λ
(i)
ϕ(k)

λ
(i)
ϕ(k)

Bmk
v Fmk

1
v

y
(i)
k − y

(i)
k

∥∥∥∥∥+

∥∥∥∥∥∑
j>k

λ
(i)
ϕ(k)

λ
(i)
ϕ(j)

Bmk
v F

mj
1
v

y
(i)
j

∥∥∥∥∥
≤
∑
j<k

∥∥∥∥∥λ
(i)
ϕ(k)

λ
(i)
ϕ(j)

Bmk−mj
v y

(i)
j

∥∥∥∥∥+
∑
j>k

∥∥∥∥∥λ
(i)
ϕ(k)

λ
(i)
ϕ(j)

F
mj−mk
1
v

y
(i)
j

∥∥∥∥∥
≤
∑
j<k

1

2k
+
∑
j>k

1

2j
≤ k + 1

2k
.

On the other hand, similar computations with (iv) and (vi) yield∥∥∥∥∥λ(l)
ϕ(k)B

mk
w

∞∑
j=0

1

λ
(l)
ϕ(j)

F
mj
1
w

y
(i)
j − y

(l)
k

∥∥∥∥∥ ≤ k + 1

2k
.

Altogether we obtain, for every k ∈ N,∥∥∥∥∥Tmk(
l∑

i=1

λ
(i)
ϕ(k)z̃i)− (y

(1)
k , . . . , y

(l)
k )

∥∥∥∥∥ ≤ l
k + 1

2k
−→
k→+∞

0.

Since the sequence (y
(1)
k , . . . , y

(l)
k )k∈N is dense inH, we conclude that T is Γfez1,...,ezl

-hypercyclic.

Finally setting zi = ezi

‖ezi‖ for 1 ≤ i ≤ l, consider an isomorphism S of H sending z̃i to zi.

Then, it is plain that the operator S ◦ T ◦ S−1 is Γfz1,...,zl
-hypercyclic.

The proof works likewise under the assumption |λ(i0)
n | → ∞, up to changing the weight

w. We refer the reader to the more technical proof of Theorem 3.15 (see next paragraph),
where all the cases will be treated in details.

�
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Remark 3.19. In the previous proof, the family (z̃1, . . . , z̃l) is orthogonal, and can be
chosen as an orthonormal family, up to a finite number of dilations. Therefore Γ ⊂ Cl is a
hypercyclic scalar set in the sense of Definition 3.4 if and only if it is a hypercyclic scalar
set with respect to every complex separable Hilbert space and any orthonormal family ; more
precisely if and only if for every complex separable Hilbert space H and every orthonormal
family (z1, . . . , zl), every Γz1,...,zl

-hypercyclic operator on H is hypercyclic.

3.3. Proof of the ”only if” part of Theorem 3.15. We intend to prove the following
analogue to Proposition 3.16.

Proposition 3.20. If Γ ⊂ `2(N) is not contained in a finite union of vector annuli, then
there exists a Hilbert space H and a Γ-supercyclic operator T on H which is not hypercyclic.

According to Proposition 3.16, we need only to prove the previous proposition for subsets
Γ of `2(N) which are not contained in any finite dimensional subspace of `2(N). Thus we
are reduced to prove the following.

Proposition 3.21. Let Γ = (λn)n≥0 ⊂ `2(N) be a linearly independent family. There exist
a separable infinite dimensional complex Hilbert space H and a Γ-supercyclic operator T
on H which is not hypercyclic.

The proof will follow the same scheme as that of Proposition 3.16 in the finite dimensional
setting. For this, we need two lemmas. The first one generalizes Lemma 3.17 to any subset
of `2(N).

Lemma 3.22. Let Γ be a subset of `2(N) which is not contained in a finite union of
vector annuli. Then, from any linearly independent family in Γ, we can extract a linearly
independent sequence (λk)k such that there exist an orthonormal basis (fm)m of `2(N), a

partition N = I1 ∪ I2 and some i0 ∈ I1, such that if we write λk =
∑

m≥0 λ
(m)
k fm, then for

every k ∈ N:

(1) for every m ∈ I1, λ
(m)
k 6= 0;

(2) for every m ∈ I2, λ
(m)
k = 0;

(3) |λ(i0)
k | → 0 as k →∞ if (λk)k is bounded;

(4) |λ(i0)
k | → ∞ as k →∞ if (λk)k is unbounded.

The second lemma extends Lemma 3.18 to subsets of `2(N). We will use the notation

Γf(zi)i
introduced in Proposition 3.14.

Lemma 3.23. Let Γ = (λn)n ⊂ `2(N) and let f := {fm,m ∈ I1} ∪ {fm,m ∈ I2}
be an orthonormal basis of `2(N) such that {fm,m ∈ I1} is an orthonormal basis of

Span (λn, n ≥ 0). We denote by λ
(i)
n the i-th coordinate of the n-th sequence λn, with

respect to f . We assume that λ
(i)
n 6= 0 for any n ≥ 0 and any i ∈ I1, and that

lim
n→∞

|λ(i0)
n | = 0 or ∞
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for some i0 ∈ I1. Then there exist a separable Hilbert space H, a non-hypercyclic operator
T on H and an orthonormal family (zi)i in H such that T is Γf(zi)i

-hypercyclic, where

Γf(zi)i
:=

{∑
i≥0

λ(i)
n zi, n ≥ 0

}
.

The proofs of those lemmas are postponed in Paragraphs 3.3.1 and 3.3.2 respectively.
Let us first see how we use them in order to complete the proof of Proposition 3.21.

Proof of Proposition 3.21. Let Γ = (λn)n be as in Proposition 3.21. By Lemma 3.22, there
exist an orthonormal basis f := (fm)m of `2(N), a partition N = I1 ∪ I2 and some i0 ∈ I1,
such that items (1) and (2) hold, and (3) or (4) as well. In particular, the assumptions
of Lemma 3.23 are satisfied. It follows that there exist a separable Hilbert space H, a
non-hypercyclic T ∈ L(H) and an orthonormal family (zi)i in H such that T is Γf(zi)i

-

hypercyclic. By Proposition 3.14 we conclude that Γ is not a hypercyclic scalar set. �

Now, we have to prove Lemmas 3.22 and 3.23.

3.3.1. Proof of Lemma 3.22. It is based on two geometric sublemmas.

Lemma 3.24. Let (xn)n≥0 ⊂ `2(N) be a linearly independent family. Given any norm 1
vector f0 ∈ `2(N) with xn /∈ Cf0 and 〈xn, f0〉 6= 0 for any n ≥ 0, there exists fm, m ≥ 1,

in F := Span (f0;xn, n ≥ 0) such that (fm)m≥0 is an orthonormal basis of F and

〈xn, fm〉 6= 0

for any n,m ≥ 0.

Proof of Lemma 3.24. We consider an enumeration φ : N → N such that for any integer
k ≥ 0 there exist infinitely many m ≥ 0 such that φ(m) = k. Let (εm)m be a sequence
of real numbers tending to 0 with ε1 = dist(xφ(1),Cf0). f0 being given, we proceed by
induction and assume that f1, . . . , fm−1 have been built in such a way that, if we let
Gi := Span (fj, 0 ≤ j ≤ i) for any 0 ≤ i ≤ m− 1, then

(i) ‖fi‖ = 1 and 〈fi, fj〉 = 0, 1 ≤ i 6= j ≤ m− 1;
(ii) For any n ≥ 0, xn /∈ Gm−1;

(iii) For any 1 ≤ i ≤ m − 1, dist(xφ(i), Gi) ≤ εi (where dist(x,G) stands for the distance
from x to G).

Let us now write F = Gm−1 ⊕G⊥m−1 and build fm in the Hilbert space G⊥m−1. We denote
by Pm−1 the orthogonal projection on G⊥m−1 and by V m−1

n := CPm−1(xn), n ≥ 0. Note that
G⊥m−1 is an infinite dimensional subspace of F , since F is infinite dimensional while Gm−1

is finite dimensional. For any k ≥ 0, we define

Akm−1 :=
{
y ∈ G⊥m−1 \ ∪n≥0V

m−1
n , 〈y, xk〉 6= 0

}
.

We claim that each set Akm−1 is a Gδ-dense subset of the Hilbert space G⊥m−1. Indeed
observe that

Akm−1 =
⋂
n≥0

(V m−1
n )c ∩

{
y ∈ G⊥m−1, 〈y, xk〉 6= 0

}
.
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Now, because of Property (ii) above, any V m−1
n , n ≥ 0, is a proper and closed subspace of

G⊥m−1. So its complement (V m−1
n )c is open and dense in G⊥m−1, hence by Baire Category

Theorem ∩n≥0(V
m−1
n )c is residual in G⊥m−1. Also the set

{
y ∈ G⊥m−1, 〈y, xk〉 6= 0

}
, which is

the complement of the subspace orthogonal to Cxk in G⊥m−1, is open and dense in G⊥m−1.
Thus, again by Baire Category Theorem, Akm−1 is residual in G⊥m−1. Applying another (and
last) time Baire Category Theorem we get that the set⋂

k≥0

Akm−1

is residual in G⊥m−1, so that we can pick f̃m in ∩k≥0A
k
m−1 such that ‖f̃m−Pm−1(xφ(m))‖ ≤ εm

and set fm := f̃m/‖f̃m‖.
By construction, we immediately get that fm satisfies (i). For (ii) (which is the needed as-

sumption to do the induction), let assume by contradiction that xn ∈ Gm := Span (fj, 0 ≤
j ≤ m) and decompose xn in the unique way xn = x1

n + Pm−1(xn) where x1
n ∈ Gm−1.

Then by uniqueness of this decomposition fm must belong to CPm−1(xn) = V m−1
n , but this

contradicts the fact that fm is in Akm−1. Finally, (iii) comes from

dist(xφ(m), Gm) ≤ dist(Pm−1(xφ(m)), Gm)

≤ dist(Pm−1(xφ(m)),Cfm)(3.1)

≤
∥∥∥f̃m − Pm−1(xφ(m))

∥∥∥ ≤ εm.

To conclude that the family {fm, m ≥ 0} satisfies the conclusion of the lemma, we only
need to check that it is total in F , or that

xn ∈ Span (fm, m ≥ 0).

But this is straightforward from Property (iii) (which is now satisfied by Gm for any
m ≥ 1). Indeed, let (mk)k be an increasing sequence of integers such that φ(mk) = n for
every k ≥ 0. As in (3.1) we have

dist(xn, Span (fm, m ≥ 0)) ≤ dist(xφ(mk), Gmk
) ≤ εmk

−→
k→∞

0.

The proof of the lemma is complete. �

The second lemma is as follows.

Lemma 3.25. Let (xn)n be a sequence of independent vectors in a separable Hilbert space
H. There exist a subsequence (xnk

)k of (xn)n and a vector a ∈ H such that for any k ≥ 0,
xnk

/∈ Ca and 〈xnk
, a〉 6= 0, and such that

〈xnk
, a〉 → 0 or ∞, as k →∞.

Proof. It is based on the following claim.

Claim. Let (xn)n be a sequence of pairwise independent vectors in H. There exist two
orthogonal normed 1 vectors f0 and f1 in H such that xn /∈ Cfi and 〈xn, fi〉 6= 0, i = 0, 1,
and such that, if we denote by P the orthogonal projection onto Span (f0, f1), the vectors
P (xn) are still pairwise independent.



20 S. CHARPENTIER, R. ERNST

Proof of the claim. By the Baire Category Theorem, we can choose f0 in H, with norm 1,
such that 〈xn, f0〉 6= 0 and xn /∈ Cf0, n ≥ 0. We have to show the existence of f1 such as
desired. Let us fix n 6= m. By assumption xn and xm are linearly independent. For b ∈ f⊥0
nonzero and Pb the orthogonal projection onto Span (f0, b), we have

Pb(xn) = 〈xn, f0〉 f0 + 〈xn, b〉 b and Pb(xm) = 〈xm, f0〉 f0 + 〈xm, b〉 b.
Let us denote by An,m the subset of those b in f⊥0 such that Pb(xn) and Pb(xm) are linearly
independent. It corresponds to the set of b ∈ f⊥0 such that

〈xn, f0〉 〈xm, b〉 − 〈xm, f0〉 〈xn, b〉 = 〈〈xn, f0〉xm − 〈xm, f0〉xn, b〉 6= 0.

Now An,m is the complement of the orthogonal to 〈xn, f0〉xm − 〈xm, f0〉xn in f⊥0 , and
therefore is an open dense set of f⊥0 whenever 〈xn, f0〉xm − 〈xm, f0〉xn /∈ Cf0. Since xn
and xm are linearly independent, 〈xn, f0〉xm − 〈xm, f0〉xn is equal to 0 only if 〈xn, f0〉 =
〈xm, f0〉 = 0 which is not the case, by the choice of f0. Moreover,

〈〈xn, f0〉xm − 〈xm, f0〉xn, f0〉 = 0,

hence 〈xn, f0〉xm − 〈xm, f0〉xn /∈ Cf0. Then, by the Baire Category Theorem, the set

A :=
⋂
n6=m

An,m

is a dense Gδ-subset of f⊥0 .
Now, as we saw in the proof of Lemma 3.24, by the choice of f0 and the Baire Category

Theorem, the set B of those vectors b in H such that b is orthogonal to f0 and satisfies
〈xn, b〉 6= 0 and xn /∈ Cb for any n ≥ 0 is a dense Gδ-subset of f⊥0 . It still follows from the
Baire Category Theorem that A ∩ B is not empty. Finally one can check that any f1 in
A ∩B satisfies the desired property, which concludes the proof of the claim. �

Let us turn to the proof of the lemma. Since (xn)n is linearly independent, we can apply
the claim and pick f0 and f1 such that xn /∈ Cfi and 〈xn, fi〉 6= 0, i = 1, 2, and such that
(P (xn))n is pairwise independent, where P is the orthogonal projection onto Span (f0, f1).
For n ≥ 0, let us write

xn = P (xn) + P⊥(xn),

where P⊥ is the orthogonal projection onto Span (f0, f1)
⊥. If ‖P (xn)‖ is unbounded, then

one may extract a subsequence (xnk
)k of (xn)n such that 〈xn, f0〉 → ∞ or 〈xn, f1〉 → ∞, as

k →∞, and then choose a = f0 or a = f1. If not, by compactness of bounded sets in the 2-
dimensional subspace Span (f0, f1), there exists a subsequence (nk)k and w ∈ Span (f0, f1)
such that P (xnk

)→ w as k →∞. Let us pick a nonzero in Span (f0, f1), orthogonal to w.
It follows

〈xnk
, a〉 = 〈P (xnk

), a〉+ 〈P⊥(xnk
), a〉 = 〈P (xnk

), a〉 → 0, k →∞.
Now, since Span (f0, f1) is 2-dimensional, the orthogonal to a in Span (f0, f1) is 1-dimensional.
Thus, because (P (xn))n is pairwise linearly independent, we may assume, up to take a sub-
sequence, that for any k ≥ 0, xnk

/∈ Ca and 〈xnk
, a〉 = 〈P (xnk

), a〉 6= 0. This finishes the
proof of the lemma. �
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We can now turn to the proof of Lemma 3.22.

Proof of Lemma 3.22. We do the proof in the case where (λk)k is bounded. The case (λk)k
unbounded is done similarly and left to the reader. Let then (λk)k be a bounded linearly
independent sequence in `2(N). By Lemma 3.25, one gets a subsequence that we still denote
(λk)k and one can pick f0 := a such that, 〈λk, f0〉 6= 0 and λk /∈ Cf0 for any k ≥ 0, and
〈λk, f0〉 → 0 as k → ∞. By Lemma 3.24, we can complete f0 into an orthonormal basis

(f2m)m of H̃ := Span (f0, λk, k ≥ 0) , such that 〈λk, f2m〉 6= 0 for any k,m ≥ 0. To finish,
we complete (f2m)m into an orthonormal basis (fm)m of `2(N) by choosing an orthonormal

basis of (H̃)⊥. It then suffices to set I1 = {2m,m ∈ N}, I2 = {2m + 1,m ∈ N} and
i0 = 0. �

Remark 3.26. The proof of Lemma 3.22, based on that of Lemmas 3.24 and 3.25, is
actually a refinement of that of Lemma 3.17. The compactness of the finite dimensional
unit sphere used in the proof of Lemma 3.17 remains the very key-point in the infinite
dimensional setting of Lemma 3.25.

3.3.2. Proof of Lemma 3.23. It consists in a technically involved adaptation of Lemma
3.18.

Proof of Lemma 3.23. Let (λn)n∈N ∈ `2(N) be as in the statement of the lemma. In order
to simplify the notations, we may and shall assume that 0 ∈ I1 and that i0 = 0. Now,
observe that given an orthonormal family (zi)i in a Hilbert space H,

Γf(zi)i
=

{∑
i≥0

λ(i)
n zi, n ≥ 0

}
=

{∑
i∈I1

λ(i)
n zi, n ≥ 0

}
.

In other words, in the orthonormal family (zi)i∈N, the elements zi with i ∈ I2 play no role
and can be chosen arbitrarily. Then, since the case I1 finite has been treated in Lemma
3.18, we will also assume that I1 = N.

We assume first that λ
(0)
n → 0, n → ∞. We consider the operator T := Bw

⊕
i≥1Bv

defined on the `2 direct sum of `2(Z) spaces H := (⊕∞i=0`
2(Z))`2 , where the weighted

backward shifts Bv and Bw are defined by weights v and w given respectively by

vi =

{
2 if i > 0
1
2

if i ≤ 0
and wi =

{
2 if i > 0

1 if i ≤ 0
.

Let (yn)n∈N be a dense sequence in H satisfying the following notations and properties:

(1) For every n ∈ N, yn = (yn,k)k≥0;
(2) For every n ∈ N, every k ≥ n, yn,k = 0;
(3) For every n, k ∈ N and every |j| ≥ n, yn,k(j) = 0;
(4) For every n, k, j ∈ N, |yn,k(j)| ≤ n.

It should be clear that such a sequence exists in H. We also define the degree dn of an
element of this sequence by

dn := max (max(|j| : ∃l ≤ n,∃k ∈ N : yl,k(j) 6= 0),max(k : ∃l ≤ n : yl,k 6= 0)) .
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Then, with our assumptions on the sequence (yn)n∈N we deduce that dn ≤ n for every
n ∈ N. In what follows, we denote by F 1

v
(resp. F 1

w
) the weighted forward shift being

the inverse of Bv (resp. Bw). In other words, F 1
v

is the weighted forward shift Fν where

νi =

{
1
2

if i ≥ 0

2 if i < 0
and F 1

w
is the weighted forward shift Fω where ωi =

{
1
2

if i ≥ 0

1 if i < 0
.

Remark that T cannot be hypercyclic since Bw is expansive and then not hypercyclic on
`2(Z).

From now on, we construct by induction an increasing function ϕ : N → N and an
increasing sequence (mk)k∈N ⊂ N satisfying:

(i) ‖ 1

λ
(i)
ϕ(k)

Fmk
1
v

yk,i‖ < 2−k for every i ≥ 1;

(ii) ‖ 1

λ
(0)
ϕ(k)

Fmk
1
w

yk,0‖ < 2−k;

(iii) ‖
λ
(i)
ϕ(j)

λ
(i)
ϕ(k)

F
mk−mj
1
v

yk,i‖ < 2−(k+i) for every i ≥ 1 and every j < k;

(iv) ‖
λ
(0)
ϕ(j)

λ
(0)
ϕ(k)

F
mk−mj
1
w

yk,0‖ < 2−k for every j < k;

(v) ‖
λ
(i)
ϕ(k)

λ
(i)
ϕ(j)

B
mk−mj
v yj,i‖ < 2−(k+i) for every i ≥ 1 and every j < k;

(vi) ‖
λ
(0)
ϕ(k)

λ
(0)
ϕ(j)

B
mk−mj
w yj,0‖ < 2−k for every j < k;

(vii)
(
Fmk

1
v

yk,i

)
(0) = 0 for every i ≥ 1;

(viii)
(
Fmk

1
w

yk,0

)
(0) = 0.

(ix)
∥∥∥(λ(i)

ϕ(k)

)
i

∥∥∥
2
≤ 2mk−1

k
.

Once this construction has been made until step k − 1, since for every j < k and every
m > 0

‖Bm−mj
w yj,0‖ < 2dk+1 max

l≤k
‖yl,0‖,

then it suffices to choose ϕ(k) so that λ
(0)
ϕ(k) is a small enough element of the converging to 0

sequence (λ
(0)
n )n∈N to ensure that (vi) is satisfied. Moreover, one can choose mk sufficiently

large for (ii) and (iv) and (ix) to hold, since for every y ∈ c00(Z),

Fm
1
w
y −→
m→+∞

0.

Furthermore, thanks to property (2) of the sequence (yn)n∈N we can take mk even larger
in order to satisfy (i), (iii) and (v) since for every y ∈ c00(Z),

Fm
1
v
y −→
m→+∞

0 and Bm
v y −→

m→+∞
0.

Finally, up to take mk bigger again, (vii) and (viii) can be satisfied because dk ≤ k. This

finishes the construction of the sequences (λ
(i)
ϕ(k))k∈N for i ≥ 0 and (mk)k∈N.
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Now, thanks to (i) and (ii) we define the orthogonal family {z̃i}i∈N in H by

z̃0 :=

(
e0 +

∞∑
j=0

1

λ
(0)
ϕ(j)

F
mj
1
w

yj,0, 0, . . .

)

and for every i ≥ 1

z̃i :=

0, . . . , 0︸ ︷︷ ︸
i times

, e0 +
∞∑
j=0

1

λ
(i)
ϕ(j)

F
mj
1
v

yj,i, 0, . . .

 .

We deduce from (i), (ii), (vii) and (viii) that for every i ∈N , 1 ≤ ‖z̃i‖ ≤ 1 +
∑∞

j=0 2−j = 3.

Now, we normalize this family zi := ezi

‖ezi‖ to obtain an orthonormal family {zi}i∈N in H.

Observe now that the diagonal operator D : H → H defined by D ((xi)i∈N) = (‖z̃i‖−1xi)
is well-defined since for every i ∈ N, ‖z̃i‖ ≥ 1, has dense range and commutes with T .

We claim that T is Γf(zi)i
-hypercyclic. Thus, it suffices to prove that the orbit of{∑∞

i=0 λ
(i)
ϕ(k)zi

}
k∈N

under T is dense in H. Furthermore, from the properties of D, we

remark that for every m ∈ N,

Tm

(
∞∑
i=0

λ
(i)
ϕ(k)zi

)
= D ◦ Tm

(
∞∑
i=0

λ
(i)
ϕ(k)z̃i

)
.

Then, by density of the range of D, we deduce that the orbit of
{∑∞

i=0 λ
(i)
ϕ(k)zi

}
k∈N

under

T is dense in H whenever the orbit of
{∑∞

i=0 λ
(i)
ϕ(k)z̃i

}
k∈N

under T is dense in H. Thus, it

suffices to prove that T is Γf(ezi)i
-hypercyclic. Let k ∈ N,

∥∥∥∥∥Tmk

(
∞∑
i=0

λ
(i)
ϕ(k)z̃i

)
− yk

∥∥∥∥∥
2

=

∥∥∥∥∥
(
λ

(0)
ϕ(k)B

mk
w

(
e0 +

∞∑
j=0

1

λ
(0)
ϕ(j)

F
mj
1
w

yj,0

)
− yk,0

)
∞⊕
i=1

(
λ

(i)
ϕ(k)B

mk
v

(
e0 +

∞∑
j=0

1

λ
(i)
ϕ(j)

F
mj
1
v

yj,i

)
− yk,i

)∥∥∥∥∥
2

=

∥∥∥∥∥λ(0)
ϕ(k)B

mk
w

(
e0 +

∞∑
j=0

1

λ
(0)
ϕ(j)

F
mj
1
w

yj,0

)
− yk,0

∥∥∥∥∥
2

+
∞∑
i=1

∥∥∥∥∥λ(i)
ϕ(k)B

mk
v

(
e0 +

∞∑
j=0

1

λ
(i)
ϕ(j)

F
mj
1
v

yj,i

)
− yk,i

∥∥∥∥∥
2

.

Now using (iii) and (v), we get for every i ≥ 1,
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∥∥∥∥∥λ(i)
ϕ(k)B

mk
v

(
e0 +

∞∑
j=0

1

λ
(i)
ϕ(j)

F
mj
1
v

yj,i

)
− yk,i

∥∥∥∥∥
≤
∥∥∥λ(i)

ϕ(k)B
mk
v (e0)

∥∥∥+

∥∥∥∥∥∑
j<k

λ
(i)
ϕ(k)

λ
(i)
ϕ(j)

Bmk
v F

mj
1
v

yj,i

∥∥∥∥∥+

∥∥∥∥∥λ
(i)
ϕ(k)

λ
(i)
ϕ(k)

Bmk
v Fmk

1
v

yk,i − yk,i

∥∥∥∥∥+

∥∥∥∥∥∑
j>k

λ
(i)
ϕ(k)

λ
(i)
ϕ(j)

Bmk
v F

mj
1
v

yj,i

∥∥∥∥∥
≤
∥∥∥λ(i)

ϕ(k)B
mk
v (e0)

∥∥∥+
∑
j<k

∥∥∥∥∥λ
(i)
ϕ(k)

λ
(i)
ϕ(j)

Bmk−mj
v yj,i

∥∥∥∥∥+
∑
j>k

∥∥∥∥∥λ
(i)
ϕ(k)

λ
(i)
ϕ(j)

F
mj−mk
1
v

yj,i

∥∥∥∥∥
≤
∣∣∣∣λ(i)
ϕ(k)

1

2mk−1

∣∣∣∣+
∑
j<k

1

2k+i
+
∑
j>k

1

2j+i

≤
∣∣∣∣λ(i)
ϕ(k)

1

2mk−1

∣∣∣∣+
k + 1

2k
× 1

2i
.

On the other hand, similar computations with (iv) and (vi) yield,∥∥∥∥∥λ(0)
ϕ(k)B

mk
w

(
e0 +

∞∑
j=0

1

λ
(0)
ϕ(j)

F
mj
1
w

yj,0

)
− yk,0

∥∥∥∥∥ ≤ 2|λ(0)
ϕ(k)|+

k + 1

2k
.

Altogether we obtain, for every k ∈ N,

∥∥∥∥∥Tmk

(
∞∑
i=0

λ
(i)
ϕ(k)z̃i

)
− yk

∥∥∥∥∥ ≤
√√√√(2|λ(0)

ϕ(k)|+
k + 1

2k

)2

+

∥∥∥∥∥
(
k + 1

2k
× 1

2i
+ |λ(i)

ϕ(k)|
1

2mk−1

)
i≥1

∥∥∥∥∥
2

2

≤ 2|λ(1)
ϕ(k)|+

k + 1

2k
+

∥∥∥∥∥
(
k + 1

2k
× 1

2i
+ |λ(i)

ϕ(k)|
1

2mk−1

)
i≥1

∥∥∥∥∥
2

≤ 2|λ(0)
ϕ(k)|+

7

3

k + 1

2k
+

∥∥∥∥(λ(i)
ϕ(k)

)
i≥1

∥∥∥∥
2

1

2mk−1
.

Now we use the fact that λ
(0)
ϕ(k) tends to 0 and (ix) to remark that the preceding expression

tends to 0 as k tends to infinity. Since the sequence (yk)k∈N is dense in X, we conclude

that T is Γf(ezi)i
-hypercyclic.

Let us now deal with the second case that is |λ(0)
n | → ∞, n → ∞. The proof resemble

to the previous one, yet we prefer to include all the details. As before we consider the
operator T = Bw

⊕
i≥1Bv defined on the `2 direct sum of `2(Z) spaces H = (⊕∞i=0`

2(Z))`2 ,
where the weight v is the same as before (i.e. vi = 2 if i > 0; vi = 1/2 if i ≤ 0), but w is
now given by

wi =

{
1 if i > 0
1
2

if i ≤ 0
.
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We also define (yn)n∈N and (dn)n∈N as in the previous case and still denote by F 1
v

(resp.

F 1
w

) the inverse of Bv (resp. Bw), i.e the weighted forward shift Fν (resp. Fω) with

νi =

{
1
2

if i ≥ 0

2 if i < 0
(resp. ωi =

{
1 if i ≥ 0

2 if i < 0
).

T is not hypercyclic since ‖Bw‖ ≤ 1. Now, as in the previous case, we construct an
increasing function ϕ : N→ N and an increasing sequence (mk)k∈N ⊂ N satisfying:

(i) ‖ 1

λ
(i)
ϕ(k)

Fmk
1
v

yk,i‖ < 2−k for every i ≥ 1;

(ii) ‖ 1

λ
(0)
ϕ(k)

Fmk
1
w

yk,0‖ < 2−k;

(iii) ‖
λ
(i)
ϕ(j)

λ
(i)
ϕ(k)

F
mk−mj
1
v

yk,i‖ < 2−(k+i) for every i ≥ 1 and every j < k;

(iv) ‖
λ
(0)
ϕ(j)

λ
(0)
ϕ(k)

F
mk−mj
1
w

yk,0‖ < 2−k for every j < k;

(v) ‖
λ
(i)
ϕ(k)

λ
(i)
ϕ(j)

B
mk−mj
v yj,i‖ < 2−(k+i) for every i ≥ 1 and every j < k;

(vi) ‖
λ
(0)
ϕ(k)

λ
(0)
ϕ(j)

B
mk−mj
w yj,0‖ < 2−k for every j < k;

(vii)
(
Fmk

1
v

yk,i

)
(0) = 0 for every i ≥ 1;

(viii)
(
Fmk

1
w

yk,0

)
(0) = 0;

(ix)
∣∣∣λ(0)
ϕ(k)

∣∣∣ ≤ 2mk−1

k
;

(x)
∥∥∥(λ(i)

ϕ(k)

)
i

∥∥∥
2
≤ 2mk−1

k
.

Once this construction has been made until step k − 1, since for every j < k and every
m > 0

‖Fm−mj
1
w

yj,0‖ < 2dk max
l≤k
‖yl,0‖,

then it suffices to choose ϕ(k) such that λ
(0)
ϕ(k) is a large enough element of the converging

to∞ sequence (λ
(0)
n )n∈N to ensure that (ii) and (iv) are satisfied. Moreover, one can choose

mk sufficiently large for (ix) and (x) to hold and also (vi), since for every y ∈ c00(Z),

Bm
w y −→

m→+∞
0.

Furthermore, thanks to property (2) of the sequence (yn)n∈N we can take mk even larger
in order to satisfy (i), (iii) and (v) for every y ∈ c00(Z),

Fm
1
v
y −→
m→+∞

0 and Bm
v y −→

m→+∞
0.

Finally, up to take mk bigger again, (vii) and (viii) can be satisfied because dk ≤ k. This

finishes the construction of the sequences (λ
(i)
ϕ(k))k∈N for i ≥ 0 and (mk)k∈N.
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Now, thanks to (i) and (ii) we define the orthogonal family {z̃i}i∈N in H by

z̃0 :=

(
e0 +

∞∑
j=0

1

λ
(0)
ϕ(j)

F
mj
1
w

yj,0; 0; . . .

)
and for every i ≥ 1,

z̃i :=

0; . . . ; 0︸ ︷︷ ︸
i times

; e0 +
∞∑
j=0

1

λ
(i)
ϕ(j)

F
mj
1
v

yj,i; 0; . . .

 .

We deduce from (i), (ii), (vii) and (viii) that 1 ≤ ‖z̃i‖ ≤ 1 +
∑∞

j=0 2−j = 3 for every i ∈ N.

Now, we normalize this family zi := ezi

‖ezi‖ to obtain an orthonormal family {zi}i∈N in H.

Observe now that the diagonal operator D : H → H defined by D ((xi)i∈N) = (‖z̃i‖−1xi)
is well-defined since for every i ∈ N, ‖z̃i‖ ≥ 0, has dense range and commutes with T .
As in the previous case, the properties of D ensure that it suffices to prove that T is
Γf(ezi)i

-hypercyclic. For k ∈ N,

∥∥∥∥∥Tmk

(
∞∑
i=0

λ
(i)
ϕ(k)z̃i

)
− yk

∥∥∥∥∥
2

=

∥∥∥∥∥λ(0)
ϕ(k)B

mk
w

(
e0 +

∞∑
j=0

1

λ
(0)
ϕ(j)

F
mj
1
w

yj,0

)
− yk,0

∥∥∥∥∥
2

+
∞∑
i=1

∥∥∥∥∥λ(i)
ϕ(k)B

mk
v

(
e0 +

∞∑
j=0

1

λ
(i)
ϕ(j)

F
mj
1
v

yj,i

)
− yk,i

∥∥∥∥∥
2

.

Now using (iii) and (v), we get for every i ≥ 1,

∥∥∥∥∥λ(i)
ϕ(k)B

mk
v

(
e0 +

∞∑
j=0

1

λ
(i)
ϕ(j)

F
mj
1
v

yj,i

)
− yk,i

∥∥∥∥∥
≤
∥∥∥λ(i)

ϕ(k)B
mk
v (e0)

∥∥∥+

∥∥∥∥∥∑
j<k

λ
(i)
ϕ(k)

λ
(i)
ϕ(j)

Bmk
v F

mj
1
v

yj,i

∥∥∥∥∥+

∥∥∥∥∥λ
(i)
ϕ(k)

λ
(i)
ϕ(k)

Bmk
v Fmk

1
v

yk,i − yk,i

∥∥∥∥∥+

∥∥∥∥∥∑
j>k

λ
(i)
ϕ(k)

λ
(i)
ϕ(j)

Bmk
v F

mj
1
v

yj,i

∥∥∥∥∥
≤
∥∥∥λ(i)

ϕ(k)B
mk
v (e0)

∥∥∥+
∑
j<k

∥∥∥∥∥λ
(i)
ϕ(k)

λ
(i)
ϕ(j)

Bmk−mj
v yj,i

∥∥∥∥∥+
∑
j>k

∥∥∥∥∥λ
(i)
ϕ(k)

λ
(i)
ϕ(j)

F
mj−mk
1
v

yj,i

∥∥∥∥∥
≤
∣∣∣∣λ(i)
ϕ(k)

1

2mk−1

∣∣∣∣+
∑
j<k

1

2k+i
+
∑
j>k

1

2j+i

≤
∣∣∣∣λ(i)
ϕ(k)

1

2mk−1

∣∣∣∣+
k + 1

2k
× 1

2i
.

On the other hand, similar computations with (iv) and (vi) give,
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∥∥∥∥∥λ(0)
ϕ(k)B

mk
w

(
e0 +

∞∑
j=0

1

λ
(0)
ϕ(j)

F
mj
1
w

yj,0

)
− yk,0

∥∥∥∥∥ ≤ |λ
(0)
ϕ(k)|

2mk−1
+
k + 1

2k
.

Altogether we get, for every k ∈ N,

∥∥∥∥∥Tmk(
∞∑
i=0

λ
(i)
ϕ(k)z̃i)− yk

∥∥∥∥∥ ≤
√√√√( |λ(0)

ϕ(k)|
2mk−1

+
k + 1

2k

)2

+

∥∥∥∥∥
(
k + 1

2k
× 1

2i
+ |λ(i)

ϕ(k)|
1

2mk−1

)
i≥1

∥∥∥∥∥
2

2

≤
|λ(0)
ϕ(k)|

2mk−1
+
k + 1

2k
+

∥∥∥∥∥
(
k + 1

2k
× 1

2i
+ |λ(i)

ϕ(k)|
1

2mk−1

)
i≥1

∥∥∥∥∥
2

≤
|λ(0)
ϕ(k)|

2mk−1
+

7

3

k + 1

2k
+

∥∥∥∥(λ(i)
ϕ(k)

)
i≥1

∥∥∥∥
2

1

2mk−1
.

Now we use (ix) and (x) to remark that the preceding expression tends to 0 as k tends to

infinity. Since the sequence (yk)k∈N is dense in X, we conclude that T is Γf(ezi)i
-hypercyclic.

�

Remark 3.27. Given Γ not contained in a finite union of vector annuli, the previous
proof provides us explicitly with a Hilbert space H, a non-hypercyclic operator T ∈ L(H)
and an orthonormal family (zn)n in H such that T is Γ(zn)n-hypercyclic. But it is quite

transparent that the construction imposes that Span (zn, n ≥ 0) has infinite codimension.
This is the technical obstruction which won’t allow us to obtain a complete characterization
of hypercyclic sets (see Section 4 and the proof of Theorem A).

3.4. Bourdon-Feldman scalar sets. Let X be a separable complex Banach space and
T ∈ L(X). We recall that the Bourdon-Feldman Theorem [7] asserts that any somewhere
dense orbit of a single vector x ∈ X under the action of T is actually dense. In view of
this important result, we introduce the following definitions.

Definition 3.28. Let l ≥ 1. We say that Γ ⊂ Cl (resp. Γ ⊂ `2(N)) is a Bourdon-Feldman
scalar set if for every separable Banach space X (resp. separable Hilbert space H), for
every T ∈ L(X) (resp. T ∈ L(H)) and every linearly independent family (x1, . . . , xl) in X
(resp. any orthonormal family (xn)n in H),

Orb(Γx1,...,xl
, T ) somewhere dense in X =⇒ Orb(xi, T ) = X for some i ∈ {1, . . . , l}

(resp.

Orb(Γ(xn)n , T ) somewhere dense in H =⇒ Orb(xi, T ) = H for some i ≥ 0).

The Bourdon-Feldman Theorem says that any non-zero scalar λ ∈ C is a Bourdon-
Feldman scalar set. This result was improved in [10], where Bourdon-Feldman scalar
subsets of C were characterized. The statement is as follows.
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Theorem 3.29. A non-empty subset Γ 6= {0} of C is a Bourdon-Feldman scalar set if and
only if ΓT is a nowhere dense hypercyclic scalar set, i.e. there exist 0 < a ≤ b < ∞ such
that Γ \ {0} ⊂ [a, b]T and Int(ΓT) = ∅.

The only known example of a multidimensional Bourdon-Feldman scalar set is a finite
union of sets of the form Tf , f ∈ Cl (or `2(N)) non-zero. It can be deduced from [3,
Theorem 3.11]. Theorems 3.8 and 3.15, together with Theorem 3.29, allow us to obtain a
complete characterization of Bourdon-Feldman scalar sets in Cl and in `2(N).

Theorem 3.30. A non-empty subset Γ of Cl, l ≥ 1, (resp. `2(N)) is a Bourdon-Feldman
scalar set if and only if Γ \ {0} 6= ∅ and there exist N ∈ N, g1, . . . , gN in Cl (resp. `2(N)),
Γ1, . . .ΓN ⊂ C with Int(ΓiT) = ∅ for any 1 ≤ i ≤ N , and 0 < a ≤ b <∞, such that

Γ \ {0} ⊂
N⋃
i=1

Γigi.

Proof. We first deal with the ”if part”. Let Γ1, . . . ,ΓN be as in the theorem. It is enough
to check that for any x1, . . . , xN ∈ X, if the orbit of the set

⋃N
i=1 Γixi is somewhere dense

in X, then Orb(xi0 , T ) is dense in X for some i0 ∈ {1, . . . , N}. Now, by [10, Theorem B],
if none of the Orb(xi, T ) is dense in X, 1 ≤ i ≤ N , then each of the orbit Orb(Γixi, T ),

1 ≤ i ≤ N , is nowhere dense in X, hence
⋃N
i=1 Γixi as well.

Let us now turn to the ”only if part”. We only give the proof for Γ ⊂ `2(N), that for
Γ ⊂ Cl being similar and a bit simpler. Let then Γ be a Bourdon-Feldman scalar set
in `2(N). Since Γ is in particular a hypercyclic scalar set, there exist pairwise distinct
elements g1, . . . , gN in `2(N) and Γ1, . . . ,ΓN non-empty subsets of C, with Γ bounded and
bounded away from 0 for any i = 1, . . . , N , such that

Γ \ {0} =
N⋃
i=1

Γigi.

Remark first that [10, Theorem B] contains the case N = 1, thus we may assume that
N ≥ 2. Assume by contradiction that there exist 1 ≤ i0 ≤ N so that Γi0T is somewhere
dense in C for some i0 and set without loss of generality i0 = 1. Recall that we are looking
for a Hilbert space H, an operator T on H and an orthonormal sequence (xn)n in H so
that Orb(Γx1,...,xN

, T ) is somewhere dense but T is not hypercyclic.
Let H = C ⊕ `2(Z) and T = eıθ ⊕ Bw, where eıθ is the rotation operator on C with

θ ∈ R \ πQ, and w is a weight defined by

wi =

{
2 if i > 0
1
2

if i ≤ 0.

T is not hypercyclic, but Bw satisfies the Hypercyclicity Criterion on `2(Z). Moreover since
the rotation eıθ is universal on T ⊆ C, it is well-known that eıθ × Bw acting on T× `2(Z)
is universal with universal vector (1, x), where x denotes a hypercyclic vector for Bw (see
the proof of [10, Proposition 4.2] for example). We can assume that ‖x‖ > ‖g1‖. Then,
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for some λ ∈ R∗+, let F : `2(N) → H be an isometry such that F (g1) = (λ, x), and set
(xn)n := (F (en))n. Observe that Γ(xn)n = F (Γ) = Γ1(λ, x) ∪Ni=2 ΓiF (gi) so that

Orb(Γ1(λ, x), T ) ⊆ Orb(Γ(xn)n , T ).

Consider the open set U := λV ⊕ `2(Z) where V is an open set contained in Γ1T and take
(a, y) ∈ U . Then, by definition of U and by compactness of T, there exist a sequence (γk)k
in Γ1 and µ ∈ [0, 2π[ such that γk → |a|

λ
eıµ. Then by universality of eıθ × Bw, there exists

a sequence (nk)k such that eıθnk → a
|a|e
−ıµ and Bnk

w (x)→ y as k →∞. This yields

γkT
nk(λ, x) = (λγke

ıθnk , γkB
nk
w (x)) −→

k→+∞
(a, y)

and proves that Orb(Γ1(λ, x), T ) is somewhere dense in H, finishing the proof. �

4. Applications: Hypercyclic sets and Bourdon-Feldman sets

We recall that T ∈ L(X) and T̃ ∈ L(X̃) are conjugate to each other if there exists an

isomorphism S : X → X̃ such that T̃ ◦ S = S ◦ T . The following proposition can be easily
checked.

Proposition 4.1. Let X be a Banach space, A a non-empty subset of X, and T ∈ L(X)

and T̃ ∈ L(X̃) be conjugate to each other. Then T is A-hypercyclic if and only if T̃ is

S(A)-hypercyclic, where S ∈ L(X, X̃) is such that T̃ ◦ S = S ◦ T .

The next proposition gives an equivalent, but apparently stronger, definition of a hyper-
cyclic set in X.

Proposition 4.2. Let X be a separable Banach space and A a non-empty subset of X. A
is a hypercyclic set (in the sense of Definition 1.2) if and only if for any T ∈ L(X),

T is hypercyclic iff T is conjugate to a A-hypercyclic operator.

Proof. Suppose first that A is a hypercyclic set. Then if T is hypercyclic, the argument
is the same as in the proof of Proposition 3.2. Let x be a hypercyclic vector for X and
z ∈ A. We consider a topological isomorphism S of X which maps z to x and define

T̃ := S−1 ◦ T ◦ S. By Proposition 4.1 again, T̃ is hypercyclic with z = S−1(x) as a

hypercyclic vector. Since z ∈ A, T̃ is also A-hypercyclic. For the other way round, we
need only use that hypercyclicity is preserved by conjugacy.

For the sufficiency, we need only remark that any operator is conjugate to itself. �

We now re-state and prove Theorem A.

Theorem A. Let A be a subset of a separable Hilbert space H.

(1) We assume that A is contained in a finite dimensional subspace of H. Then A is a
hypercyclic set if and only if A \ {0} is non-empty and contained in a finite union
of vector annuli.
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(2) If A contains a sequence (xn)n of linearly independent vectors satisfying

(4.1) Codim(Span(xn, n ≥ 0)) =∞,

then A is not a hypercyclic set.

Proof. (1) The if part is just Theorem 2.1 and then has already been proven. The proof of
the only if part is quite simple now and will be done by conjugacy. We start by fixing a
separable Hilbert space H and a finite dimensional subset A in H which is not contained
in a finite union of vector annuli. Moreover, we suppose without loss of generality that
0 /∈ A. We denote by l the dimension of Span (A), choose a basis (x1, . . . , xl) of Span (A),
and we denote by F the isomorphism from Span (A) onto Cl which maps xi to ei, 1 ≤ i ≤ l
(here again e1, . . . , el) stands for the canonical basis of Cl). We now define Γ = F (A) ⊂ Cl

and observe that obviously A = Γx1,...,xl
. Then Γ is not included in a finite union of vector

annuli in Cl (we already used such implication before the statement of Theorem 2.1) so

that by Theorem 3.8, there exist a separable Hilbert space H̃, an operator T̃ ∈ L(H̃) and

a linearly independent family (z1, . . . , zl) in H̃ such that T̃ is Γz1,...,zl
-supercyclic but not

hypercyclic. Since (x1, . . . , xl) and (z1, . . . , zl) are finite, there is a topological isomorphism

S from H̃ onto H which maps zi to xi for every 1 ≤ i ≤ l. In particular we have

A = Γx1,...,xl
= S(Γz1,...,zl

).

To finish we define T := S ◦ T̃ ◦ S−1 in L(H), observe that T and T̃ are conjugate to each
other, and use Proposition 4.1 to get that T is A-hypercyclic but not hypercyclic. This
concludes the proof of (1).

(2) We need only prove that an infinite linearly independent sequence (xn)n such that
Codim (Span (xn, n ≥ 0)) = ∞ is not a hypercyclic set. We fix such a sequence (xn)n in
some separable Hilbert space H. By assumption, there exists an orthonormal basis (fm)m∈N
of H such that (f2m)m∈N is an orthonormal basis of Span ((xn, n ≥ 0)). We then denote by
F the isomorphism from Span ((xn, n ≥ 0)) onto `2(N) which maps f2m to em, m ∈ N (here
again (em)m stands for the canonical basis of `2(N)). We now define Γ = F ((xn)n) ⊂ `2(N)
and observe that obviously (xn)n = Γ(f2m)m .

Since (xn)n is linearly independent in H, Γ is not contained in a finite union of vector
annuli and, by Theorem 3.15, Γ is not a hypercyclic scalar set. So there exist a separable

Hilbert space H̃, a non-hypercyclic operator T̃ ∈ L(H) and an orthonormal sequence

(z̃m)m∈N ⊂ H̃ such that

Orb(Γ( fzm)m , T ) = H̃.

As mentioned in Remark 3.27,

Codim (Span (z̃m, m ≥ 0))) = Codim (Span (f2m, m ≥ 0))) =∞.

Thus there exists a topological isomorphism S from H̃ onto H which maps z̃m to f2m,
m ∈ N. In particular we have

(xn)n = Γ(f2m)m = S(Γ( fzm)m).
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Finally we define T := S ◦ T̃ ◦ S−1 in L(H), observe that T and T̃ are conjugate to each
other, and use Proposition 4.1 to infer that T is (xn)n-hypercyclic but not hypercyclic.
This concludes the proof of (2). �

Remark 4.3. The previous proof does not allow to extend Theorem A to any given
separable Banach space. The reason is simply that two given separable Hilbert spaces are
always topologically isomorphic, what may not be the case for arbitrary separable Banach
spaces.

In the Hilbert setting, the only case that Theorem A does not cover is that of those
linearly independent sequences whose any subsequence spans a subspace with finite codi-
mensional closure. This kind of pathological objects are known as almost overcomplete
sequences.

Definition 4.4. A sequence in a Banach space is called overcomplete (resp. almost over-
complete) if the closed linear span of each of its subsequences has codimension 0 (resp. has
finite codimension).

Such sequences have been for instance studied by Klee [20], and more recently by Fonf
and Zanco, see [15, 16] and the references therein; see also [1, 9]. We mention that Klee
proved that every separable Banach space contains an overcomplete sequence. The second
part of Theorem A can be equivalently restated in terms of almost overcomplete sequences
as follows.

Corollary 4.5. Let A be a subset of a separable Hilbert space H. If A contains a sequence
(xn)n of linearly independent vectors which is not an almost overcomplete sequence, then
A is not a hypercyclic set.

The first part of Theorem A provides with various new examples of natural sets which
are not hypercyclic sets.

Corollary 4.6. Let H be a separable Hilbert space. The following subsets of H are not
hypercyclic sets.

• A segment containing 0;
• A segment joining two linearly independent vectors;
• More generally, any sets containing a finite dimensional continuous curve joining

two linearly independent vectors;
• Open sets or spheres with positive radius, as examples of sets of the previous type.

Remark 4.7. As far as we now, even the first example in Corollary 4.6 is new. Indeed, [10,
Theorem A] tells that a segment of the form [a, b]x is a hypercyclic set if 0 /∈ [a, b] and
x 6= 0, and that [a, b] is not a hypercyclic scalar set if 0 ∈ [a, b], but we do not know a
reference stating that given any Hilbert space H, any x ∈ H non-zero, the set [a, b]x is
not a hypercyclic set whenever it contains 0.

The second part of Theorem A also gives rather nice examples of non hypercyclic sets
which are not covered by the first part. Among them, the most natural ones are probably
infinite orthonormal families.



32 S. CHARPENTIER, R. ERNST

Corollary 4.8. In a separable Hilbert space, an infinite orthonormal family is never a
hypercyclic set.

This corollary is a satisfying answer to Feldman’s question about countable hypercyclic-
ity (see Question 4 in the introduction). We shall mention that the counterexample given
in [17, Exercise 6.3.3] is not an orthonormal family. Yet, in fact, Theorem A gives a positive
answer to Question 5, that is a completely positive answer to Question 4. The reason is
that almost overcomplete bounded sequences enjoy a very strong property, as shown by
the following.

Theorem 4.9 (Theorem 2.1 of [15]; see also Theorem 3.2 of [9]). Each almost overcomplete
bounded sequence in a separable Banach space is relatively norm-compact.

This theorem implies that a bounded infinite separated sequence in a Banach space
cannot be almost overcomplete. Moreover, by compactness, it cannot be contained in any
finite dimensional subspace of H. Thus it needs to contain a linearly independent sequence
which is not an almost overcomplete sequence. Therefore, by Corollary 4.5, we get:

Corollary 4.10. A bounded separated sequence in a separable Hilbert space is a hypercyclic
set if and only if it is finite and not reduced to {0}.

Now, a natural question is whether any hypercyclic set contains hypercyclic vectors.
Theorem A together with Theorem 2.1 gives an answer in the finite dimensional case.

Corollary 4.11. Let A be a subset of a separable Hilbert space H. We assume that A
is finite dimensional. If A is a hypercyclic set, then any A-hypercyclic operator admits a
hypercyclic vector in A.

Proof. Since A is a hypercyclic set, Theorem A gives N ≥ 1, 0 < a ≤ b <∞ and x1, . . . , xN
in H such that

A ⊂
N⋃
i=1

[a, b]Txi.

We can assume that

(4.2) A 6⊂
N⋃
i=1
i 6=j

[a, b]Txi

for any 1 ≤ j ≤ N . By Theorem 2.1, λxi is hypercyclic for T for some 1 ≤ i ≤ N and any
λ 6= 0. Now by (4.2) there is some λ 6= 0 such that λxi ∈ A. �

We finish this paragraph by telling that, as in the proof of Theorem A, and without any
extra difficulties, a conjugacy argument can be combined to Theorem 3.30 in order to get
a characterization of finite dimensional Bourdon-Feldman sets. Moreover, since Bourdon-
Feldman sets are also hypercyclic sets, the second point is clear by Theorem A. We leave
the details to the reader and re-state Theorem B.

Theorem B. Let A be a subset of a separable Hilbert space H.
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(1) If A is finite dimensional, A is a Bourdon-Feldman set if and only if A \ {0} is
non-empty and if there exists x1, . . . , xN in X and Γ1, . . . ,ΓN subsets of C, with
Γi \ {0} bounded and bounded away from 0 and ΓiT nowhere dense in C for every
i ∈ {1, . . . , N}, such that

A ⊂
N⋃
i=1

Γixi.

(2) If A is infinite dimensional and if A contains a sequence (xn)n of linearly indepen-
dent elements satisfying

Codim (Span (xn, n ≥ 0)) =∞,
then A is not a Bourdon-Feldman set.

This theorem provides with examples of hypercyclic sets which are not Bourdon-Feldman
sets (for e.g. the sets of the form [a, b]Tx with 0 < a < b <∞ and x ∈ H \ {0}).

5. Open questions

Regarding to Theorem A, an answer to the following question would provide with a
complete description of hypercyclic sets in separable Hilbert spaces.

Question 6. Are almost overcomplete sequences hypercyclic sets?

The authors think that this question has a negative answer but the technical obstruction
mentioned in Remark 3.27 makes our construction probably inefficient.

A description of hypercyclic sets in Banach or Fréchet spaces still remains unknown.

Question 7. Is there a characterization of hypercyclic sets in some/any Banach or Fréchet
spaces?

We recall that Feldman [13] proved that if T is a unilateral weighted shift then T is
hypercyclic if and only if there exists a bounded set having dense T -orbit. This is a partial
answer to Question 7 for T in some specific class.

Related to Γ-supercyclicity with Γ ⊂ Cl is the notion of n-supercyclicity introduced by
Feldman [14] in 2002. We recall that an operator T ∈ L(X) is said to be n-supercyclic,
n ≥ 1, if there exists an n-dimensional subspace E of X such that T is E-hypercyclic. In
particular any Γ-supercyclic operator, Γ ⊂ Cl, is l-supercyclic. So a general problem is the
following.

Question 8. Given n, l two positive integers, is it possible to describe those subsets Γ ⊂ Cl

for which an operator is n-supercyclic if and only if it is Γ-supercyclic?

Since Feldman proved in [14] that n-supercyclicity and (n− 1)-supercyclicity differ, the
above problem need only be considered for n ≤ l. Actually this question has already been
attacked for n = l = 1, in which situation no complete solution has been formulated,
see [10] and the references therein.

In connection with Theorem B, the following question makes also sense.
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Question 9. Is it possible to characterize those subsets A of a separable Banach space X
such that the somewhere density in X of Orb(A, T ) implies its everywhere density?

The interactions between linear dynamics and ergodic theory is of great interest in linear
dynamics. This is represented by the notions of frequent hypercyclicity and U -frequent
hypercyclicity introduced by Bayart and Grivaux [2] and Shkarin [27], respectively.

Question 10. What can be said about frequent or U -frequent hypercyclicity?
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