
HAL Id: hal-01651233
https://hal.science/hal-01651233v1

Preprint submitted on 28 Nov 2017 (v1), last revised 9 Dec 2022 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Intrinsically Motivated Goal Exploration Processes with
Automatic Curriculum Learning

Sébastien Forestier, Yoan Mollard, Pierre-Yves Oudeyer

To cite this version:
Sébastien Forestier, Yoan Mollard, Pierre-Yves Oudeyer. Intrinsically Motivated Goal Exploration
Processes with Automatic Curriculum Learning. 2017. �hal-01651233v1�

https://hal.science/hal-01651233v1
https://hal.archives-ouvertes.fr

Intrinsically Motivated Goal Exploration Processes
with Automatic Curriculum Learning

Sébastien Forestier1,2,3

sebastien.forestier@inria.fr
Yoan Mollard2,3

yoan.mollard@inria.fr

Pierre-Yves Oudeyer2,3

pierre-yves.oudeyer@inria.fr

1Université de Bordeaux, 2Inria Bordeaux Sud-Ouest, 3Ensta-ParisTech, France

Abstract

Intrinsically motivated spontaneous exploration is a key enabler of autonomous
lifelong learning in human children. It allows them to discover and acquire
large repertoires of skills through self-generation, self-selection, self-ordering
and self-experimentation of learning goals. We present the unsupervised
multi-goal reinforcement learning formal framework as well as an algorithmic
approach called intrinsically motivated goal exploration processes (IMGEP) to
enable similar properties of autonomous learning in machines. The IMGEP
algorithmic architecture relies on several principles: 1) self-generation of goals as
parameterized reinforcement learning problems; 2) selection of goals based on
intrinsic rewards; 3) exploration with parameterized time-bounded policies and fast
incremental goal-parameterized policy search; 4) systematic reuse of information
acquired when targeting a goal for improving other goals. We present a particularly
efficient form of IMGEP that uses a modular representation of goal spaces as
well as intrinsic rewards based on learning progress. We show how IMGEPs
automatically generate a learning curriculum within an experimental setup where a
real humanoid robot can explore multiple spaces of goals with several hundred
continuous dimensions. While no particular target goal is provided to the system
beforehand, this curriculum allows the discovery of skills of increasing complexity,
that act as stepping stone for learning more complex skills (like nested tool use).
We show that learning several spaces of diverse problems can be more efficient for
learning complex skills than only trying to directly learn these complex skills. We
illustrate the computational efficiency of IMGEPs as these robotic experiments use
a simple memory-based low-level policy representations and search algorithm,
enabling the whole system to learn online and incrementally on a Raspberry Pi 3.

Keywords: intrinsically motivated exploration; unsupervised multi-goal reinforce-
ment learning; intrinsic motivation; curiosity-driven learning; automatic generation
of goals; curriculum learning; learning progress; robotics; modular representations

1 Introduction
An extraordinary property of natural intelligence in children is their capacity for lifelong autonomous
learning. Processes of autonomous learning in infants have several properties that are fundamentally
different from many current machine learning systems. Among them is the capability to spontaneously
explore their environments, driven by an intrinsic motivation to discover and learn new tasks and
problems that they imagine and select by themselves [Berlyne, 1966, Gopnik et al., 1999]. Crucially,
there is no engineer externally imposing one target goal that they should learn, or hand providing a
curriculum for learning, or providing a ready-to-use database of training examples. Rather, children
self-select their objectives within a large, potentially open-ended, space of goals they can imagine,
and they collect training data by physically practicing these goals. In particular, they explore goals in
an organized manner, attributing to them values of interestingness that evolve with time, and allowing
them to self-define a learning curriculum that is called a developmental trajectory in developmental
sciences [Thelen and Smith, 1996]. This self-generated learning curriculum allows infants to avoid
spending too much time on goals that are either too easy or too difficult, focusing on goals of the
right level of complexity at the right time. Within this process, the new learned goals/problems are
often stepping stones for discovering how to solve other goals of increasing complexity. Thus, while
they are not explicitly guided by a final target goal, these mechanisms allow infants to discover highly
complex skills such as biped locomotion or tool use, which would have been extremely difficult to
learn if they would have only focused on these goals from the start as the rewards for these goals are
typically rare or deceptive.

An essential component of such organized spontaneous exploration is the intrinsic motivation sys-
tem, also called curiosity-driven exploration system [Gottlieb et al., 2013]. In the last decade, a
series of computational and robotic models of intrinsically motivated exploration and learning
in infants have been developed [Oudeyer and Kaplan, 2007, Baldassarre and Mirolli, 2013], open-
ing new theoretical perspectives in neuroscience and psychology [Gottlieb et al., 2013]. Two key
ideas have allowed to simulate and predict important properties of infant spontaneous exploration,
ranging from vocal development [Moulin-Frier et al., 2014, Forestier and Oudeyer, 2017], to object
affordance and tool learning [Forestier and Oudeyer, 2016a, Forestier and Oudeyer, 2016c]. The
first key idea is that infants might select experiments that maximize an intrinsic reward based on
empirical learning progress [Oudeyer et al., 2007], which generates automatically developmental
trajectories (e.g. learning curricula) where progressively more complex tasks are practiced, learned
and used as stepping stones for more complex skills. The second key idea is that beyond selecting
actions or states based on the predictive learning progress they provide, a more powerful way to
organize intrinsically motivated exploration is to select goals, i.e. self-generated reinforcement
learning problems, based on a measure of control learning progress [Baranes and Oudeyer, 2013].
Here, the intrinsic reward is the empirical improvement towards solving these problems/goals
[Oudeyer and Kaplan, 2007, Forestier and Oudeyer, 2016a], happening through lower-level policy
search mechanisms that generate physical actions. The efficiency of such goal exploration processes
leverages the fact that the data collected when targeting a goal can be informative to find better
solutions to other goals (for example, a learner trying to achieve the goal of pushing an object on the
right but actually pushing it on the left fails to progress on this goal, but learns as a side effect how to
push it on the left).

Beyond neuroscience and psychology, we believe these models open new perspectives in artifi-
cial intelligence. In particular, algorithmic architectures for intrinsically motivated goal explo-
ration were shown to allow the efficient acquisition of repertoires of high-dimensional motor skills
with automated curriculum learning in several robotics experiments [Baranes and Oudeyer, 2013,
Forestier and Oudeyer, 2016a]. This includes for example learning omnidirectional locomotion or
learning multiple ways to manipulate a single complex flexible object [Baranes and Oudeyer, 2013].
In this article, we first present a formal framework called “Unsupervised Multi-Goal Reinforcement
Learning”, as well as a formalization of intrinsically motivated goal exploration processes, that is both
more compact and more general than these previous models. Then, we present an experimentation of
implementations of these processes in a complex robotic setup with multiple objects, associated to
multiple spaces of parameterized reinforcement learning problems, and where the robot can learn how
to use certain objects as tools to manipulate other objects. We analyze and discuss how curriculum
learning is automated in this unsupervised multi-goal exploration process, and compare the trajectory
of exploration and learning of these spaces of problems with the one generated by other mechanisms
such as hand-designed learning curriculum, or exploration targeting a single space of problems, and
random motor exploration.

2

2 Formal framework

2.1 The Unsupervised Multi-Goal Reinforcement Learning Problem

Let’s consider a machine that can produce behaviours by executing stochastic policies πθ param-
eterized by θ P Θ Ă RdΘ in context c P C Ă RdC , characterizing the current state of an envi-
ronment Env and generated stochastically by the distribution µEnvpcq. We consider here policies
πθpat`1 | st0:t`1, at0:tq as stochastic black-boxes that produce time-bounded behavioural trajectories,
denoted τ “ tst0p“ cq, at0 , st1 , at1 , ¨ ¨ ¨ , stend , atendu P T, through the dynamics νEnvpτ | θ, cq of
the environment. We only assume that they terminate before time t0 ` T where t0 is the time when
a policy is started and T is a timeout used by a meta-controller to stop the policy if this timeout is
reached (and we note tend the time when a policy actually terminates).

We denote oτ P O Ă RdO , and call outcome, a vector of measurements (also called descriptors or
features) characterizing the behaviour of the machine and of the environment during one execution of
the policy πθ until it terminates and starting from context c. The descriptors in the outcome vector o
characterize properties of the behavioural trajectory τ .

Finally, we assume that the machine is capable to sample goals (here also called problems) in a
space of reinforcement learning problems P parameterized by p P P Ă RdP , and where each
goal/problem is defined by a goal-parameterized reward function R : pp, c, θ, oτ q ÞÑ r that
specifies the reward received by the agent if it tries to solve goal/problem p in a context c with
policy πθ and observes outcome oτ . Our main assumption is that given a context c, a policy πθ
and an observed outcome oτ , the agent can compute Rpp, c, θ, oτ q for any p P P . In other words,
given a context, policy and outcome, the agent receives a partial reward function Rc,θ,oτ : p ÞÑ r
so that it can compute the reward (or fitness) r of experiment pc, θ, oτ q for solving any problem
p P P , with r “ Rc,θ,oτ ppq “ Rpp, c, θ, oτ q. Another way to understand those rewards is that
given a goal problem p to solve, the agent can compute a specific reward function Rp giving the
reward/fitness r of all previous experiments pc, θ, oτ q for solving the particular problem p, with
r “ Rppc, θ, oτ q “ Rpp, c, θ, oτ q. Thus in this framework, sampling a goal/problem p is equivalent
to sampling a reward function Rp.

An example below illustrates the generality of this form of goals, enabling to express complex
objectives that do not simply depend on the observation of the end state policies, but might depend on
several aspects of entire behavioural trajectories. Importantly, this framework does not assume that
all goals/problems are solvable. For example, in the robotics experiments below, the representation of
goal spaces is provided by the engineer1, but large parts of these goal spaces are not solvable and the
machine does not know beforehand which goals are solvable or their relative difficulty.

Given these spaces P of problems, C of contexts, Θ of policies, as well as an environment, a machine
can explore the environment’s dynamics and learn a stochastic meta-policy Πpθ | p, cq to try to solve
as well as possible all problems p in all contexts c. In order to evaluate how well the machine learned
to solve diverse problems in diverse contexts, we define a test distribution T pp, cq of problems and
contexts, unknown to the machine during learning, on which we can evaluate the rewards obtained
by the machine (a particular case is when there is only a single target problem considered by the
experimenter). The loss of a meta-policy Π is defined by Equation 1 as minus the expected reward
received by following Π to solve all problems in all contexts following the test distribution T pp, cq.
The loss cannot be computed by the learning machine as it does not know the test distribution T pp, cq.

LpΠq “ ´
ż

P

ż

C
T pp, cq

ż

Θ

Πpθ | p, cq

ż

T
νEnvpτ | θ, cq Rpp, c, θ, oτ q dτ dθ dc dp (1)

We define the Unsupervised Multi-Goal Reinforcement Learning Problem as the problem of
learning a meta-policy Π with minimal loss in a minimal amount of experiments (executions of
policies in the environment). We use the term "unsupervised" because the tests problems are unknown
to the machine during learning.

1Actually, the engineer provides mathematical operators to the machine to algorithmically generate parame-
terized reward functions over measurements/outcomes of behaviours. An interesting avenue for future work is to
consider representation learning algorithms for learning such parameterization of goal spaces.

3

2.2 Particular case: a modular problem space

An interesting particular case of the above formulation is when the problem space is the union of

m spaces: P “
m
Ť

k“1

Pk. In that case, the reward for a problem p P Pk is denoted Rkppc, θ, oτ q.

After executing a policy πθ in a context c, the agent observes outcome oτ and it can compute
Rkppc, θ, oτ q “ Rpp, c, θ, oτ q for all problems p in all problem spaces Pk.

In the definition of the test distribution T pp, cq, we can be interested in evaluating the competence of
the learning agent in one particular problem space Pk, in which case T pp, cq will sample problems
p P Pk, or in all spaces, with p uniform in P .

2.3 Links to Reinforcement Learning

In this setting, the reward functions of the goal-parameterized space of functions Rp with p P P
have two particularities in comparison with the concept of “reward function” as often used in the RL
literature.

The first particularity is that these reward functions are computed based on the outcome oτ of
executing a policy πθ in context c, and thus consider the whole behaviour of the machine and of the
environment during the execution, so these rewards are not Markovian if one considers them from the
perspective of the lower level of state transitions associated to the execution of πθ, i.e. the pst, atq.

The second particularity is that since the computation of the reward Rpp, c, θ, oτ q is internal to the
machine, it can be computed any time after the experiment pc, θ, oτ q and for any problem p P P ,
not only the particular problem that the agent was trying to solve. Consequently, if the machine
experiments a policy πθ in context c and observes oτ (e.g. trying to solve problem p1), and stores
the results pc, θ, oτ q of this experiment in its memory, then when later on it self-generates problems
p2, p3, ..., pi it can compute on the fly (and without new actual actions in the environment) the
associated rewards Rp2

pc, θ, oτ q, Rp3
pc, θ, oτ q, ..., Rpipc, θ, oτ q and use this information to improve

over these goals p2, p3, ..., pi. This property is essential as this enables direct reuse of data collected
when learning to solve a problem for solving later on other problems, and is leveraged for curriculum
learning in intrinsically motivated goal exploration processes (see below).

2.4 Example of an Unsupervised Multi-Goal Reinforcement Learning problem

An autonomous robot playing with a ball. Consider a wheeled robot that can move around in an
environment with walls and with a ball that it can push. The sensory system of the robot allows it
to measure and encode in a vector st the current position and speed of itself and of the ball as well
as distances to walls in several directions. The robot can produce behaviours by executing policies
πθ encoded as recurrent neural network with weights parameterized by θ. The network takes as
input the current value of sensor measurements (st), and outputs motor speed values (encoded as
a vector at) during one roll-out (roll-outs are automatically stopped by a meta-controller after s
seconds). The starting context c of a roll-out (an experiment) is a vector encoding the current position
and speed of the robot and of the ball (so the context equals the starting sensor measurements in
this case). While the robot is executing a movement from time t0 to time tend, it records all the
sequence τ of motor commands and observed sensor measurements ps0, a0q, ..., pstend , atendq. From
the data in τ , the robot computes the outcome o of executing πθ in c as a set of descriptors/features
of τ . Let’s consider one example where those descriptors are o “ pd1, d2, d3q where d1 is a vector
encoding the translation of the ball between time t0 and tend, d2 the minimal distance to the walls
during the trajectory, and d3 the energy used by the robot for generating the trajectory (computed
from speeds). Now, let’s consider a space of problems that the robot could sample from, and where
each problem/goal consists in trying to find a behaviour πθ in context c such that the ball translates
with vector dg while maximizing the minimal distance to the wall and minimizing the energy spent,
with relative weights α and β for these components of the problem. Thus, this space of problems is
parameterized by g “ pdg, α, βq such that

Rgpc, θ, oq “ αe´}dg´d1}2 ` βd2 ` p1´ α´ βqe
´d32

4

For example, the problem pr1, 1s, 0, 1q is the problem of staying away from the walls, and problem
pr1, 1s, 0.5, 0q is the problem of translating the ball with vector r1, 1s while minimizing the energy
spent, but with no constraint on the distance to the walls.

A more simple case to consider is if outcomes would be simply the translation of the ball during
a roll-out (o “ d1), and if problems/goals would consist in target translations (g “ dg). In that
case, a goal is literally a target configuration of the environment at the end of the roll-out, and
the parameterized rewards function Rgpc, θ, oq can directly be implemented as a function of a
distance between the target translation dg and the observed translation d1 when executing πθ in
context c: Rgpc, θ, oq “ e´}dg´d1}2 . In that case, one would not need to have formal space of
parameterized problems, as it would be isomorphic to the space of outcomes. However, considering
such a parameterized space of problems allows to sample and learn to solve families of more general
problems such as in the example above.

In these two cases (complex or simple problem space), the Unsupervised Multi-Goal Reinforcement
Learning problem consists in exploring the environment to collect learning data pci, θi, oiq that are
efficient for learning a good inverse model Πpθ | g, cq over the space of goals and contexts. One
approach that could be taken to perform such an exploration is to perform experiments by sampling
values of θ given c, then executing πθ and observing the corresponding outcome. Such sampling can
be random, or it can be active using one the many active learning methods in the literature developed
to learn actively forward models of the world dynamics [Oudeyer et al., 2007]. However, as argued
for example in [Baranes and Oudeyer, 2013], there are many real world situations where very large
areas of the space of θ values are either producing no meaningful outcomes or are redundant (they all
produce the same outcome). For example, most θ parameters of the robot above might produce a
movement of the robot that does not even touch the ball. As a consequence, only certain manifolds of
the θ space may be useful to learn to produce a certain diversity of outcomes.

For this reason, another approach, proven to be more efficient in previous experimental studies and
formalized in Section 3.1 is Intrinsically Motivated Goal Exploration Processes (IMGEPs). The idea
of IMGEPs is to explore the environment by repeatedly sampling a goal g in the problem space, then
use the current inverse model to find the best predicted θ to reach goal g in the current context c,
and use an optimization algorithm with a constrained time budget to improve over this best current
solution. Interestingly, the resulting experiment(s) produce learning data pci, θi, oiq that can improve
the current best solutions to other problems/goals (even if they do not currently improve the solution
to produce g). This enables transfer learning among goals/problems, and enables the system to be
robust to sampling goals that might be very difficult to learn initially, or simply impossible to learn
(e.g. the space of goals can allow the above robot to sample a goal where the target ball translation
is p100, 100q while the ball can physically move only inside a square of 10 ˚ 10). Furthermore, this
also provides a framework in which goals can be sampled actively, for example by sampling more
often goals for which the system is currently making most learning progress. Below, we present a
formalization of IMGEPs and show in experiments that they generate a learning curriculum where
goals are progressively and automatically sampled and learned in order of increasing complexity.

2.5 Exploration Problem versus Inverse Model Learning Problem

There are several technical challenges that need to be addressed to learn the meta-policy Πpθ | p, cq.
If one considers that a database of exemplars L “ pci, θi, oiq is available to the learner initially, a
challenge is to devise learning algorithms that can detect and leverage regularities in this database
to learn a Πpθ | p, cq such that given a new test dataset pcj , pjq, Π will generate policy parameters
θj „ Πpθ | pj , cjq such that Rppj , cj , θj , ojq will be maximal in average over the problems pj in this
test dataset (in corresponding contexts cj). As Π is encoding a probabilistic inverse model from the
spaces of problems and contexts to the space of policies, we call here the problem of learning Π
from a database L the problem of inverse model learning (various approaches for contextual inverse
model learning can be used, see for e.g. [Baranes and Oudeyer, 2013]). Here, an evaluation of the
performance of such an inverse model learning algorithm is the average reward over the problems in
the test dataset at the end of learning, possibly considering the speed of convergence of the learning
process.

Now, when one considers the framework of autonomous learning, one cannot assume that a database
of learning exemplars is already available to the learner: the learner needs to explore by itself to collect
this database, from which the meta-policy Π can be learned either concurrently and incrementally

5

or later on in a batch manner. In this article, we focus on this second problem, which we believe is
fundamental for autonomous learning architectures, and will present a family of algorithmic processes
for exploration called “Intrinsically Motivated Goal Exploration Processes” that aims at collecting
learning exemplars that have properties of diversity suited to learn good inverse models over the
space of problems P .

However, as these algorithmic processes require an inverse modeling step, our experiments will
implement simple (yet powerful) algorithms for incremental inverse model learning. Furthermore,
the evaluation of exploration processes considers the relation between the number N of roll-outs of
policies πθ in the environment and the quality of a learned meta-policy Π implementing an inverse
model. Efficient exploration processes will be processes that allow to learn a high-quality Π (in terms
of average reward over an independent test dataset of problems and contexts) in a minimal number N
of roll-outs in the environment.

In environments where an infinity of problems/goals of unknown difficulty can be explored, and
where reward information to some problems can be sparse, it becomes challenging to decide which
action policies to explore next. The next section presents goal exploration processes as an approach
to organize exploration in such contexts.

3 Intrinsically Motivated Goal Exploration Processes

We here present intrinsically motivated goal exploration processes as an algorithmic architecture
that aims to address the unsupervised multi-goal reinforcement learning problem. This algorithmic
architecture (Architecture 1) can be instantiated into many particular algorithms as it contains slots
where several low-level policy learning algorithms can be used (see Algo. 3 and Appendix A for
several examples). However, all these algorithmic implementations share several general principles
which define the concept of intrinsically motivated goal exploration processes:

• The learning machine can self-generate and sample goals as abstract parameterized rein-
forcement learning problems; These goals are typically defined as complex time-extended
functions of behavioural outcomes; In the modular case, there are several goal spaces to
sample from;

• Goal sampling (and goal space sampling) is made using intrinsic rewards; A particularly
efficient intrinsic measure is based on estimating empirical learning progress towards self-
generated goals (interesting goals are those for which learning progresses faster, which
enables automatic curriculum learning);

• Two learning loops are running in parallel: 1) an exploration loop uses parameterized
time-bounded policies and fast incremental goal-parameterized policy search, enabling fast
efficient search of good solutions over diverse sets of problems; 2) an exploitation loop uses
data collected by the exploration loop to consolidate the learning process, possibly using
slow batch learning algorithms;

• Both learning loops systematically reuse information acquired when targeting a goal for
improving the solution to other goals (thus even if many goals can correspond to RL
problems with sparse rewards, there can be a dense feedback from the environment for
learning about multiple goals).

3.1 Algorithmic approach: Goal Exploration and Intrinsic Rewards

In this section we define a general algorithmic architecture to solve the Unsupervised Multi-Goal
Reinforcement Learning problem with Intrinsically Motivated Goal Exploration Processes (see Archi-
tecture 1). It is an architecture in the sense that it is composed of several modules working together
but for which multiple implementations are possible. We give several variants of implementations of
this architecture in Section 4.3.

6

Architecture 1 Intrinsically Motivated Goal Exploration Process (IMGEP)
Require: Environment Env, Context space C with distribution µEnvpcq
Require: Policy parameter space Θ, Outcome space O, trajectory distribution νEnvpτ | θ, cq
Require: Problem parameter space P , goal-parameterized reward function Rpp, c, θ, oτ q
Require: Initial knowledge E Ź typically empty

1: Πpθ | p, cq Ð InitializeMetaPolicy(E) Ź This is the target meta-policy (inverse model)
2: Πεpθ | p, cq Ð InitializeExplorationMetaPolicy(E) Ź Πε is the inverse model used during

exploration. It may be the same or different from Π
3: γpg | cq Ð InitializeGoalPolicy(E)
4: Launch asynchronously the two following loops (exploration and training of target meta-policy)
5: loop Ź Exploration loop
6: c „ µEnvpcq Ź Observe context c
7: g „ γpg | cq Ź Choose goal g in P based on intrinsic rewards, e.g. using a MAB
8: θ „ Πεpθ | g, cq Ź Infer policy parameters θ that maximize expected Rgpc, θ, oτ q using

an exploration/exploitation trade-off, and possibly computing now the problem-specific reward
function Rg giving the reward/fitness r of all previous experiments pcj , θj , ojq to solve current
goal problem g, with r “ Rgpcj , θj , ojq “ Rpg, cj , θj , ojq

9: τ „ νEnvpτ | θ, cq Ź Execute a roll-out of πθ, observe trajectory tst0:tend , at0:tendu

10: Compute outcome oτ from trajectory τ
Ź The goal-parameterized reward function Rc,θ,oτ can now be computed to find the re-

ward/fitness r of the current experiment pc, θ, oτ q for solving any problem p P P , with
r “ Rc,θ,oτ ppq “ Rpp, c, θ, oτ q

11: r “ Rc,θ,oτ pgq Ź Compute current reward associated to solving goal problem g
12: ri Ð IRpE , c, g, θ, oτ , rq Ź Compute intrinsic reward ri associated to g in context c (e.g.

learning progress in the vicinity of this goal)
13: Πεpθ | p, cq Ð UpdateExplorationMetaPolicy(E , c, θ, oτ) Ź This update can be achieved

with a fast incremental learning algorithm (e.g. memory-based learning)
14: γpg | cq Ð UpdateGoalPolicy(E , c, g, oτ , ri)
15: E Ð UpdateKnowledge(E , c, g, θ, oτ , τ, ri)
16: loop Ź Target meta-policy training loop
17: Πpθ | p, cq Ð UpdateMetaPolicy(E) Ź This may be achieved using online or batch training

of e.g. deep neural networks, SVMs, Gaussian Mixture Models, etc.
18: return Π

Several algorithmic ingredients are used in Intrinsically Motivated Goal Exploration Processes.

With Goal exploration, the learning agent iteratively samples a parameterized problem in the space
of problems and sets it as its own goal p in each interaction of the goal exploration loop. In this loop,
the learner first infers the best current parameters θ with the current meta-policy Πεpθ | p, cq (possibly
adding some exploration noise). Several sampling strategies can be used, discussed below. Then, a
roll-out of the lower-level policy πθ is executed, allowing the observation of the behavioural trajectory
τ and the measurement of the outcome o. The new data pc, oτ , τq then allows to: 1) compute the
reward r associated to goal p; 2) compute an intrinsic reward evaluating the interestingness of the
choice of p based on the comparison of r with past experiences; 3) update the goal exploration
policy (goal sampling strategy) with this intrinsic reward; 4) update the meta-policy Πε with a fast
incremental learning algorithm, which depends on the particular implementation of the IMGEP (using
the fact that the observation of the outcome o provides information about all other problems pi P P);
5) update the learning database E . Then, asynchronously this learning database E can be used to
learn a target meta-policy Π with an online or batch (potentially slower but better at generalization)
learning algorithm, which also depends on the particular implementation of the IMGEP.

In goal exploration, a goal problem g P P is chosen at each iteration. P may be infinite, continuous
and of high-dimensionality, which makes the choice of goal a non trivial question. Indeed, even if the
goal-parameterized reward function Rc,θ,oτ gives information about the fitness of policy πθ to solve
all problems p P P , this policy has been chosen with the problem g to solve in mind, thus Rc,θ,oτ may
not give as much information about other problems than the execution of another policy π1θ chosen
when targeting another goal g1. Intrinsic Rewards provide a mean for the agent to self-estimate
the expected interest of exploring goals g P P for learning how to solve all problems p P P . An

7

intrinsic reward signal ri is associated to a chosen goal g, and can be based on a heuristic (IR) such
as outcome novelty, progress in reducing outcome prediction error, or progress in competence to
solve problems [Oudeyer and Kaplan, 2007]. Based on the intrinsic rewards for different goals in
different contexts, the choice of a goal g in a context c: goal policy γpg | cq, is typically implemented
with a contextual Multi-Armed Bandit to maximize future intrinsic rewards. Here, we will use
intrinsic rewards based on measuring competence progress towards self-generated goals, which has
been shown to be particularly efficient for learning repertoires of high-dimensional robotics skills
[Baranes and Oudeyer, 2013]. See Fig. 1 for a schematic representation of possible learning curves
and the exploration preference of an agent with intrinsic rewards based on learning progress.

Training Time
0.0

0.2

0.4

0.6

0.8

1.0

L
ea

rn
in

g
C

u
rv

e

Training Time
0.0

0.2

0.4

0.6

0.8

1.0

P
re

fe
re

n
ce

Figure 1: Schematic representation of possible learning curves of different problems and the associated
exploration preference for an agent with intrinsic rewards based on learning progress. Left: We plot schematic
learning curves associated to 5 imaginary problems: the y axis represent the competence of the agent to solve
the problem (1 is perfect, 0 is chance level), and the x axis is training time on a problem. The blue, orange and
green curves represent learnable problems, for which agent’s competence increases with training, at different
rates, and saturates after a long training time. The purple curve represents a problem on which the agent always
has the same competence, with no progress. The red curve is the learning curve on an unlearnable problem with
stochastic outcomes, e.g. trying to predict the outcome of a random dice. Right: exploration preference of an
agent with a learning progress heuristic to explore the 5 problems defined by the learning curves. The exploration
preference is here based on progress which can be computed as the time derivative of the competence of the
agent, and is normalized so that the sum of the progress on all problems is 1. At the beginning of exploration,
the agent makes the most progress on problem blue so it prefers to train on this one, and then its preference will
shift towards problem orange when it will make less progress on problem blue, and then progressively shift to
problem green. The agent is making no progress on problem purple so will not choose to explore it, and problem
red has a noisy but low estimated learning progress.

Exploration meta-policy and target meta-policy During the goal exploration loop, the main objec-
tive consists in doing experiments that allow to collect data that cover well the space of problems
(i.e. to find a set of θ parameters that allows to find relatively good solutions to problems p over the
problem space). The exploration meta-policy Πεpθ | p, cq is learned and used to output a distribution
of policies πθ that are interesting to execute to gather information for solving the self-generated
problem/goal p (and problems similar to p) in context c. To achieve the objective of collecting
interesting data, the exploration meta-policy Πε must have fast and incremental updates. As here
the aim is to maximize the coverage of the space of problems, being very precise when targeting
goals is less crucial than the capacity to update the meta-policy quickly and incrementally. Thus,
memory-based learning methods are well adapted within this loop (see Appendix A for examples
of implementations). On the contrary, the target policy training loop aims to learn a meta-policy Π
which purpose is to be used in exploitation mode: later on, this meta-policy can be asked to solve as
precisely as possible some problems p with maximum reward. As the training of this meta-policy can
be done asynchronously from data collected by the goal exploration loop, this allows to use training
algorithms which are slower, possibly batch, but might allow to better generalize, e.g. using Gaussian
mixture models, support vector regression or (deep) neural networks. These differences justify the
fact that IMGEPs use in general two different representations and learning algorithms for learning
meta-policies Πε and Π. This two-level learning scheme has similarities with the Complementary
Learning Systems Theory used to account for the organization of learning in mammalian brains
[Kumaran et al., 2016].

8

3.2 Particular case: Intrinsically Motivated Modular Goal Exploration Processes

In the particular case where the problem space is modular (Section 2.2), the agent can learn one goal
policy γk per problem space Pk (see Architecture 2). The choice of goals becomes hierarchical in
the sense that the agent first chooses a problem space Pk to explore with a goal space policy Γpk | cq
and then a particular goal g P Pk with the corresponding goal policy γk. Those two levels of choice
can make use of the self-computed intrinsic rewards ri. The learning curves of Fig. 1 can also be
seen as learning curves of the different problem spaces Pk, and the exploration preference, Γpk | cq,
can be based on the learning progress in each space Pk, computed as the average progress across
problems in Pk.

Architecture 2 Intrinsically Motivated Modular Goal Exploration Process
Require: Environment Env, Context space C with distribution µEnvpcq

Require: Policy param. space Θ, Outcome spaceO “
m
ś

k“1

Ok, trajectory distribution νEnvpτ | θ, cq

Require: Problem parameter space P “
m
Ť

k“1

Pk, goal-parameterized reward function Rpp, c, θ, oτ q

Require: Initial knowledge E Ź typically empty
1: Πpθ | p, cq Ð InitializeMetaPolicy(E) Ź This is the target meta-policy (inverse model)
2: Πεpθ | p, cq Ð InitializeExplorationMetaPolicy(E) Ź Πε is the inverse model used during

exploration. It may be the same or different from Π
3: for k do
4: γkpg | cq Ð InitializeGoalPolicy(E ,Pk)
5: Γpk | cq Ð InitializeGoalSpacePolicy(E , tku)
6: Launch asynchronously the two following loops (exploration and training of target meta-policy)
7: loop Ź Exploration loop
8: c „ µEnvpcq Ź Observe context c
9: k „ Γpk | cq Ź Choose goal space Pk based on intrinsic rewards, e.g. using a MAB

10: g „ γpg | cq Ź Choose goal g in Pk
11: θ „ Πεpθ | g, cq Ź Infer policy parameters θ that maximize expected Rgpc, θ, oτ q using

an exploration/exploitation trade-off, and possibly computing now the problem-specific reward
function Rg giving the reward/fitness r of all previous experiments pcj , θj , ojq to solve current
goal problem g, with r “ Rgpcj , θj , ojq “ Rpg, cj , θj , ojq

12: τ „ νEnvpτ | θ, cq Ź Execute a roll-out of πθ, observe trajectory tst0:tend , at0:tendu

13: Compute outcome oτ from trajectory τ
Ź The goal-parameterized reward function Rc,θ,oτ can now be computed to find the re-

ward/fitness r of the current experiment pc, θ, oτ q for solving any problem p P P , with
r “ Rc,θ,oτ ppq “ Rpp, c, θ, oτ q

14: r “ Rc,θ,oτ pgq Ź Compute current reward associated to solving goal problem g
15: ri Ð IRpE , c, g, θ, oτ , rq Ź Compute intrinsic reward ri associated to g in context c (e.g.

learning progress in the vicinity of this goal)
16: Πεpθ | p, cq Ð UpdateExplorationPolicy(E , c, θ, oτ) Ź This update can be achieved with a

fast incremental learning algorithm (e.g. memory-based learning)
17: γkpg | cq Ð UpdateGoalPolicy(E , c, g, oτ , ri)
18: Γpk | cq Ð UpdateGoalSpacePolicy(E , c, k, g, oτ , ri)
19: E Ð UpdateKnowledge(E , c, g, θ, oτ , τ, ri)
20: loop Ź Target meta-policy training loop
21: Πpθ | p, cq Ð UpdateMetaPolicy(E) Ź This may be achieved using online or batch training

of e.g. deep neural networks, SVMs, Gaussian Mixture Models, etc.
22: return Π

9

4 Experiments: Exploration and Learning in a Robotic Tool Use Setup

In order to benchmark different learning algorithms in a complex realistic environment with continu-
ous policy and outcome spaces, we designed a real robotic setup composed of a humanoid arm in front
of joysticks that can be used as tools to act on other objects. We show the running experimental setup
in this video2. The code is available open-source together with the 3D shapes of printed objects3.

4.1 Robotic Setup

The robotic setup has two platforms: in the first one, a Poppy Torso robot (the learning agent) is
mounted in front of two joysticks (see Fig. 2). In the second platform, a Poppy Ergo robot (seen as a
robotic toy) is controlled by the right joystick and can push a ball that controls some lights and sounds.
Poppy is a robust and accessible open-source 3D printed robotic platform [Lapeyre et al., 2014].

Figure 2: Robotic setup. Left: a Poppy Torso robot (the learning agent) is mounted in front of two joysticks.
Right: full setup: a Poppy Ergo robot (seen as a robotic toy) is controlled by the right joystick and can hit a
tennis ball in the arena which changes some lights and sounds.

Robotic Arm The left arm has 4 joints. The position of those joints at time t is defined by the
action at. Their bounds are defined so that the arm has a low probability to self-collide but can still
reach a large volume, even on the left, top and behind the left shoulder to some extent. We use
the framework of Dynamical Movement Primitives [Ijspeert et al., 2013] to generate smooth joint
trajectories given a set of motor parameters. Each of the 4 joints is controlled by a DMP starting at
the rest position of the joint (position 0) and parameterized by 8 weights: one weight on each of 7
basis functions and one weight representing the end position of the joint trajectory (see Appendix
B). Given θ (32 parameters between ´1 and 1) provided by the agent, the DMPs generates a policy
roll-out by outputting a smooth 30-steps trajectory tat0 , . . . , atendu for the joints of the arm that once
executed will translate into a 3D trajectory of the robotic hand for 5s. After producing each roll-out,
the arm goes back in a rest position.

Tools and Toys Two analogical joysticks (Ultrastick 360) can be reached by the left arm and moved
in any direction. The 2D position of the joysticks (left-right and backward-forward axes) controls
the Poppy Ergo robotic toy as follows. The left joystick does not control any variable. The Ergo
robot has 6 motors, and moves with hardwired synergies that allow control of rotational speed and
extension. The right joystick left-right axis controls in speed the rotation of the Ergo robot around the
center of the second platform, which means that pushing the right joystick to the right with a small
angle will move the Ergo towards the right with a small speed, and pushing the joystick with a higher
angle will increase Ergo’s rotational speed. The Ergo rotation angle is bounded in r´π;πs, and is
reset to 0 every 40 iterations. The right joystick backward-forward axis controls the extension of
the Ergo: if the joystick is in rest position, the Ergo stays in rest position. When the right joystick
is moved forward, then the Ergo extends away from the center, using 3 of the 6 motors, and comes
back when the joystick is released. A yellow tennis ball is freely moving in the blue arena which is
slightly sloped so that the ball always comes close to the center at the end of a movement. The ball is

2Video of the experimental setup: https://youtu.be/NOLAwD4ZTW0 Please note that in the current experi-
ments we swapped the joysticks and changed the light and sound mappings.

3Open-source code: https://github.com/ymollard/APEX

10

https://youtu.be/NOLAwD4ZTW0
https://github.com/ymollard/APEX

tracked with a RGB camera to retrieve its 2D position in polar coordinates (rotation and extension).
The speed of the ball controls (above a threshold) the intensity of the light of a LED circle around the
arena. Finally, when the ball touches the border of the arena, a sound is produced and varied in pitch
depending on the ball rotation angle. From the learning agent’s point of view, all "things" are objects,
with no special status of objects as tools to manipulate other objects: this is discovered by the agent.

Distractors Several other objects are included in the environment, with which the agent cannot
interact. The agent is not initially aware that those objects can’t be controlled. Two 2D objects are
moving randomly, independently of the agent (imagine a cat and a dog playing together), with a noise
on each variable added at each time step (between ´0.05 and 0.05). Six objects are static: the right
hand (3D) of the robot that is disabled in this experiment, the camera recording the ball trajectory
(3D), the blue circular arena (2D), a yellow toy out-of-reach (2D), the red button also out-of-reach
(2D) and the lamp (2D). All distractor objects are reset after each roll-out.

Trajectory and outcomes Before choosing a 32D motor command θ, the agent observes the current
context c as the configuration of objects in the scene (in practice, since only the Ergo and ball are
not reset after each roll-out, this amounts to measuring the rotation angle of the Ergo and of the ball
around the center of the arena). Then, the chosen command θ translates through DMPs into a motor
trajectory of the left arm which is executed for 5 seconds. We assume that there is perceptual system
providing trajectories of all objects in the scene. The learning of such a system is not the focus here.
The successive states of the environment are defined as follows. First, the 3D trajectory of the hand
is computed through a forward model of the arm as its x, y and z position. The 2D states of each
joystick and of the Ergo are read by sensors, and the position of the ball retrieved through the camera.
The states of the 1D intensity of the light and the 1D pitch of the sound are computed from the ball
position and speed. The state st represents the concatenation of the states of each of the 15 objects at
time t. All variables of vector st are between ´1 and 1. The trajectory τ is defined as the sequence
of actions and states of the environment during the 5 seconds: τ “ tst0p“ cq, at0 , ¨ ¨ ¨ , stend , atendu.
We define the outcome ok corresponding to object k as a 10-steps sampling of its trajectory during
the movement. The outcome space corresponding to the hand is O1 (30D), the outcome space
corresponding to the left joystick, right joystick, Ergo and Ball are respectivelyO2,O3,O4,O5 (20D
each), and to the light and sounds are O6, O7 (10D each). The outcome space corresponding to the
two random distractors areO8 andO9 (20D each), and to the six static objects: O10, O11 (30D each)
and O12, O13, O14, O15 (20D each). At the end of each movement, the agent computes the outcome
oτ as the concatenation of the outcomes corresponding to each object: oτ “ po1, . . . , o15q P O
(310D). The goals of the agent will be defined as particular outcomes to reach in a space Ok. Goals
are thus particular trajectories of an object, so many goals are actually not solvable, e.g. moving the
hand to the right and left very quickly, or moving the ball with a too high speed. Each outcome space
Ok defines a goal (or problem) space Pk: for all k, Pk “ Ok.

4.2 Problem and reward definition

We use the framework of unsupervised multi-goal reinforcement learning problem with a modular
problem space (see Section 2.2). The initial experience E is void. The context space C “ r´1; 1s2

represents the position of each object before the movement. The policy parameter space is Θ “

r´1; 1s32, and a parameter θ P Θ defines an action sequence through the Dynamical Movement
Primitive framework. The execution of a policy πθ in a context c leads to a trajectory τ “ tst0p“
cq, at0 , ¨ ¨ ¨ , stend , atendu of robot actions and environmental states. The outcomes ok are computed
as samples of objects’ trajectories during the movement, and oτ as the concatenation of outcomes.

The outcome space Ok of an object defines particular goals that the agent will try to reach, or
trajectories that the agent will try to give to the object. Each space Ok is thus a problem space:

Pk “ Ok for all k. The problem space is then P “
15
Ť

k“1

Pk, and the outcome space O “
15
ś

k“1

Ok “

r´1; 1s310. We define the reward associated to solving problem p P Pk in context c P C with
parameters θ P Θ and outcome oτ P O as Rpp, c, θ, oτ q “ ´||p ´ ok||k. The norm ||.||k is the
Euclidean norm divided by the maximal distance in Ok, so that rewards are comparable across
problem spaces. Given a context c, a policy πθ and an outcome oτ , the reward Rpp, c, θ, oτ q can be
computed by the agent for all p P P and at any time after the experience pc, θ, oτ q. We are interested
in the learning of a solution to all problems of all problem spaces, so we define the test distribution
T pp, cq to be uniform on P ˆ C, and the loss LpΠq of a meta-policy Πpθ | p, cq as in Equation 1.

11

4.3 Exploration Algorithms

We study four variants of modular goal exploration processes plus a control with random agents.

Random Motor Babbling (RANDOM) In this control condition, agents choose a random policy
θ P r´1; 1s32 at each iteration. It is a way to assess how long a random exploration would take to
discover reward information for improving towards given problems. In the four following algorithms,
agents choose random policies in 10% of the iterations (randomly chosen).

Random Model Babbling (RMB) Model Babbling (MB) is a particular model-based implementa-
tion of an Intrinsically Motivated Modular Goal Exploration Process (see Section 3.2, Architecture 2),
where the agent learns one model per goal space [Forestier and Oudeyer, 2016b]. Each goal space
corresponds here to the trajectory space of one object. Each model is providing an inverse function
which, given the current context and desired goal (in the corresponding goal/problem space), gives
the policy πθ estimated to best reach this goal in this context. The goal policy is hierarchical in
the sense that the agent first chooses a model to train (thus we call this learning procedure Model
Babbling) or a goal space to explore, with Γ, and then a particular goal in this goal space, with γk.
In Random Model Babbling, the choice of goal space (or model to train), and of particular goal
are random: Γpk | cq, and γkpg | cq for each k are always uniform distributions. The meta-policies
Πpθ | p, cq and Πεpθ | p, cq are memory-based and initialized as uniform distributions. After boot-
strapping with some experience from random policies, Πpθ | p, cq is implemented here as a fast
nearest neighbor search with a kd-tree. Given a goal problem g in context c, the agent chooses the
previously executed policy for which the corresponding context-outcome pc, okq was the closest to
the current pc, gq, i.e. that minimizes pRppc1, θ, oτ q2 ` ||c´ c1||2q. The exploration meta-policy Πε,
used to explore new policies, is defined as the meta-policy Π plus a Gaussian exploration noise: for
all p and c, Πεpθ | p, cq “ Πpθ | p, cq `N p0,Σq with Σ being a diagonal covariance matrix with
weights σ2 “ 0.05 (see Algo. 3). The meta-policies Π and Πε have this implementation in all our
algorithmic variants (RMB, SGS, FC and AMB). Other possible implementations of the meta-policies
are described in Appendix A.

Algorithm 3 Implementation of sampling and update of Π and Πε

1: function SAMPLEMETAPOLICY(p, c)
2: Find in D the tuple pc1, θ, oτ q that minimizes pRppc1, θ, oτ q2 ` ||c´ c1||2q
3: return θ
4: function SAMPLEEXPLORATIONMETAPOLICY(p, c) Ź Implements Architecture 1, line 8
5: θ „ Πpθ | p, cq Ź Uses SampleMetaPolicy above
6: ε „ N p0,Σq Ź Add exploration noise
7: return θ ` ε
8: function UPDATEMETAPOLICY(E) Ź Implements Architecture 1, line 18
9: Get last pc, θ, oτ q from E

10: Add pc, θ, oτ q to a dataset D of tuples (policy parameters, outcome)
11: function UPDATEEXPLORATIONMETAPOLICY(E) Ź Implements Architecture 1, line 14
12: Same as UpdateMetaPolicy above

Single Goal Space (SGS) This algorithm is similar to the RMB algorithm, but the chosen goal
space is always the outcome space of the ball: Γ always chooses O5, and γ5 chooses random goals in
O5. We define this condition to study how agents would learn in a case where an engineer only cares
about the ability of the robot to push the ball and gives this only goal space to the robot.

Fixed Curriculum (FC) This algorithm is similar to the RMB one, but here Γ is a curriculum
engineered by hand: the agents choose 7 goal spaces for one seventh of the total number of iterations
in the sequence [Hand, Left Joystick, Right Joystick, Ergo, Ball, Light, Sound].

Active Model Babbling (AMB) Active Model Babbling is a variant of MB and an implementation
of Architecture 2 (see Section 3.2) where the goal space policy Γ tries to maximize an empirical
estimation of learning progress, such as in [Forestier and Oudeyer, 2016b]. The agent estimates its
learning progress globally in each problem space (or for each model learned). At each iteration, the
context c is observed, a goal space k is chosen by Γ and a random goal g is sampled by γk in Ok.
Then, in 80% of the iterations, the agent uses Πεpθ | g, cq to generate with exploration a policy θ and
does not update its progress estimation. In the other 20%, it uses Π, without exploration, to generate

12

θ and updates its learning progress estimation in Ok, with the estimated progress in reaching g. To
estimate the learning progress ri made to reach the current goal g, the agent compares the outcome
o with the outcome o1 obtained for the previous context and goal (g1, c1) most similar (Euclidean
distance) to (g, c): ri “ Rpg, c, θ, oq´Rpg, c1, θ1, o1q. Finally, Γ implements a non-stationary bandit
algorithm to sample goal spaces. The bandit keeps track of a running average rki of the intrinsic
rewards ri associated to the current goal space Pk. With probability 20%, it samples a random space
Pk, and with probability 80%, it uses a soft maximization where the probability to sample Pk is
proportional to expp rki

ř

kpr
k
i q
q if rki ą 0 and 0 otherwise. This bandit is a variant of the strategic bandit

of [Lopes and Oudeyer, 2012].

5 Results

We ran 1 trial of 5000 iterations for the RANDOM condition and 3 independent trials of 5000 for
each other condition. First, we show how agents explored the different outcome spacesOk depending
on the condition, then we study the structure of the learning problem by looking in more details how
agents in condition RMB succeeded to get information on problems of one space Pk while exploring
another one, and finally we analyze intrinsic rewards and the goal space policy Γ in condition AMB.
Each trial of 5000 iteration takes about 10h with two Raspberry Pi 3 computers running the learning
algorithm and control of Torso and Ergo robots. Our implementation of the learning algorithms is
online and incremental and the inverse models use Nearest Neighbors search (see Algo. 3) so the
whole learning is very energy-efficient: the Experimental Computational Energy Cost of our paper is
about 1.7 kWh 4.

Exploration of outcome spaces In order to estimate the performance of the different learning
algorithms, one can compute the loss of Eq. 1 given a test distribution T pp, cq, which measures
the accuracy of the learned meta-policy Πpθ | p, cq to choose good parameters θ to solve problems
p in contexts c sampled with T pp, cq. During training, the execution of 5000 policies πθ allowed
to produce a set of 5000 outcomes oτ . Each outcome oτ corresponds to a solution to a particular

problem p because P “
15
Ť

k“1

Ok. The more diverse the outcomes oτ are, the more diverse will be

the set of problems that the meta-policy Π will solve with a good reward. For example, if the agent
managed to move the left joystick in different directions, then the outcomes corresponding to the left
joystick (o2) are diverse, and the meta-policy should be able to reproduce those movements when
evaluated on the problem of moving the left joystick to a given direction. A good proxy to measuring
the loss is thus to measure the diversity of outcomes that were produced during exploration, for each
outcome space Ok.

We define the measure of exploration of each outcome space Ok as the percentage of cells explored
in a discretization of the outcome space variables. For instance, the outcome space corresponding
to the hand is O1 (30D), corresponding to hand’s x, y and z position at 10 time points during the
5 seconds movement. The 3D space of the x, y and z variables is discretized by 20 bins on each
variable (so 8000 cells), and we count the number of 3D cells occupied by any of the 10 time points
of any of the previous iterations. Similarly, the exploration of a 20D outcome space corresponding to
an object with 2 variables is measured with a 100 bins discretization of the 2D space (e.g. for the
joysticks outcome spaces).

We show the results of this exploration measure during learning in Fig. 3. The RANDOM condition
generates a good diversity for the hand outcome space, but is very bad to explore other outcome
spaces. The results of the FC condition depend on trials, in some trials the agent succeeded to
discover how to move the object of the next exploration stage (e.g. right joystick) during the allowed
exploration budget of the current stage (respectively left joystick) giving good exploration results,
and in other trials it did not, showing a bad exploration of all other spaces. Condition SGS gives
equal or lower exploration results than RANDOM in all spaces because the agent always focuses
on the ball outcome space even when it does not know how to reach the joysticks. The exploration

4 The Experimental Computational Energy Cost of our paper is the total energy consumption of the processing
units in all the experiments of our paper: about 1.7 kWh. Similarly, the Experimental Robotic Energy Cost of
our paper is the total energy consumption of the robots’ actuators in all the experiments of our paper: about 1.8
kWh. We can then estimate the carbon cost of running our experiments as about 140 gCO2-eq.

13

results in conditions RMB and AMB are similar, and much better than other conditions, for example
light and sound were only discovered in those conditions.

0 5000
Iterations

0

5

10

15

20

25

30

35

E
xp

lo
ra

ti
on

%

RANDOM
RMB
SGS
FC
AMB

(a) Hand

0 5000
Iterations

0

2

4

6

8

10

12

14

16

E
xp

lo
ra

ti
on

%

RANDOM
RMB
SGS
FC
AMB

(b) Left Joystick

0 5000
Iterations

0

2

4

6

8

10

12

E
xp

lo
ra

ti
on

%

RANDOM
RMB
SGS
FC
AMB

(c) Right Joystick

0 5000
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

E
xp

lo
ra

ti
on

%

RANDOM
RMB
SGS
FC
AMB

(d) Ergo

0 5000
Iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

E
xp

lo
ra

ti
on

%

RANDOM
RMB
SGS
FC
AMB

(e) Ball

0 5000
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

E
xp

lo
ra

ti
on

%

RANDOM
RMB
SGS
FC
AMB

(f) Light

0 5000
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

E
xp

lo
ra

ti
on

%

RANDOM
RMB
SGS
FC
AMB

(g) Sound

Figure 3: Exploration of some outcome spaces Ok. The exploration measure is the percentage of cells explored
in a discretization of each outcome space. We provide the mean, min, and max of the trials of each condition
during the 5000 learning iterations (about 8 hours).

Discoveries in RMB In order to understand the structure of the learning problem, we can look in
more details how agents in condition RMB succeeded to get information on problems of one space
Pk while exploring another space. Fig. 4 shows the proportion of the iterations with a goal in a given
space that allowed to move (a) the left joystick, (b) the right joystick and (c) the Ergo robot. First,
the easiest reachable object while exploring random policies or choosing goals in the hand outcome
space is the left joystick: reached in about 10% of iterations versus almost 0% for other objects.
Also, to discover the right joystick, it is more efficient to choose goals for the left joystick (about 5%
success) than for the hand or choosing random policies (0%). Similarly, (c) shows that to discover
how to move Ergo, it is much more efficient to choose goals for the right joystick (about 15%) than
for the hand or left joystick (ă 5%). Those results tells that a good strategy to discover all objects is
to explore the different outcome spaces in a sequence from the easiest (Hand, Left Joystick) until
some movements of the right joystick are discovered, then explore this one until Ergo is discovered
etc. This structure is thus a transfer learning problem in the sense that the different problems are not
independent, and exploring to find solutions to some of them allows to discover part of solutions to
others.

0 1000 2000 3000 4000 5000
Iterations

0

20

40

60

80

100

%
R

ea
ch

Random

Hand

JoystickL

JoystickR

Ergo

Ball

Light

Sound

(a) Left Joystick

0 1000 2000 3000 4000 5000
Iterations

0

10

20

30

40

50

%
R

ea
ch

Random

Hand

JoystickL

JoystickR

Ergo

Ball

Light

Sound

(b) Right Joystick

0 1000 2000 3000 4000 5000
Iterations

0

5

10

15

20

25

30

%
R

ea
ch

Random

Hand

JoystickL

JoystickR

Ergo

Ball

Light

Sound

(c) Ergo

Figure 4: Transfer of solutions between problem spaces. We show the proportion of iterations that allowed to
(a) reach the left joystick, (b) reach the right joystick, and (c) move the Ergo robot, depending on the current
chosen goal space in the condition RMB (or random movements: Random).

Intrinsic Rewards in Active Model Babbling Fig. 5 shows the running average of the intrinsic
rewards computed by the bandit algorithm of each of the 3 agents of condition AMB depending
on the problem space in which the goals were chosen. We can see that while no solution has been

14

discovered to control an object, the intrinsic reward stays at 0 for this object, which means that the
agent will rarely choose to train to solve problems in those spaces. The estimated learning progress
in each space drives the choice of space to explore, and thus leads to a developmental sequence
exploring from easier to more complex problems, avoiding to loose time on too complex problems.

0 1000 2000 3000 4000 5000
Iterations

0.000

0.005

0.010

0.015

0.020

0.025

In
te

re
st

Hand

JoystickL

JoystickR

Ergo

Ball

Light

Sound

0 1000 2000 3000 4000 5000
Iterations

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

In
te

re
st

Hand

JoystickL

JoystickR

Ergo

Ball

Light

Sound

0 1000 2000 3000 4000 5000
Iterations

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

In
te

re
st

Hand

JoystickL

JoystickR

Ergo

Ball

Light

Sound

Figure 5: Intrinsic Rewards in condition AMB. Each graph shows the learning progress estimated by one agent
of condition AMB in each of the problem spaces during the 5000 iterations. The learning progress heuristic
leads to a sequence of exploration focus from easier to more complex problems.

6 Related work

Early models of intrinsically motivated reinforcement learning (also called curiosity-driven learning)
have been used to drive efficient exploration in the context of target tasks with rare or deceptive re-
wards [Schmidhuber, 1991, Barto, 2013] or in the context of computational modelling of open-ended
unsupervised autonomous learning in humans [Kaplan and Oudeyer, 2004, Oudeyer et al., 2007]. Re-
views of the historical development of these methods and their links with cognitive sciences and neuro-
science can be found in [Baldassarre and Mirolli, 2013, Gottlieb et al., 2013, Oudeyer et al., 2016].

Several lines of results have shown that intrinsically motivated exploration and learning mecha-
nisms are particularly useful in the context of learning to solve reinforcement learning problems
with sparse or deceptive rewards. For example, several state-of-the-art performances of Deep Re-
inforcement Learning algorithms, such as letting a machine learn how to solve complex video
games, have been achieved by complementing the extrinsic rewards (number of points won) with
an intrinsic reward pushing the learner to explore for improving its predictions of the world dy-
namics [Bellemare et al., 2016, Houthooft et al., 2016]. An even more radical approach for solv-
ing problems with rare or deceptive extrinsic rewards has been to completely ignore extrinsic
rewards, and let the machine explore the environment for the sole purpose of learning to predict
the consequences of its actions [Schmidhuber, 1991, Oudeyer et al., 2007] or of learning to control
self-generated goals [Baranes and Oudeyer, 2013, Oudeyer and Kaplan, 2007], or to generate novel
outcomes [Lehman and Stanley, 2011]. This was shown for example to allow robots to learn tool
use [Forestier and Oudeyer, 2016b] or to learn how to play some video games [Pathak et al., 2017]
without ever observing the extrinsic reward.

Some approaches to intrinsically motivated exploration have used intrinsic rewards to value visited
actions and states through measuring their novelty or the improvement of predictions that they
provide, e.g. [Sutton, 1990, Dayan and Sejnowski, 1996, Schmidhuber, 1991, Oudeyer et al., 2007]
or more recently [Bellemare et al., 2016, Houthooft et al., 2016, Pathak et al., 2017]. However, or-
ganizing intrinsically motivated exploration at the higher level of goals (conceptualized as param-
eterized RL problems), by sampling goals according to measures such as competence progress
[Oudeyer and Kaplan, 2007], has been proposed and shown to be more efficient in contexts with
high-dimensional continuous action spaces and strong time constraints for interaction with the
environment [Baranes and Oudeyer, 2013].

Several strands of research in robotics have presented algorithms that instantiate such intrinsically
motivated goal exploration processes [Baranes and Oudeyer, 2010, Rolf et al., 2010], using differ-
ent terminologies such as contextual policy search [Kupcsik et al., 2014, Queißer et al., 2016], or
formulated within an evolutionary computation perspective [Cully et al., 2015]. However, these
previous approaches were not formalized in the general framework of unsupervised multi-goal
reinforcement learning, and they have not considered intrinsically motivated exploration of mul-
tiple spaces of goals and how this can allow the formation of a learning curriculum. Preliminary
investigation of modular goal exploration processes was presented in [Forestier and Oudeyer, 2016b,

15

Forestier and Oudeyer, 2017], however this prior work only presented particular implementations of
IMGEPs without formalizing them in the general formal framework presented here.

[Gregor et al., 2016], [Dosovitskiy and Koltun, 2016] and [Kulkarni et al., 2016] proposed methods
that can be framed as IMGEPs, however they have considered notions of goals restricted to the
reaching of states or direct sensory measurements, did not consider goal-parameterized rewards that
can be computed for any goal, used different intrinsic rewards, and did not evaluate these algorithms
in robotic setups. The notion of auxiliary tasks is also related to IMGEPs in the sense that it allows
a learner to acquire tasks with rare rewards by adding several other objectives which increase the
density of information obtained from the environment [Jaderberg et al., 2016]. Another line of related
work [Srivastava et al., 2013] proposed a theoretical framework for automatic generation of problem
sequences for machine learners, however it has focused on theoretical considerations and experiments
on abstract problems.

In machine learning, the concept of curriculum learning [Bengio et al., 2009] has most often been
used in the context of training neural networks to solve prediction problems. Many approaches
have used hand-designed learning curriculum [Sutskever and Zaremba, 2014], but recently it was
shown how learning progress could be used to automate intrinsically motivated curriculum learning
in LSTMs [Graves et al., 2017]. However, these approaches have not considered curriculum learning
of sets of reinforcement learning problems which is central in the IMGEP framework, and assumed
the pre-existence of a database with learning exemplars to sample from. In recent related work,
[Matiisen et al., 2017] studied how intrinsic rewards based on learning progress could also be used to
automatically generate a learning curriculum with discrete sets of reinforcement learning problems,
but did not consider high-dimensional modular parameterized RL problems. The concept of "curricu-
lum learning" has also been called "developmental trajectories" in prior work on computational mod-
elling of intrinsically motivated exploration [Oudeyer et al., 2007], and in particular on the topic of
intrinsically motivated goal exploration [Baranes and Oudeyer, 2013, Forestier and Oudeyer, 2017].

7 Discussion

This paper provides a formal framework, the Unsupervised Multi-Goal Reinforcement Learning
Problem, in which we expressed a problem structure that is appearing in different settings. We
formalized a corresponding algorithmic architecture (IMGEP) that leverages this structure for efficient
exploration and learning. We designed the first real robotic experiment where an intrinsically-
motivated humanoid robot discovers a complex continuous high-dimensional environment and
succeeds to explore and learn from scratch that some objects can be used as tools to act on other
objects.

We evaluated different variants of Intrinsically Motivated Goal Exploration Processes and showed that
only the variants where we do not hand-design a curriculum for learning (RMB and AMB conditions)
allowed to discover the more complex skills. Furthermore, when the agent monitors its learning
progress with intrinsic rewards (AMB), it autonomously develops a learning sequence, or curriculum,
from easier to the most complex tasks. Also, the comparison between agents only exploring the ball
problem space (SGS) versus all spaces (AMB) shows that if an engineer was to specify the target
problems he wants the robot to solve (e.g. move the ball), then it would be more efficient to also
explore all other possible intrinsic goals to develop new skills that can serve as stepping stones to
solve the target problems.

We have chosen to evaluate several implementations of IMGEPs with a real robotic setup as this
provides real world constraints that are not available in simulations, such as stringent time constraints
that make it impossible to tune the parameters of algorithms by running many pre-experiments, as
well as realistic complex noise. However, this also prevented us so far to run as much experiments as
we would need to disentangle learning performances of the two conditions RMB and AMB. We are
currently running more trials of the different conditions. Also, a current limitation of our setup is
that we suppose that agents already have a perceptual system allowing them to see and track objects,
as well as spaces of representations to encode their transformations. Future work will study how
representation learning methods could bootstrap these representations of the scene from pixels in an
unsupervised manner.

16

Acknowledgements

We would like to thank Olivier Sigaud and Alexandre Péré for their valuable comments on an earlier
version of this manuscript and Damien Caselli for his technical help.

References

[Baldassarre and Mirolli, 2013] Baldassarre, G. and Mirolli, M. (2013). Intrinsically Motivated
Learning in Natural and Artificial Systems. Springer.

[Baranes and Oudeyer, 2010] Baranes, A. and Oudeyer, P.-Y. (2010). Intrinsically motivated goal
exploration for active motor learning in robots: A case study. In 2010 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS).

[Baranes and Oudeyer, 2013] Baranes, A. and Oudeyer, P.-Y. (2013). Active learning of inverse
models with intrinsically motivated goal exploration in robots. Robotics and Autonomous Systems,
61(1).

[Barto, 2013] Barto, A. G. (2013). Intrinsic motivation and reinforcement learning. In Intrinsically
motivated learning in natural and artificial systems, pages 17–47. Springer.

[Bellemare et al., 2016] Bellemare, M., Srinivasan, S., Ostrovski, G., Schaul, T., Saxton, D., and
Munos, R. (2016). Unifying count-based exploration and intrinsic motivation. In Advances in
Neural Information Processing Systems, pages 1471–1479.

[Bengio et al., 2009] Bengio, Y., Louradour, J., Collobert, R., and Weston, J. (2009). Curriculum
learning. In Proceedings of the 26th annual international conference on machine learning, pages
41–48. ACM.

[Berlyne, 1966] Berlyne, D. E. (1966). Curiosity and exploration. Science, 153(3731):25–33.

[Cleveland and Devlin, 1988] Cleveland, W. S. and Devlin, S. J. (1988). Locally weighted regression:
an approach to regression analysis by local fitting. Journal of the American Statistical Association,
83(403).

[Cully et al., 2015] Cully, A., Clune, J., Tarapore, D., and Mouret, J.-B. (2015). Robots that can
adapt like animals. Nature, 521(7553):503–507.

[Dayan and Sejnowski, 1996] Dayan, P. and Sejnowski, T. J. (1996). Exploration bonuses and dual
control. Machine Learning, 25(1):5–22.

[Dosovitskiy and Koltun, 2016] Dosovitskiy, A. and Koltun, V. (2016). Learning to act by predicting
the future. arXiv preprint arXiv:1611.01779.

[Forestier and Oudeyer, 2016a] Forestier, S. and Oudeyer, P.-Y. (2016a). Curiosity-driven develop-
ment of tool use precursors: a computational model. In Proceedings of the 38th Annual Meeting
of the Cognitive Science Society.

[Forestier and Oudeyer, 2016b] Forestier, S. and Oudeyer, P.-Y. (2016b). Modular active curiosity-
driven discovery of tool use. In Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ Interna-
tional Conference on, pages 3965–3972. IEEE.

[Forestier and Oudeyer, 2016c] Forestier, S. and Oudeyer, P.-Y. (2016c). Overlapping waves in tool
use development: a curiosity-driven computational model. In Sixth Joint IEEE International
Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob).

[Forestier and Oudeyer, 2017] Forestier, S. and Oudeyer, P.-Y. (2017). A unified model of speech
and tool use early development. In Proceedings of the 39th Annual Meeting of the Cognitive
Science Society.

[Gopnik et al., 1999] Gopnik, A., Meltzoff, A. N., and Kuhl, P. K. (1999). The scientist in the crib:
Minds, brains, and how children learn. William Morrow & Co.

[Gottlieb et al., 2013] Gottlieb, J., Oudeyer, P.-Y., Lopes, M., and Baranes, A. (2013). Information-
seeking, curiosity, and attention: computational and neural mechanisms. Trends in Cognitive
Sciences, 17(11).

[Graves et al., 2017] Graves, A., Bellemare, M. G., Menick, J., Munos, R., and Kavukcuoglu, K.
(2017). Automated curriculum learning for neural networks. arXiv preprint arXiv:1704.03003.

17

[Gregor et al., 2016] Gregor, K., Rezende, D. J., and Wierstra, D. (2016). Variational intrinsic
control. arXiv preprint arXiv:1611.07507.

[Hansen, 2006] Hansen, N. (2006). The CMA evolution strategy: a comparing review. In Towards a
new evolutionary computation. Springer.

[Houthooft et al., 2016] Houthooft, R., Chen, X., Duan, Y., Schulman, J., De Turck, F., and Abbeel, P.
(2016). Vime: Variational information maximizing exploration. In Advances in Neural Information
Processing Systems, pages 1109–1117.

[Ijspeert et al., 2013] Ijspeert, A. J., Nakanishi, J., Hoffmann, H., Pastor, P., and Schaal, S. (2013).
Dynamical movement primitives: learning attractor models for motor behaviors. Neural computa-
tion, 25(2).

[Jaderberg et al., 2016] Jaderberg, M., Mnih, V., Czarnecki, W. M., Schaul, T., Leibo, J. Z., Silver,
D., and Kavukcuoglu, K. (2016). Reinforcement learning with unsupervised auxiliary tasks. arXiv
preprint arXiv:1611.05397.

[Kaplan and Oudeyer, 2004] Kaplan, F. and Oudeyer, P.-Y. (2004). Maximizing learning progress:
an internal reward system for development. In Embodied artificial intelligence, pages 259–270.
Springer.

[Kulkarni et al., 2016] Kulkarni, T. D., Narasimhan, K., Saeedi, A., and Tenenbaum, J. (2016).
Hierarchical deep reinforcement learning: Integrating temporal abstraction and intrinsic motivation.
In Advances in Neural Information Processing Systems, pages 3675–3683.

[Kumaran et al., 2016] Kumaran, D., Hassabis, D., and McClelland, J. L. (2016). What learning
systems do intelligent agents need? complementary learning systems theory updated. Trends in
cognitive sciences, 20(7):512–534.

[Kupcsik et al., 2014] Kupcsik, A., Deisenroth, M. P., Peters, J., Loh, A. P., Vadakkepat, P., and
Neumann, G. (2014). Model-based contextual policy search for data-efficient generalization of
robot skills. Artificial Intelligence.

[Lapeyre et al., 2014] Lapeyre, M., Rouanet, P., Grizou, J., Nguyen, S., Depraetre, F., Le Falher, A.,
and Oudeyer, P.-Y. (2014). Poppy Project: Open-Source Fabrication of 3D Printed Humanoid
Robot for Science, Education and Art. In Digital Intelligence 2014, Nantes, France.

[Lehman and Stanley, 2011] Lehman, J. and Stanley, K. O. (2011). Abandoning objectives: Evolu-
tion through the search for novelty alone. Evolutionary computation, 19(2):189–223.

[Lopes and Oudeyer, 2012] Lopes, M. and Oudeyer, P.-Y. (2012). The strategic student approach for
life-long exploration and learning. In 2012 IEEE International Conference on Development and
Learning and Epigenetic Robotics (ICDL).

[Matiisen et al., 2017] Matiisen, T., Oliver, A., Cohen, T., and Schulman, J. (2017). Teacher-student
curriculum learning. arXiv preprint arXiv:1707.00183.

[Moulin-Frier et al., 2014] Moulin-Frier, C., Nguyen, S. M., and Oudeyer, P.-Y. (2014). Self-
organization of early vocal development in infants and machines: the role of intrinsic motivation.
Frontiers in Psychology, 4.

[Oudeyer et al., 2016] Oudeyer, P.-Y., Gottlieb, J., and Lopes, M. (2016). Intrinsic motivation,
curiosity, and learning: Theory and applications in educational technologies. Progress in brain
research, 229:257–284.

[Oudeyer and Kaplan, 2007] Oudeyer, P.-Y. and Kaplan, F. (2007). What is intrinsic motivation? A
typology of computational approaches. Frontiers in Neurorobotics, 1.

[Oudeyer et al., 2007] Oudeyer, P.-Y., Kaplan, F., and Hafner, V. V. (2007). Intrinsic Motivation
Systems for Autonomous Mental Development. IEEE Transactions on Evolutionary Computation,
11(2).

[Pathak et al., 2017] Pathak, D., Agrawal, P., Efros, A. A., and Darrell, T. (2017). Curiosity-driven
exploration by self-supervised prediction. arXiv preprint arXiv:1705.05363.

[Queißer et al., 2016] Queißer, J. F., Reinhart, R. F., and Steil, J. J. (2016). Incremental bootstrapping
of parameterized motor skills. In 2016 IEEE-RAS 16th International Conference on Humanoid
Robots (Humanoids), pages 223–229.

[Rolf et al., 2010] Rolf, M., Steil, J., and Gienger, M. (2010). Goal babbling permits direct learning
of inverse kinematics. IEEE Transactions on Autonomous Mental Development, 2(3).

18

[Schmidhuber, 1991] Schmidhuber, J. (1991). A possibility for implementing curiosity and boredom
in model-building neural controllers. In From animals to animats: Proceedings of the first
international conference on simulation of adaptive behavior, pages 15–21.

[Srivastava et al., 2013] Srivastava, R. K., Steunebrink, B. R., and Schmidhuber, J. (2013). First
experiments with powerplay. Neural Networks, 41:130–136.

[Sutskever and Zaremba, 2014] Sutskever, I. and Zaremba, W. (2014). Learning to execute. arXiv
preprint arXiv:1410.4615.

[Sutton, 1990] Sutton, R. S. (1990). Integrated architectures for learning, planning, and reacting
based on approximating dynamic programming. In Proceedings of the seventh international
conference on machine learning, pages 216–224.

[Thelen and Smith, 1996] Thelen, E. and Smith, L. B. (1996). A dynamic systems approach to the
development of cognition and action. MIT press.

A Appendix: Pseudo-code of particular implementations

In the Intrinsically Motivated Goal Exploration Processes (Architecture 1), the meta-policies Π and
Πε need to be implemented. We provided the pseudo-code of our implementation in Algo. 3, which
uses a fast nearest neighbor lookup to find good motor parameters θ to reach the current goal (that
maximizes the reward for the current goal together with the context similarity). The exploration
meta-policy Πε is implemented by adding a Gaussian exploration noise on the output of Π. We
provide here other possible implementations of Π and Πε.

First, one can build a fast local model to predict the expected reward associated to policy parameters
θ for solving problem p in context c. With this model, and given a goal problem p to solve in context
c, an optimization method can now be used to infer a good θ, starting for example from the best θ0

from a nearest neighbor search. The optimization can be performed by quasi-Newton methods (e.g.
L-BFGS) or black-box methods (e.g. CMA-ES[Hansen, 2006]) (see Algo. 4).

Algorithm 4 Implementation of Π and Πε with optimization using a reward model
1: function SAMPLEMETAPOLICY(p, c)
2: function fobjective(θ) Ź Define an objective function for solving problem p in context c
3: Build a local modelM of rewards in the vicinity of pc, θq, e.g. with Locally Weighted

Linear Regression [Cleveland and Devlin, 1988]
4: Infer reward r of pc, θq withM
5: return r
6: Find in D the tuple pc1, θ0, oτ q that minimizes pRppc1, θ0, oτ q

2 ` ||c´ c1||2q
7: θ˚ ÐMaximize fobjective with respect to θ, starting from θ0, until a timeout.

Ź Optimization can be performed by quasi-Newton methods such as L-BFGS or black-box
methods such as CMA-ES[Hansen, 2006].

8: return θ˚
9: function SAMPLEEXPLORATIONMETAPOLICY(p, c) Ź Implements Architecture 1, line 8

10: θ „ Πpθ | p, cq Ź Uses SampleMetaPolicy above
11: ε „ N p0,Σq
12: return θ ` ε
13: function UPDATEMETAPOLICY(E) Ź Implements Architecture 1, line 18
14: Get last pc, θ, oτ q from E
15: Add pc, θ, oτ q to a dataset D of tuples (policy parameters, outcome)
16: function UPDATEEXPLORATIONMETAPOLICY(E) Ź Implements Architecture 1, line 14
17: Same as UpdateMetaPolicy above

Another idea is to perform optimization by directly executing the parameters θ queried by the
optimization method and to observe the corresponding reward from the environment, instead of
building a reward model (see Algo. 5). However, executing policy parameters in the environment
usually takes much more time than the prediction by a model.

19

Algorithm 5 IMGEP with direct θ optimization
1: loop Ź Exploration loop: replaces loop line 5 of Architecture 1
2: c „ µEnvpcq Ź Observe context c
3: g „ γpg | cq Ź Choose goal g in P based on intrinsic rewards, e.g. using a MAB
4: function fobjective(θ) Ź Define an objective function for the goal g
5: c „ µEnvpcq
6: τ „ νEnvpτ | θ, cq Ź Execute a roll-out of πθ, observe trajectory tst0:tend , at0:tendu

7: Compute outcome oτ from trajectory τ
8: r “ Rpg, c, θ, oτ q
9: ri Ð IRpE , c, g, θ, oτ , rq

10: Πpθ | p, cq Ð UpdateMetaPolicy(E , c, θ, oτ)
11: γpg | cq Ð UpdateGoalPolicy(E , c, g, oτ , ri)
12: E Ð UpdateKnowledge(E , c, g, θ, oτ , τ, ri)
13: return r
14: θ0 „ Πpθ | g, cq Ź Π can have any implementation, such as Algo. 3 or 4
15: Maximize fobjective with respect to θ, starting from θ0, until a timeout or until γpg | cq is

below a threshold, either because the goal is reached or no progress is made towards the goal,
or the context changed too much and the goal g is not interesting in the new context
Ź Optimization can be performed via Bayesian Optimization or black-box methods such as

CMA-ES[Hansen, 2006]

B Appendix: Details on Dynamical Movement Primitives

We use the framework of Dynamical Movement Primitives [Ijspeert et al., 2013] to generate smooth
trajectories for the 4 joints of the left arm from a small set of 32 parameters θ. In this framework, a
mass-spring-damper dynamical system (Eq. 2) is used to represent one motor angle (variable y here).
The motor is going from the fixed position y0 (at the middle between its bounds) to a goal position g
that is defined by one of the parameters of θ. Its movement, with a mass-spring-damper dynamic,
is perturbed by the addition of a perturbation function f which is a linear combination of 7 basis
functions ψi with weights wi defined by θ (see Eq. 3 and Fig. 6). A canonical system (Eq. 4) is used
to reduce the impact of the perturbation in time with x0 “ 1, and αy , βy , αx are time constants.

:y “ αypβypg ´ yq ´ 9yq ` fpxq (2)

fpxq “

ř

ψiwi
ř

ψi
xpg ´ y0q (3)

9x “ ´αx x (4)

Each of the 4 motors is controlled by one dynamical system parameterized by 8 weights: one weight
on each of 7 basis functions plus one weight representing the end position of the motor trajectory
(Table 1). Given θ (32 parameters between ´1 and 1) provided by the agent, the framework rolls out
the dynamical systems and outputs a smooth 30-steps trajectory tat0 , . . . , atendu for the joints of the
arm. Fig. 7 shows one 5-seconds movement of the arm that reaches the right joystick and makes the
Ergo robot move.

20

θ Basis 1 Basis 2 Basis 3 Basis 4 Basis 5 Basis 6 Basis 7 End point
Shoulder Y 1.0 0.760 -0.03 0.641 0.274 0.187 -0.77 0.164
Shoulder X 0.164 -0.99 0.029 -1.0 -0.39 -0.40 -0.75 0.927

Arm Z -0.69 0.927 -0.47 -0.77 0.084 -0.05 0.221 -0.88
Elbow Y -0.72 0.775 -0.88 0.532 -0.98 1.0 -0.70 0.886

Table 1: Example of a set of parameters θ for which the roll-out of policy πθ allowed to move the right joystick
as in Fig. 7. θ is a vector of 32 parameters: 8 parameters for each of the 4 motors. The first 7 parameters define
the weights wi on the basis functions ψi used to compute the perturbation function f (see Eq. 3) which modifies
the trajectory of the one motor during its movement from the fixed starting position to the end position defined
by the eighth parameter.

0 1 2 3 4 5

Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

B
as

is
fu

n
ct

io
n

sh
ap

e

BF 1

BF 2

BF 3

BF 4

BF 5

BF 6

BF 7

0 1 2 3 4 5

Time (seconds)

−60

−40

−20

0

20

40

60

M
ot

or
an

gl
es

(d
eg

)

Shoulder Y

Shoulder X

Arm Z

Elbow Y

Figure 6: Left: The fixed set of 7 basis functions. The actual perturbation f is a linear combination of the
basis functions and the weights wi. For example, a positive weight on the second basis function (orange) will
smoothly increase the motor’s angle around time 0.7s and will have less effect later. Right: Roll-out of policy πθ
defined by the parameters θ of Table 1. This arm trajectory (found after 3000 iterations of exploration) allows to
move the right joystick as in Fig. 7

Figure 7: Example of a policy πθ that makes the arm reach the right joystick and move the Ergo robot.

21

	Introduction
	Formal framework
	The Unsupervised Multi-Goal Reinforcement Learning Problem
	Particular case: a modular problem space
	Links to Reinforcement Learning
	Example of an Unsupervised Multi-Goal Reinforcement Learning problem
	Exploration Problem versus Inverse Model Learning Problem

	Intrinsically Motivated Goal Exploration Processes
	Algorithmic approach: Goal Exploration and Intrinsic Rewards
	Particular case: Intrinsically Motivated Modular Goal Exploration Processes

	Experiments: Exploration and Learning in a Robotic Tool Use Setup
	Robotic Setup
	Problem and reward definition
	Exploration Algorithms

	Results
	Related work
	Discussion
	Appendix: Pseudo-code of particular implementations
	Appendix: Details on Dynamical Movement Primitives

