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Abstract: The development of autonomous and intelligent vehicles is increasing continuously in
the aim to reach a reliable and secured transportation system. Indeed, autonomous navigation
include three main steps: perception and localization, planning and control. This work covers
essentially the study of the vehicle modeling and the vehicle control. We present a coupled control
algorithm for longitudinal and lateral dynamics of an autonomous vehicle. The control is realized
using Lyapunov functions and aims to ensure a robust tracking of the reference trajectory
especially in coupled longitudinal and lateral maneuvers such as lane-change maneuvers, obstacle
avoidance maneuvers and combined lane-keeping and steering control during critical driving
situations. The control is based on the vehicle model that is carried out using the robotics
formalism. This modeling approach is considered here for the accuracy it presents, since multi-
body models provide more information, which are usually neglected when using a closed-form
model. It considers the vehicle as a multi-body poly-articulated system and uses the modified
Denavit-Hartenberg geometric description to represent the vehicle. Newton-Euler algorithm is
then used to compute the direct dynamical model of the vehicle. The developed model takes into
consideration all the vehicle parts and their interconnections, that renders it more representative
of the vehicle behavior especially in critical driving scenarios.

Keywords: Autonomous vehicles, coupled control, maneuvers tracking, vehicle modeling,
robotics formalism, robustness.

1. INTRODUCTION

The development of autonomous vehicles has received a lot
of attention during the last decades. The motivation is to
guarantee a reliable and secure vehicle navigation even in
critical driving situations. Actually, an autonomous system
can react faster than a human driver, which will diminish
the road accidents often caused by the driver’s mistakes.
Several challenges, such as the DARPA challenge in the
USA (Buehler et al. (2009)), the GCDC 2016 challenge
in the Netherlands, and many others have been organized
all around the world to favor this research field. Indeed,
an autonomous navigation can be completed in three key
steps: the perception and localization, the path planning
and the vehicle control. In this work, we focus on the
vehicle modeling and the vehicle coupled control.
A four wheels vehicle model is developed using robotics
formalism based on the modified Denavit-Hartenberg pa-
rameterization. We propose after that a combined vehicle
control scheme to cope with driving situations involv-
ing average longitudinal speeds and coupled longitudi-
nal/lateral maneuvers. Actually, the vehicle modeling is a
key step for control objectives since it permits to better
understand and illustrate the vehicle dynamics. Hence,
the goal is to build a mathematical model that illustrates
the significant aspects of the physical dynamics and then

facilitates the performance analysis. Most of the models
proposed in the literature are developed for control ap-
plications (Sharp (1971)). Lately, some advanced models
have been developed using multi-body systems to model
a complex system (Kiencke and Nielsen (2000); Rajamani
(2006)). In this work, we proceed in a systematic geomet-
rical description, based on the modified Denavit Harten-
berg parametrization (Khalil and Kleinfinger (1986)). The
modeling is then conducted by applying recursive methods
used in robotics, more precisely, recursive Newton-Euler
based Algorithm (Khalil and Kleinfinger (1987)). This
description allows to compute, directly, the symbolic ex-
pression of the geometric, kinematic and dynamic models
of the vehicle. The motivation to use this approach is the
fact that it permits to elaborate systematically the sym-
bolic equations of motion and makes the implementation
of the dynamic model easier. Moreover, multi-body models
usually provide more information than the classical closed-
forms model and are able for an easy manipulation (For
example, we can simply modify some assumptions such as
the presence or not of dampers or suspensions...).
The developed dynamic model is then used to elaborate
a coupled control for the vehicle. In fact, the vehicle dy-
namics control has been widely discussed in the literature
and several studies on longitudinal and lateral control have
been conducted. However, the longitudinal and the lateral



controllers are addressed separately in the majority of
cases. For lane keeping, lane-change maneuvers, pedestrian
and obstacle avoidance, a lateral control is used (Acker-
mann et al. (1995); Rajamani et al. (2000); Tagne et al.
(2013)). While, for adaptive cruise control and platooning
tasks, the longitudinal control is developed (Rajamani
et al. (2000); Mammar and Netto (2004)). Unfortunately,
many critical driving situations involving the safe handling
of vehicles require coupled control, and, such a strategy
is rarely addressed in the literature. We are interested in
this work by the combined control for the lateral and the
longitudinal vehicle dynamics. The developed controller is
based on the Lyapunov control techniques and aims to
ensure a robust tracking of a reference trajectory given
by a planning module. The reference trajectory is defined
by a set of desired longitudinal velocities and desired
curvatures to track. The paper is organized as follows:
Section 2 presents the vehicle modeling by describing the
global method and its application to the vehicle system.
The model is validated using the Scaner-studio simulator
and the simulations results are then illustrated. Section 3
presents the developed controller by describing the lateral
and the longitudinal controls and the simulation results
that validate our controller. Section 4 concludes the paper
and shows our future works.

2. VEHICLE MODELING

2.1 Methodology

The system is modeled using the formalism of robotics
based on the geometrical description of modified Denavit-
Hartenberg (DHM) (Maakaroun (2011); Khalil and Dom-
bre (2004)). This method considers that the vehicle is a
multi-articulated system consisting of n bodies wherein
the chassis is the movable base and the wheels are the ter-
minals. Each body is connected to its antecedent by a joint
which represents a translational or a rotational degree of
freedom. A body can be virtual or real; the virtual bodies
are introduced to describe joints with multiple degrees of
freedom or to introduce intermediate fixed frames (see Fig.
1).

Several recursive algorithms were used to obtain the
dynamic model of a robot (Renaud (1975); Hollerbach
(1980); Hooker and Margulies (1965)). In our work, we
adopted the mixed Euler-Lagrange formalism since it
allows to directly elaborate the dynamic model of the
robot with minimum computation time. The mixed Euler-
Lagrange model is obtained from two recurrences of the
algorithm of Newton-Euler in the following way (Luh et al.
(1980)): The forward recursive equations (from the mobile
base to the effectors) compute the total forces jFj and
moments jMoj on each link j by calculating the angular
and the linear speeds and accelerations of each body. The
backward recurrence (from the effectors to the mobile
base) computes the forces jfj and the moments jmoj
exerted on each body by its antecedent taking into account
the external forces applied to the robot.

The torque τj applied on the body Cj is calculated by
projecting, according to the type of the joint j, the vector
of force jfj or moment jmoj on the axle of movement.

τj = (σj
jfj + σ̄j

jmoj)
tjaj (1)

where jaj = [0 0 1]
t
, σj = 1 if the joint j is translational

and σj = 0 if the joint j is rotational. If there is no degree
of freedom between two frames that are fixed with respect
to each other, we take σj = 2. The reader can refer to
Maakaroun (2011) and Maakaroun et al. (2014) for more
details.

The inverse dynamic model of a robot with a mobile base
can be written as

τ = f(q, q̇, q̈, fe) = A(q)q̈ +H(q, q̇) + J(q)fe (2)

where τ is the vector of the actuators torques or forces,
q, q̇ and q̈ are the vectors of positions, velocities and
accelerations of all the joints including the variables of
the chassis, and fe is the vector of external forces. H is
the vector of centrifugal, coriolis and gravity terms, J is
the jacobien matrix, Jfe is the vector of generalized efforts
representing the projection of external forces and torques
on the joint axis, and A is the inertial matrix of the system.
The direct dynamic model is then given by:

q̈ = [A(q)]−1(τ −H(q, q̇)− J(q)fe). (3)

Once the expression of τ is determined by the Newton-
Euler algorithm, we can develop the direct dynamic model
by calculating the matrices A, H and J as follows:

• The column ca of the matrix A is computed by

A(:, ca) =
∂τ

∂q̈(ca)
, ca ∈ [1, l], (4)

where l represents the number of degrees of freedom
in the system which is the dimension of the vector q.

• The matrix J is computed similarly by

J(:, cj) =
∂τ

∂fe(cj)
, cj ∈ [1, rf ], (5)

where rf represents the dimension of the vector fe.
• The matrix H is obtained using H(q, q̇) = τ when
q̈ = fe = 0. Then,

H = f(q, q̇, 0, 0) (6)

2.2 Four wheels vehicle model

The developed model is composed of 21 bodies (Fig. 1,2)
defined as follows:

• C0 is a virtual body used to represent the initial
speeds of the vehicle

• C1 represents the chassis
• C2, C3, C8, C13, C14 and C18 are virtual bodies
introduced as intermediate fixed frames

• C4and C9 are the front right and front left steering
columns respectively

• C5, C10, C15, C19 are virtual bodies fixed to the four
wheels by blocked joints

• C6, C11, C16 and C20 are the front right, front left,
rear right and rear left wheels respectively

• C7, C12, C17 and C21 are virtual bodies fixed to the
four wheels.

The eight virtual bodies fixed to the four wheels are
introduced to indicate that the wheels are in rotation
around their axes while maintaining their contact with
the ground. So, the contact forces between the four wheels
and the ground are computed in the frames of the virtual
bodies C7, C12, C17 and C21, which are fixed to the virtual



bodies C5, C10, C15 and C19. The four bodies C6, C11, C16

and C20 are related to the four wheels and they represent
the wheels rotation in their frames.

we consider 7 degrees of freedom, q=[x y ψ θfl θfr θrl θrr]
t
,

where x, y and ψ are the longitudinal position, the lateral
position and the yaw angle of the vehicle computed in the
vehicle frame R0. θij is the angular position of a wheel,
where ij stands for front right (fr), front left (fl), rear
right (rr) and rear left (rl) wheels. Vx = ẋ and Vy = ẏ
are the longitudinal and the lateral speeds of the vehicle
computed in the vehicle frame, wij = θ̇ij is the angular
velocity of a wheel. The geometric representation is given
in Fig. 1.

The external forces applied to the vehicle model, which
have the most significant impact on the vehicle dynamics,
are the contact forces between the ground and the tires.
Aerodynamic forces also have an effect on the vehicle
behavior, particularly at high speed (> 90Km/h).
The aerodynamic force Faero is given by

Faero = 1/2 ρa cd s ẋ
2, (7)

where ρa is the mass density of air, cd is the aerodynamic
drag coefficient, s is the frontal area of the vehicle which is
the projected area of the vehicle in the direction of travel
and ẋ is the longitudinal vehicle velocity. The contact
forces between the tires and the ground are modeled using
Dugoff modelization (Dugoff et al. (1970)).

Fig. 1. Poly-articulated system with 21 bodies and 7
degrees of freedom.

Fig. 2. Model topology with 21 bodies.

The developed dynamic model is then given by (3), where
the matrices A, H and J are as follows:

A =


m 0 0 0 0 0 0
0 m −L3 0 0 0 0
0 −L3 I3 0 0 0 0
0 0 0 Iw 0 0 0
0 0 0 0 Iw 0 0
0 0 0 0 0 Iw 0
0 0 0 0 0 0 Iw

 (8)

H =


1/2ρacdsẋ

2−mψ̇ẏ+L3ψ̇
2

mψ̇ẋ

−L3ψ̇ẋ
0
0
0
0

 (9)

and J = [J1 J2], where J1 and J2 are given by:

J1 =
− cos(δfl) − cos(δfr) −1 −1

− sin(δfl) − sin(δfr) 0 0

−Lf sin(δfl)+tr cos(δfl) −Lf sin(δfr)−tf cos(δfr) tr −tr
Reff 0 0 0
0 Reff 0 0
0 0 Reff 0
0 0 0 Reff

 ,

(10)

J2 =
sin(δfl) sin(δfr) 0 0

− cos(δfl) − cos(δfr) −1 −1

−Lf cos(δfl)−tr sin(δfl) −Lf cos(δfr)+tf sin(δfr) Lr Lr

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,

(11)

The vectors τ and fe are given by:

τ =
(
0 0 0 τwfl

τwfr
τwrl

τwrr

)
, (12)

fe =
(
Fxfl

Fxfr
Fxrl

Fxrr Fyfl
Fyfr

Fyrl Fyrr
)
. (13)

The terms in L3 and I3 in (8) represent the interconnection
between the different bodies composing the vehicle. Their
presence makes the robotic approach more interesting,
since it permits to develop a complete model of the vehicle
showing the influence of each body on the other bodies. L3

and I3 are defined as

• L3=Lr(mrr +mrl)− Lf (mfl +mfr),
• I3=Iz+t

2
f (mrl+mrr+mfr+mfl)+L

2
f (mfl+mfr)+

L2
r(mrr +mrl)

The parameters m, Iw, Lf , Lr, Iz and Reff are defined in
Table 2.2. Fxij and Fyij are the longitudinal and the lateral
forces developed on the four wheels respectively, mij is the
mass of a wheel, δfl and δfr are the front left and the front
right steering wheel angles and τwij is the driving/braking
torque applied to the wheel with index (ij).



2.3 Model Validation Results

The algorithm was implemented under Matlab/Simulink
and the model was validated using the Scaner-Studio sim-
ulator (Oktal (2016)). The model was validated for many
navigation scenarios. We present below two scenarios: The
first one shows a longitudinal acceleration scenario where
the acceleration reaches 2.5m/s2 and the speed reaches
111Km/h. The second scenario presents a big round about
where the lateral acceleration reaches 3m/s2 and the speed
varies between 11 and 40Km/h.
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Fig. 3. First scenario: a) Steering angle, b) Wheels torque,
c) speeds and yaw rate, d) accelerations and sideslip
angle
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Fig. 4. Second scenario: a) Steering angle, b) Wheels
torque, c) speeds and yaw rate, d) accelerations and
sideslip angle

The model inputs which are the steering angle and the
motor driving/braking torque are taken from the scenario
conducted on Scaner-Studio. The model outputs, which
are the vehicle dynamics variables, are compared to the
outputs obtained by the simulator. Figure 3 presents the
first scenario. The results presented in Figure 3c) and 3d)
shows that the model outputs are so close to the simulator

ones. Figure 4 shows the vehicle behavior in a round about,
the vehicle decelerates while crossing the turn to attain
3m/s. The results show that the model is representing the
vehicle dynamics properly.

To conclude this section, we note that the developed model
is valid in a large marge of driving conditions and can
be used for control objectives. The next section of this
paper presents the controller applied to this model. The
controller theory is explained in detail and we present
further more the validation results.

3. CONTROLLER DESIGN

3.1 Strategy

The objective of our controller is to ensure a robust
tracking of the reference trajectory for any time varying
maneuver. The tracking objective is reached by controlling
the longitudinal velocity and the lateral displacement of
the vehicle.

For more simplicity, the following assumptions are made:

• The longitudinal slip ratio is considered null, that
renders Reff ẇij = ẍ. Using this assumption in the
wheels dynamics equations, we obtain:

Fxij =
τwij

Reff
− Iwẍ

R2
eff

. (ij is the wheel index as cited in

section 2.2)
A direct relation between the longitudinal acceler-
ation of the vehicle and the motor torque is then
obtained by replacing Fxij in the first equation of the
vehicle system (3).

• Only the rear wheels are motorized, so τwfl
= 0 and

τwfr
= 0.

• The rear left and the rear right wheels receive the
same torque, so τwrl

= τwrr = τw
2 (τw = τwfl

+ τwfr
).

• The estimation of the contact forces between the
ground and the tires is based on the linear model
(Baffet (2007)).

• The approximations of small angles are made.
• The front left and the front right wheels steering
angles are supposed to be equal (δfl = δfr = δ).

With all these assumptions, the vehicle model presented
in Equation (3) can be rewritten as:

meẍ−mẏψ̇ + L3ψ̇
2 + Faero = g1,

mÿ +mẋψ̇ − L3ψ̈ + 2Cf
ẋ(ẏ + Lf ψ̇)

ẋ2 − (tf ψ̇)2
+ 2Cr

ẋ(ẏ − Lrψ̇)

ẋ2 − (tf ψ̇)2
= g2,

I3ψ̈ + 2LfCf
ẋ(ẏ + Lf ψ̇)

ẋ2 − (tf ψ̇)2
− 2LrCr

ẋ(ẏ − Lrψ̇))

ẋ2 − (tf ψ̇)2
= g3,

(14)

where me, g1, g2 and g3 are given by:

me = m+ 4
Iw

R2
eff

,

g1 =
τw

Reff
− δ(2Cf δ − 2Cf

ẋ(ẏ + Lf ψ̇)

ẋ2 − (tf ψ̇)2
)

g2 = (2Cf − 2
Iw

R2
eff

ẍ)δ,

g3 = Lfg2 + (−tfCf
2tf ψ̇(ẏ + Lf ψ̇)

ẋ2 − (tf ψ̇)2
)δ + L3(ÿ + ẋψ̇).

(15)



The aim of the controller is to track a desired longitudi-
nal speed while canceling the lateral displacement error
with respect to a given reference trajectory. The control
objective is then reached by generating a steering angle (δ)
and a driving/Braking wheels torque (τw) that are suitable
to track the reference trajectory defined by a trajectory
planning module.

We define:

• ż1 = ẋ,
• z̈2 = ay = ÿ + ẋψ̇.

where ż1 represents the vehicle longitudinal speed, z̈2
represents the vehicle lateral acceleration computed in the
inertial frame.
To accomplish the control objective, we define two error
signals as:

s1 = ėz1 = ż1 − ż∗1 (16)

s2 = ėz2 + λez2 = ż2 − ż∗2 + λ(z2 − z∗2), λ > 0 (17)

where s1 represents the vehicle longitudinal speed error
and s2 is function of the lateral displacements error (ez2)
and its derivative computed at the vehicle center of gravity.
The vectors with superscript (∗) represent desired outputs.

The trajectory tracking is then guaranteed if and only if
the longitudinal speed error and the lateral displacement
error and its derivative (ėz1 , ėz2 and ez2) converge in finite
time to zero.

We make use of the concept of the control Lyapunov
function (Attia et al. (2014)) to deduce the suitable control
laws.

We define then a Lyapunov function as:

V =
1

2
s21 +

1

2
γs22 (18)

The derivative of this function is given by

V̇ = s1ṡ1 + γs2ṡ2. (19)

To ensure a stability convergence of s1 and s2, which
guarantees the stability convergence of ez2 , ėz2 and ėz1 ,
we impose a negative variation of V as:

V̇ = s1ṡ1 + γs2ṡ2 = −K1s
2
1 − γK2s

2
2 (20)

where K1 and K2 represent the positive gains of this
controller.

Equation (20) can be verified by taking:

s1ṡ1 = −K1s
2
1. (21)

s2ṡ2 = −K2s
2
2. (22)

Using (16) and (17), we have:

ẍ = z̈∗1 −K1ėz1 . (23)

ëz2 = −(K2 + λ)ėz2 −K2λez2 . (24)

Assuming that the desired lateral acceleration of the
vehicle on the reference trajectory can be written as a∗y =

ẋ2ρref , where ρref is the reference trajectory curvature,
we have:

ëz2 = ay − a∗y = ÿ + ẋψ̇ − ẋ2ρref

This yields:

ÿ = ẋ2ρref − ẋψ̇ − (K2 + λ)ėz2 −K2λez2 . (25)

Replacing (23) and (25) in the reduced system (14), we
can deduce the longitudinal and the lateral commands as
follows:

τw = Reff [mez̈
∗
1 −meK1ėz1 −mẏψ̇

+ L3ψ̇
2 + δ(2Cfδ − 2Cf

ẋ(ẏ + Lf ψ̇)

ẋ2 − (tf ψ̇)2
) + Faero]

(26)

δ =
1

(2Cf − 2 Iw
R2

eff

ẍ)
[mẋ2ρref −m(K2 + λ)ėz2 − L3ψ̈

−mK2λez2 + 2Cf
ẋ(ẏ + Lf ψ̇)

ẋ2 − (tf ψ̇)2
+ 2Cr

ẋ(ẏ − Lrψ̇)

ẋ2 − (tf ψ̇)2
],

(27)

To take into account the delay of the actuators, the lateral
displacement error is computed at a look-ahead distance
Ls from the center of gravity of the vehicle (see Figure 5).
ez2 is then given by:

ez2 = z2 − z∗2 + Ls(ψ − ψ∗).

Fig. 5. Lateral error definition: ez2 = ey + Lseψ, where
ey = z2 − z∗2 and eψ = ψ − ψ∗.

The lateral and the longitudinal dynamics of the vehicle
are controlled simultaneously. Notice that the computation
of the torque takes into consideration the lateral dynamics
and the computation of the steering angle includes the lon-
gitudinal speed and acceleration values. The next section
will present the results of the controller validation and
some conclusions will be made.

3.2 Controller Validation

To validate our control law, we make use of the real
experimental data collected by performing several tests on
the vehicle DYNA present in the Heudiasyc laboratory
(Peugeot 308 sw). The collected data are considered as
reference data that will be compared to those obtained by
simulation on Matlab/simulink of the closed-loop system
with the developed 4-wheels vehicle model and the de-
veloped controller. For the control laws, we use the gains
K1 = 1.5, K2 = 8, λ = 8 and Ls is fixed to 2m with
the nominal vehicle parameters (see Table 2.2). Several
tests have been done during normal driving conditions,
and showed that the controlled vehicle is able to track the
reference path with small error. We present in Figure 6,



a test that validates our controller during normal driving
at high and varying speed and road curvature. The lon-
gitudinal desired speed varies between 5m/s and 25m/s.
Note that the maximal lateral acceleration is 5m/s2. In
this scenario, the vehicle executes some maneuvers at low
speed with large curvature and some at high speed with
very low curvature. In other words, the vehicle navigates
within a very narrow turn at low speed then it acceler-
ates to reach a high speed on a low curvature road. The
results presented in Figure 6 show that the vehicle is able
to navigate with the desired speed while staying on the
reference trajectory with a very small lateral displacement
error (< 3cm in our test conditions). The stability index is

computed as in He et al. (2004), by SI = 2.49β + 9.55β̇ ,
where β is the side slip angle at the center of gravity of the
vehicle. Notice that, in this test, the hypothesis of small
angles is not respected (δ reaches about 20◦) and, despite
this, the controller shows a good performance during these
driving conditions. Moreover, the assumption of null slip
ratio is not really respected in this driving scenario, since
the slip ratio reaches in absolute value 0.02. Nevertheless,
the control law proves to be robust to this assumption
violation.
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Fig. 6. a) Trajectories, b) Longitudinal speed and motor
torque, c) Steering angle and lateral variables, d)
Lateral displacement error and stability index

The robustness of the controlled system is then tested with
respect to strongly non-linear maneuvers and uncertainties
and disturbances encountered in automotive applications.

• Controller Robustness against strongly non-linear
maneuvers:
The test presented in Figure 7 shows a highly nonlin-
ear maneuver. It consists on increasing progressively
the vehicle speed while executing almost the same
curvature (the radius is around 50m). The lateral
acceleration and the longitudinal speed are increasing
remarkably (the speed is increasing with a rate of
1m/s2 and the lateral acceleration reaches 8.5m/s2).
This type of tests is used to evaluate the stability and
the robustness of the controller against strong non-
linear dynamics. Figure 7.(b), 7.(a) and 7.(d) show
that the vehicle succeeds to navigate with the desired
speed and to track the desired trajectory (the lateral

displacement error remains small) even in these con-
ditions of navigation. In Figure 7.(c), the dynamic
variables are very close to the measured ones, even at
high lateral acceleration and a speed reaching about
57Km/h. The results of this test show that the de-
veloped controller can ensure good performance even
at the limit of stability.
Notice that, the lateral error is increasing at t = 14s.
This observation can be explained by the strong non-
linearity of the driving scenario at this point (the
longitudinal and the lateral accelerations are very
high at this point). To improve the robustness of the
controller in such a situation, the tire/road forces
modeling should be done by the mean of a non-
linear approach (piece-wise linear tire model, Dugoff
model...).
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Fig. 7. a) Trajectories, b) Longitudinal speed and motor
torque, c) Steering angle and lateral variables, d)
Lateral displacement error and stability index

• Controller Robustness against parameters uncertain-
ties:
The robustness of the controller is evaluated over
vehicle parameters uncertainty, especially the vehicle
mass and the cornering stiffness. Actually, it is dif-
ficult to estimate accurately the stiffness of the tire
since it is related to the road coefficient of friction,
the type of the road, the vertical load, etc. Although,
the vehicle mass could be poorly estimated or variable
since it is dependent of the passengers and the amount
of fuel. The controller robustness was evaluated for
different parameters values. We present in Fig. 8,
using the scenario presented in Figure 6, the lateral
displacement errors and the longitudinal speeds for
different stiffness and different mass (±30%). The
results prove that the controller is able to follow the
path with acceptable errors despite the parameters
variations.

4. CONCLUSION

This paper presents a robotics approach used for the
vehicle modeling. This formalism was used to elaborate a
four wheeled vehicle model. The model was validated using
Scaner-Studio simulator and the results show its validity
for a large marge of driving conditions. Furthermore, a



Fig. 8. Robustness against parameters uncertainties: a)
vehicle mass uncertainties, b) cornering stiffness un-
certainties.

coupled controller for the lateral and longitudinal dynam-
ics was developed, based on this model. The controller
was validated using experimental data collected on a ve-
hicle in the Heudiasyc laboratory. The robustness of the
control against parameters uncertainty was studied and
the results show that the controller is efficient even with
an uncertainty of ±30% on the studied parameters. We
also studied its robustness against strong non-linearity and
the controller was showing good performance even in the
limits of stability. The short term outlook is to validate
the controller on a robotized vehicle, while the long term
outlooks will be the development of a planning module,
that will generate a secure and feasible trajectory for the
control level, based on several criteria related to the vehicle
and its surrounding environment state.
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