
HAL Id: hal-01650998
https://hal.science/hal-01650998v1

Submitted on 11 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Extensibility and Composability of a Multi-Stencil
Domain Specific Framework

Hélène Coullon, Julien Bigot, Christian Pérez

To cite this version:
Hélène Coullon, Julien Bigot, Christian Pérez. Extensibility and Composability of a Multi-Stencil
Domain Specific Framework. International Journal of Parallel Programming, 2017, �10.1007/s10766-
017-0539-5�. �hal-01650998�

https://hal.science/hal-01650998v1
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

Extensibility and Composability of a Multi-Stencil
Domain Specific Framework

Hélène Coullon · Julien Bigot ·
Christian Perez

the date of receipt and acceptance should be inserted later

Abstract As the computation power of modern high performance architec-
tures increases, their heterogeneity and complexity also become more impor-
tant. One of the big challenges of exascale is to reach programming models that
give access to high performance computing (HPC) to many scientists and not
only to a few HPC specialists. One relevant solution to ease parallel program-
ming for scientists is Domain Specific Language (DSL). However, one problem
to avoid with DSLs is to mutualize existing codes and libraries instead of im-
plementing each solution from scratch. For example, this phenomenon occurs
for stencil-based numerical simulations, for which a large number of languages
has been proposed without code reuse between them. The Multi-Stencil Frame-
work (MSF) presented in this paper combines a new DSL to component-based
programming models to enhance code reuse and separation of concerns in the
specific case of stencils. MSF can easily choose one parallelization technique
or another, one optimization or another, as well as one back-end implemen-
tation or another. It is shown that MSF can reach same performances than
a non component-based MPI implementation over 16.384 cores. Finally, the
performance model of the framework for hybrid parallelization is validated by
evaluations.

Hélène Coullon
DAPI IMT Atlantique, LS2N, Inria. Nantes, France
E-mail: helene.coullon@inria.fr

Julien Bigot
Maison de la Simulation, CEA, CNRS, Univ. Paris-Sud, UVSQ, Université Paris-Saclay,
91191 Gif-sur-Yvette, France
E-mail: julien.bigot@cea.fr

Christian Perez
Univ. Lyon, Inria, CNRS, ENS de Lyon. Lyon, France
E-mail: christian.perez@inria.fr

2 Hélène Coullon et al.

Keywords Component programming models · Domain Specific Language
(DSL) · Stencil · Numerical simulation · Data parallelism · Task parallelism ·
Scheduling · MPI · OpenMP

1 Introduction

As the computation power of modern high performance architectures increases,
their heterogeneity and complexity also become more important. For example,
the current fastest supercomputer Tianhe-2 1 is composed of multi-cores pro-
cessors and accelerators, and is able to reach a theoretical peak performance
of about thirty peta-flops (floating-point operations per second). However, to
be able to use such machines, multiple programming models, such as MPI
(Message Passing Interface), OpenMP, CUDA, etc., and multiple optimiza-
tion techniques, such as cache optimization, have to be combined. Moreover,
current architectures evolution seems to indicate that heterogeneity and com-
plexity in HPC will continue to grow in the future.

One of the big challenges to be able to use those upcoming Exascale com-
puters is to propose programming models that give access to high performance
computing (HPC) to many scientists and not only to a few HPC specialists [15].
Actually, applications that run on supercomputers and need such computa-
tion power (e.g. physics, weather or genomic) are typically not implemented
by HPC specialists but by domain scientists.

Many general purpose languages and frameworks have improved the sim-
plicity of writing parallel codes. For example PGAS models [23] or task-based
frameworks, such as OpenMP [13], Legion [4] or StarPU [2], partially hide
intricate details of parallelism to the user. For non-expert users however, these
languages and frameworks are still difficult to use. Moreover, tuning an ap-
plication for a given architecture is still very complex to achieve with these
solutions. An interesting approach that combines simplicity of use, due to a
high abstraction level, with efficient execution are domain specific languages
(DSL) and domain specific frameworks (DSF). These solutions are specific to
a given domain and propose a grammar or an API which is easy to understand
for specialists of this domain. Moreover, knowledge about the targeted domain
can be embedded in the compiler that can thus automatically apply paralleliza-
tion and optimization techniques to produce high performance code. Domain
specific solutions are therefore able to separate end-user concerns from HPC
concerns which is a requirement to make HPC accessible to a wider audience.

Many domain specific languages and frameworks have been proposed. Each
one claims to handle a distinct specific optimization or use case. Each solution
is however typically re-implemented from scratch. In this paper, we claim that
the sharing of common building blocks when designing DSLs or DSFs would in-
creases re-use, flexibility and maintainability in their implementation. It would
also ease the creation of approaches and applications combining multiple DSLs
and DSFs.

1 www.top500.org

Extensibility and Composability of a Multi-Stencil Domain Specific Framework 3

For example, some of the approaches to numerically solve partial differen-
tial equations (PDEs) lead to stencil computations where the values associated
to one point in space at a given time are computed from the values at the pre-
vious time at the exact same location together with a few neighbor locations.
Many DSLs have been proposed for stencil computations [7, 8, 14, 26, 30] as
detailed in Section 7. Many of them use the same kind of parallelization, data
structures or optimization techniques, however each one has been built from
scratch.

We propose the Multi-Stencil Framework (MSF) that is built upon a meta-
formalism of multi-stencil simulations. MSF produces a parallel orchestration
of a multi-stencil program without being aware of the underlying implementa-
tion choices (e.g., distributed data structures, task scheduler etc.). Thanks to
this meta-formalism MSF is able to easily switch from one parallelization tech-
nique to another and from one optimization to another. Moreover, as MSF is
independent from implementation details, MSF can easily choose one back-end
or another, thus easing code reuse of existing solutions. To ease composition of
existing solutions, MSF is based on component-based programming [29], where
applications are defined as an assembly of building blocks, or components.

After a short overview of the Multi-Stencil Framework given in Section 2,
the paper is organized as follows. The meta-formalism of a multi-stencil pro-
gram is presented in Section 3; from this formalism are built both a light and
descriptive domain specific language, namely MSL, as well as a generic com-
ponent assembly of the application both described in Section 4; the compiler
of the framework is described in Section 5; finally a performance evaluation is
detailed in Section 6 .

2 The Component-Based Multi-Stencil Framework

This section first presents a background on component models and particularly
on the Low Level Components. This background is needed to understand the
second part of the section which gives an overview of the overall Multi-Stencil
Framework (MSF).

2.1 Background on component models

Component-based software engineering (CBSE) is a domain of software en-
gineering [29] which aims at improving code re-use, separations of concerns,
and thus maintainability. A component-based application is made of a set of
component instances linked together, this is also called a component assembly.
A component is a black box that implements an independent functionality of
the application, and which interacts with its environment only through well
defined interfaces: its ports. For example, a port can specify services provided
or required by the component. With respect to high performance computing,
some works have also shown that component models can achieve the needed

4 Hélène Coullon et al.

c0 c1 m

p u vq

(a)

c0 c1 m

p u vq

(b)

c2 c3

(c)

Fig. 1: Example of components and their ports representation. a) Component
c0 has a provide port (p) and a use port (u); Component c1 has also a provide
port (q) but also a use multiple port (v). b) A use port is connected to a (com-
patible) provide port. c) Component c2 and c3 shares an MPI communicator.

level of performance and scalability while also helping in application portabil-
ity [1, 6, 27].

Many component models exist, each of them with its own specificities.
Well known component models include, for example, the CORBA Component
Model (CCM) [24], and the Grid Component Model (GCM) [3] for distributed
computing, while the Common Component Architecture (CCA) [1], and Low
Level Components (L2C) [5] are HPC-oriented. This work makes use of L2C
for the experiments.

L2C [5] is a minimalist C++ based HPC-oriented component model where
a component extends the concept of class. The services offered by the compo-
nents are specified trough provide ports, those used either by use ports for a
single service instance, or use−multiple ports for multiple services instances.
Services are specified as C++ interfaces. L2C also offers MPI ports that enable
components to share MPI communicators. Finally, components can also have
attribute ports to be configured. In this paper, and as illustrated in Figure 1,
a provide port is represented by a white circle, a use port by a black circle,
a use − multiple port by a black circle with a white m in it. MPI port are
connected with a black rectangle. A L2C-based application is a static assem-
bly of components instances and the connections between their ports. Such an
assembly is described in LAD, an XML dialect, and is managed by the L2C
runtime system that minimize overheads by loading simple dynamic libraries.
One can also notice that L2C can achieve performance if the granularity of
components is high enough and attentively chosen by the user. The typical
overhead of a L2C is a C++ indirect virtual method invocation.

2.2 Multi-Stencil Framework overview

The Multi-Stencil Framework helps end-users to produce high performance
parallel applications for the specific case of multi-stencils. The multi-stencil

Extensibility and Composability of a Multi-Stencil Domain Specific Framework 5

Numerician

Generic Assembly

Multi-Stencil Language

Multi-Stencil Compiler

Specialized assembly

HPC spec.

Developer

M
u
l
t
i
-
S
t
e
n
c
i
l

F
r
a
m
e
w
o
r
k

+

Fig. 2: The Multi-Stencil Framework (MSF) is composed of the Multi-Stencil
Language (MSL), the Generic Assembly (GA) and the Multi-Stencil Compiler
(MSC) to produce a specialized assembly of components. The numerician, or
mathematician uses MSL to describe its simulation. The developer will imple-
ment components responsible for numerical codes. A third party HPC special-
ist can interact with MSF to propose different version of HPC components.

domain will be formally defined in the next section. A multi-stencil program
numerically solves PDEs using computations that can use neighborhood values
around an element, also called a stencil computation.

Figure 2 gives an overview of the Multi-Stencil Framework that is entirely
detailed throughout this paper. It is composed of four distinct parts described
hereafter. As illustrated in Figure 2, MSF targets two different kinds of end-
users: the numerician, in other words the mathematician, and the developer.
Most of the time numericians do have programming knowledge, however as it is
not their core domain and because of a lack of time, development is often left to
engineers according to numerician needs. MSF has the interesting particularity
to propose a clear separation of concerns between these two end-users by
distinguishing the description of the simulation from the implementation of
numerical codes.

MSF also has the interesting capability to be more flexible than existing
solutions thanks to a possibility for a third party to interact with the frame-
work. This third party is a High Performance Computing (HPC) specialist as
displayed in Figure 2.

Multi-Stencil Language The Multi-Stencil Language, or MSL, is the do-
main specific language proposed by the framework for the numerician. It is a
descriptive language, easy to use, without any concern about implementation
details. It fits the need of a mathematician to describe the simulation. The
description written with MSL can be considered as an input of the frame-
work. MSL is described in details in Section 4. The language is built upon the
formalism described in Section 3.

Generic Assembly In addition to the language MSL, used by the numeri-
cian to describe its simulation, MSF needs a Generic Assembly (GA) of a

6 Hélène Coullon et al.

multi-stencil program as input. What is called a GA is a component assembly
for which meta-types of components are represented and for which some parts
need to be generated or specialized. A GA could be compared respectively to
a template or a skeleton in object programming languages (such as C++) or
functional languages. From this generic assembly will be built the final special-
ized assembly of the simulation where component types will be specified, and
where parts of GA will be transformed. As well as MSL, this generic assembly
is described in Section 4 and is built upon the meta-formalism described in
Section 3.

Multi-Stencil Compiler The core of the framework is the Multi-Stencil
Compiler, or MSC. It is responsible for transforming the generic assembly into
the final parallel assembly which is specific to the simulation described by the
numerician with MSL. MSC is described in Section 5.

Specialized assembly Finally, the output of MSF is the component assembly
generated by MSC. It is an instantiation and a transformation of the generic
component assembly, by adding component types, transforming some part of
the assembly, and by adding specific components generated by MSC. From this
final component assembly which is specific to the simulation initially described
with MSL, the developer will finally write components associated to numerical
codes, or directly re-use existing components from other simulations. This final
specialized component assembly is a parallel orchestration of the computations
of the simulation initially described by the numerician. Finally, the specialized
assembly produced by MSF is written in L2C.

3 Formalism of a Multi-Stencil Program

The numerical solving of partial differential equations relies on the discretiza-
tion of the continuous time and space domains. Computations are typically
iteratively (time discretization) applied onto a mesh (space discretization).
While the computations can have various forms, many direct methods can be
expressed using three categories only: stencil computations involve access to
neighbor values only (the concept of neighborhood depending on the space dis-
cretization used); local computations depend on the computed location only
(this can be seen as a stencil of size one); finally, reductions enable to transform
variables mapped on the mesh to a single scalar value.

This section gives a complete formal description of what we call a multi-
stencil program and its computations. This formalism is general enough to be
common to any existing solution already proposed for stencil computations.
As a result it can be considered as a meta-formalism or a meta-model of a
Multi-Stencil Program. This meta-formalism will be used to define MSL and
GA in the next section.

Extensibility and Composability of a Multi-Stencil Domain Specific Framework 7

3.1 Time, mesh and data

Let us introduce some notations. Ω is the continuous space domain of a nu-
merical simulation (typically Rn). A meshM defines the discretization of the
continuous space domain Ω and is defined as follows.

Definition 1 A mesh is a connected undirected graph M = (V,E), where
V ⊂ Ω is the (finite) set of vertices and E ⊆ V 2 the set of edges. The set of
edges E of a mesh M = (V,E) does not contain bridges. It is said that the
mesh is applied onto Ω.

0,0

1,1

Fig. 3: From left to right, Cartesian, curvilinear and unstructured meshes.

A mesh can be structured (as Cartesian or curvilinear meshes), unstructured,
regular or irregular (without the same topology for each element) as illustrated
in Figure 3.

Definitions (mesh)

– An entity φ of a meshM = (V,E) is defined as a subset of its vertices and
edges, φ ⊂ V ∪ E.

– A group of mesh entities G ∈ P(V ∪ E) represents a set of entities of the
same topology.

– The set of all groups of mesh entities used in a simulation is denoted Φ.

For example, in a 2D Cartesian mesh, an entity could be a cell, made up
of four vertices and four edges. A group of entities could contain all the cells,
another would for example contain the vertical edges at the frontier between
cells. Both groups would be part of Φ. This example is illustrated in Figure 4a.

Definition 2 The finite sequence T : (tn)n∈J0,TmaxK represents the discretiza-
tion of the continuous time domain T = R.

The time discretization can be as simple as a constant time-step with a
fixed number of steps. The time-step and the number of steps can also change
on the fly during execution.

Definitions (quantity)

8 Hélène Coullon et al.

– ∆ are the mesh variables. A mesh variable δ ∈ ∆ associates to each couple
entity and time-step a value δ : G × T 7→ Vδ where Vδ is a value type.

– The group of entities a variable is mapped on is denoted entity(δ) = G.
– S are the scalar variables. A scalar variable s ∈ S associates to each time-

step a value s : T 7→ Vδ where Vδ is a value type.
– V = ∆ ∪ S is the set of variables or quantities.
– Among the scalar variables is one specific boolean variable conv ∈ S, the

convergence criteria, whose value is 0 except at the last step where it is 1.
This scalar can be updated on the fly according to other variables, typically
by using a reduction as detailed later.

3.2 Computations

Definitions

– A computation domain D is a subpart of a group of mesh entities, D ⊆
G ∈ Φ.

– The set of computation domains of a numerical simulation is denoted D.
– N is the set of neighborhood functions n : Gi 7→ Gmj which for a given

entity φ ∈ Gi returns a set of m entities in Gj . One can notice that i = j is
possible. Most of the time, such a neighborhood is called a stencil shape.

Definition 3 A computation kernel k of a numerical simulation is defined as
k = (S,R, (w,D), comp), where

– S ∈ S is the set of scalar to read,
– w ∈ V is the single quantity (variable) modified by the computation kernel,
– D is the computation domain on which w is computed, D ⊆ entity(w), or

is null if w ∈ ∆,
– R ∈ ∆ × N is the set of tuples (r, n) representing the data read where r

is a mesh variable read by the kernel to compute w, and n : entity(w) →
entity(r)m is a neighborhood function that indicates which entity of r are
read to compute w.

– Finally, comp is the numerical computation which returns a value from
a set of n input values, comp : Vni → Vj, where Vi and Vj are value
types. Thus, comp represents the actual numerical expression computed by
a kernel.

In a Multi-Stencil simulation, at each time-step, a set of computations is
performed. During a computation kernel, it can be considered that a set of
old states (t − 1) of quantities are read (S and R), and that a new state (t)
of a single quantity is written (w). Such a definition of a computation kernel
covers a large panel of different computations. For example, the four usual
types of computations (stencil, local, boundary and reduction) performed into
a simulation can be defined as follow :

– A computation kernel k(S,R, (w,D), comp) is a stencil kernel if ∃(r, n) ∈ R
such that n 6= identity.

Extensibility and Composability of a Multi-Stencil Domain Specific Framework 9

– A boundary kernel is a kernel k(S,R, (w,D), comp) where D is a specific
computation domain at the border of entities, and which does not intersect
with any other computation domain.

– A computation kernel k(S,R, (w,D), comp) is a local kernel if ∀(r, n) ∈ R,
n = identity.

– A computation kernel k(S,R, (w,D), comp) is a reduction kernel if w is a
scalar. A reduction can for example be used to compute the convergence
criteria of the time loop of the simulation.

Since we only consider explicit numerical schemes in this paper, a kernel
cannot write the same quantity it reads, except locally, i.e. if ∃(w, n) where
w ∈ R⇒ n = identity.

It could seem counter-intuitive to restrict kernels to the computation of a
single quantity. As a matter of fact, one often performs multiple computations
in a single loop, for example for performance reasons (cache optimization,
temporary computation factorization, etc.) or for readability (code length,
semantically close computations, etc.). One can however notice that it is always
possible to re-express a computation modifying n quantities as n computations
modifying a single quantity each. Both approaches are therefore equivalent
from an expressiveness point of view.

Modifying multiple quantities in a single loop nest does however not al-
ways improve performance. For example, it reduces the number of concurrent
tasks available and limits the potential efficiency on parallel resources as will
be shown in Section 6. We therefore introduce the concept of fusion in Sec-
tion 5 where multiple logical kernels can be executed in a single loop nest that
modifies multiple quantities. This transformation is much easier to implement
than splitting a kernel would be, leaving more execution choices open.

In addition, the modification of multiple quantities in a single loop nest can
lead to subtle ordering errors when executing in parallel as it will be discussed
in Section 5.4. Automatically detecting kernels that can be fused instead of
leaving this to the responsibility of the domain scientist avoids these potential
errors. We have therefore chosen to restrict kernels to the computation of a
single quantity.

Definition 4 The set of n ordered computation kernels of a numerical simu-
lation is denoted Γ = [ki]0≤i≤n−1, such that ∀ki, kj ∈ Γ , if i < j, then ki is
computed before kj.

Definition 5 A multi-stencil program is defined by the octuplet

MSP(M, Φ,D,N , ∆,S, T, Γ) (1)

Example For example, in Figure 4b, assuming that the computation domain
(full lines) is denoted dc1 and the stencil shape described by the neighborhood
function is n1, the stencil kernel can be defined as:

R : {(B,n1)}, w : A, D : dc1,

10 Hélène Coullon et al.

Mesh Cells Edgex

(a) On the left a mesh is represented, on the right two examples
of groups of mesh entities are represented: cells and vertical
edges.

x,y x,y

x
y+1

x
y-1

x-1
y

x+1
y

A B

(b) A is computed with a 4-
neighborhood stencil applied on B.
A is computed onto a computation
domain which does not include all
entities of the group.

x,y
x1
y1

x1+1
y1

A C

(c) A is computed with a 2-
neighborhood stencil applied on C.
A is computed onto a computation
domain includes all entities of the
group.

Fig. 4: (a) a Cartesian mesh and two kind of groups of mesh entities, (b)
an example of stencil kernel on cells, (c) an example of stencil kernel on two
different groups of mesh entities.

comp : A(x, y) = B(x+ 1, y) +B(x− 1, y) +B(x, y + 1) +B(x, y − 1).

On the other hand, in the example of Figure 4c, assuming the computation
domain is dc2 and the stencil shape is n2, the stencil kernel is defined as:

R : {(C, n2), (A, identity)}, w : A, D : dc2,

comp : A(x, y) = A(x, y) + C(x1, y1) + C(x1 + 1, y1).

In this section, we have formally defined a stencil program. This formalism
is mainly composed of a mesh abstraction and a simple definition of com-
putation. In fact, this formalism is generic enough to be common to many
existing modelizations of a stencil computation or a stencil simulation. Thus,
the formalism summarized by Equation (1) can be compared to a meta-model
of a multi-stencil program. In the next section, we use this meta-model (or
meta-formalism) to define both a the domain specific language MSL, and the
generic assembly of a multi-stencil program GA.

Extensibility and Composability of a Multi-Stencil Domain Specific Framework 11

Driverstart

m

T imeT Computations

∗

Γ

Data∆
∗

DDS M, Φ,D,N

Fig. 5: Generic Assembly according to the Multi-Stencil program formalism.
Components circled by a double line identify those that will be instantiated
multiple times by MSC. Component colors represent actors of Figure 2 re-
sponsible for the component implementation: green for those automatically
generated by the compiler, red for those implemented by HPC specialists and
blue for those implemented by the developer.

4 Generic Asssembly and The Multi-Stencil Language

From the octuplet of Equation (1) both the Generic Assembly (GA) of a multi-
stencil program and the Multi-Stencil Language (MSL) can be built. GA and
MSL are both are described in this section.

4.1 Generic Assembly

As illustrated in Figure 5, the GA has five components: Driver, Time, DDS,
Data, and Computations. These components are generic components or
abstract components. It means that interfaces of these components are well
defined but that they are not implemented yet in GA. They can be compared
to abstract classes and templates in C++ for which an implementation must be
given as well as specific parameters.

Driver This component can be compared to the main function of a usual
program. It is responsible for both the initialization and the execution of other
components (like variable initialization and function calls). This component is
generated by MSC (represented in green).

Time This component is responsible for the time T defined in Equation (1).
It is composed of a time loop and potentially of a convergence reduction. This
component is generated by MSC (represented in green).

12 Hélène Coullon et al.

DDS This component is responsible for the mesh and its entities M and
Φ, the set of computation domains D, and the set of neighborhood functions
N . When the generic assembly is instantiated and specialized by MSC, an
implementation of DDS is selected to handle a specific type of mesh. The
interfaces exposed by this component are well defined and any component
providing these interfaces can be indifferently used. A third party specialist
can therefore propose new implementation of DDS. In this paper, both data
and task parallelism are used. In the case of data parallelism DDS handles mesh
partitioning and provides a synchronization interface as detailed in Section 5.
The implementation of this component is the responsibility of HPC specialists
(represented in red).

Data This component is responsible for the set of mesh variables ∆. Each
instance of the component uses the DDS component to handle one single
mesh variable. It is closely related to DDS and its implementation is typically
provided by the same HPC specialist as DDS (represented in red).

Computations This component is responsible for Γ , i.e., the computations
of the simulation. It is automatically replaced by a sub-assembly of components
produced by MSC for which the parallel part is automatically generated. On
the other hand, components responsible for the numerical kernels are filled by
the developer. This is why this component is represented in green and blue in
Fig. 5. The sub-assembly generation is described in Section 5.

4.2 The Multi-Stencil Language

The second element of MSF which is built upon the meta-model represented
by Equation (1) is the Multi-Stencil Language and its grammar. This grammar
is light and descriptive only. However it is sufficient (in addition to GA) for
MSC to automatically extract a parallel pattern of the simulation, which is
finally dumped as a specialized instantiation of GA.

The grammar of the Multi-Stencil Language is given in Figure 6 and an
example is provided in Figure 7. A Multi-Stencil program is composed of eight
parts that match those of Equation (1).

1. The mesh keyword (Fig. 6, l.1) introduces an identifier for M, the single
mesh of the simulation. For example cart in Fig. 7, l.1. The language,
based on the meta-model is independent of the mesh topology, thus this
identifier is actually not used by the compiler.

2. The mesh entities keyword (Fig. 6, l.2) introduces identifiers for the
groups of mesh entities G ∈ Φ. For example cell or edgex in Fig. 7, l.2.

3. The computation domains keyword (Fig. 6, l.3) introduces identifiers for
the computation domains D ∈ D. For example d1 and d2 in Fig. 7, l.4-5.
For reference, each domain is associated to a group of entities (Fig. 6, l.12)
such as cell for d1 in Fig. 7, l.4.

Extensibility and Composability of a Multi-Stencil Domain Specific Framework 13

1 program : := ”mesh : ” meshid
2 ”mesh e n t i t i e s : ” l i s t g r o u p
3 ” computation domains : ” listcompdom
4 ” independent : ” l i s t i n d e
5 ” s t e n c i l shapes : ” l i s t s t e n c i l
6 ”mesh q u a n t i t i e s : ” l i s t q u a n t i t i e s
7 ” s c a l a r s : ” l i s t s c a l a r
8 l i s t l o o p
9

10 l i s t g r o u p : := groupid ” , ” l i s t g r o u p | groupid
11 listcompdom : := compdom listcompdom | compdom
12 compdom : := compdomid ” in ” groupid
13 l i s t i n d e : := inde l i s t i n d e | inde
14 inde : := compdomid ”and” compdomid
15 l i s t s t e n c i l : := s t e n c i l l i s t s t e n c i l | s t e n c i l
16 s t e n c i l : := s t e n c i l i d ” from” groupid ” to ” groupid
17 l i s t q u a n t i t i e s : := quant i ty l i s t q u a n t i t i e s | quant i ty
18 quant i ty : := groupid l i s t q u a n t i t y i d
19 l i s t q u a n t i t y i d : := quant i ty id ” , ” l i s t q u a n t i t y i d | quant i ty id
20 l i s t s c a l a r : := s c a l a r i d ” , ” l i s t s c a l a r | s c a l a r i d
21 l i s t l o o p : := loop l i s t l o o p | loop
22 loop : := ” time : ” i t e r a t i o n
23 ” computations : ” l i s t comp
24 i t e r a t i o n : := num | s c a l a r i d
25 l i s t comp : := comp l i s t comp | comp
26 comp : := wr i t t en ”=” compid ” (” l i s t r e a d ”) ”
27 wr i t t en : := quant i ty id ” [” compdomid ”] ” | s c a l a r
28 l i s t r e a d : := dataread l i s t r e a d | dataread
29 dataread : := quant i ty id ” [” s t e n c i l i d ”] ” | quant i ty id | s c a l a r

Fig. 6: Grammar of the Multi-Stencil Language.

4. The independent keyword (Fig. 6, l.4) offers a way to declare that com-
putation domains do not intersect, such as d1 and d2 in Fig. 7, l.7. This is
used by the compiler to compute dependencies between computations.

5. The stencil shapes keyword (Fig. 6, l.5) introduces identifiers for each
stencil shape n ∈ N . For each n, the source and destination group of
entities (Fig. 6, l.16) are specified. For example nec in Fig. 7, l.11 is a
neighborhood from edgex to cell.

6. The mesh quantities keyword (Fig. 6, l.6) introduces identifiers for δ ∈
∆, the mesh variables with the group of entities they are mapped on
(Fig. 6, l.16). For example the quantities C and H are mapped onto the
groups of mesh entities edgex.

7. The scalars keyword (Fig. 6, l.7) introduces identifiers for s ∈ S, the
scalars. For example mu and tau in Fig. 7, l.15.

8. Finally, the last part (Fig. 6, l.8) introduces the different computation loops
of the simulation. Each loop is made of two parts:
– the time keyword (Fig. 6, l.22) introduces either a constant number of

iterations or conv, the convergence criteria that is a scalar (Fig. 6, l.24).
For example, 500 iterations are specified in Fig. 7, l.16,

14 Hélène Coullon et al.

1 mesh : ca r t
2 mesh e n t i t i e s : c e l l , edgex
3 computation domains :
4 d1 in c e l l
5 d2 in edgex
6 independent :
7 d1 and d2
8 s t e n c i l shapes :
9 ncc from c e l l to c e l l

10 nce from c e l l to edgex
11 nec from edgex to c e l l
12 mesh q u a n t i t i e s :
13 c e l l A,B,D,E, F ,G, I , J
14 edgex C,H
15 s c a l a r s : mu, tau
16 time : 500
17 computations :
18 B[d1] = k0 (tau ,A)
19 C[d2] = k1 (B[nec])
20 D[d1] = k2 (C)
21 E[d1] = k3 (C)
22 F [d1] = k4 (D,C[nce])
23 G[d1] = k5 (mu, tau ,E)
24 H[d2] = k6 (F)
25 I [d1] = k7 (G,H)
26 J [d1] = k8 (mu, I [ncc])

Fig. 7: Example of program using the Multi-Stencil Language.

– the computations keyword (Fig. 6, l.23) introduces identifiers for each
computation k = (S,R, (w,D), comp) ∈ Γ . Each computation (Fig. 6, l.26)
specifies:

– the quantity w written and its domainD, for example in Fig. 7, l.22,
kernel k4 computes the variable F on domain d1,

– the read scalars S and mesh variables with their associated stencil
shape (R). For example in Fig. 7, l.16, k4 reads C with the shape
nce and D with the default identity shape; it does not read scalars.

One can notice that in the example of Figure 7, there are no kernel asso-
ciated to the scalars mu and tau (reduction). In this case, those scalars are in
fact constants. One can also notice that the computation to execute for each
kernel is not specified. Only an identifier is given to each kernel, for example
k4. The numerical code is indeed not handled by MSL that generates a paral-
lel orchestration of computations only. The numerical computation is specified
after MSC compilation by the developer (Fig. 2).

5 The Multi-Stencil Compiler

In a computation k(S,R, (w,D), comp), the comp part is provided by the
developer after the MSC compilation phase. This part does therefore not

Extensibility and Composability of a Multi-Stencil Domain Specific Framework 15

have any impact on compilation concerns. Thus, to simplify notations in the
rest of this paper, we use the shortcut notation k(S,R, (w,D)) instead of
k(S,R, (w,D), comp).

5.1 Data parallelism

In a data parallelization technique, the idea is to split data, or quantities,
on which the program is computed into sub-domains, one for each execution
resource. The same program is applied to each sub-domain simultaneously
with some additional synchronizations to ensure coherence.

More formally, the data parallelization of a multi-stencil program of equa-
tion (1) consists in a partitioning of the mesh M in p sub-meshes M =
{M0, . . . ,Mp−1}. This step can be performed by an external graph parti-
tioner [11, 21, 25] and is handled by the DDS implementation of the third
party HPC specialist.

As entities and quantities are mapped on the mesh, the set of groups of
mesh entities and the set of quantities ∆ are partitioned the same way as the
mesh: Φ = {Φ0, . . . , Φp−1}, ∆ = {∆0, . . . ,∆p−1}.

The second step of the parallelization is to identify in Γ the synchroniza-
tions required to update data. It leads to the construction of a new ordered
list of computations Γsync.

Definition 6 For n the number of computations in Γ , and for i, j such that
i < j < n, a synchronization is needed between ki and kj, denoted ki ≺≺≺
kj, if ∃(rj , nj) ∈ Rj such that wi = rj and nj 6= identity (kj is a stencil
computation). The quantity to synchronize is {wi}.

A synchronization is needed for the quantity read by a stencil computation
(not local), if this quantity has been written before. This synchronization is
needed because a neighborhood function n ∈ N of a stencil computation
involves values computed on different resources.

However, as a multi-stencil program is an iterative program, computations
that happen after kj at the time iteration t have also been computed before
kj at the previous time iteration t − 1. For this reason another case of syn-
chronization has to be defined.

Definition 7 For n the number of computations in Γ and j < n, if ∃(rj , nj) ∈
Rj such that nj 6= identity and such that for all i < j, ki 6≺≺≺ kj, a synchro-
nization is needed between kt−1l and ktj, where j < l < n, denoted kt−1l ≺≺≺ ktj,
if wl = rj. The quantity to synchronize is {wl}.
Definition 8 A synchronization between two computations ki ≺≺≺ kj is defined
as a specific computation

ksynci,j (S,R, (w,D)),

where S = ∅, R = {(r, n)} = {(wi, nj ∈ N}, (w,D) = (wi,
⋃
φ∈Dj

nj(φ))). In
other words, wi has to be synchronized for the neighborhood nj for all entities
of Dj.

16 Hélène Coullon et al.

Definition 9 If ki ≺≺≺ kj, kj is replaced by the list

[ksynci,j , kj]

where the synchronization operation has been added.

When data parallelism is applied, the other type of computation which
is responsible for additional synchronizations is the reduction. Actually, the
reduction is first applied locally on each subset of entities, on each resource.
Thus, p (number of resources) scalar values are obtained. For this reason, to
perform the final reduction, a set of synchronizations are needed to get the
final reduced scalar. As most parallelism libraries (MPI, OpenMP) already
propose a reduction synchronization with their own optimizations, we simply
replace the reduction computation by itself annotated by red.

Definition 10 A reduction kernel kj(Sj , Rj , (wj , Dj)), where w is a scalar,
is replaced by kredj (Sj , Rj , (wj , Dj)).

Definition 11 The concatenation of two ordered lists of respectively n and m
computations l1 = [ki]0≤i≤n−1 and l2 = [k′i]0≤i≤m−1 is denoted l1 · l2 and is
equal to a new ordered list l3 = [k0, . . . , kn−1, k

′
0, . . . , k

′
m−1].

Definition 12 From the ordered list of computation Γ , a new synchronized
ordered list Γsync is obtained from the call Γsync = Fsync(Γ, 0), where Fsync is
the recursive function defined in Algorithm 1.

Algorithm 1 follows previous definitions to build a new ordered list which
includes synchronizations. In this algorithm, lines 7 to 19 apply Definition (6),
lines 20 to 29 apply Definition (7), and finally lines 34 and 35 apply Defini-
tion (10). Finally, line 37 of the algorithm is the recursive call.

The final step of this parallelization is to run Γsync on each resource. Thus,
for each resource 0 ≤ r ≤ p− 1 the multi-stencil program

MSPr(Mr, Φr,Dr,N , ∆r,S, T, Γsync), (2)

is performed.

Example Figure 7 gives an example of aMSP program. From this example,
the following ordered list of computation kernels is extracted:

Γ = [k0, k1, k2, k3, k4, k5, k6, k7, k8]

From this ordered list of computation kernels Γ , and from the rest of the
multi-stencil program, synchronizations can be automatically detected from
the call to Fsync(Γ, 0) to get the synchronized ordered list of kernels:

Γsync = [k0, k
sync
0;1 , k1, k2, k3, k

sync
1;4 , k4, k5, k6, k7, k

sync
7;8 , k8], (3)

where

ksync0;1 = (∅, {(B,nce)}, (B,∪φ∈D1nce(φ))), (4a)

ksync1;4 = (∅, {(C, nec)}, (C,∪φ∈D4
nec(φ))), (4b)

ksync7;8 = (∅, {(I, ncc)}, (I,∪φ∈D8
ncc(φ))). (4c)

Extensibility and Composability of a Multi-Stencil Domain Specific Framework 17

Algorithm 1 Fsync recursive function

1: procedure Fsync(Γ ,j)
2: kj = Γ [j]
3: list = []
4: if j = |Γ | then
5: return list
6: else if ∃(rj , nj) ∈ Rj such that nj 6= identity then
7: for all (rj , nj) ∈ Rj such that nj 6= identity do
8: found = false
9: for 0 ≤ i < j do

10: ki = Γ [i]
11: if ki ≺≺≺ kj then
12: found = true
13: S = ∅
14: R = {(wi, nj)}
15: (w,D) = (wi,

⋃
φ∈Dj

nj(φ)))

16: list.[ksynci;j (S,R, (w,D))]
17: end if
18: end for
19: if !found then
20: for j < i ≤ n do
21: ki = Γ [i]
22: if ki ≺≺≺ kj then
23: S = ∅
24: R = {(wi, nj)}
25: (w,D) = (wi,

⋃
φ∈Dj

nj(φ)))

26: list.[ksynci;j (S,R, (w,D))]
27: end if
28: end for
29: end if
30: list · [kj]
31: end for
32: else if wj ∈ S then
33: list.[kredj]
34: else
35: list.[kj]
36: end if
37: return list · Fsync(Γ, j + 1)
38: end procedure

5.2 Hybrid parallelism

A task parallelization technique is a technique to transform a program as a de-
pendency graph of different tasks. A dependency graph exhibits parallel tasks,
or on the contrary sequential execution of tasks. Such a dependency graph can
directly be given to a dynamic scheduler, or can statically be scheduled. In
this paper, we consider a computation kernel as a task and we introduce task
parallelism by building the dependency graph between kernels of the sequen-
tial list Γsync. Thus, as Γsync already takes into account data parallelism, we
introduce hybrid parallelism.

Definition 13 For two computations ki and kj, with i < j, it is said that kj
is dependent from ki with a read after write dependency, denoted ki ≺raw kj,

18 Hélène Coullon et al.

if ∃(rj , nj) ∈ Rj such that wi = rj. In this case, ki has to be computed before
kj.

Definition 14 For two computations ki and kj, with i < j, it is said that kj
is dependent from ki with a write after write dependency, denoted ki ≺waw kj,
if wi = wj and Di∩Dj 6= ∅. In this case, ki also has to be computed before kj.

Definition 15 For two computations ki and kj, with i < j, it is said that kj
is dependent from ki with a write after read dependency, denoted ki ≺war kj,
if ∃(ri, ni) ∈ Ri such that wj = ri. In this case, ki also has to be computed
before kj is started so that values read by ki are relevant.

These definitions are known as data hazards classification. However, a spe-
cific condition on the computation domain, due the multi-stencils specific case,
is introduced for the write after write case. One can note that the independent
keyword of Fig. 6 is useful in this case as the user explicitly indicates that
Di ∩Dj = ∅.
Definition 16 A directed acyclic graph (DAG) G(V,A) is a graph where the
edges are directed from a source to a destination vertex, and where, by following
edges direction, no cycle can be found from a vertex u to itself. A directed edge
is called an arc, and for two vertices v, u ∈ V an arc from u to v is denoted
(
_
u, v) ∈ A.

From the ordered list of computations Γsync and from the MSL descrip-
tion, a directed dependency graph Γdep(V,A) can be built finding all pairs of
computations ki and kj , with i < j, such that ki ≺raw kj or ki ≺waw kj or
ki ≺war kj .
Definition 17 For two directed graphs G(V,A) and G′(V ′, A′), the union
(V,A) ∪ (V ′, A′) is defined as the union of each set (V ∪ V ′, A ∪A′).

Definition 18 From the synchronized ordered list of computation kernels Γsync,
the dependency graph of the computations Γdep(V,A) is obtained from the call
Fdep(Γsync, 0), where Fdep is the recursive function defined in Algorithm 2.

This constructive function is possible because the input is an ordered list.
Actually, if ki ≺ kj then i < j. As a result, ki is already in V when the arc

(
_

ki, kj) is built.
One can note that Γdep only takes into account a single time iteration. A

complete dependency graph of the simulation could be built. This is a possible
extension of this work.

Proposition 19 The directed graph Γdep is an acyclic graph.

As a result of the hybrid parallelization, each resource 0 ≤ r ≤ p − 1
perform a multi-stencil program, defined by

MSPr(Mr, Φr,Dr,N , ∆r, T, Γdep).

The set of computations Γdep is a dependency graph between computation
kernels ki of Γ and synchronizations of kernels added into Γsync. Γdep can be
built from the call to

Fdep(Fsync(Γ, 0), 0).

Extensibility and Composability of a Multi-Stencil Domain Specific Framework 19

Algorithm 2 Fdep recursive function

1: procedure Fdep(Γsync,j)
2: kj = Γsync[j]
3: if j = |Γsync| then
4: return ({}, {})
5: else if j < |Γsync| then
6: G = ({}, {})
7: for 0 ≤ i < j do
8: ki = Γsync[i]
9: if ki ≺raw kj or ki ≺waw kj or ki ≺war kj then

10: G = G ∪ (kj , {(
_

ki, kj})
11: end if
12: end for
13: return G ∪ Fdep(Γsync, j + 1)
14: end if
15: end procedure

Example Figure 7 gives an example of MSP program. From Γsync that has
been built in Equation (3), the dependency DAG can be built. For example, as
k4 computes F and k6 reads F , k4 and k6 becomes vertices of Γdep, and an arc

(
_

k4, k6) is added to Γdep. The overall Γdep built from the call to Fdep(Γsync, 0)
is drawn in Figure 8. By building synchronizations as defined in Definitions
(6), (7) and (8), dependencies are respected. For example, ksync0;1 read and write
B which guarantees that ksync0;1 is performed after k0 and before k1.

k0 ksync0;1 k1

k2

ksync1;4

k3

k4

k5

k6

k7 ksync7;8 k8

Fig. 8: Γdep of the example of program of Figure 7

5.3 Static scheduling

In this section we detail a static scheduling of Γdep by using minimal series-
parallel directed acyclic graphs. Such a static scheduling may not be the most
efficient one, but it offers a simple fork/join task model which makes possible
the design of a performance model. Moreover, such a scheduling offers a simple
way to propose a fusion optimization.

In 1982, Valdes & Al [31] have defined the class of Minimal Series-Parallel
DAGs (MSPD). Such a graph can be decomposed as a serie-parallel tree,

20 Hélène Coullon et al.

k0 k1

k2 k3

Fig. 9: Over-constraint on the forbid-
den N shape.

S

P

k0 k2

P

k1 k3

Fig. 10: TSP tree of Fig. 9.

denoted TSP , where each leaf is a vertex of the MSPD it represents, and
whose internal nodes are labeled S or P to indicate whether the two sub-trees
form a sequence or parallel composition. Such a tree can be considered as a
fork-join model and as a static scheduling. An example is given in Fig. 10.

Valdes & Al [31] have identified a forbidden shape, or sub-graph, called N ,
such that a DAG without this shape is MSPD.

Thus, as Γdep is a DAG, by removing N-Shapes it is transformed to a
MSPD. The intuition is illustrated in Fig. 9. Considering the figure with-
out the dashed line, the sub graph forms a ”N” shape. The fact is that
this shape cannot be represented as a composition of sequences or parallel
executions. To remove such forbidden N-shapes of Γdep = (V,E), we have
chosen to apply an over-constraint with the relation k0 ≺ k3, such that
a complete bipartite graph is created for the sub-dag as illustrated in Fig-
ure 9. By adding this arc to the DAG, it is possible to identify its execution
as sequence(parallel(k0; k2); parallel(k1; k3)) represented by the TSP tree of
Fig. 10.

After these over-constraints are applied, Γdep is MSPD. Valdes & Al [31]
have proposed a linear algorithm to know if a DAG is MSPD and, if it is,
to decompose it to its associated binary decomposition tree. As a result, the
binary tree decomposition algorithm of Valdes & Al can be applied on Γdep to
get the TSP static scheduling of the multi-stencil program.

Example From Γdep illustrated in Fig. 8 the TSP tree represented in Fig. 11
can be computed.

5.4 Fusion optimization

Using MSL, it is possible to ask for data parallelization of the application,
or for an hybrid parallelization. Even though the MSL language is not dedi-
cated to produce very optimized independent stencil codes, but to produce the
parallel orchestration of computations, building the TSP tree makes available
an easy optimization when the data parallelization technique is the only one
used. This optimization consists in proposing a valid merge of some compu-
tation kernels inside a single space loop. This is called a fusion. As previously

Extensibility and Composability of a Multi-Stencil Domain Specific Framework 21

S

S

S

S

k0 ksync0;1

k1

S

S

k7 ksync7;8

k8P

S

k3 k0

S

P

k2 ksync1;4

S

k4 k6

Fig. 11: Serie-Parallel tree decomposition of the example of program of Figure 7

explained in Section 3, MSL restrict the definition of a numerical computation
by writing a single quantity at a time which avoids errors in manual fusion or
counter-productive fusions for task parallelization. MSF guarantees that pro-
posed fusions are correct and will not cause errors in the final results of the
simulation.

Those fusions can be computed from the canonical form of the TSP tree
decomposition. The canonical form consists in recursively merging successive
S vertices or successive P vertices of TSP .

The fusion function Ffus is described in Algorithm 3, where the parent(k)

function returns the parent vertex of k in the tree, and where kfusi;j represents
the fusion of ki and kj keeping the sequential order i; j if i is computed before
j in TSP . Finally, type(k) returns comp if the kernel is a computation kernel,
and sync or red otherwise.

We are not arguing that such a simple fusion algorithm could be as good as
complex cache optimization techniques which can be found in stencil DSLs [30]
for example. However, this fusion takes place at a different level and can bring
performance improvements as illustrated in Section 6. This fusion algorithm
relies on the following observations.

First, two successive computation kernels ki and kj which are under the
same parent vertex S in TSP are, by construction, data dependent. As a
result, what is written by the first one is read by the second one. Thus, wi
the quantity written by ki is common to these computations. Thus, if the
computation domains verify Di = Dj , the fusion of ki and kj will decrease
cache misses.

Second, two successive computation kernels ki and kj which are under
the same parent vertex P in TSP are not, by construction, data dependent.
However, if the computation domains verify Di = Dj , and if Ri ∩ Rj 6= ∅

22 Hélène Coullon et al.

Algorithm 3 Ffus

1: procedure Ffus(TSP (V,E))
2: for (ki, kj) ∈ V 2 do
3: if parent(ki)==parent(kj) then
4: if type(ki) == type(kj) == comp then
5: if parent(ki)==S then
6: if Di == Dj then

7: propose the fusion kfusi;j
8: else
9: if ∃n : Di → Dj ∈ (N) and

⋃
φ∈Di

n(φ) = Dj then

10: propose the fusion kscatteri;j
11: end if
12: end if
13: else if parent(ki)==P then
14: if Di == Dj and Ri ∩Rj 6= ∅ then
15: propose the fusion kfusi;j
16: end if
17: end if
18: end if
19: end if
20: end for
21: end procedure

cache misses could also be decreased by the fusion kfusi;j . These two cases are
illustrated by Fig. 12 and Fig. 13.

P

ki
[Di]

kj
[Dj]

P

kfusi;j

[Di]

Di = Dj

Fig. 12: First fusion case.

S

ki
[Di]

kj
[Dj]

S

kfusi;j

[Di]

Di = Dj
Ri ∩Rj 6= ∅

Fig. 13: Second fusion case.

Third, an additional fusion case is possible and more tricky to find. Sim-
ilarly to the first observation, two successive computation kernels ki and kj
which are under the same parent vertex S in TSP are data dependent and

Extensibility and Composability of a Multi-Stencil Domain Specific Framework 23

what is written by the first one is read by the second one. The construction of
the tree also guarantees that synchronizations are not needed between these
computations, otherwise a ksync would have been inserted between them (in-
herited from Γsync). Thus, wi the quantity written by ki is common to these
computations. Considering the following:

– Di 6= Dj , which means that loop fusion is by default not possible,
– (rj , nj) is the pair read by kj for which rj = wi and for which nj : Dj → Dm

i

the fusion of ki and kj is possible if and only if ∃n : Di → Dj ∈ N such that⋃
φ∈Di

n(φ) = Dj

This means that even if domains are different, a loop fusion is possible if
an adequate neighborhood function can be found. One can note that this
particular fusion case is equivalent to a scatter optimization, often used when
using unstructured meshes. One can also note that the computation kj will
be written in a different manner if a scatter fusion is performed or not. This
particular case is illustrated in Fig. 14.

S

ki
[Di]

kj
[Dj]

S

kscatteri;j

[Di]

Di 6= Dj
∃n : Di → Dj⋃
φ∈Di

n(φ) = Dj

Fig. 14: Third fusion case.

The developer will be notified of fusions in the output of MSC. This is
not a problem by using MSF as the fusion is proposed before the developer
actually write the numerical code of kj .

5.5 Overall compilation process

MSC takes a MSL file written using the grammar described in Section 4, as
well as the Generic Assembly presented in Fig. 5 as inputs, and generates a
specialized component assembly that manages the parallel orchestration of the
computations of the simulation. In this final assembly, that could be compared
to a pattern or a skeleton of the simulation, the developer still has to fill-in
the functions corresponding to the various computation kernels by using the
DDS instantiation chosen into the specialized assembly. The overall behavior
of the compiler is as follows:

24 Hélène Coullon et al.

1. it parses the MSL input file and generates Γ , the list of computation ker-
nels,

2. from Γ , it builds Γsync, the list including synchronizations for data paral-
lelism using Algorithm Fsync introduced in Section 5,

3. from Γsync, it builds Γdep, the DAG supporting hybrid parallelism using
Algorithm Fdep introduced in Section 5,

4. it then removes the N-Shapes from Γdep to get a MSPD graph, and gener-
ates its serie-parallel binary tree decomposition TSP ,

5. it performs the fusion of kernels in TSP if required (data parallelization
only),

6. it transforms GA to generate its output specialized component assembly.

The last step of this compilation process is detailed below. It is composed
of four steps:

1. it instantiates DDS and Data components by using components imple-
mented by a third party HPC specialist,

2. it generates the structure of K components responsible for each computa-
tion kernel of the simulation,

3. it generates a new Scheduler component,
4. it replaces the Computations component of GA by a generated sub-assembly

that matches TSP by using Scheduler, K and Sync components.

New components have been introduced above and need to be explained. A
K component is a component into which the developer will write numerical
code. It could represents a single computation kernel described by the nu-
merician using MSL, or it could represents the fusion of multiple computation
kernels. In any case the name of the generated component will use kernel iden-
tifiers used in the MSL description. A K kernel is composed of m use ports
that are used to be connected to the m quantities needed by the computa-
tion (i.e., the numerical code). The component also exposes a provide port to
be connected to the Scheduler component. Interfaces of a K component are
represented in Fig. 15a.

A Sync component is a static component (not generated) composed of a
use-multiple port which is used to request synchronizations for all quantities it
is linked to (Data). The component also exposes a provide port to be connected
to the Scheduler component. The Sync component is represented in Fig. 15b.

Finally, the Scheduler component is the component responsible for imple-
menting the TSP tree computed by MSC. Thus, this component represents
the specific parallel orchestration of computations. It exposes as many use
ports as there are instances of K components to call (i.e., computations and
fusions of computations). The component also exposes a provide port to be
connected to the Time component. Interfaces of a Scheduler component are
represented in Fig. 15c.

To illustrate how a specialized assembly is generated, the specialized as-
sembly of the example that has been used throughout this paper is represented
in Fig. 16.

Extensibility and Composability of a Multi-Stencil Domain Specific Framework 25

K
∗

(a) K

Sync m

(b) Sync

Scheduler
∗

(c) Scheduler

Fig. 15: Specific components used to transform GA to the specialized compo-
nent assembly of the simulation.

Driverstart

m

T ime Scheduler

A

B

...

1

2
3

cart

k0 1
2

Sync(0, 1) 3

...

Fig. 16: Sub-part of the specialized assembly generated by MSC from the ex-
ample of the example of Fig.7 used throughout the paper. For readability some
connections are represented by numbers instead of lines. The entire assembly
is generated by MSC, however some components are automatically generated
by MSC (in green), some are written by HPC specialists (in red) and others
by the developer (in blue).

5.6 Performance model

In this subsection we introduce two performance models, one for the data
parallelization technique, and one for the hybrid data and task parallelization
technique, both previously explained.

The performance model for the data parallelization technique is inspired by
the Bulk Synchronous Parallel model. We consider that each process handles
its own sub-domain that has been distributed in a perfectly balanced way.
The performance model describes the computation time as the sum of the
sequential time divided by the number of processes, and of the time spent in
communications between processes. Thus, for

– TSEQ the sequential reference time,
– P the total number of processes,
– TCOM the communications time,

the total computation time is

T =
TSEQ
P

+ TCOM . (5)

26 Hélène Coullon et al.

Thus, when the number of processes P increase in data parallelization, the
performance model limit is TCOM

lim
P→+∞

T = TCOM . (6)

As a result, the critical point for performance is when TCOM ≥ TSEQ

P ,
which happens naturally in data parallelization as TCOM will increase with
the number of processes, and

TSEQ

P decrease with the number of processes.
This limitation is always true, but can be delayed by different strategies.

First, it is possible to overlap communications and computations. Second, it is
possible to introduce another kind of parallelization, task parallelization. Thus,
for the same total number of processes, only a part of them are used for data
parallelization, and the rest are used for task parallelism. As a result,

TSEQ

P
will continue to decrease but TCOM will increase later. This second strategy
is the one studied in the following hybrid performance model.

For an hybrid (data and task) parallelization technique, and for

– Pdata the number of processes used for data parallelization,
– Ptask the number of processes used for task parallelization, such that P =
Pdata × Ptask is the total number of processes used,

– Ttask the overhead time due to task parallelization technique,
– and Ftask the task parallelization degree of the application,

the total computation time is

T =
TSEQ

Pdata × Ftask
+ TCOM + Ttask (7)

The time overhead due to task parallelization can be represented as the
time spent to create a pool of threads and the time spent to synchronize those
threads. Thus, for

– Tcr the total time to create the pool of threads (may happened more than
once),

– Tsync the total time spent to synchronize threads,

the overhead is
Ttask = Tcr + Tsync.

The task parallelization degree of the application Ftask is the limitation
of a task parallelization technique. As explained before, a task parallelization
technique is based on the dependency graph of the application. Thus, this
dependency graph must expose enough parallelism for the number of available
threads. For this performance model we consider that

Ftask = Ptask,

however, as it will be illustrated in Section 6 Ftask is more difficult to estab-
lish. Actually, the lower and upper bounds of Ftask are constrained by the
dependency graph of the application.

Extensibility and Composability of a Multi-Stencil Domain Specific Framework 27

As a result when Pdata is small a data parallelization technique may be
more efficient, while an hybrid parallelization could be interesting at some
point to improve performance. The question is: when is it interesting to use
hybrid parallelization ? This paper does not propose an intelligent system to
answer this question automatically, however, it offers a way to understand
how to answer the question. To answer this question let’s consider the two
parallelization techniques, data only and hybrid. We denote

– Pdata1 the total number of processes entirely used by the data only paral-
lelization,

– Pdata2 the number of processes used for data parallelization in the hybrid
parallelization,

– and Ptask the number of processes used for task parallelization in the hybrid
parallelization,

– such that Pdata1 = Pdata2 × Ptask.

We search the point where the data parallelization is less efficient than the
hybrid parallelization. Thus,

TSEQ
Pdata1

+ TCOM1 ≥
TSEQ

Pdata2 × Ptask
+ TCOM2 + Ttask.

This happens when

TCOM1 ≥ TCOM2 + Ttask (8)

This performance model will be validated and will help explain results of
Section 6.

6 Evaluation

This section first presents the implementation details chosen to evaluate MSF
in this paper, and the studied use case. Then, the compilation time of MSC is
evaluated before analyzing both available parallelization techniques, data and
hybrid (data and task). Finally, the impact of kernels fusions is studied.

6.1 Implementation details

The main choices to take when implementing a specialized assembly of GA
concern the technologies used for data and task parallelizations, i.e., imple-
mentation choices of DDS and Scheduler components.

For the data-parallelization, as already detailed many times throughout the
paper, a third party HPC specialist is responsible for implementing DDS and
Data using a chosen library or external language and by following the specified
interfaces of these two components. To evaluate MSF, we have played the role
of HPC specialists and have implemented these components using SkelGIS, a

28 Hélène Coullon et al.

C++ embedded DSL [10] that proposes a distributed Cartesian mesh as well as
user API to manipulate structures while hiding their underlying distribution.

For task parallelism, we have chosen to use OpenMP [13] to generate the
code of the Scheduler component. OpenMP targets shared-memory platforms
only. Although the version 4 of OpenMP has introduced explicit support for
dynamic task scheduling, our implementation only requires version 3 whose
fork-join model is well suited for the static scheduling introduced in Section 5.
The use of dynamic schedulers, such as provided by libgomp2, StarPU [2], or
XKaapi [17], to directly execute the DAG Γdep is left to future work.

As a result, MSC generates a hybrid code which uses both SkelGIS and
OpenMP. It also generates the structure of K components where the developer
must provide local sequential implementations of the kernels using SkelGIS
API.

6.2 Use case description

All evaluations presented in this section are based on a real case study of the
shallow-Water Equations as solved in the FullSWOF2D3 [10,16] code from the
MAPMO laboratory, University of Orléans. In 2013, a full SkelGIS implemen-
tation of this use case has been performed by numericians and developers of
the MAPMO laboratory [9, 10, 12]. From this implementation we have kept
the code of computation kernels to directly use it into K components. Com-
pared to a full SkelGIS implementation, where synchronizations and fusions
are handled manually, MSF automatically compute where synchronizations
are needed and how to perform a fusion without errors. To evaluate MSF on
this use case we have described the FullSWOF2D simulation by using MSL.
FullSWOF2D contains 3 mesh entities, 7 computation domains, 48 data and
98 computations (32 stencil kernels and 66 local kernels). Performances of the
obtained implementation are compared to the plain SkelGIS implementation
to show that no overheads are introduced by MSF by using L2C.

6.3 Multi-Stencil Compiler evaluation

Table 1 illustrates the execution time of each step of MSC for the FullSWOF2D
example. This has been computed on a laptop with a dual-core Intel Core i5
1.4 GHz, and 8 GB of DDR3. MSC has been implemented in Python 2. While
the overall time of 4.6 seconds remains reasonable for a real case study, one
can notice that the computation of the TSP tree is by far the longest step.
As a matter of fact, the complexity of the algorithm for N-shapes removal
is O(n3). If this complexity is not a problem at the moment and onto this
use case it could become one for just-in-time compilation or more complex
simulations. The replacement of the static scheduling by a dynamic scheduling

2 https://gcc.gnu.org/projects/gomp/
3 http://www.univ-orleans.fr/mapmo/soft/FullSWOF/

Extensibility and Composability of a Multi-Stencil Domain Specific Framework 29

using dedicated tools (such as OpenMP 4, StarPU etc.) should solve this in
the future.

Step Parser Γsync Γdep TSP
Time (ms) 1 2 4.2 3998.5

% 0.022 0.043 0.09 86.6

Table 1: Execution times of the MSL compiler

6.4 Data parallelism evaluation

In this part, we disable task-parallelism to focus on data-parallelism. Two
versions of the code are compared in this section: first a plain SkelGIS im-
plementation of FullSWOF2D, where synchronizations and fusions are han-
dled manually; second, a MSF over SkelGIS version where synchronizations
and fusions are automatically handled. SkelGIS has already been evaluated in
comparison with a native MPI implementation for the FullSWOF2D exam-
ple [10]. For this reason, this section uses the plain SkelGIS implementation
as the reference version. This enables to evaluate both the choices made by
MSC as well as the potential overheads of using L2C [5] that is not used in the
plain SkelGIS version. The evaluations have been performed on the Curie su-
percomputer (TGCC, France) described in Table 2. Each evaluation has been
performed nine times and the median is presented in results.

TGCC Curie Thin Nodes
Processor 2×SandyBridge

(2.7 GHz)
Cores/node 16
RAM/node 64 GB
RAM/core 4GB

#Nodes 5040
Compiler [-O3] gcc 4.9.1

MPI Bullxmpi

Table 2: Hardware configuration of TGCC Curie Thin nodes.

Weak scaling Figures 17, 18 and 19 respectively show weak scaling exper-
iments tha twe have conducted. Four computation domains are evaluated:
400 × 400 cells by core, 600 × 600 cells by core and 800 × 800 cells by core,
from 16 to 16,384 cores, as summarized in Table 3.

From these results, one can notice, first, that performances of MSF are
very close to the reference version using plain SkelGIS. This is a very good

30 Hélène Coullon et al.

Domain size per core Number of iterations
400× 400 200
600× 600 200
800× 800 200

Table 3: Weak scaling experiments of Fig. 17, Fig. 18 and Fig. 19.

24 25 26 27 28 29 210 211 212 213 214

cores

0

5

10

15

20

25

30

ti
m

e
 (

s)

MSF over SkelGIS

SkelGIS

Fig. 17: weak-scaling with 400 × 400
domain per core and 200 time itera-
tions.

24 25 26 27 28 29 210 211 212 213 214

cores

0

10

20

30

40

50

60

70

ti
m

e
 (

s)

MSF over SkelGIS

SkelGIS

Fig. 18: weak-scaling with 600 × 600
domain per core and 200 time itera-
tions.

24 25 26 27 28 29 210 211 212 213 214

cores

0

20

40

60

80

100

ti
m

e
 (

s)

MSF over SkelGIS

SkelGIS

Fig. 19: weak-scaling with 800× 800 domain per core and 200 time iterations.

result which shows first that MSC performs good synchronizations and fusions,
and second that overheads introduced by L2C are limited thanks to a good
component granularity in the Generic Assembly.

However, it seems that a slightly drop of performance happens when the do-
main size per core increases. This performance decrease is really small though,
with a maximum difference between the two versions of 2.83% in Fig. 19.

Extensibility and Composability of a Multi-Stencil Domain Specific Framework 31

25 26 27 28 29 210 211 212 213 214

cores

2-2

2-1

20

21

22

23

24

25

26

27

28

it
e
ra

ti
o
n
s

p
e
r

se
co

n
d

Ideal

MSL + SkelGIS

SkelGIS

Fig. 20: Strong scaling on a 10k × 10k domain and 1000 time iterations.

The only noticeable difference between the two versions are due to L2C
which load dynamic libraries at runtime. Because of this particularity, compo-
nents of L2C are compiled with the -fpic compilation flag4 while the SkelGIS
version does not. This flag can have slight positive or negative effects on code
performance depending on the situation and might be responsible for the ob-
served difference.

Strong scaling Figure 20 shows the number of iteration per second for a
10k×10k global domain size from 16 to 16,384 cores. The total number of
time iterations for this benchmark is 1000. In addition to the reference SkelGIS
version, the ideal strong scaling is also plotted in the figure.

First, one can notice that the strong scaling evaluated for the MSF version
is close to the ideal speedup up to 16,384 cores, which is a very good result.
Moreover, no overheads are introduced by MSF which shows that automatic
synchronizations and automatic fusions enable the same level of performance
than the one manually written into the plain SkelGIS version. Finally, no
overheads are introduced by components of L2C. A small behavior difference
can be noticed with 29 = 512 cores, however this variation is no longer observed
with 1024 cores.

6.5 Hybrid parallelism evaluation

In this section, we add task parallelism to evaluate the hybrid parallelization
offered by MSF. The MSF implementation evaluated in this paper relies on
SkelGIS and OpenMP.

4 L2C has been recently extended with the possibility of static linking.

32 Hélène Coullon et al.

The series-parallel tree decomposition TSP of this simulation, extracted
by MSC, is composed of 17 nodes labeled as sequence S and 18 nodes labeled
as parallel P.

We define the level of parallelism as the number of parallel tasks inside one
fork of the fork/join model. The fork/join model obtained for FullSWOF2D
is composed of 18 fork phases (corresponding to P nodes of TSP). Table 4
represents the number of time (denoted frequency) a given level of parallelism
is obtained inside fork phases.

Level 1 2 3 4 6 10 12 16
Frequency 2 1 3 5 3 1 1 2

Table 4: Parallelism level and the number of times this parallelism level appears
into fork phases.

One can notice that the level of task parallelism extracted from the Shallow
water equations is limited by two sequential parts in the application (level 1).
Moreover, a level of 16 parallel tasks is reached two times, and five times for
the fourth level. This means that if two cores are dedicated to task parallelism,
the two sequential parts of the code will not take advantage of these two cores,
and that no part of the code would benefit from more than 16 cores. The task
parallelism, as proposed in this paper (i.e., where each kernel is a task) is
therefore insufficient to take advantage of a single node of modern clusters
that typically supports more than 16 cores.

1 2 4 8 16 32 64 128 256 512 1024 2048
cores

10-4

10-3

10-2

10-1

ti
m

e
 (

s)

Computations

Communications

Fig. 21: Computation vs communication times for a single time iteration using
the data parallelization technique.

Extensibility and Composability of a Multi-Stencil Domain Specific Framework 33

On the other hand, Figure 21 illustrates limitations of data parallelization
technique alone. This figure displays the execution time (with a logarithmic
scale) of FullSWOF2D while increasing the number of cores for a fix domain
size of 500×500 with a total of 200 time iterations (i.e., this is a strong scaling).
One can note that times are really small. Actually the time represented in
Fig. 21 is the time spent into a single time iteration. The speedup of this same
benchmark is represented in blue in Figure 22. One can note that the scaling
is not as good as the one presented in Figure 20. The main difference between
these two benchmarks is the domain size. In the benchmark of Figure 20 the
domain size is 10k× 10k which means that using 28 = 256 cores, for example,
each core has to compute only a 625 × 625 sub-domain. On the other hand,
using 28 cores in Figure 22 each core has to compute a 31 × 31 sub-domain.
Figure 21 shows why the speedup is not as good as the one with a bigger
domain size.

Actually, in this figure, while the computation time (in blue) decreases
linearly with the number of core used, the communication behavior (in red)
is much more erratic. Between 2 and 16 cores, communications are performed
inside a single node thus the time is small and nearly constant. There is a small
oscillation that might be explained by the partitioning differences. SkelGIS
performs a two dimensional partitioning strategy. For this reason a smaller
number of bytes are communicated using 2 cores than using 4, and using 8
cores than using 16 cores. Starting from 32 cores, each node is fully used and
more than one node is used. From this point thus the communication time
is typically modeled as L + S/B where L is the latency, S the data size and
B the bandwidth. This explains the decrease of communication time from 32
to 128 cores where the data sizes communicated by each process decreases.
The increases observed after 128 cores might be due to the fact that with the
increased number of processes the fat-tree becomes deeper and the latencies
increase.

All in all, when the number of core increases, the computation/communi-
cation ratio becomes poorer and poorer. As a result, the data parallelism alone
fails to provide enough parallelism to leverage the whole machine and other
sources of parallelism have to be found. As expected, in Figure 22 the speedup
bends down from 256 to 2048 cores. The same problem would happened in
previous experiment of Figure 20, however as the domain size is larger, the
phenomena appears with more cores.

As task parallelism fails to scale from 16 cores, and as data parallelism
also fails to scale when the communication cost overpass the execution time,
an hybrid parallelization strategy is proposed by MSF and is evaluated below.

In addition to the blue curve, Figure 22 shows speedups for the same exam-
ple (500×500 domain with 200 iterations) but using an hybrid parallelization.
Figure 22 shows a comparison with 2, 4, 8 and 16 cores per MPI process for
task parallelization.

For example, the purple curve shows the parallelization which uses for
each data parallelization process (i.e., MPI process) 8 additional cores for
task parallelization. As a result, for example, when using 2 machines of the

34 Hélène Coullon et al.

24 25 26 27 28 29 210 211

cores

26

27

28

29

210

211

212

213

214

215

it
e
ra

ti
o
n
s

p
e
r

se
co

n
d

Ideal

MSL data parallelization only

MSL using 2 cores for tasks

MSL using 4 cores for tasks

MSL using 8 cores for tasks

MSL using 16 cores for tasks

Fig. 22: Strong scaling comparisons between data parallelization and hybrid
parallelization. A close OpenMP clause is used to bind threads onto cores.

TGCC cluster, with a total of 32 cores, 4 cores are used for SkelGIS MPI
processes, for data parallelization, and for each one 8 cores are used for task
parallelization (4 × 8 = 32). This respects P = Pdata × Ptask as presented in
Section 5.6. As a result, and as explained in Section 5.6, quantities that are
responsible for communications are less divided into sub-domains. Therefore,
the effect observed with the blue curve is delayed to a higher number of cores.

From 2 to 8 cores, the improvement of the strong scaling is clear. However,
reaching 16 cores, an important initial overhead appears and in addition to
this, the curve bends down rapidly instead of improving the one with 8 cores
for task parallelization. Two different phenomena happen in this case.

First, thin nodes of the TGCC Curie are built with two NUMA socket
each of 8 cores. As a result, when increasing the number of OpenMP cores for
task parallelization from 8 to 16 cores, an overhead is introduced by exchanges
of data between memories of the two NUMA sockets. This phenomena is il-
lustrated in Figure 23. In this figure, a different binding strategy is used. A
binding strategy is the way the scheduler binds threads onto available cores.
The strategy used in Figure 23 is called spread (instead of close in Figure 22).
This strategy binds threads on cores in order to spread as much as possible
onto resources, which means that the two NUMA sockets are used whatever
the number of cores used for tasks is. As a result, and as shown in the figure,
using 2, 4 and 8 cores an initial overhead is introduced as the one observed in
Figure 22. This shows that the initial overhead with 16 cores is due to NUMA
effects.

The second phenomena that happens in Figure 22 using 16 cores is due
to the level of parallelism introduced by the task parallelization technique.
Actually, as illustrated in Table 4, only two forks of TSP can take advantage
of 16 cores among a total of 18 forks. This phenomena has been mentioned in

Extensibility and Composability of a Multi-Stencil Domain Specific Framework 35

24 25 26 27 28 29 210 211

cores

25

26

27

28

29

210

211

212

213

214

215

it
e
ra

ti
o
n
s

p
e
r

se
co

n
d

Ideal

MSL data parallelization only

MSL using 2 cores for tasks

MSL using 4 cores for tasks

MSL using 8 cores for tasks

MSL using 16 cores for tasks

Fig. 23: Strong scaling comparisons between data parallelization and hybrid
parallelization. A spread OpenMP clause is used to bind threads onto cores.

Section 5.6 by the variable Ftask and the fact that it is not always true that
Ftask = Ptask. This explains why using 16 cores is less efficient than using 8
cores, even when the two NUMA sockets are always used as in Figure 23.

Finally, to validate the performance model introduced in Section 5.6, and to
understand when the hybrid parallelization becomes more interesting than the
data parallelization, Figure 24 represents TCOM1 and TCOM2 +Ttask of Equa-
tion (8), for the best case, i.e., when 8 cores are used in Figure 22. Figure 24
and Table 5 presents results of these measurements. Results perfectly matches
Figure 22 for 8 cores per MPI process. As a result, the hybrid parallelization
is better for 512 cores or more in this case.

TCOM1 TCOM2 Ttask Equation (8)
16 cores (2× 8) 0.0005 0.00032 0.013 False
32 cores (4× 8) 0.0018 0.00045 0.0062 False
64 cores (8× 8) 0.0013 0.00038 0.0034 False

128 cores (16× 8) 0.00075 0.0005 0.0023 False
256 cores (32× 8) 0.00077 0.0018 0.001 False
512 cores (64× 8) 0.0029 0.0013 0.00052 True

1024 cores (128× 8) 0.018 0.00075 0.00029 True
2048 cores (256× 8) 0.0623 0.00077 0.00016 True

Table 5: Execution times (seconds) of TCOM1, TCOM2 and Ttask for 8 cores
for task parallelization. Verification of the Equation (8).

36 Hélène Coullon et al.

16 32 64 128 256 512 1024 2048
cores

10-4

10-3

10-2

10-1

ti
m

e
 (

s)

Tcom1

Tcom2 + Ttask

Fig. 24: Execution times (seconds) for a single time iteration of TCOM1 and
TCOM2 + Ttask for 8 cores for task parallelization. Verification of the Equa-
tion (8).

6.6 Fusion evaluation

In this section we propose an evaluation of the fusion optimization. From the
TSP tree computed by MSC it may be possible, according to some specific
conditions, to merge the domain loops of some kernels, thus optimizing the
use of cache memories. This kind of optimization is called a fusion and three
fusion optimizations have been introduced in Section 5.4. Among them, the
two first ones (Figures 12 and 13 on page 22) have been automatically detected
by MSF in this case study.

Figure 25 shows the number of iterations per second as a function of the
number of cores with and without fusions. This benchmark is performed on
FullSWOF2D onto a 500 × 500 domain size with 200 time iterations, and by
using data parallelism alone (without tasks). As explained in Section 5.4, the
MSF loop fusion happens at a high level. Most of the time such fusions are
done naturally by a computer scientist. However, an automatic detection of
such fusions avoids errors, particularly for a parallel execution. In addition to
this, more advanced fusion cases, such as a scatter, are more difficult to deduce.
In FullSWOF2D a total of 62 fusions are proposed by MSF over a total of 98
computation kernels. Figure 25 shows that the performance is clearly improved
(around 40%) by these fusions.

However, fusion optimizations are not always relevant. To illustrate this,
we are using the same benchmark of FullSWOF2D onto a 500 × 500 domain
size with 200 time iterations, however we compare data parallelism and hybrid
parallelism both with and without fusion.

Blue curves of Figure 26 represent results for data parallelism with and
without fusion. One can note that the best performance, as expected, is reached

Extensibility and Composability of a Multi-Stencil Domain Specific Framework 37

1 2 4 8 16 32 64 128
cores

0

500

1000

1500

2000

2500

3000

it
e
ra

ti
o
n
s

p
e
r

se
co

n
d

With fusion

Without fusion

Fig. 25: Strong scaling on a 500x500 domain size with 200 time iterations,
with and without fusions proposed by MSF.

by the version using fusions. Red curves represent results by using 2 cores per
MPI process dedicated to tasks, with and without fusion again. One can note
that the best performance is also reached by the version using fusion.

24 25 26 27 28 29 210 211

cores

26

27

28

29

210

211

212

213

it
e
ra

ti
o
n
s

p
e
r

se
co

n
d

Data parallelism without fusion

Data parallelism with fusion

Hybrid 2 cores for tasks without fusion

Hybrid 2 cores for tasks with fusion

Fig. 26: Strong scaling on a 500x500 domain size with 200 time iterations.
Blue curves represent strong scaling for data parallelism with and without
fusion. Red curves represent strong scaling by using 2 cores per MPI process
dedicated to tasks, with and without fusion.

However, to deeper analyze this results, we propose a second evaluation
presented in Figure 27. The blue curves are exactly the same one than in
Figure 26. The red curves, on the other hand, represent results by using 8

38 Hélène Coullon et al.

cores per MPI process dedicated to tasks, with and without fusion. Interesting
results appears in this figure as the hybrid version using fusions is less efficient
than the one without fusions. As already explained, this result is due to the
fact that fusions reduce the number of tasks from 98 to 36 resulting in a non
optimized use of eight cores for task parallelism. By using only 2 cores per
MPI process (in Figure 26) the 36 computation kernels were enough to feed
the two cores, while it is not for eight.

24 25 26 27 28 29 210 211

cores

26

27

28

29

210

211

212

213

it
e
ra

ti
o
n
s

p
e
r

se
co

n
d

Data parallelism without fusion

Data parallelism with fusion

Hybrid 8 cores for tasks without fusion

Hybrid 8 cores for tasks with fusion

Fig. 27: Strong scaling on a 500x500 domain size with 200 time iterations. Blue
curves represent strong scaling for data parallelism with and without fusion,
thus are exactly the same than blue curves of Fig. 26. Red curves represent
strong scaling by using 8 cores per MPI process dedicated to tasks, with and
without fusion.

In conclusion, if fusion optimization incurs a too large reduction of the
number of tasks to feed dedicated cores, the problem observed for 16 cores in
Figure 22 happens earlier which reduces performance. For this reason, MSF
performs fusions only when data parallelization is used alone. This choice could
be more intelligent but this is the subject of future work.

7 Related work

Many domain specific languages have been proposed for the optimization of
single stencil computations. Each one has its own optimization specificities and
targets a specific numerical method or a specific kind of mesh. For example,
Pochoir [30] focuses on cache optimization techniques for stencils applied onto
Cartesian meshes. On the other hand, PATUS [8] proposes to add a paral-
lelization strategy grammar to its stencil language to perform an auto-tuning
parallelization. ExaSlang [28] is specific to multigrid numerical methods. Thus,

Extensibility and Composability of a Multi-Stencil Domain Specific Framework 39

these stencil compilers target a different scope than the Multi-Stencil Frame-
work presented in this paper, which actually orchestrates a parallel execution
of multiple stencil codes together. Hence, an interesting future work would be
to combine these stencil compilers with MSF to build very optimized stencil
kernels K.

Some solutions, closer to MSF, have also been proposed to automatically
orchestrate multiple stencils and computations in a parallel manner. Among
them is Halide [26] that proposes an optimization and parallelization of a
pipeline of stencils. However, Halide is limited to Cartesian meshes and is
specific to images. Liszt [14], OP2 [18] and Nabla [7] all offer solutions for the
automatic parallel orchestration of stencils applied onto any kind of mesh, from
Cartesian to unstructured meshes. The needed mesh can be built from a set
of available symbols in the grammar of each language. Thus, these languages
generalize the definition of a mesh, as it is proposed into the MSL formalism
of Section 3. However, neither Liszt, OP2 nor Nabla handle hybrid parallelism
as it is proposed by MSF.

MSF offers the MSL Domain Specific Language to the numerician to de-
scribe its sequential set of computations. This description, is close to a dataflow
representation. However, MSL differs from general purpose dataflow languages
or framework for two main reasons. First, MSL is specific to numerical simula-
tions and proposes a mesh abstraction adapted to numerical simulations. Thus,
compared to general purpose dataflow runtimes such as Legion [4], HPX [19],
PFunc [20], MSL is closer to the semantic of the domain (mesh, stencils etc.)
and easier to use for non-specialists. Second, MSL is very light and only de-
scriptive. Numerical codes are left to another language and another user (the
developer in Figure 2 on page 5). Furthermore, such dataflow runtimes could
actually be used by MSF as back-ends, instead of using SkelGIS or OpenMP.

This flexibility proposed by MSF is due to software engineering capacities
introduced by proposing a meta-model and by using a component program-
ming model. Actually, MSF is designed to increase separation of concerns and
code-reuse compared to existing solutions. Separation of concerns is illustrated
in Figure 2 and all along the paper. The numerician is only responsible for the
description of the simulation by using MSL. A HPC specialist can propose
new (or updated) components for handling the distributed data structure and
quantities of the simulation. MSF generates from these pieces of information
the parallel orchestration of computations. Finally, the developer of numerical
codes fills computation kernels by using the chosen distributed data structure.
In Liszt, OP2 and Nabla, for example, there is no such separation of concerns
between the numerician and the developer. Moreover, it is not possible to eas-
ily integrate a new distributed data structure in these solutions as a monolithic
code is generated. Finally, thanks to components, MSF improves code-reuse.
Kernel components as well as any component (except the scheduler compo-
nent which is specific to the simulation) can be reused from one simulation to
another.

To conclude and as far as we know, no component-based framework has
been proposed for stencils orchestration.

40 Hélène Coullon et al.

8 Conclusion

In this paper, we have presented MSF, a multi-stencil framework. MSF is built
upon a meta-formalism of a multi-stencil program that we have presented
in Section 3. From this meta-formalism, we have designed, first, the generic
component assembly of a multi-stencil program, and second, the domain spe-
cific language MSL that enables the description of a specific application by a
numerician. From these entries, MSC, the MSF compiler, automatically gen-
erates a parallel component assembly. This assembly represents the parallel
orchestration of computations, independently of implementation choices. Two
parallelization strategies are supported: data parallelization and hybrid (data
and task) parallelization.

By combining a meta-model and component-based programming, MSF has
the particularity to enhance separation of concerns, as well as code-reuse and
composition of existing solutions (e.g., SkelGIS and OpenMP in this paper).
MSF has been evaluated on the real case simulation FullSWOF2D. Results
show that the MSF runtime does not induce unwanted overheads for its data
parallelization technique on both strong and weak scalings. Results also show
that the hybrid parallelization supported by MSF can increase performance
when the data parallelism exposed by the simulation is not enough, which is
a new contribution compared to existing solutions. Finally, we have evaluated
the fusion optimization and shown that it often increases performance but it
is not always a good choice, particularly when performing hybrid parallelism.

Many perspectives of future work raise from this paper. First, even if using
one distributed data structure or another is possible and facilitated by MSF,
the HPC specialist still has to understand component programming models
and the meta-model of the framework to add new implementation of DDS
and Data components. We think it could be interesting to also facilitate the
work of the HPC specialist by proposing a semi-automated framework to add
new implementations of these components to MSF.

Second, it has been shown in the performance model and evaluation results
that the choice between data parallelism and hybrid parallelism in not trivial.
It depends on the time spent in computations, the number of cores and nodes
used for the execution, as well as the network behavior (Figure 21 and 22).
MSF, thanks to its meta-formalism and to the use of component models, easily
handles the activation of one parallelism technique or another. Thus, MSF can
be considered as a performance leverage for multi-stencil programs. However,
it would be interesting to investigate how an algorithm could choose the best
parallelization technique for a given execution of a multi-stencil simulation.

The same choice problem is raised by the fusion optimization. For the same
reasons an algorithm could choose the best solution for a given execution.
To design such an algorithm different solutions should be studied, such as
following an approximated behavior model, or using calibration runs to then
use deep learning algorithms, etc.

Extensibility and Composability of a Multi-Stencil Domain Specific Framework 41

Finally, by using component models doors are opened to reconfiguration
of applications [22] which means that the application could adapt its behavior
and structure to external events.

Acknowledgements This work has partially been supported by the PIA ELCI project of
the French FSN. This work was granted access to the HPC resources of TGCC under the
allocations t2015067470, x2016067617 and AP010610191 made by GENCI.

References

1. B. A. Allan et al. A component architecture for high-performance scientific computing.
International Journal of High Performance Computing Applications, 20(2):163–202,
2006.

2. C. Augonnet, S. Thibault, R. Namyst, and P-A. Wacrenier. StarPU: a unified plat-
form for task scheduling on heterogeneous multicore architectures. Concurrency and
Computation: Practice and Experience, 23(2):187–198, 2011.

3. F. Baude, D. Caromel, C. Dalmasso, M. Danelutto, V. Getov, L. Henrio, and C. Pérez.
Gcm: a grid extension to fractal for autonomous distributed components. annals of
telecommunications, 64(1-2):5–24, 2009.

4. Michael Bauer, Sean Treichler, Elliott Slaughter, and Alex Aiken. Legion: Expressing
locality and independence with logical regions. In International Conf. on High Perfor-
mance Computing, Networking, Storage and Analysis. IEEE, 2012.

5. Julien Bigot, Zhengxiong Hou, Christian Prez, and Vincent Pichon. A low level compo-
nent model easing performance portability of hpc applications. Computing, 96(12):1115–
1130, 2014.

6. Julien Bigot and Christian Pérez. Increasing Reuse in Component Models through
Genericity. Research Report RR-6941, 2009.

7. Jean-Sylvain Camier. Improving performance portability and exascale software pro-
ductivity with the ∇ numerical programming language. In Proceedings of the
3rd International Conference on Exascale Applications and Software, EASC ’15, pages
126–131, Edinburgh, Scotland, UK, 2015. University of Edinburgh.

8. M. Christen, O. Schenk, and H. Burkhart. PATUS: A Code Generation and Autotuning
Framework for Parallel Iterative Stencil Computations on Modern Microarchitectures.
In Parallel & Distributed Processing Symposium (IPDPS), 2011 IEEE International,
pages 676–687. IEEE, May 2011.

9. Stéphane Cordier, Hélene Coullon, Olivier Delestre, Christian Laguerre, Minh Hoang
Le, Daniel Pierre, and Georges Sadaka. Fullswof paral: Comparison of two paralleliza-
tion strategies (mpi and skelgis) on a software designed for hydrology applications. In
ESAIM: Proceedings, volume 43, pages 59–79. EDP Sciences, 2013.

10. H. Coullon and S. Limet. The SIPSim implicit parallelism model and the SkelGIS
library. Concurrency and Computation: Practice and Experience, 2015.

11. Hélène Coullon and Sébastien Limet. Algorithmic skeleton library for scientific simula-
tions: Skelgis. In International Conference on High Performance Computing & Simu-
lation, HPCS 2013, Helsinki, Finland, July 1-5, 2013, pages 429–436, 2013.

12. Hélène Coullon, Sébastien Limet, and Hoang Le Minh. Parallelization of Shallow-Water
Equations with the Algorithmic Skeleton Library SkelGIS. In Elsevier, editor, ICCS,
volume 18 of Procedia Computer Science, pages 591–600, Barcelone, Spain, June 2013.
Elsevier.

13. L. Dagum and R. Menon. Openmp: an industry standard api for shared-memory pro-
gramming. Computational Science Engineering, IEEE, 5(1):46–55, Jan 1998.

14. Zachary DeVito, Niels Joubert, Francisco Palacios, Stephen Oakley, Montserrat Medina,
Mike Barrientos, Erich Elsen, Frank Ham, Alex Aiken, Karthik Duraisamy, Eric Darve,
Juan Alonso, and Pat Hanrahan. Liszt: A domain specific language for building portable
mesh-based pde solvers. In Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis, SC ’11, pages 9:1–9:12,
New York, NY, USA, 2011. ACM.

42 Hélène Coullon et al.

15. ETP4HPC. ETP4HPC Strategic Research Agenda Achieving HPC leadership in Eu-
rope. Technical report, ETP4HPC, 2013.

16. S. Ferrari and F. Saleri. A new two-dimensional shallow water model including pres-
sure effects and slow varying bottom topography. M2AN Math. Model. Numer. Anal.,
38(2):211–234, 2004.

17. T. Gautier, J.V.F. Lima, N. Maillard, and B. Raffin. Xkaapi: A runtime system for
data-flow task programming on heterogeneous architectures. In Proceedings of the 2013
IEEE 27th International Symposium on Parallel and Distributed Processing, IPDPS
’13, pages 1299–1308, Washington, DC, USA, 2013. IEEE Computer Society.

18. M. B. Giles, G. R. Mudalige, Z. Sharif, G. Markall, and P. H.J. Kelly. Performance
Analysis of the OP2 Framework on Many-core Architectures. SIGMETRICS Perform.
Eval. Rev., 38(4):9–15, March 2011.

19. Hartmut Kaiser, Thomas Heller, Bryce Adelstein-Lelbach, Adrian Serio, and Dietmar
Fey. Hpx: A task based programming model in a global address space. In Proceedings
of the 8th International Conference on Partitioned Global Address Space Programming
Models, PGAS ’14, pages 6:1–6:11, New York, NY, USA, 2014. ACM.

20. Prabhanjan Kambadur, Anshul Gupta, Amol Ghoting, Haim Avron, and Andrew Lums-
daine. Pfunc: Modern task parallelism for modern high performance computing. In
Proceedings of the Conference on High Performance Computing Networking, Storage
and Analysis, SC ’09, pages 43:1–43:11, New York, NY, USA, 2009. ACM.

21. Cédric Lachat, François Pellegrini, and Cécile Dobrzynski. PaMPA: Parallel Mesh Par-
titioning and Adaptation. In 21st International Conference on Domain Decomposition
Methods (DD21), Rennes, France, June 2012. INRIA Rennes-Bretagne-Atlantique.

22. Vincent Lanore and Christian Pérez. A reconfigurable component model for hpc. In Pro-
ceedings of the 18th International ACM SIGSOFT Symposium on Component-Based
Software Engineering, CBSE ’15, pages 1–10, New York, NY, USA, 2015. ACM.

23. J. Nieplocha, B. Palmer, V. Tipparaju, M. Krishnan, H. Trease, and E. Aprà. Advances,
applications and performance of the global arrays shared memory programming toolkit.
Int. J. High Perform. Comput. Appl., 20(2):203–231, May 2006.

24. Object Management Group. Corba component model 4.0 specification. Specification
Version 4.0, Object Management Group, April 2006.

25. François Pellegrini and Jean Roman. Scotch: A software package for static mapping
by dual recursive bipartitioning of process and architecture graphs. In Proceedings
of the International Conference and Exhibition on High-Performance Computing and
Networking, HPCN Europe 1996, pages 493–498, London, UK, UK, 1996. Springer-
Verlag.

26. J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and S. Amarasinghe. Halide:
A language and compiler for optimizing parallelism, locality, and recomputation in
image processing pipelines. In Proceedings of the 34th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’13, pages 519–530, New
York, NY, USA, 2013. ACM.

27. J. Richard, V. Lanore, and C. Pérez. Towards application variability handling with
component models: 3d-fft use case study. In Proc. of The 8th Workshop on UnCon-
ventional High Performance Computing (UCHPC), Vienna, Austria, August 2015. To
appear.

28. C. Schmitt, S. Kuckuk, F. Hannig, H. Köstler, and J. Teich. Exaslang: A domain-
specific language for highly scalable multigrid solvers. In Proceedings of the Fourth
International Workshop on Domain-Specific Languages and High-Level Frameworks
for High Performance Computing, WOLFHPC ’14, pages 42–51, Piscataway, NJ, USA,
2014. IEEE Press.

29. Clemens Szyperski. Component Software: Beyond Object-Oriented Programming.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2nd edition, 2002.

30. Y. Tang, R.A. Chowdhury, B.C. Kuszmaul, C-K Luk, and C.E. Leiserson. The pochoir
stencil compiler. In Lance Fortnow and Salil P. Vadhan, editors, SPAA, pages 117–128.
ACM, 2011.

31. Jacobo Valdes, Robert E. Tarjan, and Eugene L. Lawler. The recognition of series
parallel digraphs. In Proceedings of the Eleventh Annual ACM Symposium on Theory
of Computing, STOC ’79, pages 1–12, New York, NY, USA, 1979. ACM.

