
1

Coexistence in Molecular Communications

Malcolm Egan*, Trang C. Mai, Trung Q. Duong and Marco Di Renzo

Abstract

Molecular communications is emerging as a technique to support coordination in nanonetworking,

particularly in biochemical systems. In complex biochemical systems such as in the human body, it is

not always possible to view the molecular communication link in isolation as chemicals in the system

may react with chemicals used for the purpose of communication. There are two consequences: either

the performance of the molecular communication link is reduced; or the molecular link disrupts the

function of the biochemical system. As such, it is important to establish conditions when the molecular

communication link can coexist with a biochemical system. In this paper, we develop a framework to

establish coexistence conditions based on the theory of chemical reaction networks. We then specialize

our framework in two settings: an enzyme-aided molecular communication system; and a low-rate

molecular communication system near a biochemical system. In each case, we prove sufficient conditions

to ensure coexistence.

Keywords: Molecular communications, coexistence, chemical reaction networks.

*Corresponding author.

M. Egan is with the CITI Lab, 69621 Villeurbanne, France which is a joint laboratory in Université de Lyon, INSA-
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I. INTRODUCTION

Like any large-scale network, devices that form nanonetworks must be able to perform three

basic tasks [1]: sensing; actuation; and coordination. As such, the ability for these nanoscale

devices to share information or communicate is a key requirement. In fact, due to the small-

scale of nanoscale devices, they are limited in their ability to function in isolation and need to

exploit collaborative sensing and actuation, which is only possible when they can communicate.

Due to strict size and energy constraints on the devices that make up a nanonetwork, commu-

nication strategies differ from traditional macroscale communication networks. One promising

communication strategy is molecular communication, where information is encoded in the num-

ber, type or timing of information molecules emitted by a transmitting device [2]. The information

molecules then propagate through a fluid medium—often via diffusion—to be received by the

intended devices.

There have now been many studies of molecular communication systems from the perspectives

of information theory and communication theory [3]. Communication in biological systems has

also been explored using tools from systems biology, particularly for quorum sensing in bacteria

colonies [4], [5]. These studies include the capacity of molecular communication links [6]–[10],

receiver design [11], [12], and inter-symbol interference mitigation strategies [13]. However,

a widespread assumption is that molecular communication links exist in an isolated chemical

system. That is, there are no other biochemical systems that may interact with the molecular

communication link.

Some of the most ambitious proposals for molecular communication are applications within the

human body (see e.g., [14]), which consists of a large number of complex biochemical systems.

As such, it is not always possible to assume that the molecular communication link will not

interact with a pre-existing biochemical system and hence to view the molecular communication

link as an isolated system.

There are two potential side effects of this interaction: the molecular communication link’s

performance may be reduced; and the function of the biochemical system may be disrupted.

Clearly, if the biochemical system is, for instance, a cell in the human body it is important to

ensure that the impact of the molecular communication link is limited. In this case, the molecular

communication link and the biochemical system are said to coexist.

It is worth noting that coexistence in molecular communication bears similarities to coexistence
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in wireless communication networks. In particular, the analogous situation is where an unlicensed

wireless network is introduced, which interferes with a pre-existing licensed wireless network.

For wireless communication networks, the cognitive radio framework [15] has been proposed to

ensure that the operation (or function) of the licensed wireless network is preserved.

However, there is not as yet a framework analogous to cognitive radio for molecular com-

munication links interacting with a pre-existing biochemical system. This is in part due to the

fact that the interaction is of a completely different nature. In fact, the interaction between a

molecular communication link and a biochemical system is through chemical reactions.

Existing work on the problem of coexistence in molecular communication systems is focused

on nanomedicine applications, where the goal is to ensure that the maximum concentration of

information molecules introduced by the communication link does not exceed a given level to

prevent toxicity [16]. Although the maximum concentration or quantity of information molecules

is an important factor, it is also clear that the impact of the molecular communication link on

the biochemical system will also depend on the type of molecules used to carry information and

the structure of the biochemical system.

In this paper, we instead study the problem of characterizing the impact of a molecular

communication link on a pre-existing biochemical system. In particular, we develop a framework

to establish conditions when a molecular communication system and a biochemical system can

coexist. Our framework is based on the theory of chemical reaction networks [17], which accounts

for how the concentrations of different chemical species in a biochemical system evolve over

time. This dynamical aspect of our framework is important because the function of a biochemical

system depends not only on the maximum concentration of a given chemical species, but also

on the evolution of the concentrations. By basing our framework on chemical reaction networks,

we are able to study how the evolution of concentrations in the biochemical system changes in

the presence of a molecular communication link.

In general, there is not a single definition of coexistence, and it will depend on features of

both the molecular communication link and the biochemical system. Using our framework, we

address the coexistence problem in two settings, each with their own notion of coexistence. In

the first setting, we investigate the effect of introducing enzymes into a molecular communication

link for the purpose of reducing inter-symbol interference [13]. In this setting, the coexistence

question reduces to how much the concentration of a given chemical species in a pre-existing

biochemical system is perturbed with the introduction of the enzymes. We show that it is possible
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to derive closed-form approximations for the time the enzymes are active such that coexistence

is possible, which provides insight into the relationship between the concentration of the enzyme

and the perturbation of the biochemical system.

In the second setting, we consider the interaction of the information molecules with a wide

class of biochemical systems. In particular, we focus on biochemical systems with a unique

equilibrium. In this setting, the coexistence question is whether or not the equilibrium of the

biochemical system is preserved after introducing a low-rate molecular communication link.

Using tools from the theory of chemical reaction networks, we provide explicit conditions on

the choice of information molecules to ensure coexistence.

A. Summary of Contributions

We summarize our contributions as follows:

1) We develop a framework for systems consisting of a biochemical system and a molecular

communication link. The framework is based on the theory of chemical reaction networks

and accounts for the time-evolution of the concentration of chemical species in the bio-

chemical system.

2) We apply our framework to a system with a molecular communication link that exploits

enzymes to reduce inter-symbol interference. We derive closed-form approximations for

the perturbation of a biochemical system due to the presence of the enzymes. This provides

a means of quantifying the duration of time that the enzymes should be active.

3) We also apply our framework to a system where the information molecules from a low-rate

molecular communication link interact with chemical species in a large class of biochemical

systems. We derive explicit conditions on the choice of information molecules to ensure that

the equilibrium of the biochemical system is preserved. We verify our characterization in an

example via numerical solution of the system of ordinary differential equations governing

the system.

B. Organization of the Paper

The remainder of the paper is organized as follows. In Section II, we introduce our model

which applies to wide range of biochemical systems and molecular communication links. In Sec-

tion III, we analyze the first setting where enzymes are used to reduce inter-symbol interference.
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In Section IV, we study how a low-rate molecular communication link affects a biochemical sys-

tem with a unique equilibrium. In particular, we derive conditions on the information molecules

to ensure that the equlibrium is preserved. In Section V, we conclude and discuss open questions.

II. THE REACTION-NETWORK MODEL

In this section, we develop a framework to model the interactions between a biochemical

system and a molecular communication link. We view a biochemical system as a collection of

chemical species with time-varying concentrations due to reactions that can take place between

the species. As a consequence, our framework is based on chemical reaction network theory. This

provides a means of accounting for evolutions of the concentration for each chemical species

over time.

A. Modeling Biochemical Systems

In our model, the biochemical system is a set of chemical species that are related by a set

of chemical reactions. As such, the building blocks are the chemical species in the system, the

possible reactions between each subset of species, and the rates at which these reactions occur.

Before introducing the chemical reaction network model, we begin with the popular example of

enzyme-activated biochemical systems [18].

An important class of enzyme-activated biochemical systems consists of four chemical species:

the enzyme E; the reactant S; the complex ES; and the product P . The set of chemical species

in this example is then SE = {E, S,ES, P}. In this system, there are three reactions:

E + S
k1→ ES

ES
k2→ E + S

ES
kcat→ E + P, (1)

where k1, k2, kcat are the reaction rate coefficients.

A convenient way of representing each of these reactions is as a map from NSE to NSE . For

example, the first reaction is then written as (1, 1, 0, 0)→ (0, 0, 1, 0). In this way, we can define

a set of reactions RE = {yi → y′i, i = 1, 2, 3}, where yi ∈ NSE is the vector of reactants in

reaction i and y′i ∈ NSE is the vector of products.

The pair of chemical species and chemical reactions (SE,RE) is known as a chemical reaction

network. In order to model a biochemical system, we also need to consider the dynamics of the
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reactions. Let [E](t), [S](t), [ES](t), [P ](t) denote the concentration of each chemical species at

time t. Under the standard assumption of mass-action kinetics [19], the concentrations of each

species in the enzyme-activated biochemical system are then governed by the following system

of ordinary differential equations

d[E](t)

dt
= −k1[E](t)[S](t) + k2[ES](t) + kcat[ES](t)

d[S](t)

dt
= −k1[E](t)[S](t) + k2[ES](t)

d[ES](t)

dt
= k1[E](t)[S](t)− k2[ES](t)− kcat[ES](t)

d[P ](t)

dt
= kcat[ES](t), (2)

with initial conditions [E](0) = E0, [S](0) = S0, [ES](0) = ES0, and [P ](0) = P0. We further

assume the conservation law [E](t) + [ES](t) = E0 + ES0 holds. The biochemical system can

then be written as the tuple (SE,RE, kE), where kE : {1, 2, 3} → {k1, k2, kcat}.

We now present the definition of a biochemical system used in the remainder of this work.

Definition 1. A biochemical system is the tuple (S,R, k), consisting of a set of chemical species

S, a set of reactions R = {yi → y′i, i = 1, 2, . . .}, and the rate function k.

Let x(t) ∈ RS be the vector consisting of concentrations of each chemical species at time t.

Under mass-action kinetics, the dynamics of the biochemical system is governed by

ẋ(t) =
∑

y→y′∈R

ky→y′x(t)y(y′ − y), (3)

where x(t)y = x1(t)
y1x2(t)

y2 · · · .

This model for biochemical systems is directly applicable under the assumptions of mass

balance, constant temperature, constant pressure and a spatially uniform concentration of reac-

tants [20]. Although these conditions are not always present, the reaction network framework

provides a tractable way of analyzing the behavior of biochemical systems, which must otherwise

be treated on a case-by-case basis informed by experimental data. In order to establish when the

reaction network model is applicable, note that in general the concentration of each species is

governed by reaction-diffusion equations, given by

∂[Ai]

∂t
= Di∇2[Ai] +Ri, i = 1, 2, . . . (4)
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where Ri is the contribution of the reactions to the dynamics and Di is the diffusion coefficient.

In general, it is necessary to account for both the diffusion and reaction terms. Nevertheless, the

reaction network framework is a good approximation in the reaction-limited regime, where the

effect of diffusion is negligible. This regime can be quantified by the Damköhler number Da

[21], which is a dimensionless parameter given by the ratio of the characteristic diffusion time

to the characteristic reaction time. In particular, when Da � 1, the reactions dynamics dominate

the diffusion dynamics and the reaction network framework can be applied.

As we will see in more detail in Section III and Section IV, reaction networks can be

applied to obtain important insights into the coexistence problem. In particular, we are able

to consider both quantitative and qualitative features of the complete system including both

the molecular communication link and the biochemical system. A key qualitative feature of

biochemical reaction systems is the existence of an equilibrium point. In particular, when it

exists, an equilibrium point of a biochemical system (S,R, k) is defined as limt→∞ x(t). The

analysis of qualitative features has the desirable aspect that the results are robust in the sense

that they do not depend on precise values of parameters nor the form of the reactions [22].

B. Modeling the Molecular Communication Link

We now turn to modeling molecular communication links within the framework of chemical

reaction networks. Consider a transmitting device that emits K chemical species at time t = 0,

with concentrations [Ij](0) = Lj, j = 1, 2, . . . , K. We assume that none of the species {Ij}

react with each other. Therefore, in the absence of any other chemical species, the only way

for the concentrations [Ij](t), j = 1, 2, . . . , K to vary is for the receiving device to absorb the

information molecules {Ij}.

Suppose that the rate coefficient for the transmitting device’s production of chemical species

Ij is kIj ,p and the rate coefficient for the receiving device absorption of chemical species Ij is

kIj ,a. Then, the chemical reactions for the information molecules are

∅
kIj ,p→ Ij

Ij
kIj ,a→ ∅, (5)

where ∅ corresponds to a zero molecule, which arises when either a new molecule of Ij is

produced or an existing molecule of Ij is absorbed. In diffusion-based molecular communication,
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the rate coefficient kIj ,a corresponds to the rate that information molecules diffuse from the

transmitting device and are absorbed by the receiver.

As such, the molecular communication link can be viewed as a chemical reaction system

{SI ,RI , kI), with chemical species SI = {I1, . . . , IK}, reactions RI defined in (5), and reaction

rate function kI : j 7→ kIj .

Recently, methods to reduce inter-symbol interference have been introduced which modify

the reactions in (5). A key example is the enzyme-aided approach in [13]. In this approach,

enzymes are introduced into the fluid to reduce inter-symbol interference by reducing the quantity

of persisting information molecules. It is straightforward to include such approaches into our

model by adding these new chemical species to SI and reactions to the set RI , which we explore

in detail in Section III.

C. Modeling the Complete System

We have seen that both the molecular communication link and any pre-existing biochemical

system can be modeled as individual chemical reaction networks. In order to establish conditions

for these systems to coexist, the remaining step is to form a model for the complete system. In

particular, we show how to compose the biochemical system and the molecular communication

link to form the model of the complete system.

The first step is to construct the set of chemical species, which is simply the union SB ∪ SI .

To obtain the set of reactions, note that it is possible that species in SB may react with species in

SI resulting in reactions that are neither in RB nor RI . In this case, it is non-trivial to establish

coexistence. Let RC denote the set of reactions that are neither in RB nor RI . The resulting

chemical reaction system for the complete system is therefore (SB ∪ SI ,RB ∪ RI ∪ RC , kC),

where kC is the rate function for all reactions in RB ∪RI ∪RC .

With a model for the complete system in hand, we now study the coexistence problem. We

begin with enzyme-aided molecular communication links in Section III.

III. ENZYME-AIDED MOLECULAR COMMUNICATIONS

In molecular communication systems, enzymes have been proposed as means to reduce inter-

symbol interference. However, in the presence of a biochemical system, these enzymes may

in fact catalyze unintended chemical reactions. Although many enzymes are highly specialized,

promiscuous enzymes can arise [23] which may not only react with information molecules in a
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molecular communication link, but also with chemical species in the pre-existing biochemical

system.

In this section, we study the coexistence problem for enzyme-aided molecular communication

links. In particular, we consider a molecular communication link, which includes an enzyme E.

In addition, there is a biochemical system (SB,RB, kB) containing a single chemical species S

that can react with the enzyme E with dynamics governed by the equations in (2). We assume

that the biochemical system is at equilibrium—i.e., the concentrations of species in SB converge

as t → ∞—and that the reaction between S and E occurs at a much faster rate than S with

any other species in SB.

The question we are concerned with is to establish how long the enzyme E can be present in

order to ensure that the concentration [S](t) does not drop below a threshold S0 −∆ from its

initial concentration S0. In practice, the enzymes can be switched off using inhibition networks

[18] where the molecular communication link introduces additional molecules that bind at a

rapid rate to the enzymes, preventing species in the biochemical system from interacting with

the enzymes. For biochemical systems that are locally stable, this condition can ensure that the

concentrations of species in the biochemical system return to the same equilibrium point.

Formally, we seek the time

t∗ = sup{t||S0 − [S](t)| ≤ ∆}. (6)

Moreover, we say that the molecular communication link and the biochemical system coexist if

the enzyme E is not activated after time t∗. As such, the analysis in this section provides first

insights into the influence of coexistence constraints on molecular communication link design.

In order to find the time t∗, it is in general necessary to solve the equations in (2), which is

not possible in closed-form. Nevertheless, these equations can be simplified under the pseudo

steady-state assumption (PSS), which holds when E0 � Km + S0, where

Km =
k2 + kcat

k1
. (7)

In particular, the equations under PSS can be well approximated by the Michaelis-Menten kinetics

[18, Eq. (2.9)]

d[S](t)

dt
= −kcat(E0 + ES0)[S](t)

Km + [S](t)
. (8)

The Michaelis-Menten kinetics form a good approximation to the mass action dynamics of the

enzyme-activated system in (2) when the PSS property holds and have also been used as a
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model for molecular communication systems in [13]. This equation can be solved in terms of

the Lambert W-function as [24, Eq. (27)]

[S](t) = KmW (F (t)), (9)

where W (·) is the Lambert W-function given by the solution to

x = W (x)eW (x), (10)

the function F (t) is given by

F (t) =
S0

Km

exp

(
1

Km

(S0 − Vmaxt)

)
, (11)

and Vmax = kcat(E0 + ES0).

By exploiting (9), it is straightforward to solve for t∗ in (6). However, we can obtain an even

simpler expression for t∗ in the case that S[t]� Km. Here, from (8), it follows that

[S](t)

dt
= −Vmax, (12)

which implies

S0 − [S](t) = Vmaxt ≤ ∆, (13)

and hence

t∗ =
∆

Vmax

. (14)

To verify the approximation in (14) for the time t∗, which corresponds to the maximum

duration of time the enzyme E can be activated, we investigate the influence of the reaction

rate coefficients and the perturbation ∆ numerically in Fig. 1. In the figure, the parameters are

Km = 10−2, S0 = 10−2 M , E0 = 166 µM , with kcat ranging from 0.5 s−1 to 10 s−1, which are

consistent with the design of the molecular communication link in [13] and with the parameters

for promiscuous enzymes [23]. Observe from the figure that the approximation of t∗ in (14) is

in good agreement with the solution in (9). In this regime, the duration the enzyme can be active

while still ensuring coexistence is dependent only on the maximum perturbation ∆, the initial

concentration of the enzyme E0, and the reaction rate coefficient kcat.
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Fig. 1. Plot of the time t∗ for the enzyme to be activated versus the perturbation ∆ in the concentration of the substrate S.

IV. LOW-RATE MOLECULAR COMMUNICATION LINKS

In this section, we consider coexistence between a molecular communication link and a large

class of biochemical systems. A consequence is that it is no longer possible to obtain closed-

form approximations for the dynamics of the biochemical system, even without the influence of

the molecular communication link. As such, we instead focus on the long-term behavior of the

biochemical system in the presence of a low-rate molecular communication link. In particular,

we consider a class of biochemical systems with a unique equilibrium and ask the question of

how the molecular link should be designed to ensure the equilibrium is preserved.

Characterizing the behavior of a large class of biochemical systems requires more sophisti-

cated use of the chemical reaction network framework. To this end, we begin our analysis by

recalling key definitions and a case of the global attractor theorem, which gives conditions for
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a biochemical system to converge to a unique equilibrium.

A. Preliminaries

Before addressing the coexistence problem for low-rate molecular communication links, we

first recall several important definitions and a key result in chemical reaction network theory,

which can be found in [25].

The first notion is that of the stoichiometric subspace, which constrains the concentration

trajectories. These constraints are induced by the reactions in the system.

Definition 2. The stoichiometric subspace H ⊂ RS is the subspace spanned by {y′ − y|y →

y′ ∈ R}.

For each initial condition u, the stoichiometric subspace induces a stoichiometric compatibility

class, which is given by (u + H) ∩ RS≥0. In particular, the stoichiometric compatibility class is

the region of RS≥0 that the concentration trajectories lie in; that is, the valid concentration vectors

given the initial condition and the reactions governing the system.

The notion of equilibrium for the biochemical system is formalized in the following definition.

Definition 3. A chemical reaction system (S,R, k) with initial concentration vector u ∈ RS

is said to have an equilibrium point α ∈ RS if limt→∞ x(t) = α. Moreover, let H be the

stoichiometric subspace of (S,R, k). Then, α is unique if it is the only equilibrium point in

(u +H) ∩ RS>0.

An important class of chemical reaction systems is those that are complex balanced.

Definition 4. A chemical reaction system (S,R, k) is complex balanced if there exists a point

α ∈ RS>0 such that for every y ∈ ZS≥0,∑
y→y′∈R

ky→y′α
y(y′ − y) =

∑
z→y∈R

kz→y∈Rα
z(y − z). (15)

The point α is called the point of complex balance.

Intuitively, a point of complex balance corresponds to a concentration vector, where the total

rate of production of y (equivalent to a complex of species) is equal to the total rate of production

of complexes in reactions where y is the substrate, for all y.
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We now turn to establishing conditions on the molecular communication link to ensure that

the equilibrium of a nearby biochemical system is preserved.

B. Equilibrium-Preserving Low-Rate Molecular Communication Links

We now study the coexistence problem for a biochemical system with a unique equilibrium

and a low-rate molecular communication link. In particular, we define a low-rate molecular

communication link as a one-shot transmission, where information molecules are released only

for a finite time and the system ceases to communicate afterwards. From the perspective of the

biochemical system, time t = 0 corresponds to the time that the last information molecule is

released by the transmitter. As such, the molecular communication link is modeled as a reaction

network with species in SI = {I1, . . . , IK} and reactions

Ij
kIj ,a→ ∅. (16)

Our main result is a sufficient condition on the choice of information molecules to ensure that

the biochemical system preserves its unique equilibrium.

Theorem 1. Let (S,R, k) be a weakly reversible complex balanced reaction system with point

of complex balance α. Suppose that for the trajectory x(t) with initial conditions x(0) ∈ (u +

H) ∩ RS≥0, the following limit holds

lim
t→∞

x(t) = α. (17)

Further, let (SI ,RI , kI) be the reaction system corresponding to a molecular communication

link. Suppose that reactions involving species in S and SI are of the form∑
j

bjIj +
∑
j

cjXj �
∑
j

djXj, (18)

where at least one element of each set {bj}, {cj}, {dj} is strictly positive. Then, for any initial

conditions u ∈ RS>0, there exists a unique equilibrium in (u+H)∩RS≥0 given by limt→∞ x(t) = α.

Proof. See Appendix A.

Observe from Theorem 1 that sufficient conditions for the molecular communication link to

preserve the unique equilibrium of the biochemical system are that the information molecules

should be selected to only act as catalyzers and that the reactions between the information

molecules and the species in the biochemical system should be reversible.
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The conditions in Theorem 1 place strong constraints on the choice of information molecules.

In particular, the conditions suggest that the information molecules should behave like enzymes

for chemicals in the biochemical system.

C. Numerical Results

To explore the effect of the molecular communication link on a pre-existing biochemical

system, we consider the following example. To begin, suppose (SB,RB, kB) is a biochemical

system where SB = {X1, X2, X3} and RB consists of the reactions

X1 +X3
k1→ 2X2

2X2
k2→ X1 +X3

It is immediately clear that these reactions are weakly reversible since these reaction are re-

versible. To verify that the equilibrium is complex balanced, we use the deficiency zero theorem

(detailed in Appendix C). The fact that this reaction network converges to a unique equilibrium

follows from the global attractor theorem for three-species networks [26].

Further suppose that the effect of the molecular communication link that emits an information

molecule I is to introduce the additional reactions

X1 + I
k3→ X4

X4
k4→ X1 + I

I
kI→ ∅. (19)

Observe that the information molecule only acts as a catalyzer and that the new reactions with

species in the biochemical system are reversible. As such, Theorem 1 is applicable and the

complete system will converge to the same equilibrium as the biochemical system (SB,RB, kB).

To verify the result in the theorem, Fig. 2-4 show the evolution of X1, X2, X3 over time

for initial concentrations [X1](0) = 1 M , [X2](0) = 2 M and [X3](0) = 3 M . Moreover,

the molecular communication link introduces [I](0) = 0.05 M of information molecules. We

also assume that [X4](0) = 0. The rate coefficients are k1 = 1 M−1s−1, k2 = 1 s−1, k3 =

1 M−1s−1, k4 = 1 s−1, kI = 0.1. In the figures, the unperturbed system corresponds to only the

biochemical system, while the perturbed system corresponds to the complete system consisting

of both the biochemical system and the molecular communication link.
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Observe in Fig. 2-4 that the equilibrium concentrations for both the biochemical system in

isolation and the complete system including the molecular link converge to the same equilibrium,

which is consistent with the results in Theorem 1. However, for small times t, the concentrations

do not completely agree, which shows that the molecular communication link can in fact impact

the behavior of the biochemical system.
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Fig. 2. Plot of the concentration of X1 versus time.

V. CONCLUSIONS AND OUTLOOK

If molecular communication links are to fulfil their proposed role in the coordination of

nanonetworks embedded in complex biochemical systems, it is crucial that the impact of the

links on the biochemical systems is well understood. In other words, conditions under which the

molecular communication links and biochemical systems can coexist are required. In this paper,
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we have taken the first steps towards this goal by developing a framework to analyze the effect

of a molecular communication link on a biochemical system. Our framework is based on the

theory of chemical reaction networks, which provides a basis to consider the time-evolution of the

concentrations for chemical species in the biochemical system. This is important in understanding

whether the function of the biochemical system is preserved.

We have applied our framework to two special classes of molecular communication links and

biochemical systems. In each case, we obtained new constraints on the molecular communication

link in order to ensure coexistence with a biochemical system. In dealing with large classes of

biochemical systems, it was necessary to exploit general stability results from the theory of

chemical reaction networks.

This work raises a number of new questions to ensure that molecular communication links
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Fig. 4. Plot of the concentration of X3 versus time.

can coexist with pre-existing biochemical systems. In particular, can the results in Section IV be

generalized to reaction systems with multiple equilibria [20]? A starting point for this question

is recent work developing sufficient conditions for multistability in [27]. A related question is

whether more complex production and absorption dynamics in the molecular communication

link can be accounted for. Recent work in the control literature on advection dynamics [28] has

provided results for constant inflows and mass action kinetics outflows, which provide an initial

direction to address this question.

Another question is whether or not it is possible to design general purpose molecular commu-

nication links that can be embedded in a wide range of biochemical systems? In other words, is

it necessary to tailor the design of each molecular communication link to the biochemical system

it is embedded in. In the context of enzyme-aided molecular communication, this corresponds
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to the design of the link in order to meet quality of service demands and in particular parameter

design which will differ from existing approaches [13], [29].

Another important question is the effect of heterogeneity on the impact of the molecular

communication link. In this paper, we have exploited the assumption that the system is well

mixed and spatially homogeneous. Does heterogeneity strongly influence the design guidelines

for the molecular link? In order to answer this question, it will be necessary to make comparisons

with a full reaction-diffusion framework. This can be achieved by simulation studies (e.g., [30])

or a study of qualitative features of reaction-diffusion systems by exploiting recent work in [31],

although a full analytical treatment remains challenging as the results in [31] only hold for first

order reactions.

APPENDIX A

PROOF OF THEOREM 1

Our approach is to view the complete system as a perturbation of the original system. Observe

that one of the new reactions only occurs if the required number of information molecules

is present. This means that the effective reaction rate of the new reactions is limited by the

concentration of information molecules at each time.

Motivated by this observation, we wait for a sufficiently long period of time t1 until the con-

centration of information molecules lies in a δ1-neighborhood of zero, which it will never leave

since no new information molecules are produced. By the above observation, the concentration

of the species {X1, X2, X3, . . .} are governed by equations in the differential inclusion{ ∑
y→y′∈R

k′y→y′x(t)y(y′ − y)|k′y→y′ ∈ (ky→y′ − δ1, ky→y′ + δ1)

}
. (20)

It is then possible to construct a sequence δ1 > δ2 > · · · corresponding to times t1 < t2 < · · ·

with limi→∞ δi = 0 and limi→∞ ti =∞ such that after ti, x(t) is in a δi-neighborhood of x(∞).

We can now apply the following theorem.

Theorem 2. Let (S,R, k) be a weakly reversible complex balanced reaction system with point

of complex balance β and limt→∞ x(t) = β. Fix a point u ∈ RS>0. Consider a sequence δ1 >

δ2 > · · · > 0 and a sequence 0 < t1 < t2 < · · · . Then, limt→∞ x(t) = β.

Proof. See Appendix B.
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The theorem implies that the system will tend to the unique equilibrium point of the underlying

biochemical system, as required.

APPENDIX B

PROOF OF THEOREM 2

We now prove Theorem 2, which follows a similar argument as [25]. We begin by defining

the pseudo-Helmholtz function gα.

Definition 5. The pseudo-Helmholtz function gα : RS≥0 → R of (S,R, k) at α is the function

gα(x) =
∑
i∈S

xi log xi − xi − xi logαi, (21)

where we take 0 log 0 = 0.

The function gα was shown to be a Lyapunov function for the mass-action equations in (22)

by Horn and Jackson [32], which is stated formally in the following theorem.

Theorem 3. If x is a solution to

ẋ(t) =
∑

y→y′∈R

ky→y′(y
′ − y)x(t)y, (22)

with x(t) ∈ RS>0 for all t ≥ 0 then

dgα(x(t))

dt
≤ 0 (23)

with equality if and only if x(t) is a point of complex balance.

We now prove a preliminary lemma that forms the basis of the proof.

Lemma 1. Let (S,R, k) be a weakly reversible complex balanced reaction system with point

of complex balance β. Suppose that for every trajectory x(t) with initial conditions x(0) ∈

(u +H) ∩ RS≥0, the limit

lim
t→∞

x(t) = β. (24)

Then, for every sufficiently small ε > 0, there exists δ > 0 such that for all x′ outside the

ε-neighborhood of β in (β +H) ∩ RS≥0,

d(gβ(x(t)))

dt
|t=0 < −δ, (25)
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where x(t) is a solution to the mass-action equations in (22) with x(0) = x′.

Proof. Let Bε be the open ε-ball around β in (β + H) ∩ RS≥0 with ε small enough so that Bε

does not meet the boundary ∂RS≥0. Define the closed set K = (β + H) ∩ RS≥0 \ Bε. Consider
dgβ(x(t))

dt
|t=0 where x(t) is a solution to the mass-action equations in (22) with x(0) = x′. Define

δ = − infx′∈K
dgβ
dt

(x′). If δ ≤ 0 then since K is a closed set and dgβ(x(t))

dt
is a continuous function,

there exists a point x′ such that dgβ(x
′)

dt
≥ 0, which contradicts Theorem 3.

We now complete the proof. Fix ε > 0 such that the ε-ball Bε around β does not meet the

boundary ∂RS≥0. By Lemma 1, outside Bε there exists δε > 0 such that dgβ(x(t))

dt
< −δε. Since

dgβ(x(t))

dt
is a continuous function of the rate coefficients k, a sufficiently small perturbation δ > 0

in the rates will not change the sign of dgβ(x(t))

dt
. Hence, outside Bε, the function g is strictly

decreasing along x(t), which implies that eventually every trajectory must enter Bε.

Now, for a sequence ε1 < ε2 < · · · with ε1 sufficiently small such that the ε1-ball around

β does not meet the boundary ∂RS≥0 and limi→∞ εi = 0. From the above argument, it follows

that for each εi there exists a j such that δj is sufficiently small and so every trajectory will

eventually enter the εi-neighborhood of β and never leave. Since this is true for every i and

limi→∞ εi = 0, the result follows.

APPENDIX C

PROOF THAT (19) IS COMPLEX BALANCED

In order to show that (19) is complex balanced, we require an important result in chemical

reaction network theory known as the deficiency zero theorem. Before stating this theorem, we

require the concept of the deficiency, which is a number corresponding to the structure of the

chemical reaction network. A key parameter in the deficiency is the rank of the network, which

is defined as the dimension of the stoichiometric subspace in the network (S,R, k).

The deficiency is defined as follows.

Definition 6. The deficiency of a chemical reaction network is defined by

δ = n− l − s, (26)

where n is the number of chemical complexes, l is the number of connected components in the

reaction network, and s is the rank of the network.
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We now can state a restricted form of the deficiency zero theorem [17].

Theorem 4. Suppose we have a chemical reaction network with a finite set of species S with

deficiency zero. Then, if the network is weakly reversible and the rate constants are positive,

the mass-action equations have exactly one equilibrium solution in each positive stoichiometric

compatibility class. The equilibrium solution is complex balanced.

To show that the chemical reaction system in (19) is complex balanced, we simply need to show

that the network has deficiency zero. Observe that there are n = 2 complexes {X1 +X3, 2X2},

l = 1 connected components, and the rank of the network is s = 1 since the dimension of

span ((−1, 2,−1), (1,−2, 1)) is one. It then follows that n− l − s = 0 and the deficiency zero

theorem applies, so the reaction system is complex balanced.
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