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Résumé – Dans cet article, nous présentons un quantificateur basé sur le modèle neuronal Leaky-Integrate and Fire (LIF). Le LIF est un modèle
simplifié du fonctionnement des cellules ganglionnaires. Les cellules ganglionnaires sont placées dans la couche de la rétine responsable du
codage de l’information visuelle, avant qu’elle ne soit transmise au cerveau à travers le nerf optique. En général, le LIF quantifie les valeurs
d’intensité selon une valeur seuil, un temps d’observation donné, la présence ou non d’une période réfractaire dans le neurone et les paramètres
R et C caractérisant la résistance et la capacité du modèle neuronal. En variant la valeur du seuil et du temps d’observation, nous avons testé
expérimentalement le comportement du quantificateur LIF à un signal d’entrée donné et nous présentons les résultats et la comparaison avec le
quantificateur scalaire uniforme et le quantificateur Lloyd.

Abstract – In this paper we present a quantizer based on the Leaky-Integrate and Fire (LIF) neural model. The LIF is the model according
to which function the ganglion cells. Ganglion cells are placed in the layer of the retina responsible for the encoding of visual information,
before it is transmitted to the brain through the optic nerve. In general, the LIF quantizes intensity values according to a threshold value, a given
observation time, the presence or not of a refractory period in the neuron and the parameters R and C characterizing the resistance and capacity
of the neural model. Varying the value of the threshold and observation time we tested experimentally the behaviour of the LIF quantizer to a
given input signal and through this work we present the results and the comparison to the uniform scalar quantizer and the Lloyd quantizer.

1 Introduction

As technology improves, the need for finding new ways for
the efficient transmission and storage of information augments
dramatically. It is generally believed, that nature provides the
ideal means and methods for information processing through
the use of chemical and biological reactions in the body. The
system responsible for the information processing in the body
is the nervous system which consists of neurons. Neurons, are
cable-like cells which receive electrical impulses, and if the sti-
mulus is important enough according to some threshold, they
encode the stimulus into action potentials (spikes) that travel
along the neuron axon to be transmitted to the next neuron.

As analytically described in [3], a great example of the neu-
ral coding activity, is the one performed by the ganglion cells
in the ganglionic layer of the mammalian retina for the enco-
ding of the visual information. Inspired by this particular en-
coding procedure, we carried an extensive study on the Leaky
Integrate-and-Fire (LIF) neural model which characterizes the
function of the ganglion cells. More specifically, we implemen-
ted a LIF quantizer for the quantization of input intensity values
according to the number of spikes produced by the LIF neural
model. We theoretically and experimentally studied the beha-
vior of the quantizer for various parameter values and compu-
ted the accuracy and the efficiency of our quantizer by compu-
ting the rate-distortion curves and comparing them to existing
quantizers.

With this paper, we aim to introduce the LIF quantizer and

present the analytical theoretical study of the model and its ex-
perimental testing according to the variation of the values of
the model’s parameters. It is highly important to mention that
unlike other existing quantizers, this particular model encodes
input data in a dynamic way and exhibits an interestingly dif-
ferent behavior under the selection of the parameter values of
the neural refractory period and the observation time. In section
2, we provide the necessary theoretical background describing
the LIF neuron model and provide all the equations for the ana-
lytical computation of the model’s characteristics such as the
inter spike delay in the spike train and the model’s firing rate.
Furthermore, the characteristic functions and firing rate of the
model are being presented. In section 3 we describe our experi-
ments and discuss about finding the optimal parameters for the
better behavior of the quantizer. We also make a comparison
of the LIF quantizer to the scalar Uniform Quantizer and the
non-uniform Lloyd Quantizer. Finally, in section 4 we provide
conclusions according to our experiments.

2 LIF model

2.1 Theoretical background
As described in [1], the Leaky Integrate-and-fire neuron is a

neural model which can be described by the circuit shown in
figure 1.

The input current I(t) is being divided in the current IR,
which passes through the resistor and the current IC which



FIGURE 1: The LIF neuron circuit which consists of a resistance R in parallel with a
capacitor C. (figure from the book of Gerstner-Kistler ”Spiking Neurons” given in [1])

charges the capacitor. Given the Ohm’s law for IR and the de-
finition of capacity as C = q/u (where q is the charge and u
the voltage) the total current can be written as

I(t) = IR + IC =
u(t)

R
+ C

du

dt
(1)

By multiplying (1) by R and by introducing a time constant
τm = RC the equation becomes

τm
du

dt
= −u(t) +RI(t) (2)

In the integrate-and-fire model, the form of an action poten-
tial is not described explicitly. Spikes are generated at a firing
time t(f). This firing time is defined by the following threshold
criterion

t(f) : u(t) = θ.

Immediately after t(f) the potential is set to a new value ur <
θ,

lim
t→t(f);t>t(f)

u(t) = ur

While t < t(f) the dynamics is given by equation (2) until
the next threshold crossing occurs. The leaky integrate-and-fire
neuron may also incorporate an absolute refractory period. In
this case, if u reaches the threshold at time t = t(f), the dy-
namics is interrupted during an absolute refractory time ∆abs

and the integration restarts at time t + ∆abs with a new initial
condition.

Let’s consider the simple case of a constant input current
stimulus I(t) = I0. For the sake of simplicity we will assume a
reset potential ur = 0. Assuming a spike has occurred at time
t = tk the trajectory of the membrane potential is given by
integrating (2) with the initial condition u(t) = ur = 0. The
solution is given by the relation

u(t) = RI0

[
1− exp

(
− t− t

k

τm

)]
(3)

After each spike, the potential is reset to the value ur = 0
and the integration process starts again. The condition u(t) = θ
is satisfied for t = tk+1, where tk+1 denotes the time in which
the next spike occurs. Then, equation (3) can be written as

u(tk+1) = θ = RI0

[
1− exp

(
− t

k+1 − tk

τm

)]
(4)

We assume d(u) = tk+1 − tk, the inter-spike delay of an
integrate-and-fire neuron with no refractory period, which is
the time between two occurring spikes.

Consequently, solving (4) for the delay d(u) yields

d(u) =


∞, u < θ

h(u; θ) = τm ln u
u−θ , u ≥ θ

(5)

At this point it is important to denote that for the case of a
neuron with an absolute refractory period, the occurrence of the
next spike will be delayed by the duration of the refractory per-
iod ∆abs. So, in this case, the inter-spike delay d′(u) is given
by d′(u) = d(u) + ∆abs.

2.2 The LIF Quantizer
2.2.1 The encoder

As described in the previous section, the LIF neuron pro-
duces a number of spikes given an input intensity value. This
means that the LIF model is able of signal quantization, by as-
signing a particular spike number value to each signal sample.
More specifically, as described in figure 2, for each signal sample,
the LIF quantizer first computes the membrane potential u by
multiplying the input current value I to the resistance R, ac-
cording to Ohm’s law. The integration delay d(u) is calculated
using equation (5), given the parameters of the threshold θ. In
the case where there is a non zero refractory period it is added
to the interspike delay d′(u) = d(u) + ∆abs. Then, using the
relation Ns = b tobsd′(u)c, we get the number of spikes Ns produ-
ced by the LIF. As a result, the output of our system will be a
sequence of numbers of spikes for each input sample, and this
is the encoded data produced by the encoder.

In order to compute the amount of information provided by
the encoded data, we will compute the entropy H of the enco-
ded signal as

H = −
n∑
i=1

p(Nsi) log2 p(Nsi), (6)

which is expressed in bits/sample and where p(Nsi) corres-
ponds to the probability of occurrence of the different values of
number of spikes.

2.2.2 The decoder

After we have produced the encoded sequence, the data is
being transmitted to the decoder in order to reconstruct the ini-
tial signal. In [2] it has been proven that after the encoding of
the data into a sequence of spikes, an estimation of the firing
period d̃ can be found using d̃(u) = tobs

Ns
, where tobs is the

observation time of the firing process, and Ns the number of
spikes produced by the LIF Quantizer. Finally, computing the
inverse function of equation (5) we get

ũ =


0, d̃(u) =∞

h−1(d̃(u), θ) = θ

1−exp
(
− d̃
τm

) , d̃(u) <∞
(7)



FIGURE 2: The LIF Quantization process.

FIGURE 3: Characteristic functions of the LIF quantizer for θ = 0.1 for different values
of refractory period for tobs = 40ms.

which computes an approximation of the input value of the
membrane potential u. Dividing the action potential by the va-
lue of the resistance R we obtain an approximation Î of the
input current value I . The system of encoding using the LIF
quantizer is described in figure 2.

2.3 Characteristic functions
We tested experimentally the LIF quantizer using a constant

stimulus for each firing process. For the experiments we used
a linear sample of input intensities varying from -1 to 1 with
a sampling step of 0.001 and constructed the corresponding
characteristic functions for the LIF Quantizer with no refrac-
tory period and with a constant refractory period of 1ms and
2 ms. The results are presented in figure 3. We can easily ob-
serve in figure 4, that in the absence of a refractory period, the
LIF quantizer behaves similarly to the scalar uniform quanti-
zer, while in the presence of a constant refractory period, the
LIF quantizer is non uniform with an augmenting quantization
step. We can also see that our quantizer has a deadzone of a
size of 2θ in which no spikes are being produced, since the in-
put intensities are lower than the threshold. Consequently, all
the intensities lower than this threshold are being quantized to
zero.

3 Experiments
We experimentally tested our quantizer using an input signal

of 10000 samples following a random Gaussian distribution of
a standard deviation σ = 1. Our experiments were carried out
for values of observation time tobs between 1ms and 40ms,
varying the threshold value θ between 0 and 4 with a step of

FIGURE 4: MSE of the LIF quantizer in function of the threshold θ, for tobs varying from
1ms to 40ms for a model with a refractory period ∆abs = 1ms

0.01. We repeated the same experiments for different values
of refractory period. First we selected the quantizer to have no
refractory period and then we selected both a low refractory
value equal to 0.01ms and a high value of 0.2ms. Using this
parameter variation we used the LIF quantizer to encode the
random signal and then we compute the entropy of the enco-
ded data using the equation (6). For the evaluation of our re-
sults we compute the Mean Squared Error(MSE) given by the
sum of squared absolute difference between the input value and
the quantized value estimated by the LIF quantizer. Figure 4,
shows the curve of the MSE in function of the threshold θ, for
a LIF quantizer, in the presence of a constant refractory period.
The different colors denote the different values of observation
time tobs.

From the curve we observe that in the presence of a refrac-
tory period the quantizer exhibits overload noise, which is not
the case when there is no refractory period. This means that for
each observation time, there is a threshold value which mini-
mizes the MSE, which is varying according to the observation
time.

3.1 LIF with no refractory period
As described in section 2.3, in the absence of a refractory

period, the LIF quantizer behaves similarly to the uniform sca-
lar quantizer with a deadzone λ. In this section, we compare
those two quantizers, using the same random input signal and
varying the value of θ for the LIF quantizer and the step size
q for the Uniform quantizer. For lower observation times, the
dead zone of the LIF tends to become equal to the quantiza-
tion step size. In our experiments, we compared the LIF to the



Uniform Quantizer without a deadzone, varying the stepsize si-
milarly with the variation of θ for the LIF. For the comparison
we plot the curve of the MSE in function of the Entropy shown
in figure 5. We observe that for lower observation times tobs the
LIF quantizer exhibits a better performance than the Uniform,
while for higher observation times the results for the LIF quan-
tizer are slightly inferior but still comparable to the ones of the
Uniform.

3.2 LIF with a constant refractory period

In this section we introduce a constant refractory period in
our LIF quantizer and we compare the results to the Lloyd
Quantizer, which is the most widely used non-uniform quan-
tizer. As clearly observed in section 2.3, in the presence of a
refractory period, the quantizer exhibits overload noise. Figure
4, reveals that there is an optimal theta which minimizes the
MSE for each value of tobs. Since the Lloyd quantizer uses an
optimization algorithm to find the best partition which mini-
mises the MSE, in order to be fair to the comparison we will
also chose the optimal theta value which minimizes the MSE
for our LIF quantizer. In the experiments, we quantize the input
signal with the LIF, for different observation times. Then, for
each observation time we chose the threshold value θ which
minimizes the MSE, and for this value, we compute the en-
tropy and the rate. Similarly, for the Lloyd quantizer, we first
use a Gaussian training set, different from the signal that will
be quantized, for the learning procedure of the Lloyd algorithm,
in order to obtain the optimal partition into levels and the co-
debook containing the quantization values. Afterwards, we use
the same input signal used for the LIF quantization, to be quan-
tized by the Lloyd quantizer and compute the MSE and the en-
tropy. The MSE-Entropy curve is presented in figure 6.

FIGURE 5: Comparison of the LIF and the Uniform scalar quantizer in the absence of a
refractory period

It is very important to mention, that apart from the advantage
of using dynamic quantization, the LIF only needs to minimize
the value of θ, which is computationally cheaper compared to
the Lloyd’s clustering procedure in the learning algorithm. Fi-
nally, for the quantization using the LIF, there is no need of a
codebook transmission to the decoder which reduces the size
of the bandwidth needed for the transmission of the data.

FIGURE 6: Comparison of the LIF and the Lloyd quantizer - The red curve describes the
LIF quantizer for a low refractory period of 0.02 ms, the blue one describes the LIF for a
higher refractory period of 0.2 ms and the black curve denotes the Lloyd quantizer

3.3 Conclusions and future work
In this paper, we presented a dynamical way of quantization

using the LIF neural model. After an extended theoretical and
experimental study of the model, we observed that according
to the absence or not of a refractory period, the model switches
from a uniform to a non-uniform quantization procedure. Com-
paring our model to existing quantizers, we observed that when
there is no refractory period, the LIF is comparable to the uni-
form scalar quantizer with a dead-zone equal to two times the
threshold value of the LIF. For lower values of observation time
though, the LIF can even outperform the uniform scalar quan-
tizer. In the presence of a refractory period, the LIF behaves
similarly to the Lloyd quantizer, with the Lloyd outperforming
the LIF for higher values of refractory period. However, for lo-
wer values of refractory and higher values of observation time
the LIF quantizer outperforms the Lloyd algorithm, Further-
more, some of the LIF characteristics, such as the dynamical
quantization and the fact that there is no need for a learning
procedure or a codebook transmission, make the LIF quantizer
a very promising quantization procedure to be further studied
and analysed.

Motivated by [2], we aim to study the application of this
quantization process to image and video coding taking a step
further in the 2D and 3D quantization process.
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