
HAL Id: hal-01650737
https://hal.science/hal-01650737

Submitted on 28 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Design Framework for Reliable and Environment Aware
Management of Smart Environment Devices

Adja Ndeye Sylla, Maxime Louvel, Eric Rutten

To cite this version:
Adja Ndeye Sylla, Maxime Louvel, Eric Rutten. Design Framework for Reliable and Environment
Aware Management of Smart Environment Devices. Journal of Internet Services and Applications,
2017. �hal-01650737�

https://hal.science/hal-01650737
https://hal.archives-ouvertes.fr

Sylla et al.

RESEARCH

Design Framework for Reliable and Environment
Aware Management of Smart Environment Devices
Adja Ndeye Sylla1*, Maxime Louvel1 and Eric Rutten2

Abstract
A smart environment is equipped with numerous devices (i.e., sensors, actuators) that are possibly distributed
over different locations (e.g., rooms of a smart building). These devices are automatically controlled to achieve
different objectives related, for instance, to comfort, security and energy savings. Controlling smart
environment devices is not an easy task. This is due to: the heterogeneity of devices, the inconsistencies that
can result from communication errors or devices failure, and the conflicting decisions including those caused by
environment dependencies. This paper proposes a design framework for the reliable and environment aware
management of smart environment devices. The framework is based on the combination of the rule based
middleware LINC and the automata based language Heptagon/BZR (H/BZR). It consists of: an abstraction
layer for the heterogeneity of devices, a transactional execution mechanism to avoid inconsistencies and a
controller that, based on a generic model of the environment, makes appropriate decisions and avoids conflicts.
A case study with concrete devices, in the field of building automation, is presented to illustrate the framework.
Keywords: Smart Environments; Reliability; Transactional Middleware; Automata language

1 Introduction
Smart environments are equipped with numerous de-
vices that are automatically controlled to achieve
different objectives. For instance, a window can be
opened to cool or ventilate a room. Controlling smart
environments devices raises several problems. First,
devices are built by different manufacturers and use
heterogeneous communication technologies. Second, a
device may become unreachable due to a hardware fail-
ure or a communication error. In this case, a command
sent to this device is not received and the correspond-
ing action is not performed. Assuming that the action
has been performed leads to a runtime inconsistency
(inconsistency in the rest of the paper). For instance,
sending the command close to a door and assuming
that it is closed becomes an inconsistency if the door
remains opened due to a communication error or a
failure. Third, the decisions taken to achieve the ob-
jectives may be conflicting or violate other objectives.
Conflicts and violations are either explicit or implicit.
Implicit conflicts and violations are due to environ-
ment dependencies and are not easy to detect. For in-
stance, opening a window to cool a room can raise the
noise level (resp. the CO2 concentration). This can vio-
*Correspondence: AdjaNdeye.Sylla@cea.fr
1Univ. Grenoble Alpes, CEA, LETI, DACLE, LIALP, F-38000 Grenoble
Full list of author information is available at the end of the article

late an objective that limits the room noise level (resp.
the CO2 concentration) at a given threshold.
In the literature, several solutions have been pro-

posed for the reliability of smart environments [1, 2, 3,
4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. These solutions
use different methods (e.g., model checking, pairwise
comparison of rules) to prevent from explicit and/or
implicit conflicts and objectives violations. However,
using these solutions requires to manually program or
model the behaviour of the smart environment. Then,
the program or the model is verified to detected spe-
cific errors (e.g. conflicts). If an error is detected, the
program or the model is manually modified and veri-
fied again. This can be tedious because developers have
to consider all the combinatorial possible cases. More-
over, these solutions do not handle the inconsistencies
due to communication errors and hardware failures.
This paper proposes a design framework for reliable

and environment aware management of smart environ-
ment devices. The proposed framework allows for
• Declarative management of devices, by specifying

the target objectives and not how to reach them;
• Avoidance of both explicit and implicit conflicts;
• Avoidance of inconsistencies that are caused by

communication errors and hardware failures.
The framework is based on the combination of a

rule based transactional middleware (LINC [17]) and

mailto:AdjaNdeye.Sylla@cea.fr

Sylla et al. Page 2 of 19

Transactional
Execution
Mechanism

Abstraction Layer

Devices and their communication technologies

data commands

Controller

ADK

M
I
E

ADK

I

Objectives

Legend

M Monitoring
I Interpretation
A Analysis
D Decision
K Knowledge
E Execution

LINC Rules

Figure 1 Devices management through the framework

a reactive language (Heptagon/BZR [18]). As shown
in Figure 1, the proposed framework enables the au-
tonomic management of devices through a variant of
the MAPE-K loop [19] called MIADIE-K (Monitor-
ing, Interpretation, Analysis, Decision, Interpretation,
Execution and Knowledge) and consists of:
• An abstraction layer: To deal with the hetero-
geneity of smart environment devices;
• A transactional execution mechanism: To
prevent from the occurrence of inconsistencies;
• An environment aware controller: To make
appropriate decisions and prevent from both ex-
plicit and implicit conflicts. The controller re-
lies on a generic model of the environment. The
generic aspect of this model allows to use the same
controller for other environments that have the
same types of devices (e.g., rooms of a building).

To improve environment monitoring, the proposed
framework allows developers to design monitoring
rules, in LINC, and create soft sensors from physi-
cal sensors. A soft sensor aggregates or transforms the
data of one or more physical sensors. The framework
also allows developers to design rules that perform ac-
tions on the environment assuming that these rules do
not interact with potential conflicting devices (which
must be handled by the environment aware controller).
The paper is structured as follows. Section 2 gives

the background material. Then, Section 3 describes
the proposed framework. Section 4 presents how de-
vices are managed using the framework. Section 5 il-
lustrates the framework through a case study, with
concrete devices, in the field of building automation.
Section 6 discusses related work. Finally, Section 7 con-
cludes the paper and presents the future works.

2 Background
The proposed framework relies on a transactional
middleware and a reactive language that supports

the synthesis of controllers. The transactional mid-
dleware enables the communication with devices and
avoids inconsistencies. The reactive language enables
the declarative management of devices while prevent-
ing from conflicts and objectives violations. In this pa-
per, the transactional middleware LINC [17] and the
reactive language Heptagon/BZR [18] are used.

2.1 LINC middleware
LINC [17] is a rule based middleware used to develop
and deploy distributed applications. It has been used
in several domains such as building automation [20,
21, 22] and wireless sensor networks [23, 24, 25].

2.1.1 LINC concepts
LINC relies on three paradigms:
• Associative Memory [26]: It is implemented as

a set of distributed tuple spaces containing re-
sources (tuples of strings). In LINC, tuple spaces
are called bags. They are grouped, according to
the application logic, in objects. Resources are
used to model the entities of an application and
are manipulated using three operations: rd, get
and put. The rd is used to verify the presence of
a resource in a bag. The get is used to remove a
resource and the put is used to insert a resource.
These operations are used in production rules.

• Production Rules [27]: A production rule con-
sists of two parts: a precondition and a perfor-
mance. In the precondition, the operation rd is
used, with a partially instantiated resource as pa-
rameter, to verify specific conditions in the sys-
tem (e.g., presence detected). If these conditions
are true, the performance is triggered. The perfor-
mance uses the three operations. The rd is used
to verify conditions. The get and the put are used
to perform actions on the system and update its
logical state (i.e., resources stored in LINC bags).

• Distributed Transactions [28]: They are used
in the performance part of a rule. A transaction
allows to group as one operation the verification
of conditions (rd), the realisation of actions (put),
and the update of the system logical state (get,
put). Thus, the performance part of a rule may
abort if, for instance, the verification of a con-
dition through a rd operation is no longer true.
The performance part also aborts if a put opera-
tion fails because the corresponding action (e.g.,
switch on a lamp) cannot be performed (e.g., due
to a communication error or a hardware failure).

2.1.2 LINC in the context of smart environments
LINC provides a framework called PUTUTU [20, 21]
that enables the communication with devices and

Sylla et al. Page 3 of 19

PUTUTU

EnOcean

Object_dongles_modules

Object_wsan_sensors Object_wsan_actuators

Object_wsan_sensors_actuators
Watteco TelosB Homes

PLUGWISE LON EnOcean

Tellstick

Figure 2 PUTUTU framework

hides their heterogeneity. PUTUTU consists of sev-
eral LINC objects. As shown in Figure 2, these objects
encapsulate different technologies (e.g., TelosB, LON,
Tellstick) and inherit from four generic objects:
• Object_dongles_modules: It is used to man-
age a dongle or any other equipment plugged in
an ethernet or a USB port. The dongle allows to
communicate with the devices of a specific tech-
nology. It has two bags: Type and Location. Type
associates the id of a device to its type. Location
associates the id of a device to its location.
• Object_wsan_sensors: It is used to manage
sensors. It has one additional bag called Sensors
which associates the id of a sensor to its latest
measured value, in the format (id, value).
• Object_wsan_actuators: It is used to manage
actuators. It has one additional bag called Actua-
tors which is used to send commands to the actu-
ators. The resources of this bag are in the format
(id, command, parameters). The insertion of such
a resource, using the operation put, actually sends
the command to the specified actuator.
• Object_wsan_sensors_actuators: It is used
to manage technologies providing both sensors
and actuators (e.g. EnOcean). This object is de-
rived from the two previous generic objects and
inherits from their bags (e.g., Sensors, Actuators).

2.1.3 LINC rule example
Listing 1 presents an example of a LINC rule that
switches on the lamp of a room when a presence is
detected. This room is equipped with a TelosB pres-
ence sensor and an EnOcean lamp actuator.
This rule consists of two parts: a precondition (before

the symbol ::) and a performance (after the symbol ::).
The precondition consists of a rd on the bag States
containing the logical state off and a rd on the bag
Sensors of the TelosB object to detect a presence.
When the lamp is off, the rule waits for a resource

indicating a presence in the room. This triggers the
performance. The performance consists of two trans-
actions (between {}). The first transaction verifies if
the presence is still detected (line 5), sends the com-
mand to the lamp (line 6) and updates its logical state
(lines 7 and 8). LINC ensures that all the actions are
done or none of them. Hence, if the put operation fails
on the actuator (e.g., communication error, actuator
failure), the lamp stays off in the bag States.
If no error occurs in the first transaction, the second

transaction will fail at line 12 (the lamp is now on).
If the presence is not detected anymore, both trans-
actions will fail (lines 5 and 11). Finally, if the lamp
cannot be switched on (e.g., due to a communication
error), the second transaction will send a SMS to the
maintenance team to inform them of the problem.
Executing this rule in another room simply re-

quires replacing the PUTUTU objects (i.e., TelosB
and EnOcean) and the ids (i.e., t_pr_1, e_l_1), re-
spectively, by the communication technologies and the
ids of the room presence sensor and lamp actuator.

1[" B u i l d i n g " , " S t a t e s "] . r d (" e_l_1" , " o f f ") &
[" Te losB" , " S e n s o r s "] . r d (" t_pr_1" , " True")

3: :
{

5[" Te losB" , " S e n s o r s "] . r d (" t_pr_1" , " True") ;
[" EnOcean" , " A c t u a t o r s "] . put (" e_l_1" , " on") ;

7[" B u i l d i n g " , " S t a t e s "] . g e t (" e_l_1" , " o f f ") ;
[" B u i l d i n g " , " S t a t e s "] . put (" e_l_1" , " on") ;

9}
{

11[" Te losB" , " S e n s o r s "] . r d (" t_pr_1" , " True") ;
[" B u i l d i n g " , " S t a t e s "] . r d (" e_l_1" , " o f f ") ;

13[" B u i l d i n g " , " Sms"] . put (" XX" , " lamp prob lem") ; } .

Listing 1 LINC rule example

2.2 Heptagon/BZR language
Heptagon/BZR or H/BZR [18] is a language used to
build reactive systems, by means of automata and
equations. It enables model checking to verify prop-
erties (e.g., absence of objectives violations) and espe-
cially the synthesis of controllers to enforce properties.

2.2.1 Design of a H/BZR program
A H/BZR program is designed as a set of blocks called
nodes. A node has input flows and output flows. It
contains equations defining output flows in terms of
input flows, local variables, and possibly intermediate
states variables. These equations can be encapsulated
in states of automata. They can also instantiate other
nodes. Each node can be provided with a contract that
defines a set of properties to be enforced on the pro-
gram. These properties are enforced, at compilation
time, through discrete controller synthesis [18].

Sylla et al. Page 4 of 19

OnO

not c1

c2
cmd = s_on nothing

lum = 500
cmd = s_o nothing

lum = 0

Lamp(c1, c2) = cmd, lum

Figure 3 Example of H/BZR node

Automaton consists of states, one of them being the
initial state, and transitions between them. States are
associated to equations that give specific values to the
output flows of the automaton node. The value of an
output flow must be defined at each instant. Transi-
tions are associated to boolean expressions related to
one or several input flows of the automaton node.
Figure 3 presents an automaton modelling a lamp.

This automaton is contained in a node that has two
input flows (c1, c2) and two output flows (cmd, lum).
The automaton has two states (Off, On) and two
transitions. Each state is associated to two equations
that give values to the output flows. The equation
cmd = s_off → nothing means that at the state
Off, cmd is equal to s_off (switch off) if this state
is newly activated and nothing otherwise. The rea-
son is twofold. First, the value of an output flow must
be defined at each instant. Second, this prevents from
continuously computing cmd = s_off while the lamp
is already off. The equation lum = 0 means that at
the state Off the lamp provides a luminosity equal to
0 lux. The input flows c1 and c2 are boolean variables.
The initial state of the lamp automaton is Off. In

this state, when c1 is false (i.e., not c1 is true), the
automaton goes to the state On and the output flows
take the values given by the equations of this state.
Otherwise (i.e., c1 is true), the automaton remains
in the state Off. This means that in the state Off,
there is an implicit transition associated to c1 that
allows to remain in this state. In the same way, when
the automaton is in the state On, if c2 is true, the
automaton goes to Off. Otherwise (i.e., c2 is false) it
remains in the state On. There is an implicit transition
associated to not c2 allowing to stay in the state On.
This node example could be designed using only one

input flow to reduce the number of variables used. For
instance, not c1 and c2, in the automaton transitions,
could be respectively replaced with not c and c.

Discrete controller synthesis (DCS) [18] a formal
method used to enforce a set of properties, called ob-
jectives, on a model. DCS is enabled by H/BZR at
compilation time. Given a model that represents all
the possible behaviours of a system and a set of target

objectives, DCS inhibits all the behaviours that violate
the objectives. To do this, DCS requires to partition
the variables of the considered model in two sets: con-
trollable and uncontrollable variables. Once the vari-
ables are partitioned, the DCS algorithm explores the
state space of the model and computes the possible
values of the controllable variables. The aim is to en-
force the target objectives, whatever the values of the
uncontrollable variables. For instance, c1 and c2 in
Figure 3 can be defined as controllable variables to en-
force an objective related to the luminosity of a room.
After the controller synthesis, several solutions can

be possible regarding the objectives to achieve. For
instance, the lamp can be Off or On to provide a lumi-
nosity greater or equal to 0 lux. However, one solution
must be chosen. For this, the backend of the H/BZR
compiler selects one of the solutions. It is possible to
guide the selection with two options. Firstly, the com-
piler backend favours the value true to the value false
for a boolean variable. For instance, in the lamp au-
tomaton (Figure 3), to favour staying Off, the transi-
tion from Off to On is associated to not c1. Here, the
implicit transition that remains in the state Off (as-
sociated to c1) is favoured by the compiler backend.
The second option is that the compiler backend fol-

lows the declaration order of the variables and gives to
them the value true. If this does not enforce the target
objectives it changes the values to false following the
inverse of the declaration order. Hence, when declar-
ing c1 before c2, if two transitions T1 and T2 respec-
tively associated to not c1 and not c2 are possible,
the compiler backend will choose T2. It gives true to
c1 and false to c2 (not c2 is true and T2 is chosen).

2.2.2 Execution of a H/BZR program
The compilation of a H/BZR program generates a code
in C or Java. In both cases, the generated code includes
a function called step. The step takes as parameter
a set of input values, computes the output values that
allow to reach the target objectives, and updates the
state of the automaton that models the system. One
execution of the step function corresponds to one re-
action of the system. Therefore, the step must be ex-
ecuted each time a reaction is required. Executing the
step requires to ensure that the state of the automa-
ton is always consistent with the state of the actual
system. This is done by combining LINC and H/BZR.

2.3 Combination of LINC and H/BZR
LINC is designed to implement rules that react to
events (e.g., production of a new sensor value). Hence,
a LINC rule is used to execute the step function when
necessary (i.e., each time an event occurs). This rule
first collects data (e.g., through sensors) and then, it

Sylla et al. Page 5 of 19

invokes the step in order to compute appropriate com-
mands to send to the system (e.g., through actuators).
Thanks to its transactional guarantees, LINC ensures
that a group of actions are all done or none of them is
done. The step is thus executed in a transaction, to-
gether with the sending of the commands. Hence, if a
command cannot be sent, the step is not executed and
the state of the automaton stays consistent with the
state of the actual system. More details on the combi-
nation of LINC and H/BZR can be found in [29].

2.4 Autonomic computing
Autonomic computing [19] has been used in sev-
eral solutions for the management of smart environ-
ment devices [30, 31, 32, 33]. It consists in creating
systems that manage themselves by performing self-
configuration, self-optimisation, self-healing or self-
protection. This is done for instance through a MAPE-
K loop. In an autonomic system (cf. Figure 4), an au-
tonomic manager, based on knowledge, continuously
1 monitors a managed element by collecting data;
2 analyses the data to decide if changes are needed;
3 plans changes based on the analysed data;
4 executes the changes through actuators.

Figure 4 Autonomic System Architecture

The knowledge consists of information related to the
managed element and to its environment. The knowl-
edge is updated when executing the changes.

3 Framework description
As depicted in Figure 1, the framework consists of:
• An abstraction layer: It is based on the as-
sociative memory of the middleware LINC. The
operations rd and put are used to respectively
read the latest value measured by any sensor (i.e.,
rd(sensor_id,val)) and to send a command to
any actuator (i.e., put(actuator_id,command)).
• An environment aware controller: It is de-
signed through H/BZR and DCS. The controller
computes appropriate commands, to reach the ob-
jectives without conflict, and is based on a generic

model of the environment. This model describes
the behaviour of the devices and captures envi-
ronment dependencies. The model is generic in
the sense that it does not describe the behaviour
of specific devices (e.g., lamp_12) but types of de-
vices (e.g., lamp). This allows to use the same con-
troller for other environments that have the same
types of devices. For instance, let us consider a
controller designed for a room equipped with one
lamp and one shutter. This controller can be in-
stantiated in other rooms equipped with a lamp
and a shutter with any communication technol-
ogy. This controller can also be instantiated in
an open-space equipped with several lamps and
several shutters, all the lamps (resp. shutters) are
seen as one lamp (resp. one shutter) by the con-
troller. Finally, the controller can be reconfigured,
under some conditions, to deal with changing ob-
jectives (e.g., weekdays vs. weekends).

• A transactional execution mechanism: It is
based on the distributed transactions of the mid-
dleware LINC. The update of the controller state
and the update of the actual system is included in
the same transaction. Hence if an action cannot
be performed on the actual system (e.g., due to a
communication error), the controller state is not
updated. Hence, the inconsistencies between the
controller and the actual system are avoided.

3.1 Autonomic management of devices
The proposed framework enables the autonomic man-
agement of smart environment devices, through a vari-
ant of the MAPE-K loop (MIADIE-K loop). As shown
in Figure 1, the devices are monitored and the col-
lected data are interpreted (MI). Then, an analysis is
done and appropriate commands are computed (AD),
based on knowledge (K). Finally, the commands are in-
terpreted and sent and the knowledge is updated (IE).
• Monitoring and Interpretation (MI): Pro-
vide the data required to make decisions. Sensor
data are first collected through the abstraction
layer. Then, the data may be interpreted. The
aim is to aggregate them, to transform them or
to use them to estimate other data. For instance
if a temperature data is needed and there are two
temperature sensors, their average may be used as
the temperature. Another example is to use the
value measured by a CO2 sensor to estimate the
number of people. Data transformation, aggrega-
tion and estimation are not subject to conflicts
(they do not involve actuators) and thus, are per-
formed by writing LINC rules, by the developers.

• Analysis and Decision (AD): Analyse the data
obtained from the monitoring and compute the

Sylla et al. Page 6 of 19

commands to send to the actuators. To avoid
conflicts, the commands are computed by a con-
troller (step function) obtained through H/BZR
and DCS. Nevertheless, it is possible for devel-
opers to manually write rules to achieve simple
objectives (involving devices that do not affect an
environment parameter for instance CO2). Such
objectives are easy to achieve while avoiding con-
flicts and thus, do not require to use the controller.
These rules also analyse specific monitoring data
and compute commands, based on knowledge.
• Knowledge (K): The knowledge used by the
controller is one instance of the generic environ-
ment model. It consists of a set of automata
and equations. Each automaton describes the be-
haviour of a specific device by specifying its states,
its transitions and its effects on the environment.
The knowledge used by the LINC rules (achieving
simple objectives) is a set of resources stored in
bags and modelling the states of specific devices.
• Interpretation and Execution (IE): Interpret
the computed commands, send them and update
the knowledge. The interpretation allows to send
a specific command to several actuators.

4 Framework usage by developers
The proposed framework allows developers to
• Generate an executable model from a model
of the environment and a set of target objectives;
• Create soft sensors and soft actuators re-
spectively from physical sensors and actuators;
• Deal with changing objectives through the
automatic reconfiguration of the controller;
• Consider a high number of devices through
the modular design of the MIADIE-K loop;
• Write LINC rules to manually achieve simple
objectives, involving a small number of devices,
that do not lead to conflicts.

4.1 Generating an executable model
Developers design a H/BZR program by defining a
model of the considered environment, the target objec-
tives and the controllable variables. Then, the frame-
work generates an executable model that manages the
devices of the environment and achieves the objectives.

4.1.1 Modelling the environment
Developers first consider a set of parameters of the
environment and identify all the devices that affect at
least one parameter. Then, developers model each type
of identified device as an automaton contained in a
H/BZR node. The automaton modelling a device type
specifies the different states of the device type, its state
transitions, the environment parameters it affects and

Shutter(c, o_lum) = cmd, lum, air

Closed Opened

 not c

not c

cmd = close nothing

lum = 0

air = false

cmd = open nothing

lum = o_lum

air = true

(a) Shutter node

OnO

not c1

c2
cmd = s_on nothing

lum = 500
cmd = s_o nothing

lum = 0

Lamp(c1, c2) = cmd, lum

(b) Lamp node

contract enforce

with (c1_lamp, c2_lamp,c_shutter)

i_presence lum in [500,600]

Room(i_presence, o_lum) = shutter_cmd, lamp_cmd

(lamp_cmd, lum_lamp) = Lamp(c1_lamp, c2_lamp);

(shutter_cmd, lum_shutter, air) = Shutter(c_shutter, o_lum);

lum = lum_lamp + lum_shutter;

(c) H/BZR contract

Figure 5 H/BZR program of the room example

how it affects them. Modelling types of devices, instead
of specific devices, allows for the models re-usability.
Let us consider as an example, in the context of

building automation, a room equipped with a shut-
ter and a lamp. To model this room, two parameters
(luminosity and air) are first considered. Then, two
automata are designed to model a shutter and a lamp.
Figure 5a presents the automaton that models a

shutter. This automaton is contained in a H/BZR node
that has two input flows (c, o_lum) and three output
flows (cmd, lum, air). The automaton has two states
(Closed, Opened) and two transitions. Each state is as-
sociated to three equations to produce the command
of the shutter (cmd) and specify its effects on the envi-
ronment (lum, air). In the state Closed, the command
is equal to close (resp. nothing) if this state is (resp.
not) newly activated. This prevents from continuously
computing the command close while the shutter is
already Closed. In this state, the shutter provides a
luminosity equal to zero (lum = 0) and does not allow
outdoor air to pass (air = false). In the state Opened,
the shutter provides a luminosity equal to the outdoor
luminosity (lum = o_lum) and allows outdoor air to
pass (air = true). The transitions going from a given
state to a different one are associated to not c. This
allows to open or close the shutter only when necessary.
Figure 5b presents the lamp automaton. This automa-
ton is the same than the one presented in Figure 3.

4.1.2 Defining the target objectives and the
controllable variables

Developers design a main H/BZR node that instan-
tiates the automata modelling the devices and has a
contract part. Then, developers define in the contract,
the target objectives and the controllable variables.

Sylla et al. Page 7 of 19

Defining the objectives Developers specify the val-
ues that the considered environment parameters must
take. These values may depend on data collected from
the environment. This is done using variables and op-
erators. Variables are used to refer to the collected
data and also to the environment parameters. Opera-
tors, for instance,⇒ (logical implication) and ∧ (and)
are used to express the relations between the variables.
Examples of objectives for a room are:
1 presence ⇒ luminosity in [500,600] lux;
2 presence ⇒ noise < 80 dB;
3 presence ∧ temperature < 17 ◦C ⇒ heat;
4 presence ∧ CO2 > 800 ppm ⇒ ventilation.
The first objective means that if a presence is detected,
in the room, the luminosity must be between 500 and
600 lux. The second objective means that if a pres-
ence is detected, the noise level must be lower than
80 dB. The third objective (resp. the fourth objective)
means that if a presence is detected and the tempera-
ture is below 17 ◦C (resp. the CO2 is above 800 ppm),
the room must be heated (resp. ventilated). The de-
vices required to reach the objectives and the actions
to perform on them will be decided by the step func-
tion. For instance, the first objective can be reached
by switching on the lamp or opening the shutter. The
second action may be preferred for energy savings.

Defining the controllable variables Developers first
analyse the input flows of the nodes that contain the
automata modelling the devices. The aim is to identify
the input flows that are controllable (their values are
not given by the monitoring). Then, developers declare
the identified input flows, in the contract part of the
main H/BZR node, as controllable variables. For in-
stance, in the lamp automaton, presented in figure 5b,
the input flows c1 and c2 are controllable variables.
In the shutter automaton, presented in Figure 5a, the
input flow c is a controllable variable. The input flow
o_lum represents the value measured by an outdoor
luminosity sensor and hence it is uncontrollable.
Developers can use the declaration order of the con-

trollable variables to express preference between the
transitions of the different automata. A transition T1
associated not c1 is preferred to another transition T2
associated to not c2 if is c1 is declared after c2.

4.1.3 Example of H/BZR program for a room
Let us consider again the room, equipped with a shut-
ter and a lamp. The objective to achieve is to maintain
the luminosity between 500 and 600 lux when a pres-
ence is detected while minimising the energy consump-
tion (i.e., prefer natural lighting to artificial lighting).
The H/BZR program defined for this room is pre-

sented in Figure 5. It consists of three nodes. The

Generic Environment Model Objectives and controllable variables

H/BZR
Compiler

 Rule Template
 Generator

PUTUTU
Framework

LINC Objects

Step Function

with controllable variables

enforce objectives

Design Time

1

2

contract

Runtime

LINC Rule Template presence: t_pr_1: TelosB: indoor
co2: co2_543: TelosB: indoor
lamp: lamp_69: TellStick: indoor
...
type: id: technology: indoor

 Information File

LINC Rule Instance
3

 Rule Instance
 Generator

IsInstanceOf

Figure 6 Executable model generation

first two nodes respectively contain the shutter and
the lamp automata (Figures 5a and 5b). The third
node, presented in Figure 5c, is the main node. It
has two input flows (i_presence and o_lum) and two
output flows (shutter_cmd and lamp_cmd). The input
flows respectively represent the values measured by the
room indoor presence sensor and outdoor luminosity
sensor. The output flows respectively correspond to
the commands to send to the shutter and to the lamp.
This node defines a contract to enforce the target
objective, through DCS, with the controllable vari-
ables c1_lamp, c2_lamp and c_shutter. These con-
trollable variables are respectively related to the lamp
and the shutter. The luminosity objective is expressed
as follows: i_presence ⇒ lum in [500,600] where
lum is equal to the sum of the luminosity provided by
the shutter and the lamp. The controllable of the shut-
ter is declared after those of the lamp to specify that
natural lighting is preferred to artificial lighting.

4.1.4 Executable model generation
Figure 6 shows how from the generic environment
model, the target objectives and the controllable vari-
ables (i.e., a H/BZR program designed by developers)
are generated the following elements:
1 A step function;
2 A LINC rule template;
3 An instance of the LINC rule template.
At runtime, the LINC rule instance invokes the step

function each time a relevant event occurs. When in-
voked, the step computes and returns appropriate
commands that will be executed by the rule instance.

Step generation The step is generated through the
compilation of the H/BZR program designed by de-

Sylla et al. Page 8 of 19

velopers. For instance, the compilation of the H/BZR
program presented in Figure 5 generates a step.

LINC execution rule template generation The execu-
tion rule template is generated from the H/BZR pro-
gram and the objects of the PUTUTU framework. This
rule template collects the inputs of the main H/BZR
node, invokes the step function with the collected in-
puts and sends the computed commands (outputs of
the main H/BZR node). The precondition of the rule
template consists of a set of rd operations: one rd for
each input of the main H/BZR node and one rd to in-
voke the step. The performance of the rule template
consists of a sequence of two transactions. The first
transaction consists of a set of rd operations to verify
if the collected inputs have not changed and a set of
put operations to send the computed commands and
update the knowledge. One put is generated for each
output of the main H/BZR node and one put is gener-
ated to update the knowledge. The second transaction
consists of a set of rd operations to verify if the col-
lected inputs did not change, one rd to verify if the
knowledge did not change and one put operation to
signal an actuator problem to the maintenance team.
In the second transaction, the fact that the collected
inputs are still the same and the knowledge did not
change means that the first transaction aborted when
performing an action on an actuator (it is faulty or
unreachable). Otherwise, the knowledge would be up-
dated. Hence, the maintenance is informed if the in-
puts are the same and the knowledge did not change.
Listing 2 presents the rule template generated from

the H/BZR program presented in Figure 5. The
precondition of this rule first reads the value mea-
sured by an indoor presence sensor in the variable
i_pres_id_val. This is done by applying a rd on the
Sensors bag of a PUTUTU object. Then, at line 2, the
precondition reads the value measured by an outdoor
luminosity sensor in the variable o_lum_id_val. At
line 3, the precondition stores the read sensor values
in one variable called inputs using the LINC opera-
tion IC (i.e., INLINE_COMPUTE). In LINC, the IC
operation executes any python code and returns a tu-
ple of string (here containing only one value). Finally,
the precondition invokes the step function (line 4)
and stores the computed commands in the variables
shutter_cmd and lamp_cmd (line 5). These variables
will be used in the first transaction of the performance.
The first transaction verifies if the sensors data did

not change (lines 8, 9). Then, it sends the computed
shutter command to a shutter actuator. This is done
by applying a put on the Actuators bag of a PUTUTU
object. This transaction also sends the computed lamp
command to a lamp actuator (line 11) and updates the

1[Objectname , " S e n s o r s "] . r d (i d , i _ p r e s_ i d_v a l) &
[Objectname , " S e n s o r s "] . r d (i d , o_lum_id_val) &

3IC : i n p u t s =" (%s ,%s) "%(i_p r e s_ i d_va l , o_lum_id_val) &
[" HBZR" , " S tep"] . r d (i n p u t s , c u r_ s t a t e , commands) &

5IC : shutter_cmd , lamp_cmd = e v a l (commands)
: :

7{
[Objectname , " S e n s o r s "] . r d (i d , i _ p r e s_ i d_v a l) ;

9[Objectname , " S e n s o r s "] . r d (i d , o_lum_id_val) ;
[Objectname , " A c t u a t o r s "] . put (i d , shutte r_cmd) ;

11[Objectname , " A c t u a t o r s "] . put (i d , lamp_cmd) ;
[" HBZR" , " S tep"] . put (i n p u t s , c u r_ s t a t e , " ") ;

13}
{

15# o t h e r o p e r a t i o n s t o s i g n a l a p rob l em } .

Listing 2 Generated execution rule template example

knowledge (line 12). If a command cannot be sent due
to a problem on the shutter (resp. the lamp) actuator,
the put at line 10 (resp. line 11) fails and the knowledge
is not updated. This prevents from inconsistencies. To
signal the shutter or the lamp problem, the second
transaction, sends a SMS to the maintenance team.

LINC execution rule instance generation From the
generated rule template, a rule instance is generated
with the actual sensors and actuators. This is done
using a file that contains information related to the
considered environment devices (i.e., type, id, technol-
ogy, location). To generate an instance of the execution
rule template, the rule instance generator replaces:
• In rd operation, Objectname and id by the tech-

nology and the id of the corresponding sensor;
• In put operation, Objectname and id by the tech-

nology and the id of the corresponding actuator.
Listing 3 presents the file that describes the devices

of the room example. This file specifies that the room is
equipped with a TelosB indoor presence sensor with an
id equal to pr1, a RFXCOM outdoor luminosity sensor,
an EnOcean lamp actuator and a KNX shutter actuator.

1# typ e : i d : t e c h n o l o g y : l o c a t i o n
p r e s e n c e : p r 1 : Te losB: i n d o o r

3l um i n o s i t y : l u 9 : RFXCOM: ou tdoo r
lamp: e_l_1: EnOcean: i n d o o r

5s h u t t e r : s hu t t e r_43 : KNX: i n d o o r

Listing 3 Information file example

Listing 4 presents the rule instance generated from
the execution rule template of Listing 2 and the de-
scription file presented in Listing 3. This rule reads the
values of specific sensors, invokes the step and sends
the computed commands to specific actuators.

Sylla et al. Page 9 of 19

1 [" Te losB" , " S e n s o r s "] . r d (" p r 1 " , i_p r e s_p r1_va l) &
[" RFXCOM" , " S e n s o r s "] . r d (" l u 9 " , o_lum_lu9_val) &

3 IC : i n p u t s =" (%s ,%s) "%(i_pre s_pr1_va l , o_lum_lu9_val) &
[" HBZR" , " S tep"] . r d (i n p u t s , c u r_ s t a t e , commands) &

5 IC : shutter_cmd , lamp_cmd = e v a l (commands)
: :

7 {
[" Te losB" , " S e n s o r s "] . r d (" p r 1 " , i_p r e s_p r1_va l) ;

9 [" RFXCOM" , " S e n s o r s "] . r d (" l u 9 " , o_lum_lu9_val) ;
[" KNX" , " A c t u a t o r s "] . put (" s h u t t e r _ 4 3 " , shutte r_cmd) ;

11 [" EnOcean" , " A c t u a t o r s "] . put (" e_l_1" , lamp_cmd) ;
[" HBZR" , " S tep"] . put (i n p u t s , c u r_ s t a t e , " ") ;

13 }
{

15 # o t h e r o p e r a t i o n s t o s i g n a l a p rob l em} .

Listing 4 Generated execution rule instance example

1 [Objectname , " S e n s o r s "] . r d (i d , co2_ id_va l) &
COMPUTE: p r e s_ v a l = pres_from_co2(co2_ id_va l)

3 : :
{

5 [" S o f t S e n s o r s " , " S e n s o r s "] . put (p r e s_ i d , p r e s_ v a l) ; } .

Listing 5 Monitoring rule template example

4.2 Creating soft sensors
Developers can create soft sensors from physical sen-
sors to aggregate the data collected from the environ-
ment, to transform them or to estimate other data. For
that, they write specific LINC rules called monitoring
rules. These rules do not involve actuators and cannot
be conflicting. These rules rely on the abstraction layer
which hides the devices heterogeneity. Developers can
also write monitoring rules for other data sources (e.g.,
agenda) to transform data or estimate required data.
Listing 5 presents an example of monitoring rule

template. This rule template creates a soft presence
sensor from a physical CO2 sensor. The precondition
of this rule first reads in the variable co2_id_val, the
value measured by a CO2 sensor. Then, the precon-
dition invokes a function (i.e., pres_from_co2) with
the variable co2_id_val as parameter to estimate if
a presence is detected or not. The result is stored in
the variable pres_val. The performance inserts the
resource (pres_id, pres_val) in the Sensors bag of
the SoftSensors LINC object. This specifies that a
presence has been detected or not by the soft pres-
ence sensor with the id pres_id. This monitoring rule
is triggered each time a new CO2 value is produced.
Once designed, a monitoring rule template is instan-

tiated for a specific environment and the created soft
sensor is added in this environment information file.
Soft sensors and physical sensors are handled similarly
when instantiating the step execution rule template.

4.3 Creating soft actuators
Developers can create soft actuators to allow some
computed commands to be sent to more than one ac-
tuator. A soft actuator groups several actuators, that
have different ids and possibly different communica-
tion technologies, as one actuator. When creating a
soft actuator, developers specify the number of actu-
ators that must perform the action corresponding to
the command (e.g., three lamps must be switched on).
When used in a rule, a soft actuator is seen as any

other actuator: a put is done on its Actuators bag.
When applied, the put sends the specified command to
all the physical actuators that are associated to the soft
actuator. The put succeeds if the action corresponding
to the command can be performed by the specified
number of actuators. Otherwise, the put fails.
Creating a soft actuator consists first in creating a

specific PUTUTU object that encapsulates one or sev-
eral technologies. This is straightforward and is done
by inheriting from the existing PUTUTU objects that
encapsulate the technologies of the target physical ac-
tuators. By default, the operation put(id,command) on
a PUTUTU object Actuators bag sends the command,
given as parameter, to only one actuator. Therefore, it
is required to modify the behaviour of the put opera-
tion, on the created object Actuators bag, to send the
command to the required number of actuators.
Once defined, a soft actuator is added in the envi-

ronment information file and will be used by the rule
that invokes the step, as if it were a physical actuator.

4.4 Dealing with changing objectives
Controlling smart environment devices requires to deal
with changing objectives. The reason is that a realis-
tic environment can have different configurations with
different objectives (e.g., working time and holidays in
a building). This is done by first designing a controller
for each configuration. Then, switching between the
controllers, at runtime, as illustrated in Figure 7.
Let us consider a system and a set of controllers, de-

signed in H/BZR, to achieve different objectives. To
achieve its objectives, each controller accepts specific
states of the system and rejects the other states (i.e.,
those that can violate its objectives). A state rejected
by a given controller is not allowed to be reached when
this controller is activated. Hence, switching an acti-
vated controller (e.g., Ct1) for another controller (e.g.,
Ct2) is possible only if the current state of the system
(accepted by Ct1) is accepted by the controller Ct2.
Switching controllers is not an easy task in general

because it is not straightforward to decide if a given
state is accepted by a controller. Indeed, a state is
accepted by a controller if it:
• Belongs to the state space (set of known states)
of the controller;

Sylla et al. Page 10 of 19

Transactional
Execution
Mechanism

Controllers

Abstraction Layer

Devices and their communication technologies

data commands

ADK

M
I

E

ADK

I

Objectives set 1

Objectives set 2

Legend

M Monitoring
I Interpretation
A Analysis
D Decision
K Knowledge
E Execution

LINC Rules

Figure 7 Controller reconfiguration through the framework

• Does not violate an objective of the controller;
• Does not lead, through one or several uncontrol-
lable transitions, to a state violating an objective.

However, in the context of smart environments, partic-
ular solutions can be performed to enable the switch of
controllers. An example of solution is to design the dif-
ferent controllers in such a way that they all have the
same initial state. This allows to switch them when this
state is reached. For instance, a building may have a
night state where it is not occupied, completely closed,
not heated and not ventilated. This state can be use
as the initial state of all the building controllers. An-
other possible solution is to try to synthesise the tar-
get controller from the current state of the activated
controller. If the controller synthesis succeeds and the
current state has not changed, the switch can be done.
To enable the reconfiguration, the execution rule of

each controller is associated to a resource to be ac-
tivated or deactivated. For this, a LINC bag called
CurConfiguration is first created. This bag contains
one resource indicating the current configuration of the
considered environment. Then, each execution rule is
modified to enable its activation and deactivation.
To illustrate the reconfiguration, let us consider an

example in the context of building automation. One
can design two controllers (with the same initial state),
for different configurations of a building (e.g., working
time and holidays). Then, the execution rules of the
controllers are modified as shown in Listing 6 for the
working time execution rule. A rd on the configura-
tion of the controller is added in the beginning of the
precondition and in the beginning of each transaction.
This ensures that an execution rule is triggered only if
the resource corresponding to its controller configura-
tion is present in the bag CurConfiguration.
Hence, switching a controller for another one consists

in removing the resource of CurConfiguration and

1[" Room" , " C u r C o n f i g u r a t i o n "] . r d (" WorkingTime") &
[" Te losB" , " S e n s o r s "] . r d (" p r 1 " , i_p r e s_p r1_va l) &

3# o t h e r p r e c o n d i t i o n o p e r a t i o n s
: :

5{
[" Room" , " C u r C o n f i g u r a t i o n "] . r d (" WorkingTime") ;

7# o t h e r o p e r a t i o n s f o r p r e s_ v a l and lamp_cmd
o t h e r o p e r a t i o n s f o r t h e s t e p i n v o c a t i o n

9}
{

11[" Room" , " C u r C o n f i g u r a t i o n "] . r d (" WorkingTime") ;
o t h e r o p e r a t i o n s t o s i g n a l a p rob l em} .

Listing 6 Modified execution rule example

[" Room" , " Event"] . r d (" h o l i d a y s _ s t a r t ") &
2[" Room" , " S t a t e s "] . r d (" n i g h t ") &

[" Room" , " C u r C o n f i g u r a t i o n "] . r d (" WorkingTime")
4: :

{
6[" Room" , " Event"] . g e t (" h o l i d a y s _ s t a r t ") ;

[" Room" , " C u r C o n f i g u r a t i o n "] . g e t (" WorkingTime") ;
8[" Room" , " C u r C o n f i g u r a t i o n "] . put (" H o l i d a y s ") ; } .

Listing 7 Switching rule example

adding the appropriate resource. This is done by writ-
ing a switching rule. For instance, Listing 7 presents
an example of LINC rule that switches the working
time controller for the holidays one when the event
holidays_start is triggered and the night state of
the building is reached. The performance of the rule
consumes the event resource and the current configu-
ration resource and inserts the Holidays resource.
When the controllers are numerous, instead of writ-

ing switching rules that may be conflicting (activate
and deactivate a controller at the same instant), one
can design, using H/BZR, a switching controller. This
controller will decide the actions to perform on the
controllers (activate, deactivate) and avoid conflicts.

4.5 Deployment
After the design phase, the framework generates a set
of LINC rules and objects that have to be deployed.
The objects consist of one HBZR object (used for the
step and several PUTUTU objects, one for each sen-
sors/actuators technology used in the target environ-
ment. Each PUTUTU object (e.g., Plugwise) must be
deployed on a computing device that has the appro-
priate dongle (e.g., plugwise dongle). The HBZR object
does not require a dongle and can be deployed on any
computing device. Once the deployment is performed,
the control loop starts and the controller will be in-
voked when a relevant event occurs in the environment.

Sylla et al. Page 11 of 19

4.6 Handling a high number of devices
When the number of devices is high, using one single
loop may become a bottleneck. First, the synthesis of
the loop controller can take a lot of time or not succeed
due to computing resource limitations. Second, the ex-
ecution rule reads several data in its precondition part.
This can lead to runtime performance degradation.
In this case, the devices can be partitioned in several

sets. Then, one loop is used for each set, as illustrated
in Figure 8. In this context, each set of devices has a
controller. If the devices sets are independent, nothing
more is required. Otherwise their controllers must be
coordinated, using priorities on their actions on shared
devices. In this case, an output value of a given con-
troller can be an uncontrollable input for another one.
The coordination of controllers is currently done in

LINC. The execution rule of a controller can insert a
value in specific bags or read a value inserted by an-
other controller execution rule. The coordination could
also be done in H/BZR, by exploiting the potential of
modular discrete controller synthesis, as done in [34].

5 Case Study
This section illustrates the proposed framework through
a case study taken in the field of building automation.
The aim is to manage the devices of a building in or-
der to achieve a set of objectives. The building is first
described. Then, its devices are managed and a demon-
strator is presented to show that the framework was
able to reliably achieve the target objectives. Then, the
management cost is evaluated to show the scalability
of our approach. Finally the case study is discussed to
compare the framework to related work approaches.

5.1 Building description
The considered building consists of ten small offices
and twelve big offices, that are separated. A small of-
fice consists of a room that contains: a window, a shut-
ter, a door, a lamp, a reversible air-conditioner (RAC),
a mechanical ventilation (MV), a temperature sensor
and a CO2 sensor. A big office has an additional lamp,
window, shutter and temperature sensor compared to
a small office. A big office also has a presence sen-
sor. Several sensors are installed outside the building
to enquire outdoor conditions (i.e., luminosity, CO2,
noise, temperature, pollen). Noise sensors are also in-
stalled in the corridors. The actuators and sensors of
the building use different communication technologies
(e.g., EnOcean, TelosB). Each room has a file that de-
scribes its devices (id, type, technology and location).
Information about the meetings (e.g., day, time, fea-
tures) that will be held in each room can be obtained
through a specific agenda. The devices of the rooms
must be managed to achieve the following objectives:

Table 1 Environment parameters and devices
Window Shutter Door Lamp RAC MV

Luminosity × × ×
Noise × ×
CO2 × × ×
Temperature × × ×
Pollen ×
Air × × × ×

• For comfort, when a presence is detected, the
luminosity must be between 500 and 600 lux and
the noise level must be lower than 80 dB;

• For air quality, when a presence is detected and
the CO2 exceeds 800 ppm, the room must be ven-
tilated. It must not be be polluted by pollen or
outdoor CO2 and must be quickly ventilated be-
tween meetings separated by less than 30 minutes;

• For comfort, when a presence is detected and the
temperature is below 17 ◦C (resp. above 27◦C),
the room must be heated (resp. cooled);

• For confidentiality, the room must be com-
pletely closed during a confidential meeting;

• For energy savings, natural lighting, ventila-
tion, heating and cooling are preferred to artificial
lighting, ventilation, heating and cooling.

5.2 Devices management using the proposed framework
To achieve the objectives in the rooms, developers have
to design a H/BZR program, from which a step func-
tion and an execution rule template will be generated.
Then, developers have to write two monitoring rule
templates to respectively estimate a presence in a small
room (not equipped with a presence sensor) and to
compute a temperature average in a big room (has two
temperature sensors). Developers also have to write a
monitoring rule template to know from an agenda, if
there is a meeting or not and if a meeting will be held
in less than 30 minutes, after a previous meeting. Fi-
nally, the rule templates are instantiated in each room.

5.2.1 Designing a H/BZR program
This requires to design a generic model of a room. For
this, a set of environment parameters are first consid-
ered (i.e., luminosity, noise, CO2, temperature, pollen
and air). Then, the effects of the devices on these pa-
rameters are specified. As presented in Table 1:
• A window: affects five parameters (noise, CO2,
air, temperature, pollen). When the window is
opened, it introduces the outdoor noise in the
room. It can ventilate, heat or cool the room, de-
pending on the outdoor conditions. It can pollute
the room by introducing pollen or outdoor CO2;

• A shutter: affects two parameters (luminosity,
air). When the shutter is closed, it provides a lu-
minosity equal to zero and stops the outdoor air;

Sylla et al. Page 12 of 19

+++++

M
I

M
I M

II

E

I

E

I

E

ADK
ADK ADK

ADK
ADK ADK

Devices Set 1 Devices Set 2 Devices Set 3

Abstraction Layer
Abstraction Layer Abstraction Layer

Legend

M Monitoring

I Interpretation

A Analysis

D Decision

K Knowledge

E Execution

LINC Rules

data data datacommands commands commands

Figure 8 Example of multiple loops for a high number of devices

• A door: affects five parameters (luminosity,
noise, CO2, temperature, air). When the door is
opened, it lights the room (if the corridor lamps
are on) and introduces the corridor noise;
• A lamp: affects one parameter (luminosity). It
provides 500 lux when it is on and 0 when off;
• A RAC: affects the temperature of a room;
• A MV: affects the CO2 and the air.
A generic room model is obtained by designing au-

tomata that describe the behaviours of a window, a
shutter, a door, a lamp, a RAC and a MV. All the
automata have an output flow that is the command
to send to the modelled actuator. This command is
equal to nothing when the actuator should not re-
ceive a command. For instance, to switch off a lamp,
the command is equal to s_off when the lamp is on
and nothing as long as it remains off. The lamp and
shutter automata are those presented in Figure 5.
Figure 9 presents the automaton that describes a

door. This automaton has two states and two tran-
sitions. Each state is associated to two equations to
produce the command of the door and also specify its
effect on a room noise level. For instance, at the state
Closed, the door affects the noise level with a value
equal to zero. The effects of the door on the other pa-
rameters (i.e., air, CO2, temperature, luminosity) are
not considered because the corresponding sensors do
not exist in the corridor and their values cannot be
obtained. The transitions that go from a state to a
different one are associated to not c. This allows to
open or close the door only when necessary.
Figure 10 presents the automaton that describes the

behaviour of a reversible air-conditioner (RAC). This
automaton has three states and six transitions. Each
state is associated to three equations to produce the
command of the RAC and also specify its effects on
the room. For instance, at the state Off, the RAC
does not cool nor heat the room. This automaton is
contained in a node that has two input flows c1 and c2.
The reason is that, at each state, three transitions can
be triggered (i.e., two transitions that leaves the state
and one that allows to stay). To associate a different

boolean expression to each of the three transitions of a
state, at least two variables are needed. For instance,
when the state Off is activated, if the input flow c1 is
false, the RAC automaton goes to the state Cooling.
If c2 is false, it goes to the state Heating. If both c1
and c2 are true, it remains at the state Off. Finally,
if both c1 and c2 are false, at the same instant, the
transition that was first declared is chosen. Associating
not c1 and not c2 (resp. c1 and c2) to the transitions
that leave (resp. come to) the state Off means that it is
preferred to maintain the RAC Off for energy savings.
Figure 11 presents the automaton that describes the

behaviour of a mechanical ventilation (MV). This au-
tomaton has three states. Each state is associated to
three equations to produce the command of the MV
and specify its effect on the CO2 concentration of a
room. For instance, at the state Off, the MV does not
ventilate the room. At Mode1, the MV ventilates the
room but not quickly, as done in Mode2. The transi-
tions that leave (resp. come to) the state Off are as-
sociated to not c1 and not c2 (resp. c1 and c2) to
express that it is preferable to not use the MV.
Figure 12 presents the automaton that describes the

behaviour of a window. This automaton has two states.
Each state is associated to five variables to specify
the effects of the window on different parameters of a
room. At the state Closed, the window does not ven-
tilate, heat, cool, pollute nor introduce outdoor noise
in a room. At the state Opened, the window can heat,
cool, ventilate, pollute or affect the noise level of a
room, depending on the indoor and the outdoor con-
ditions. The transitions that lead to a different state
are associated to not c to specify that the window
should be opened or closed only when necessary.
Once the devices modelled as automata, the H/BZR

node presented in Figure 13 is designed. This node de-
fine one instance of each device automaton and has
a contract. The contract defines the target objectives
and a set of controllable variables. These variables are
the input flows associated to automata transitions with
a value not given by the monitoring. The energy sav-
ings objective (i.e., natural lighting, heating, ventila-

Sylla et al. Page 13 of 19

Door(c, co_noise) = cmd, noise

Closed Opened

 not c

 not c

cmd = close nothing

noise = 0

cmd = open nothing

noise = co_noise

Figure 9 Door automaton

O Cooling

Heating

Rac(c1, c2) = cmd, cool, heat

cmd = s_o nothing

cool = false

heat = false

cmd = cool nothing

cool = true

heat = false

cmd = heat nothing

cool = false

heat = true

not c1

c1
not c2

c2

not c2

 not c1

Figure 10 RAC automaton

tion and cooling are preferred) is expressed by declar-
ing the controllable variables of the shutter and the
window after those of the lamp, the RAC and the MV.
This H/BZR node represents a room automaton. It
takes as input sensor values and meetings information
and returns the commands to send to the actuators.
Once defined, the H/BZR program (set of defined

nodes) was compiled to generate a step function. The
H/BZR program was also used to generate an execu-
tion rule template that was instantiated for each room.

5.2.2 Execution rule template generation
The H/BZR program and the objects of the PUTUTU
framework were used to generate an execution rule
template. This rule is presented in Appendix A (List-
ing 9). The precondition first applies nine rd opera-
tions on the Sensors bags of nine PUTUTU objects,
referred as Objectname, to read the sensor values (e.g.,
presence, CO2). Then, the precondition applies a rd
on a bag that encapsulates an agenda to obtain infor-
mation related to meetings. Finally, the precondition
invokes the step with the sensor values and the meet-
ings information to compute actuators commands. The
performance of the rule template consists of two trans-
actions. The first transaction verifies if the sensor val-
ues did not change. Then, it applies six put opera-
tions on the Actuators bags of six PUTUTU objects,
referred as Objectname, to send the computed com-
mand to the actuators. Finally, it updates the room
generic model (changes the room automaton state).
The second transaction sends a SMS to the mainte-
nance if a command cannot be sent (e.g., commu-
nication error, actuator failure). The execution rule

O Mode1

Mode2

MV(c1, c2) = cmd, ventil, quickventil

cmd = s_o nothing

ventil = false

quickventil = false

cmd = mode1 nothing

ventil = true

quickventil = false

cmd = mode2 nothing

ventil = true

quickventil = true

not c1

c2

c1

not c2

not c1

not c2

Figure 11 MV automaton

Window(c, i_co2, i_temp, o_co2, o_temp, o_noise, o_pollen, air) =

cmd, ventil, heat, cool, poll, noise

Closed Opened

 not c

 not c

cmd = close nothing

ventil = false

heat = false

cool = false

poll = false

noise = 0

cmd = open nothing

ventil = air o_temp < i_temp

heat = air o_temp > i_temp

cool = air o_temp < i_temp

poll = air o_co2 > 500 o_pollen >80

noise = o_noise

Figure 12 Window automaton

template was instantiated in each room of the build-
ing. For the big rooms, equipped with two lamps,
two windows, two shutters, one RAC, one door and
one MV, some computed commands (i.e., lamp_cmd,
window_cmd, shutter_cmd) are sent to two actuators.

5.2.3 Monitoring rules design
A monitoring rule template is designed to estimate a
presence from the value measured by a CO2 sensor, in
a small room. This rule template is the one presented
in Listing 5. Another monitoring rule template is de-
signed to compute a temperature average in a big room
(is equipped with two temperature sensors). This rule
is presented in Listing 8. The precondition of this rule
first reads two temperature values measured by two
different sensors. Then, it uses a function to compute
the average and stores it in the variable temp_aver.
The performance of this rule stores the computed av-
erage in the Sensors bag of the SoftSensors object.
A monitoring rule template is designed to obtain rel-
evant meeting information from a room agenda. This
rule returns a resource that specifies if there is a meet-
ing, if it is confidential and if meeting will be started
in less than 30 minutes, after a previous meeting.
The designed monitoring rule templates were instan-

tiated in specific rooms. This was done by replacing, in
each operation, Objectname and id, respectively, with
the technology and id of the corresponding sensor.

Sylla et al. Page 14 of 19

Room(i_presence, i_temp, i_co2, o_temp, o_co2, o_lum, o_noise,
o_pollen, co_noise, meeting, con d, between2meetings) returns
(shutter_cmd, window_cmd, door_cmd, lamp_cmd, MV_cmd, RAC_cmd)

contract enforce
i_presence lum in [500,600]
i_presence noise < 80

i_presence ∧ i_temp ≤ 17 heat

i_presence ∧ i_temp ≥ 27 cool

i_presence ∧ i_CO2 ≥ 800 ventilation

meeting ∧ con d shutter Closed ∧ window ∧ Closed ∧ door Closed

between2meetings quickventilation
not pollution

with (c1_lamp, c2_lamp, c1_RAC, c2_RAC, c1_MV, c2_MV,

 c_shutter, c_window, c_door)

(shuttter_cmd, lum_shutter, air) = Shutter(c_shutter, o_lum);
(lamp_cmd, lum_lamp) = Lamp(c1_lamp, c2_lamp);
(door_cmd, noise_door) = Door(c_door, co_noise);
(RAC_cmd, cool_RAC, heat_RAC) = RAC(c1_RAC, c2_RAC);
(MV_cmd, ventil_mv, quickventilation) = MV(c1_MV, c2_MV);
(window_cmd, ventil_window, heat_window, cool_window, pollution, noise_window) =
Window(c_window, i_co2, i_temp, o_co2, o_temp, o_noise, o_pollen, air);

lum = lum_shutter + lum lamp;
noise = noise_door + noise_window;

cool = cool_window ∨ cool_RAC;

heat = heat_window ∨ heat_RAC;

ventilation = ventil_window ∨ ventil_MV;

equations

Figure 13 Room automaton

[Objectname , " S e n s o r s "] . r d (i d , temp_id_val) &
2 [Objectname , " S e n s o r s "] . r d (i d , temp_id_val) &

CM : temp_aver = a v e r a g e (temp_id_val , temp_id_va l)
4 : :

{
6 [Objectname , " S e n s o r s "] . r d (i d , temp_id_val) ;

[Objectname , " S e n s o r s "] . r d (i d , temp_id_al) ;
8 [" S o f t S e n s o r s " , " S e n s o r s "] . put (temp_id , temp_aver) ; } .

Listing 8 Temperature average rule

5.3 Demonstrator with concrete devices
To illustrate the framework, a demonstrator was
built. The aim is to achieve, in a room, two objec-
tives: presence ⇒ luminosity in [500,600] lux,
confidential meeting ⇒ room completely closed.
The demonstrator, as shown in Figure 14, consists of:
• A Plugwise circle [35]: Is a plug used to auto-
matically switch on or off the lamp. This is done
by applying the operation put(id,command) on
the Actuators bag of a Plugwise PUTUTU object.
• An EnOcean switch [36]: Is used as a pres-
ence sensor. The switch has a button that can be
pressed to emulate a presence. The value of the
switch (presence detected or not) is obtained by
applying the operation rd(id, value) on the Sen-
sors bag of the EnOcean PUTUTU object.
• A graphical interface: Is used to emulate a
shutter. A bag, contained in an object (Shutter),
is created to send a command to the shutter. The
insertion of a resource in this bag, shows the cor-
responding action (open, close) on the interface.

Lamp

Shutter

Plugwise

circle

Raspberry

Dongle

070140

EnOcean

swicth

PTM 210

Figure 14 Demonstrator

• A Raspberry Pi: Is used to deploy the objects
and the execution rule. It is connected to the
switch and to the circle through two dongles.

Two bags (i.e., OutdoorLuminosity and Agenda) con-
tained in an object (Room) were created to respectively
emulate an outdoor luminosity sensor and an agenda
for meetings. These bags were manually filled. The
step function generated for the building was used.
Figure 15 presents the MIADIE-K loop that was

set up for the demonstrator. This loop is an instan-
tiation of the the generic loop presented in Figure 1.
Data are first collected through the abstraction layer:
the Room object (outdoor luminosity and confidential
meeting) and the EnOcean object (presence detected
by the switch). Then, the collected data are used to
invoke the step function that, based on the automata
of the shutter and the lamp, computes and returns the
commands that achieve the objectives without conflict.
Finally, the computed commands are sent to the de-
vices and the states of the two automata are changed.
Several scenarios were performed to validate the

demonstrator. Some scenarios were with a potential
conflict (i.e. presence detected, outdoor luminosity in
[500, 600] lux and confidential meeting held), com-
munication errors or actuator failure (e.g., circle un-
plugged). In all cases, there was no conflict and no
inconsistency. Three examples of scenarios are:
• First scenario: The button of the switch was

pressed to emulate a presence and the outdoor
luminosity was set to 500 lux by inserting the re-
source ("500") in the bag OutdoorLuminosity.
A confidential meeting was also emulated by in-
serting the resource ("confidentialMeeting")
in the bag Agenda. This switched on the lamp and
closed the shutter. The conflict which consists in
opening the shutter for daylight and closing it at
the same instant for confidentiality was avoided.

• Second Scenario: It was performed just af-
ter the first scenario. The presence was still
detected, the outdoor luminosity was equal to
500 lux, the shutter was closed and the lamp
was on. In this context, the end of the con-
fidential meeting was emulated by removing

Sylla et al. Page 15 of 19

the resource ("confidentialMeeting") from
the bag Agenda and inserting the new resource
("notConfidentialMeeting"). This opened the
shutter and switched off the lamp to save energy.
• Third Scenario: It was performed after the sec-
ond scenario. The presence was still detected, the
lamp was off and the shutter was opened. In this
context, the outdoor luminosity was set to 700 lux.
In addition, a failure was emulated on the lamp
(i.e., the circle was unplugged). In this case, the
controller decided to close the shutter and switch
on the lamp to maintain the luminosity between
500 and 600 lux. Since there was a problem on the
lamp, nothing was done and a SMS was sent to
the maintenance to signal the problem. Hence, the
inconsistency which consists in wrongly assuming
that the lamp was switched on was avoided.

5.4 Evaluation of the devices management cost
This section evaluates the design cost and the runtime
cost of the proposed devices management approach.

5.4.1 Design cost evaluation
When using the proposed framework, developers de-
scribe the actuators and define the target objectives.
They do not have to manually specify the desired be-
haviour of the considered smart environment. This is
enabled by the generation of a controller, through Dis-
crete Controller Synthesis (DCS). For instance, in the
case study, one controller was generated using six au-
tomata with a total of 65 variables, modelling a lamp, a
shutter, a window, a door, a RAC and a MV. The syn-
thesis of the controller took 1.4 s, on a computer with
a processor Intel i7 (3.4 GHZ) and 16 GB of RAM.
The controller synthesis algorithm is exponential in

the number of variables that are used in the model that
describes the devices [18]. These variables correspond
to the variables that are associated to the states of
the automata, modelling the devices, the controllable
variables and the uncontrollable variables. The Table 2
shows the synthesis time of a controller for different
rooms with different number of devices that do not
have the same behaviour. The devices of each room
are described using automata associated to variables.
The Table shows that the synthesis time grows expo-
nentially with the number of variables of the model.
When the number of variables is high, the synthesis

of the controller can take a lot of time or not succeed
to due limitations of CPU and/or RAM. In our ap-
proach, the generic environment model allows to deal
with this limitation. All the devices that have the same
behaviour are seen as one device and hence they are
modelled using one single automaton and the asso-
ciated variables. This improves the scalability by re-
ducing the controller synthesis time. However, this is

Table 2 Design costs comparison
Considered Rooms Synthesis Time
R1 (6 devices/65 variables) 1.4 s
R2 (12 devices/101 variables) 31 s
R3 (18 devices/137 variables) 797 s
R4 (24 devices/173 variables) 4888 s
R9 (48 devices/353variables) 10920 s

limiting for a high number of devices that have dif-
ferent behaviours, several automata must be used. In
this case, the devices are managed by designing several
autonomic loops, as explained in the Section 5.4.3.

5.4.2 Runtime cost evaluation
At runtime, the generated execution rule reads data
from all sensors and other sources and invokes the step
function to compute the commands. The step is sim-
ilar to a set of if then else and has a runtime cost that
is low. Hence, the runtime cost of the execution rule
depends on the data it reads in its precondition part.
The fact that the execution rule reads data from all

sensors and other sources leads to a runtime cost that
is not negligible, when the number of devices is high.
The reason is that the middleware LINC is used to
design reactive rules. To not miss an event and to react
as soon as it occurs, a rule is executed by building an
inference tree from the data read in its precondition.
Hence, the more a rule reads data, the bigger is the
inference tree. This slows down the rule execution.
However, to avoid conflicts and ensure reliability, it

is necessary to read data from all sensors and have a
global view of the environment. For instance, opening
a window to cool a room requires not only data from
temperature sensors but also outdoor noise, CO2 and
pollen sensors to not violate other target objectives.

5.4.3 Design cost and runtime cost improvement
When the number of devices is high, they are man-
aged as follows. The devices are first divided into sev-
eral sets. Then, a loop, as the one presented in Fig-
ure 1, is designed for each set of devices. These loops
can be combined in different modes (i.e., parallel, co-
ordinated, hierarchic) depending on the interactions
between the devices sets (e.g., independent) and the
structure of the considered smart environment (e.g., a
building is composed of floors that consist of rooms).
Managing the devices by designing multiple loops

improves the scalability of our approach, by reducing
the design cost. Indeed, the controller synthesis is done
for each devices set (not in all the devices) and can be
performed modularly [34]. This also improves the spec-
ification by allowing developers, when providing the
environment model, to consider sets of limited devices
instead of all the devices. Finally, this allows for the
distribution of the loops and improves the execution

Sylla et al. Page 16 of 19

EnOcean Switch Plugwise Circle

pres

EnOcean PlugwiseRoom Shutter

Graphical Interface

Step Function

o_lum con d pres

OnOff

Transactional
Execution
Mechanism

Legend

PUTUTU Object

Basic LINC Object

Collected Data

 Computed Command

Abstraction
Layer

lamp_cmd

shutter_cmdlamp_cmd

shutter_cmd

Closed
Opened

cmd=close nothing
lum=0
air =false

cmd=open nothing
lum=o_lum
air =ftrue

Shutter

Automaton

Lamp

Automaton

not c

not c

not c1

c2
cmd=s_o nothing
lum=0

cmd=s_on nothing
lum=500

Figure 15 Demonstrator devices management

cost. More details on how smart environment devices
are managed using multiple loops can be found in [37].

5.5 Discussion about the case study and qualitative
comparison with related work approaches

The proposed framework allows developers to gener-
ate an executable model for the management of smart
environment devices. To enable the executable model
generation, developers provide a model of the consid-
ered environment and the target objective. The envi-
ronment model is defined by specifying for each device,
its states, its state transitions and its effects on the en-
vironment parameters. The objectives are defined by
specifying the values the environment parameters must
take. From the environment model and the objectives
are generated a controller and an execution rule. At
runtime, the execution rule collects data from the en-
vironment and invokes the controller that makes ap-
propriate decisions to reliably achieve the objectives.
In the followings, our approach is compared with the
related work approaches to show its advantages.

5.5.1 Comparison with rule based approaches
In rule based approaches (e.g. [6, 5]), developers de-
fine a set of rules to specify the actions to perform
when events occur. These approaches are intuitive for
the management of smart environment devices [38].
However, developers have to manually consider all the
possible cases to define a set of complete rules. This
prevents the system from being in a state where no ac-
tion can be performed because the corresponding rules
are not defined. For a large system, manually consid-
ering all the possible cases is tedious.

In our approach, all the possible cases are computed
through discrete controller synthesis and a controller
that decides the actions to perform depending on the
events that occur is generated. This allows developers
to not manually consider all the cases and this ensures
that there is no conflicts and violations of objectives.

5.5.2 Comparison with model checking based
approaches

In model checking based approaches (e.g., [4, 3]), de-
velopers first model the entities of the considered sys-
tem and how they interact to achieve the target objec-
tives (i.e., decide the actions to perform when events
occur). Then, developers define a set of properties and
the model checker verify if the properties are satis-
fied by the given model. If a property is not satisfied,
the model is modified and verified again. When the
properties are satisfied, developers implement the cor-
responding executable model, for instance by generat-
ing rules from the verified model, as done in [13].
Verifying the model prevents from conflicts and ob-

jectives violations. This ensures the reliability of the
smart environment. The model verification relies on
the state space exploration techniques and is, simi-
larly to our approach, exponential in the number of
variables of the model. The execution of the executable
model is also the same in both approaches. The advan-
tages of our approach is that developers do not have to
model how the devices interact to achieve the objec-
tives (i.e., decision making) and do not need to modify
the model when a property is not satisfied. Developers
just describe each devices (states, transitions, effects
on the environment) and the objectives. The decisions
are reliably made by a controller that is generated.

Sylla et al. Page 17 of 19

6 Related Work
In [4, 13, 3, 2, 39, 14], the authors propose model check-
ing based approaches for reliable smart environments.
These approaches consist in first modelling the desired
behaviour of the considered smart environment (i.e.,
the behaviour of the devices and how they interact to
achieve the target objectives). Then, verifying if a set
of properties, expressed in temporal logics, are valid
in the designed model, using a model checker. In the
opposite, our approach does not require to model the
desired behaviour or verify properties. The properties
are, automatically, enforced on a model that describes
the features of each device (i.e., effects on the environ-
ment, states and transitions). For this reason, our ap-
proach is more convenient than those based on model
checking. It allows to declaratively obtain the desired
behaviour of the considered smart environment. The
advantage of model checking based approaches is that
several methods have been proposed for the reduction
of the verification cost. To benefit from these methods,
for a large system, one can combine model checking
with our approach. In this case, the considered system
is first divided into several subsystems. Then, the sub-
systems with a desired behaviour that can (resp. can-
not) be easily specified manually are designed using a
model checking based approach (resp. our approach).
In [1, 6, 5, 7, 8, 9, 16], the authors propose ap-

proaches for reliable rule based smart environments.
They first consider a set of errors that can occur within
a set of rules (e.g., conflicts, circularities, constraints
violations, redundancy). Then, they propose methods
to detect (e.g., pairwise comparison, model checking)
and solve (e.g., priority) the considered errors. These
approaches do not enable the detection of implicit er-
rors. Indeed, they do not consider the effects of the
rules on the environment. Our approach prevents from
both implicit conflicts and constraint violations, by
considering the devices effects on the environment.
In [11, 12, 40], the authors propose environment

aware approaches for the reliable smart environments.
These approaches enable the detection of implicit con-
flicts and/or objectives violations, by considering the
effects of devices. However, using these approaches re-
quire to manually solve the detected conflicts and ob-
jectives violations. In addition, they do not consider
the inconsistencies that are due to communication er-
rors and hardware failures, as done in our approach.
In [32, 41], the authors propose an approach that

handle inconsistencies. This approach consists in veri-
fying if the actual effect of an action, on an actuator,
is equal to its expected effect, using data from sensors
or other sources. An inconsistency is assumed if the
actual effect of an action is different from its expected

effect. In this case, the action is performed again us-
ing an alternative actuator. The limitation of this ap-
proach is that it can take a lot of time to detect an
inconsistency, for instance when the effect of the ac-
tion is not instantaneous (e.g. temperature variation).
In our approach, when performing an action, the fact
that the actuator is faulty or unreachable due to a
communication error is detected. This prevents from
taking a lot of time to detect that the action was not
performed. However, an actuator can become faulty
after the action is done. Such a failure is not detected
by our approach. A possible solution to detect such a
failure is to verify the actual effects of actions, using
data from sensors. For this reason, the approach pro-
posed in [32, 41] is complementary to our approach.
In [42], the authors propose an approach that pre-

vents from implicit conflicts among a set of ECA rules
and enables the detection inconsistencies. For this,
each rule specifies its post-condition (expected effect).
Post-conditions are used to detect conflicts and incon-
sistencies. A conflict is detected at design time when
the same event triggers rules with contradictory post-
conditions or at runtime when such rules are triggered
by different events. Conflicts detected at compilation
time are solved by users and those detected at runtime
are solved by a set of resolution rules. An inconsistency
occurs if the actual effect of a rule is different from its
post-condition. In this case, a failure event is raised to
trigger alternative rules (if they are defined). This ap-
proach is limited because users have to solve conflicts
and also it takes time to detect an inconsistency, when
the effect of the involved rule is not instantaneous.
In [43], the authors propose an approach that enables

the detection of errors (conflicts and objectives viola-
tions) among a set of rules. This approach also enables
the detection of inconsistencies by verifying the actions
actual effects. In a more recent work [44], the authors
consider environment dependencies for the detection of
implicit errors. However, using this approach requires
to solve the detected errors. Moreover, the fact that
an actuator is faulty is not detected when performing
an action on it, as done in our approach, but after a
certain time when the expected effect is not observed.

7 Conclusion
This paper has proposed a framework for reliable and
environment aware management of smart environment
devices. This framework enables the declarative man-
agement of devices, hides their heterogeneity, prevents
from inconsistencies (due to communication errors or
actuators failure), and conflicting decisions including
those caused by environment dependencies. This is
done following the autonomic computing principles.
First, an abstraction layer is used to collect data from

Sylla et al. Page 18 of 19

the environment. Then, based on the data and knowl-
edge about the environment, a generated controller
computes appropriate commands that allow to reach
the target objectives without conflict. Finally, a trans-
actional execution mechanism is used to atomically
send the computed commands to the actuators and
update the knowledge to prevent from inconsistencies.
In current status, the proposed framework has two

main limitations. First, developers have to describe the
behaviours of actuators and specify their effects on the
environment. Hence, the reliability of the devices man-
agement depends on the accuracy of the descriptions
given by developers. Second, when performing an ac-
tion on a actuator that is not a soft actuator, if the
action cannot be performed (e.g., due to a communi-
cation error), a SMS is sent to the maintenance team
and nothing else is done meaning that the controller
stops until the problem is solved by the maintenance.
An important perspective of this work is to improve

the handling of communication errors and actuators
failures, by performing alternative actions before in-
forming the maintenance. The other perspective is to
provide a domain specific language that enables home
occupants or building managers to specify their de-
vices (i.e., sensors, actuators) and the objectives they
want to achieve. Then, the goal will be to generate
from these specifications an executable model that au-
tomatically and reliably manages their homes or build-
ings devices. This executable model can consist of the
composition of multiple loops, as illustrated in [37].

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

List of abbreviations
DCS: Discrete Controller Synthesis, MV: Mechanical Ventilation, RAC:
Reversible Air Conditioner.

Competing interests
The authors declare that they have no competing interests.

Funding
This work is funded by the H2020 TOPAs project (grant 676760).

Author’s contributions
This work is done in the context of the Ph.D. studies of ANS under the
supervision of ML and ER.

Author details
1Univ. Grenoble Alpes, CEA, LETI, DACLE, LIALP, F-38000 Grenoble.
2Univ. Grenoble Alpes, INRIA, CNRS, Grenoble INP, LIG, F-38000
Grenoble.

References
1. Cano J, Delaval G, Rutten E. Coordination of ECA rules by verification

and control. In: International Conference on Coordination Languages
and Models. Springer; 2014. p. 33–48.

2. Bonhomme S, Campo E, Esteve D, Guennec J. Methodology and tools
for the design and verification of a smart management system for
home comfort. In: Intelligent Systems, 2008. IS’08. 4th International
IEEE Conference. vol. 3. IEEE; 2008. p. 24–2.

3. Corno F, Sanaullah M. Modeling and formal verification of smart
environments. Security and Communication Networks.
2014;7(10):1582–1598.

4. Augusto JC, Hornos MJ. Software simulation and verification to
increase the reliability of intelligent environments. Advances in
Engineering Software. 2013;58:18–34.

5. Nacci AA, Balaji B, Spoletini P, Gupta R, Sciuto D, Agarwal Y.
Buildingrules: a trigger-action based system to manage complex
commercial buildings. In: Adjunct Proceedings of the 2015 ACM
International Joint Conference on Pervasive and Ubiquitous Computing
and Proceedings of the 2015 ACM International Symposium on
Wearable Computers. ACM; 2015. p. 381–384.

6. Sun Y, Wang X, Luo H, Li X. Conflict detection scheme based on
formal rule model for smart building systems. IEEE Transactions on
Human-Machine Systems. 2015;45(2):215–227.

7. Magill E, Blum J. Exploring conflicts in rule-based sensor networks.
Pervasive and Mobile Computing. 2016;27:133–154.

8. Vannucchi C, Diamanti M, Mazzante G, et al. Symbolic verification of
event–condition–action rules in intelligent environments. Journal of
Reliable Intelligent Environments. 2017;p. 1–14.

9. Le Guilly T, Nielsen MK, Pedersen T, et al. User constraints for
reliable user-defined smart home scenarios. Journal of Reliable
Intelligent Environments. 2016;2(2):75–91.

10. Le Guilly T, Smedegård JH, Pedersen T, Skou A. To do and not to do:
constrained scenarios for safe smart house. In: Intelligent Environments
(IE), 2015 International Conference on. IEEE; 2015. p. 17–24.

11. Maternaghan C, Turner KJ. Policy conflicts in home automation.
Computer Networks. 2013;57(12):2429–2441.

12. Liang CM, Karlsson BF, et al. SIFT: building an internet of safe
things. In: Proceedings of the 14th International Conference on
Information Processing in Sensor Networks. ACM; 2015. p. 298–309.

13. Sylla AN, Louvel M, Pacull F. Coordination Rules Generation from
Coloured Petri Net Models. In: Proceedings of the Int. Workshop on
Petri Nets and Software Engineering (PNSE’15); 2015. p. 325–326.

14. Augusto JC, Hornos MJ. Using Simulation and Verification to Inform
the Development of Intelligent Environments. In: Intelligent
Environments (Workshops); 2012. p. 413–424.

15. Corno F, Sanaullah M. Formal verification of device state chart
models. In: Intelligent Environments (IE), 2011 7th International
Conference on. IEEE; 2011. p. 66–73.

16. Shehata M, Eberlein An, Fapojuwo A. Using semi-formal methods for
detecting interactions among smart homes policies. Science of
Computer Programming. 2007;67(2-3):125–161.

17. Louvel M, Pacull F. Linc: A compact yet powerful coordination
environment. In: Coordination Models and Languages. Springer; 2014.
p. 83–98.

18. Delaval G, Rutten É, Marchand H. Integrating discrete controller
synthesis into a reactive programming language compiler. Discrete
Event Dynamic Systems. 2013;23(4):385–418.

19. Kephart JO, Chess DM. The vision of autonomic computing.
Computer. 2003;36(1):41–50.

20. Pacull F, Ducreux LF, Thior S, et al. Self-organisation for building
automation systems: Middleware linc as an integration tool. In:
Industrial Electronics Society, IECON 2013-39th Annual Conference of
the IEEE. IEEE; 2013. p. 7726–7732.

21. Ducreux LF, Guyon-Gardeux C, et al. Resource-based middleware in
the context of heterogeneous building automation systems. In: IECON
2012-38th Annual Conference on IEEE Industrial Electronics Society.
IEEE; 2012. p. 4847–4852.

22. Ducreux LF, Louvel M, et al. Dynamic Reconfiguration of Building
Automation Systems with LINC. Sensors & Transducers.
2015;185(2):68.

23. Iris H, Pacull F. Smart sensors and actuators: A question of discipline.
Sensors & Transducers. 2013;18(1):14.

24. Vergara-Gallego MI, Mokrenko O, et al. Implementation of an Energy
Management Control Strategy for WSNs using the LINC Middleware.
In: Proceedings of the 2016 International Conference on Embedded
Wireless Systems and Networks. Junction Publishing; 2016. p. 53–58.

25. Louvel M, Pacull F, Vergara-Gallego MI. Reliable control through
wireless networks. In: Industrial Electronics Society, IECON 2016-42nd
Annual Conference of the IEEE. IEEE; 2016. p. 4922–4927.

Sylla et al. Page 19 of 19

26. Carriero N, Gelernter D. Linda in context. Communications of the
ACM. 1989;32(4):444–458.

27. Cooper T. Rule-based programming under OPS5. vol. 988. Morgan
Kaufmann Publishers Inc.; 1988.

28. Bernstein PA, Hadzilacos V, Goodman N. Concurrency control and
recovery in database systems. vol. 370. Addison-wesley New York;
1987.

29. Sylla AN, Louvel M, Rutten É. Combining Transactional and
Behavioural Reliability in Adaptive Middleware. In: Proceedings of the
15th International Workshop on Adaptive and Reflective Middleware.
ACM; 2016. p. 5.

30. Bourcier J, Diaconescu A, Lalanda P, McCann JA. Autohome: An
autonomic management framework for pervasive home applications.
ACM Transactions on Autonomous and Adaptive Systems. 2011;6(1):8.

31. Cetina C, Giner P, Fons J, Pelechano V. Autonomic computing
through reuse of variability models at runtime: The case of smart
homes. Computer. 2009;42(10).

32. Seiger R, Huber S, Heisig P, Assmann U. Enabling Self-adaptive
Workflows for Cyber-physical Systems. In: International Workshop on
Business Process Modeling, Development and Support. Springer; 2016.
p. 3–17.

33. Warriach EU, Ozcelebi T, Lukkien JJ. Self-* Properties in Smart
Environments: Requirements and Performance Metrics. In: Intelligent
Environments (Workshops); 2014. p. 194–205.

34. Delaval G, Gueye SM, et al. Modular coordination of multiple
autonomic managers. In: Proceedings of the 17th int. ACM Sigsoft
symposium on Component-based software engineering; 2014. p. 3–12.

35. Plugwise. Plugwise Circle;. https://www.plugwise.com/circle/.
36. EnOcean. EnOcean Switch;.

https://www.enocean.com/en/enocean_modules/ptm-210/.
37. Sylla AN, Louvel M, Rutten E, Delaval G. Design Framework for

Reliable Multiple Autonomic Loops in Smart Environments. In: 2017
IEEE International Conference on Cloud and Autonomic Computing
(ICCAC). Tucson, AZ, United States; 2017. To appear. Available from:
https://hal-cea.archives-ouvertes.fr/cea-01570026.

38. Ur B, McManus E, Pak Yong Ho M, Littman ML. Practical
trigger-action programming in the smart home. In: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems. ACM;
2014. p. 803–812.

39. Pedersen T, Le Guilly T, et al. A method for model checking feature
interactions. In: Software Technologies (ICSOFT), 2015 10th
International Joint Conference on. vol. 1. IEEE; 2015. p. 1–10.

40. Nakamura M, Ikegami K, Matsumoto S. Considering impacts and
requirements for better understanding of environment interactions in
home network services. Computer Networks. 2013;57(12):2442–2453.

41. Seiger R, Huber S, Schlegel T. Toward an execution system for
self-healing workflows in cyber-physical systems. Software & Systems
Modeling. 2016;p. 1–22.

42. Shankar CS, Ranganathan A, Campbell R. An ECA-P policy-based
framework for managing ubiquitous computing environments. In:
Mobile and Ubiquitous Systems: Networking and Services, 2005.
MobiQuitous 2005. The Second Annual International Conference on.
IEEE; 2005. p. 33–42.

43. Preuveneers D, Berbers Y. Consistency in context-aware behavior: a
model checking approach. In: Workshop Proceedings of the 8th
International Conference on Intelligent Environments. vol. 13. IOS
Press; 2012. p. 401–412.

44. Preuveneers D, Joosen W. Semantic analysis and verification of
context-driven adaptive applications in intelligent environments.
Journal of Reliable Intelligent Environments. 2016;2(2):53–73.

Appendix A: Execution rule template of the case study

[Objectname , " S e n s o r s "] . r d (i d , i _ p r e s_ i d_v a l) &
2[Objectname , " S e n s o r s "] . r d (i d , i_temp_id_va l) &

[Objectname , " S e n s o r s "] . r d (i d , i_co2_ id_va l) &
4[Objectname , " S e n s o r s "] . r d (i d , o_temp_id_val) &

[Objectname , " S e n s o r s "] . r d (i d , o_co2_id_val) &
6[Objectname , " S e n s o r s "] . r d (i d , o_lum_id_val) &

[Objectname , " S e n s o r s "] . r d (i d , o_no i s e_ id_va l) &
8[Objectname , " S e n s o r s "] . r d (i d , o_po l l e n_ i d_va l) &

[Objectname , " S e n s o r s "] . r d (i d , c o_no i s e_ id_va l) &
10[" Room" , " Agenda"] . r d (meet ing , c o n f i d , be tween2meet ings) &

COMPUTE: i n p u t s = comp_inputs(i_p r e s_ i d_va l ,
12i_temp_id_val , i_co2_id_va l , o_temp_id_val , o_co2_id_val ,

o_lum_id_val , o_no i s e_ id_va l , o_po l l en_ id_va l ,
14co_no i s e_ id_va l , meet ing , c o n f i d , be tween2meet ings) &

[" HBZR" , " S tep"] . r d (i n p u t s , c u r_ s t a t e , commands) &
16IC : shutter_cmd , window_cmd, door_cmd, lamp_cmd,

MV_cmd, RAC_cmd = e v a l (commands)
18: :

{# r d o p e r a t i o n s t o v e r i f y d a t a
20[Objectname , " A c t u a t o r s "] . put (i d , shutte r_cmd) ;

[Objectname , " A c t u a t o r s "] . put (i d , window_cmd) ;
22[Objectname , " A c t u a t o r s "] . put (i d , door_cmd) ;

[Objectname , " A c t u a t o r s "] . put (i d , lamp_cmd) ;
24[Objectname , " A c t u a t o r s "] . put (i d , MV_cmd) ;

[Objectname , " A c t u a t o r s "] . put (i d , RAC_cmd) ;
26[" HBZR" , " S tep"] . put (i n p u t s , c u r_ s t a t e , " ") ; }

{# o t h e r o p e r a t i o n s t o s i g n a l a p rob l em} .

Listing 9 Generated room Execution rule template

https://www.plugwise.com/circle/
https://www.enocean.com/en/enocean_modules/ptm-210/
https://hal-cea.archives-ouvertes.fr/cea-01570026

	Abstract
	Introduction
	Background
	LINC middleware
	LINC concepts
	LINC in the context of smart environments
	LINC rule example

	Heptagon/BZR language
	Design of a H/BZR program
	Execution of a H/BZR program

	Combination of LINC and H/BZR
	Autonomic computing

	Framework description
	Autonomic management of devices

	Framework usage by developers
	Generating an executable model
	Modelling the environment
	Defining the target objectives and the controllable variables
	Example of H/BZR program for a room
	Executable model generation

	Creating soft sensors
	Creating soft actuators
	Dealing with changing objectives
	Deployment
	Handling a high number of devices

	Case Study
	Building description
	Devices management using the proposed framework
	Designing a H/BZR program
	Execution rule template generation
	Monitoring rules design

	Demonstrator with concrete devices
	Evaluation of the devices management cost
	Design cost evaluation
	Runtime cost evaluation
	Design cost and runtime cost improvement

	Discussion about the case study and qualitative comparison with related work approaches
	Comparison with rule based approaches
	Comparison with model checking based approaches

	Related Work
	Conclusion
	Execution rule template of the case study

