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Résumé

This paper aims to build an image coding system based

on the model of the mammalian retina. The retina is the

light-sensitive layer of tissue located on the inner coat of

the eye and it is responsible for vision. Inspired by the way

the retina handles and compresses the visual information

and based on previous studies we aim to build and analy-

tically study a retinal-inspired image quantizer, based on

the Leaky Integrate-and-Fire (LIF) model, a neural mo-

del according to which function the ganglion cells of the

Ganglionic retinal layer that is responsible for the visual

data compression. In order to have a more concrete view

of the encoder’s behavior, in our experiments, we make use

of the spatiotemporal decomposition layers provided by ex-

tensive previous studies on a previous retinal layer, the Ou-

ter Plexiform Layer (OPL). The decomposition layers pro-

duced by the OPL, are being encoded using our LIF image

encoder and then, they are reconstructed to observe the en-

coder’s efficiency.

Mots clefs

Retina, Ganglion cells, Leaky Integrate-and-Fire (LIF) mo-

del, neural coding, image coding,weighted difference of

Gaussians.

1 Introduction

As technology advances, the need for finding new ways

for the efficient transmission and storage of information

augments dramatically. Living in the age of the social net-

works, the media to be stored and transmitted grows ra-

pidly. However, despite the fact that during the past few de-

cades compression standards kept evolving, the compres-

sion ratio does not evolve accordingly to the needs. Conse-

quently, the urge for finding new means of compression re-

mains to be of a high importance. With this paper, we aim

to propose a different, bio-inspired, dynamic approach for

the encoding of images.

Our work is being inspired by the mammalian visual sys-

tem and more specifically, by the way the retina works for

the perception and compression of natural images. The re-

tina can be divided into three basic layers. The Outer Plexi-

form Layer (OPL) which acts as a spatiotemporal filter on

images, the Inner Plexiform Layer (IPL) that performs a

non-linear rectification, and the Ganglionic Layer which

is responsible for the encoding of the data. The Ganglio-

nic layer consists of the ganglion cells, a type of neuron

which compresses visual information, in response to the

brightness of light. The Ganglion cells function according

to the Leaky Integrate-and-Fire (LIF) neural model which

encodes intensity values into spikes. Under the main belief

that nature performs in an optimal way, and based on pre-

vious works on the OPL filtering in [1], we built a quantiza-

tion system making use of the LIF properties to be applied

on the compression of images already filtered by the OPL.

This quantization scheme, unlike the already existing sta-

tic encoding algorithms, encodes images in a dynamic way

and then using an inverse function the encoded information

provides an estimation of the initial image.

In section 2, we are going to provide the theoretical back-

ground for the LIF, explaining the physical and biologi-

cal function of the LIF neural model. We also describe the

LIF encoding and decoding process performed by the LIF

quantizer. In section 3, we discuss about the OPL and the

way it acts as a spatiotemporal filter on input images pro-

ducing decomposition layers. Furthermore we analyze the

procedure for the reconstruction. Finally, in section 4, we

present our experiments on the extended encoding system

for the case of uniform selection of OPL subbands and a

non-uniform one which emphasizes on the most informa-

tive layers.

2 The LIF

2.1 Background

As described in [2], the LIF is a neural model which is

described by the circuit shown in Figure 1. The input cur-

rent I(t), t ∈ R
+ is being divided in the current IR,

which passes through the resistor and the current IC which

charges the capacitor. Given the Ohm’s law for IR and the

definition of capacity as C = q/u (where q is the charge

and u the voltage) the total current can be written as :

I(t) = IR + IC =
u(t)

R
+ C

du

dt
. (1)



Figure 1 – The LIF neuron circuit which consists of a resis-

tance R in parallel with a capacitor C (Figure taken from

[2]).

By multiplying eq. (1) by R and by introducing a time

constant τm = RC the equation becomes :

τm
du

dt
= −u(t) +RI(t). (2)

In the integrate-and-fire model, the form of an action po-

tential is not described explicitly. Spikes are generated at a

firing time t(f). This firing time is defined by the following

threshold criterion :

t(f) : u(t(f)) = θ. (3)

Immediately after t(f) the potential is set to a new value

ur < θ,

lim
t→t(f);t>t(f)

u(t) = ur. (4)

While t < t(f) the dynamics is given by eq. (2) until the

next threshold crossing occurs. The LIF neuron may also

incorporate a refractory period. In this case, if u reaches

the threshold at time t = t(f), the dynamics is interrupted

during an absolute refractory time ∆abs and the integration

restarts at time t(f) +∆abs with a new initial condition.

Let’s consider the simple case of a constant input current

stimulus I(t) = I0. For the sake of simplicity we will as-

sume a reset potential ur = 0. Assuming that the kth spike

has occurred at time t = tk when the trajectory of the mem-

brane potential is given by integrating eq. (2) with the ini-

tial condition u(t) = ur = 0. The solution is given by the

relation :

uk(t) = RI0

[

1− exp

(

−
t− tk

τm

)]

. (5)

After each spike, the potential is reset to the value ur =
0 and the integration process starts again. The condition

u(t) = θ is satisfied for t = tk+1, where tk+1 denotes

the time when the next spike occurs. Then, eq. (3) can be

written as following :

u(tk+1) = θ = RI0

[

1− exp

(

−
tk+1 − tk

τm

)]

. (6)
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Figure 2 – The LIF firing process - Top : model with no re-

fractory period. Bottom : model with a constant refractory

period ∆abs = 2 ms. In the model without a refractory per-

iod the next integration starts exactly after the spike emis-

sion while in the presence of a constant refractory period

the new integration begins delayed by a time period equal

to ∆abs after the latest spike emission time.

We assume d(RI0) = tk+1−tk, the inter-spike delay of an

integrate-and-fire neuron with no refractory period, which

depends on the input current I0. For example, the higher

the amplitude of the current is, the smaller the delay.

Consequently, solving (6) for the delay d(RI0) and simpli-

fying the notation setting u = u(I0) = RI0 yields :

d(u) =















∞, u < θ

h(u; θ) = τm ln(
u

u− θ
), u ≥ θ,

(7)

The firing rate of the LIF neuron, is then given by the rela-

tion ν = 1/d(u).
At this point, it is important to denote that for the case of a

neuron with an absolute refractory period, the occurrence

of the next spike will be delayed by the duration of the re-

fractory period ∆abs. So, in this case, the inter-spike delay

d′(u) is given by :

d′(u) = d(u) + ∆abs = tk+1 − tk +∆abs, (8)

where t = tk+1 − tk +∆abs is the time instance when the

next integration will start after the emission of the (k+1)th

spike. The firing process of a LIF neuron is described by

Figure 2.

2.2 The LIF Quantizer

The LIF quantizer, which has analytically been studied and

explained in [3], uses the LIF properties described in the

previous section to encode input intensities into numbers

of spikes. More specifically, the LIF Quantizer works ac-

cording to the following procedure. In the encoder, accor-

ding to Ohm’s law, we compute the action potential of the



Figure 3 – The LIF encoding and decoding process

LIF neuron from the relation u = RI . Then using eq. 7 we

compute the integration delay d(u). By adding the refrac-

tory period we get the interspike delay d′(u).
In the decoder, the floor value of the division of the para-

meter tobs by the interspike delay d′(u) gives the number

of spikes. Following the inverse procedure, dividing the pa-

rameter tobs by the encoded number of spikes and using the

estimated delay for the computation of the membrane po-

tential estimation, we finally get the quantized values of the

input current Î by dividing by the resistanceR. The process

of the quantization using the LIF is shown in Figure 3.

There were some previous attempts to use similar bio-

inspired coding schemes [4, 5]. However, both these works

tried to approximate the LIF model by conventional com-

pression tools. The originality of this work with respect to

the other ones is related to the implementation of a real LIF

quantizer with refractory period.

2.3 Refractory period

As described in section 2.1, after the production of a spike

in the LIF model there can exist a refractory period. For our

Quantizer this refractory period works as an additive noise.

In this paper we are going to use a half-Gaussian refrac-

tory period. This means that after each spike we generate

a random positive refractory period of a specified variance.

More specifically the refractory period of our model be-

haves according to the following distribution :

P (x) = A exp
(

−B(x2)
)

, (9)

where A =

√
2

σ
√
π

and B =
1

2σ2
for a given standard de-

viation σ.

3 The Outer Plexiform Layer (OPL)

3.1 Background

The Outer Plexiform Layer (OPL) is the first layer of the

retina which consists of a dense network of synapses bet-

ween the photoreceptor, horizontal and bipolar cells (see

Fig. 4) [6]. The input of the OPL cells is the visual sti-

mulus f(x, t), x ∈ R
2, t ∈ R

+ which is spatiotemporally

transformed into the equivalent electrical signal. This elec-

trical signal is dynamically encoded by the neurons into a

code of spikes which is propagated to the analysis center ;

the visual cortex. The neural code is not used to reconstruct

Figure 4 – The OPL structure (Figure taken from [7]).

the input signal but to learn and take decisions. However,

our goal is to build a bio-inspired coding/decoding system

for images. Figure 5 shows the proposed coding/decoding

architecture we aim to build.
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Figure 5 – Retina-inspired image codec. The figure des-

cribes the decomposition of the input image f using the

retina-inspired filter φ into several layers Atj each one of

which is sparsified by the LIF quantizer Q. Based on the

quantized layers A∗
tj

, one is able to reconstruct f̃ and com-

pute the distortion comparing to f .

The dynamic OPL transformation which is caused to the

visual stimulus while it is captured and propagated through

the OPL cells has been approximated by the the retina-



inspired filter [1, 7]. The retina-inspired filter φ(x, t) is a

novel Weighted Difference of Gaussian (WDoG) [7] which

models the center-surround structure of the receptive field

of the bipolar cells :

φ(x, t) = a(t)GσC
(x)− b(t)GσS

(x), (10)

where a(t) and b(t) are two time-varying weights which

tune the shape of the DoG, σc and σs are the standard de-

viations of the center and the surround Gaussians respecti-

vely with σc < σs.

The retina-inspired filtering, which is a frame, is ap-

plied to temporally constant input signals f(x, t) =
f(x)1[0≤t≤T ](t) resulting in high redundancy :

A(x, t) = φ(x, t)
x
∗ f(x), (11)

where
x
∗ is a spatial convolution. Let t1, . . . , tm some tem-

poral samples. For each time instant tj , j = 1, . . . ,m there

is a different decomposition layer Atj = A(x, tj). This

redundancy is sufficient to perfectly reconstruct the input

signal f̃ .

3.2 Reconstruction

It is proven in [1] that the retina-inspired filter is a frame

hence, the filter is invertible meaning that it is possible to

reconstruct the input image. In practice, one needs to solve

the linear system A = Φf and reconstruct f̃ . At time t =
T , the exact estimation of f̃ = f according to :

f̃ = (Φ⊤Φ)
−1

Φ⊤A, (12)

where Φ−1 denotes the inverse of a matrix Φ and Φ⊤ de-

notes its transpose. The retina-inspired filter Φ is a frame,

as a result, we can define as ΦTΦ its frame operator. Ho-

wever, in practice, due to the large size of matrix Φ and

in order to avoid a time consuming and resource deman-

ding reconstruction processing, we used the conjugate gra-

dient descent which is one of the most efficient iterative

methods [8]. We are interested in reducing this redundancy

and discard all the coefficients of low energy keeping only

the most informative ones for the reconstruction.

4 Experiments

4.1 Results on one subband

In our experiments we first tested the LIF quantizer on a

single subband, in order to understand and evaluate the

quantizer’s behavior. Let x1, . . . , xn some spatial samples

such that Atj =
(

A(x1, tj), . . . , A(xn, tj)
)

, j = 1, . . . ,m
a discrete decomposition layer. The LIF quantizer is ap-

plied to every single spatiotemporal sample A(xk, tj)
where k = 1, . . . , n. For the experiment, we have chosen

grayscale images of the size n = 512 × 512 pixels taken

from USC-SIPI database [9]. As described in section 2.3,

in our tests, we are going to use a random refractory period

which follows a half-Gaussian distribution.

Figure 6, shows the evolution of the Mean Squared Error

(MSE) between the original image and the decoded one

using the LIF, in function of the value of θ for different

values of observation time tobs. It is clear that, the refrac-

tory period introduces overload noise on the input image

which yields the existence of an optimal threshold value θ
that minimizes the MSE. This optimal θ value is different

according to the value of the observation time tobs.
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Figure 6 – The MSE curve in function of the threshold pa-

rameter θ for different observation times.

In order for our quantizer to be adaptive to the needs of

the quantization process, we are going to select for each

realisation the appropriate value of theta for the LIF.

T = 90 ms

9ms9ms9ms9ms9ms9ms9ms9ms9ms9ms

10ms10ms10ms10ms
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Figure 7 – Subband generation rate. Case 1, corresponds

to a subband generation rate with dense middle bandpass

frames, corresponds to a subband generation rate with

sparse middle bandpass frames.

4.2 Subband Generation using the OPL

The purpose of this paper is to experiment on the applica-

tion of the LIF quantizer on each of the subbands produced

by the retina-inspired filter and evaluate the quality and the

efficiency of the extended system depicted in Figure 5. Ex-

tended studies in [7] have shown that the amount of infor-

mation on the subbands produced by the OPL decomposi-

tion varies while time evolves. More specifically, according
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Figure 8 – The non-uniform subband generation using the OPL filtering and the corresponding time of appearance

t1, t2, t3, t4, t5 and observation time tobs respectively.

to the bio-plausible filtering parameters given in [7], in the

very first subbands the range of the intensity values is very

small while in the last subbands (i.e. t ≥ 120ms) there is

no big change in the subbands’ content. Consequently, in

order to achieve a sparse reconstruction and reduce the re-

dundancy of the latest subbands, in our experiments we are

going to generate 10 subbands in the range 0 ≤ t ≤ 90ms.

As a first step, we tested the generation of 10 subbands

uniformly distributed in the total filtering range, observing

each of the produced layers for a tobs = 9ms as described

in Figure 7.

Moving on, we experimented on the non-uniform case,

trying the two different non-uniform schemes shown in Fi-

gure 7. The first one, corresponds to an attempt to keep

most of the middle and most informative subbands in the

bandpass range 25ms ≤ t ≤ 50ms. The subbands produ-

ced by this scheme are visually presented in Figure 8. In

this case, although we keep most of the middle informa-

tive subbands, we observe each layer for a shorter observa-

tion time tobs. Then we also tried the second non-uniform

scheme, depicted in Figure 7, which corresponds to a sub-

band generation with sparser layers in the bandpass range

of observation times. In this second case, while we keep

less of the informative subbands, they are better encoded,

as we observe them for a longer observation time. At this

point, we should mention the fact that this is only a first ex-

perimental attempt to apply the LIF to the layers produced

by the OPL filter, in order to evaluate and better unders-

tand the properties of our proposed encoder. As a result,

our subband selection for the non-uniform sampling cases

has been experimentally achieved, without using some spe-

cific function.

For our experiments, we have used two different images.

After the subband generation we apply the LIF quantiza-

tion on each of the generated subbands, we reconstruct the

encoded layers and evaluate the quality of the reconstructed

image compared to the original one as described in Figure

5. In Figure 9 we present the visual results of our expe-

riments showing also the values of the Entropy, the Peak

Signal to Noise Ratio (PSNR), and the Structural Simila-

rity Index (SSIM)[10].

We observe that for the first image, the non-Uniform sub-

band generation with the denser subbands in the bandpass

area provides a better value of PSNR and SSIM compa-

red to the uniform case, while the entropy is being slightly

reduced. On the contrary, the nonuniform generation with

sparser subbands in the middle observation times behaves

poorly in comparison to the uniform generation. For the se-

cond image though, depicted in the lower part of Figure 9,

we observe that both non-uniform cases of subband gene-

ration provides better results of PSNR and SSIM than the

uniform case, with the denser middle subband generation

behaving slightly better than the sparser middle subbands

case.

Consequently, we can assume that the selection of the good

θ value according to the observation time as well as the

good rate of subband generation in the OPL filtering, can

provide very promising results and significantly improve

the rate-distortion trade off. In addition to this, we conclude

that the good rate of subband generation varies according

to the image characteristics (statistics, content).

4.3 Conclusions

In this work we have implemented an extended retina-

inspired compression system. This is an innovative ap-

proach which uses a dynamic way of quantization adap-

ted to the needs of the encoding process unlike the existing

encoding algorithms. Our study, reveals the fact that this

bio-inspired dynamic encoding process can provide very

promising results. The good choice of layers produced by

the OPL filter, plays an important role to the quality of the

image reconstruction and gives a strong motive to further



Original Image

PSNR = 17.0814 dB

SSIM = 0.5204
H = 3.316 bpp

PSNR = 15.1268 dB

SSIM = 0.4635
H = 4.704 bpp

PSNR = 24.7936 dB

SSIM = 0.8187
H = 3.1 bpp

Original Image

PSNR = 14.7250 dB

SSIM = 0.4843
H = 4.769 bpp

PSNR = 19.8719 dB

SSIM = 0.7204
H = 4.592 bpp

PSNR = 20.4562 dB

SSIM = 0.7384
H = 6.611 bpp

Figure 9 – The comparison of the visual results and quality metrics of the PSNR, SSIM and Entropy for the a)original image

(first image on the left) b)the uniform subband generation(second image from left to right) c) the non-Uniform subband

generation with a sparser middle (second image from left to right) and d)the non-uniform scheme with a denser middle

sumbbands (first image on the right)

study the behavior of the model according to the total ob-

servation time. Since this is a very first attempt to apply this

extended encoding system on images, we should underline

the significance of improving these results by further ex-

perimenting and studying the system’s behavior. Further-

more, since in our experiments we used an experimental

way of non-uniform subband generation, the use of a par-

ticular function that will be able to minimize the rate dis-

tortion trade-off according to the image characteristics, is

a very important future step that should be studied and im-

plemented.
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