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A comprehensive method for reachability analysis
of uncertain nonlinear hybrid systems

Moussa Maı̈ga, Nacim Ramdani, Member, IEEE, Louise Travé-Massuyès, Member, IEEE, and
Christophe Combastel

Abstract—Reachability analysis of nonlinear uncertain hybrid
systems, i.e. continuous-discrete dynamical systems whose con-
tinuous dynamics, guard sets and reset functions are defined
by nonlinear functions, can be decomposed in three algorithmic
steps: computing the reachable set when the system is in a given
operation mode, computing the discrete transitions, i.e. detecting
and localizing when (and where) the continuous flowpipe inter-
sects the guard sets, and aggregating the multiple trajectories
that result from an uncertain transition once the whole flow-
pipe has transitioned so that the algorithm can resume. This
paper proposes a comprehensive method that provides a nicely
integrated solution to the hybrid reachability problem. At the
core of the method is the concept of MSPB, i.e. geometrical object
obtained as the Minkowski sum of a parallelotope and an axes
aligned box. MSPB are a way to control the over-approximation
of the Taylor’s interval integration method. As they happen to
be a specific type of zonotope, they articulate perfectly with the
zonotope bounding method that we propose to enclose in an
optimal way the set of flowpipe trajectories generated by the
transition process. The method is evaluated both theoretically
by analysing its complexity and empirically by applying it to
well-chosen hybrid nonlinear examples.

Index Terms—Hybrid systems, interval analysis, reachability
analysis, uncertain systems, zonotope enclosure.

I. INTRODUCTION

Reachability analysis is a challenging issue involved in
many problems, for example in model predictive control [1],
[2], nonlinear or optimal control [3]–[5], game theory [6],
[7], viability theory [8], estimation [9]–[12] for continuous
systems. Applied to hybrid system, it is involved in address-
ing verification [13]–[16] and synthesis tasks for embedded
systems [17]–[19]. Several methods have been developed
recently for the explicit computation of reachable sets. For
linear systems, they can be differentiated in two classes. The
first class of methods compute overapproximations of the
reachable sets by using a combination of time discretization,
numerical integration and computational geometry. Various
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representations for the reachable sets such as polytopes [20]–
[22], zonotopes [23]–[25] or ellipsoids [26] are used. The
second class of methods use hybrid abstractions [27]–[30].

For nonlinear systems, the approaches proposed in the
literature compute convergent approximations of the reachable
set hence determine as closely as possible the true reachable
set. In these methods, backward reachable sets are computed
by using level set methods and viscosity solutions to the
Hamilton-Jacobi-Isaacs (HJI) partial differential equation [15],
[31], or via infinite dimensional linear programming with pol-
ynomial hybrid systems [32]. Other approaches try to simplify
system dynamics by using conservative linearization [33], or
hybridization [34], [35]. Contrary to the latter approaches, the
one advocated by [36] interestingly works by relaxing the
switching surface to offer a provable convergent numerical
integration scheme for hybrid systems, but with no uncer-
tainty. Finally, we find the approaches relying on validated
set integration methods based on Interval Taylor Methods
(ITMs) [37]–[39]. ITMs have been used for computing the
reachable set of nonlinear continuous dynamical systems in the
context of hybrid systems verification [37], but no parameter
uncertainty was considered. In [40], an ITM was used for rig-
orous simulation of hybrid systems, and an effective technique
was developed to enclose mode switching points as tightly as
possible. In [41], an ITM was used for simulating dynamical
systems with state-dependent switching characteristics, where
the dimension of vectors was small. The lesson learnt from
these works is that ITMs provide an interesting solution
for uncertain systems but they should be used cautiously.
Indeed, when either the initial state or the parameter vector
are significantly uncertain, the size of the enclosures given
by ITMs blows up after a few integration steps. Constraint
propagation techniques combined with interval analysis tools
stand as an alternative solution [42], although dealing with
dynamic systems is still unmature. The SAT modulo ODE
enclosure approach is a step forward in this direction [43]–
[45].

In this paper, we address reachability analysis using ex-
plicit computation of the set reachable by a hybrid system
over a finite time horizon that may encompass several mode
transitions. Initial conditions are provided as an initial set
and bounded uncertainties are considered for both the model
parameters and the inputs. Hybrid reachability computation is
decomposed into two steps. The first step consists in comput-
ing the reachable set when the system is in a given operation
mode. This boils down to computing the reachable set for an
uncertain nonlinear continuous dynamical systems, for which
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one of the approaches described above can be used. The sec-
ond step consists in computing the discrete transitions, which
requires detecting and localizing in a reliable and conservative
way when (and where) the continuous flow-pipe intersects the
guard sets [24], [46]. There are few research works that address
the latter problem for truly nonlinear hybrid systems, i.e. when
the flowpipe is described by nonlinear differential equations
and the guards are given by nonlinear functions. Most existing
algorithms have been developed for linear hybrid dynamic
systems, with two variations. The first type combines a poly-
nomial approximation of the guard condition with algorithms
of zero search of a polynomial [47]–[50]. This approach is
effective but is not guaranteed. Moreover, it does not take
into account the presence of uncertainties in the initial state
and model parameters. The second type uses the advantages
of zonotopes [24], [25], [51], support functions [52], [53] or
polytopes [23], resulting in quite interesting algorithms that
scale well with the number of continuous state variables. In the
nonlinear case, one may proceed with guaranteed linearization
and use the above methods [51], but at the cost of over-
approximating the reachable sets. Thus, the most promising
approach relies on constraint propagation methods, amongst
others, Constraint Satisfaction Problems (CSP) [46], Hybrid
Constraint Satisfaction (HCS) [54] and nonlinear differential
equation numerical integration. This is directly applicable
to nonlinear systems and naturally takes into account the
presence of uncertainty. The method that we propose in this
paper belongs to this category. [46] proposed a method for
solving the flow/guard intersection problem for truly nonlinear
hybrid systems. Continuous transitions were addressed via
interval Taylor integration methods, and the event detection
and localisation problems underlying flow/guard intersection
were formulated as a CSP.

In our preliminary work [55], we improved the method in
two ways; we implemented Lohner’s QR-factorization method
[56], i.e. a change of coordinates within the guaranteed nu-
merical set integration method to control the wrapping effect,
and solved the CSP at discrete transition steps by making use
of a contractor that relies on bisection along one dimension
only. In this paper, we push forward the above works in
two ways. First, we consolidate and validate with several
examples the new contractor. Then, we show how to deal
with truly nonlinear reset functions while also keeping track of
the change of coordinates. We thus develop an effective and
guaranteed change-of-coordinate-aware approach to discrete
transitions with nonlinear guards and nonlinear reset functions.
Interestingly, the combination of the above improvements
eventually reduces the overestimation for the whole hybrid
flow trajectory. The guarantee property means that if an event
occurs, our method ensures that it is detected indeed. This
derives directly from the use of set computation techniques
that combine exhaustive search algorithms for global system
solving and verified numerical implementation via interval
arithmetics and directed rounding [57]. Quite interestingly,
there is no specific conditions required to ensure that discrete
transitions are correctly handled.

The second contribution of the paper addresses the blow-
up problem in the number of trajectories, that arises from

the uncertain transitioning event time. Once the flow-pipe has
fully transitioned, the state trajectory tube is decomposed in
a multitude of pieces. These must be put together to resume
continuous transitions according to the new mode dynamics.
This problem is formulated as finding a minimal enclosure of
a set of points in an n dimensional space. There is abundant
literature on finding parallelotopes enclosing polytopes (or
points sets) in two-dimensional and three-dimensional spaces
[58]–[60]. In n dimensions, there is no known work which
computes a parallelotope with minimum volume [61]. How-
ever, enclosing zonotopes which are optimal in the sum of the
total length of given generators are presented in [62]. In [63],
enclosing parallelotopes in n dimensions have been computed
based on a principal component analysis (PCA) of the point
set to be enclosed.

In [64], we sketched a method for computing an enclosing
zonotope of minimal volume. The approach developed in this
paper extends and improves our latter method; now, it can
use one among three different size measures (the volume,
the segments length or the P-radius) to minimize the size
of the enclosing zonotope. In this paper, we also analyze
the properties and the computational complexity of the new
method and illustrate the impact of the chosen size measure on
its performance in curbing the over-approximations. Interest-
ingly, the geometrical transformation introduced by Lohner’s
QR-factorization method results in manipulating MSPBs, i.e.
geometrical objects obtained as the Minkowski sum of a par-
allelotope and an axes aligned box. Noticing that MSPBs are
just a specific type of zonotope, our bounding method nicely
integrates with the intra-mode interval continuous integration
method.

Finally, our contributions are three-fold. In addition to
the ones described above, namely, the change-of-coordinates-
aware approach to discrete transitions with nonlinear guards
and nonlinear reset functions, and the MSPB trajectory merge,
the third contribution of this paper resides in the integration
of the above methods in a single framework for hybrid
reachability. Specifically, the comprehensive interval analysis
approaches to validated set integration and constraint satisfac-
tion problems solving are combined and used consistently with
theories and tools available for zonotope computations in order
to address hybrid nonlinear reachability. The complete hybrid
reachability method is evaluated with four well-chosen hybrid
nonlinear examples: a mass-spring system, a bouncing ball, a
sliding mode control output tracking and a nonlinear hybrid
system built from an oscillatory network of transcriptional
regulators.

The paper is organized as follows. Sect. II formulates
the hybrid reachability problem. Sect. III introduces the set
computation tools that are used in the paper. Then Sect IV
presents the proposed interval continuous integration method
and Sect V is concerned with the guard crossing problem.
Sect VI provides the zonotope bounding method for trajec-
tory merge. Properties and complexity analysis are given in
Sect VII whereas Sect VIII presents the experiments per-
formed to numerically evaluate the proposed method.
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II. HYBRID REACHABILITY

Dynamical hybrid systems can be represented by a hybrid
automaton [20] given by

HA = (Q,D,P,F, Inv,Σ,Ψ,G,A), (1)

where:

• Q= {q} is a set of locations, i.e. discrete state or modes;
• D is the definition domain of the continuous variables,
D⊆ Rn, with dimension n that may depend on q;

• P ⊆ Rnp is an uncertainty domain for model parameter
vector p;

• F= { fq} is the set of non-autonomous differential equa-
tions characterizing flow transition in mode q, of the form

flow(q) : ẋ(t) = fq(x(t), p, t), (2)

where fq : D × P × R+ 7→ D is a nonlinear function
assumed sufficiently smooth over D⊆ Rn, and p ∈ P;

• Inv is an optional invariant, which assigns a domain to
the continuous state space of each location:

Inv(q) : νq(x(t), p, t)< 0, (3)

where inequalities are taken componentwise, νq : D×
P×R+ 7→ Rm is also nonlinear, and the number m of
inequalities may also depend on q;

• Σ is a set of exogenous events;
• Ψ = {ρe}e∈A is the set of reset maps, taken as continuous

nonlinear functions;
• G= {γe}e∈A is the set of guard conditions of the form:

guard(e) : γe(x(t), p, t) = 0; (4)

where γe(.) : D×P×R+ 7→Rm′ is a nonlinear continuous
function;

• A⊆Q×Q is the set of discrete transitions {e= (q→ q′)}
given by the 5-uple (q,guard,σ ,ρ,q′), where q and q′

represent upstream and downstream locations respec-
tively, σ ∈ Σ, ρe ∈Ψ, and guard ∈G.

A transition q→ q′ occurs when the continuous state flow
reaches the guard set, i.e. when the continuous state satisfies
condition (4).

Remark 1: In (1), urgent semantics are used, i.e. the guard
set triggers a transition as soon as it is hit; this does not
usually require the definition of invariants, which are used
to force a transition when the switching is non-deterministic.
Nevertheless, we keep the definition of invariant to easily
specify (with no need for additional transitions) any constraints
acting on the continuous state variables.
The set reachable in finite time by system (1-4) is illustrated
in Fig. 1. When starting from an initial state vector x(t0)
taken in X0 ⊆ Rn, a discrete transition e occurs when the
continuous flow intersects the guard set at time te. Then,
the continuous state vector is reset as x(t+e ) = ρe(x(t−e )).
Xe is the set of all possible vectors x(te) when vector x(t0)
varies in X0. The reachable set may intersect a forbidden area
as shown in the figure. Introducing the new state variable

ν1(.)< 0

γ
0(
.)
=

0

ρ(x(t−e ))
Reachable

x(t0)

Reachable

Xe

ρe(Xe)
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x(te)

Fig. 1. Set reachable in finite time by hybrid system (1-4)
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Fig. 2. A 1D bouncing ball modeled as a hybrid automaton, and the set
reachable in x× v-space in finite time.

z(t) = (x(t), p , t) with ż(t) = (ẋ(t),0, 1), and defining its
domain Z= D×P×R+, equations (2–4) are rewritten:

flow(q) : ż(t) = fq(z(t)), (5)
Inv(q) : νq(z(t))< 0 and (6)

guard(e) : γe(z(t)) = 0. (7)

so that all uncertain quantities are embedded in the state vector.
In the following, for sake of simplicity, the dependence on time
of z and of the other time-dependent variables is omitted when
not ambiguous.

When analyzing hybrid systems, intersections with guard
sets that enable discrete transitions may occur, and when a
flow-pipe of non-zero size reaches a guard condition, there is
a non-empty set of instants during which the constraints are
satisfied, leading to a continuum of switching times [45]. The
problem of set-membership guard crossing can then be divided
into three tasks:
• Event detection, i.e. detecting when a guard condition is

satisfied ;
• Event localization, i.e. computing the state subset which

intersects the guard condition;
• Discrete transition, i.e. computing the image of the latter

subset by the reset function.
Fig. 2 illustrates the automaton modeling the hybrid dynam-

ics of a 1D bouncing ball. In this example, there is only one
location with invariant x ≥ 0 and flow equations ẋ = v, and
v̇ = −g. Position x and velocity v are the continuous time-
dependent variables of this system. The ball falls freely until
it reaches the ground (x = 0). If this occurs with negative
velocity, the ball bounces and the reset function applies :
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velocity changes direction and the ball looses some of its
energy, the reset velocity is v′ = −e.v, e ∈ [0,1]. e and g
are constants. The figure also shows the result of reachability
analysis for the bouncing ball and illustrates the interlinkage
of flow and discrete transitions.

III. SET COMPUTATION MATHEMATICAL TOOLS

In this section, we overview key concepts regarding methods
based on interval analysis that we use for finding intersections
of the flow with invariants or guards, and for evaluating
jump functions. Zonotopes are also introduced because we
use particular zonotopes defined as MSPB to limit the over-
approximation resulting from enclosing an arbitrary shaped set
into a box.

Consider the system of m (in)equalities over z ∈ Z

C : ∧1≤i≤m(hi(z)≺ 0),≺∈ {=,<}. (8)

Inequalities refer to mode invariants whereas equalities are
considered when one addresses flow/guard intersection and
the evaluation of jump successors. Considering that Z is the
domain of z, the constraint (8) can be viewed as a numerical
constraint satisfaction problem (CSP) written in compound
form as

E := (C , Z). (9)

Denoting by S its set of solutions, we have

S = {z ∈ Z | ∧1≤i≤m (hi(z)≺ 0)}. (10)

An enclosure of S can be computed in a reliable and guar-
anteed way via branch-and-prune approaches using interval
analysis and contractors based on constraint propagation [57].

A. Intervals analysis

A real interval [u] = [u,u] is a closed and connected
subset of R where u represents the lower bound and u
represents the upper bound. The width of [u] is defined by
wid([u]) = u− u, its midpoint by mid([u]) = (u+ u)/2, and
its radius by rad([u]) = (u− u)/2 = wid([u])/2. A interval
[u] can be defined by its midpoint and its radius, so [u] =
[mid([u])− rad([u]),mid([u])+ rad([u])]. The unitary interval
is B = [−1,1]. The set of all real intervals of R is denoted IR.
Two intervals [u] and [v] are equal if and only if u = v and
u = v. Real arithmetic operations can be extended to intervals
[57] and defined as: ◦ ∈ {+,−,∗,/}, [u] ◦ [v] = {x◦ y | x ∈
[u], y ∈ [v]}. An interval vector (or box) [X ] is a vector
with interval components and may equivalently be seen as a
Cartesian product of scalar intervals [X ] = [x1]× [x2]...× [xn].
The set of n−dimensional real interval vectors is denoted by
IRn. A unitary box in IRn, denoted by Bn, is a box composed
by n unitary intervals. An interval matrix is a matrix with
interval components. The set of n×m real interval matrices is
denoted by IRn×m. Classical operations for interval vectors
(resp. interval matrices) are direct extensions of the same
operations for real vectors (resp. real matrices) [57] Given
the function f : Rn → Rm, the range of f over an interval
vector [u] is given by: f ([u]) = { f (x)|x ∈ [u]}. The interval
function [ f ] from IRn to IRm is an inclusion function for f if:

∀[u] ∈ IRn, f ([u])⊆ [ f ]([u]). An inclusion function of f can
be obtained by replacing each occurrence of a real variable
by its corresponding interval and by replacing each standard
function by its interval evaluation. Such a function is called
the natural inclusion function. In practice a function f has not
a unique inclusion function, and the overapproximation of a
given inclusion function depends on its formal expression.

B. Branch-and-prune algorithms

Consider system (9) and the case when “ ≺ ” is “ = ”.
Constraint satisfaction algorithms work as follows (see also
Algorithm 1). Consider a list of candidate boxes, pick the first
element in the list, say the box [z], use interval analysis to
check whether [z] is consistent or not with the constraints in
(8). If there is no z ∈ [z] that satisfies (8), then discard the
box [z]. Otherwise, if [z] is too small or if maxi ‖hi([z])‖ is
also small enough, then add [z] to the outer solution set. Else,
bisect [z] into two sub-boxes and add the two new boxes to the
list. The algorithm eventually yields an outer solution set, i.e.
a list of solution boxes, composed of boxes for which none of
the constraints is violated and that are small enough.

Algorithm 1: Interval-Solve
input : ‘∧1≤i≤mhi(z) = 0’, Z, ε1, ε2
output: list of solution boxes S

1 define a running list of boxes L and initialize it with
[z] = Hull(Z);

33 while L 6= /0 do
4 pick first box [z] from the list;
5 evaluate hi([z]);
6 if ∃i : 0 /∈ hi([z]) then
7 discard box [z];
8 else if ((‖[z]‖< ε1)∨ (maxi ‖hi([z])‖< ε2)) then
9 store box [z] in list S

10 else
11 bisect [z] and store new boxes in L ;
12 end if
13 end while

When “ ≺ ” is “ < ”, it suffices to replace the test on line
6 by ∃i : Inf(hi([z]))≥ 0, and use the condition (‖[z]‖< ε1)∨
(maxi(hi([z]))< ε2) on line 8. Thresholds ε1 and ε2 are tuned
by the user. Clearly, this simple algorithm is of exponential
complexity but several technical and heuristic improvements
make it possible to control the overall computation time and
memory storage [57]. Bisection strategies and the possible use
of interval narrowing procedures, i.e. contractors, can also be
quite efficient [65].

C. Contractors

The idea underlying contractors is to use a function that
narrows the size of the box [z] during the branching scheme of
algorithm Interval-Solve without using bisection. This
narrowing can be achieved by an interval narrowing operator,
called a contractor for (8) on [z], which we write as

[z]′ = Contractor(C , [z]).
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This operator removes from [z] subsets that do not contain
solutions of (9) and satisfies the following properties:
(a) [z]′ ⊆ [z], and (b) [z]′ ∩S = [z] ∩S , where S is the
solution set defined by (10).

Most contractors use consistency filtering techniques and/or
constraint propagation. Interval propagation techniques are
based on the interval extension of the local Waltz filtering.
Consistency filtering techniques rely on local consistency
properties. (see [57], [65] and the references therein).

D. Zonotopes

Enclosing an arbitrary shaped set into a box may result
in large over-approximation because the edges of a box are
always parallel to the axes of the considered referential.
Zonotopes have been shown to limit over-approximation and
their properties make them a quite interesting alternative in
many situations [66]–[68].

Given a vector c ∈ Rn and a matrix R ∈ Rn×p, a zonotope
Z is the set

Z≡ c⊕RBp = {c+Rx : x ∈ Bp}.

The vector c is the center of the zonotope, and the matrix
R defines the shape of the (centrally symmetric) zonotopic
domain. Z is the Minkowski sum of the m-segments defined
as m columns of the matrix R in Rn×p. Zonotopes are
characterized by the following properties.

Proposition 3.1: The Minkowski sum of two zonotopes Z1 =
c1⊕R1Bp1 ∈Rn and Z2 = c2⊕R2Bp2 ∈Rn is also a zonotope,
defined as Z1 +Z2 = (c1 + c2)⊕ [R1 R2]Bp1+p2 .

Proposition 3.2: The image of a zonotope Z= c⊕RBp ⊆Rn

by a linear mapping L can be computed by a standard matrix
product LZ= Lc⊕ (LR)Bp.

Theorem 1 (Inclusion of a family of zonotopes [66]):
Consider a family of zonotopes represented by Z= c⊕ [M]Bp,
where c∈Rn, and [M]∈ IRn×p is an interval matrix. The fam-
ily of zonotopes Z is tightly outer-bounded by the following
zonotope

Z⊆ ♦(Z)≡ c⊕ JBp+n,

where matrix J ∈ Rn×(n+p) is defined as

J = [mid([M]) |G]. (11)

[ . | . ] denotes classical matrix concatenation and G ∈ Rn×n is
a diagonal matrix that satisfies

Gii =
m

∑
j=1

rad([M]i j), i = 1, ..,n. (12)

Theorem 2 (Zonotope extension [66], [68]): Consider a
function F : Rn→Rn with continuous derivatives, a zonotope
Z = c⊕RBp, and an interval matrix [M] ∈ IRn×p. We have
∇F(Z)R ⊆ [M] ⇒ F(Z) ⊆ F(c)⊕ ♦([M]Bp), where ♦(.) is
defined in Theorem 1.

IV. ENCLOSING UNCERTAIN NON LINEAR CONTINUOUS
FLOWS VIA INTERVAL ANALYSIS

In this section, we briefly overview the main ideas under-
lying non-linear continuous reachability analysis using guar-
anteed set integration via interval Taylor methods, including
the control of the wrapping effect. In the sequel, we focus on
reliable numerical methods that deal naturally with non-linear
dynamical systems.

A. Interval Taylor based guaranteed set integration

Consider the uncertain non-linear dynamical system de-
scribed by (5)–(7) with z(t0)∈Z0 at time t0 ≥ 0 and denote by
Z(t; t0,Z0) the set of solutions of (5) at time t originating from
each initial condition in Z0 at t0. Z(t; t0,Z0) is abbreviated as
Z(t) when there is no ambiguity.

Define a time grid t0 < t1 < t2 < .. . < tnT , which does not
need to be equally spaced, and assume that the initial domain
is an interval vector; i.e. Z0 = [z0] = [z0,z0]. Then, guaranteed
set integration via interval Taylor methods computes interval
vectors [z j], j = 1, . . . ,nT , that are guaranteed to contain the
set of solutions Z(t j; t0,Z0) of (5) at times t j, j = 1, . . . ,nT , in
three stages:
• verification of the existence and uniqueness of the solu-

tion using the Banach fixed point theorem and the Picard-
Lindelöf operator [56],

• computation of an a priori enclosure [z̃ j] such that [z̃ j]⊇
Z(t) for all t in [t j, t j+1]. Hence, [z̃ j] is indeed an over-
approximation of the reachable set over [t j, t j+1]. It can
be made as tight as possible in the following stage.

• computation of a tighter enclosure for the set of solutions
of (5) at t that can be taken as t j+1 or any t ∈ [t j, t j+1],
not necessarily belonging to the time-grid, using a Taylor
series expansion of order k of the solution at t j, where
[z̃ j] is used to enclose the remainder term:

Z(t; t j, [z j])⊇ [z](t; t j, [z j]) =

[z j]+
k−1

∑
i=1

(t− t j)
if
[i]
q ([z j])+(t− t j)

kf
[k]
q ([z̃ j]), (13)

where the f
[i]
q ([z j]) are the Taylor coefficients of the solution,

which are computed numerically via automatic differentiation.
It is well known that the scheme (13) is width increasing,

and thus not suitable for numerical implementation. This
scheme suffers from the wrapping effect, which is the over-
approximation induced by enclosing a set of any shape in
an axis-aligned box. Therefore, effective numerical methods
use the mean-value form, matrix preconditioning and linear
transformations.

In this paper, we control wrapping using the mean-value
approach [56]. At each time step t j, the solution enclosure is
computed in the form

Z(t; t j, [z j]) = {v+A(t)r |v ∈ [v](t),r ∈ [r](t)}, (14)

and

Z j+1 =Z(t j+1; t j, [z j])= {v+A j+1r |v∈ [v j+1],r∈ [r j+1]}.
(15)
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The performance of the method relies significantly on the
choice of matrices A j. An effective method introduced by
Lohner uses QR-factorization [56].

Remark 2: Eq. (13) is written for any t in [t j, t j+1]. It
is an extension of what is classically done for guaranteed
set integration, since latter methods aim at computing tight
enclosures for time instants taken on the grid. Here, for solving
the flow/guard intersection we need an explicit characterization
of the solution for any time instant taken between two time
grid points. This is summarized in the following proposition.

Proposition 4.1 (Conservative polynomial interpolation):
Eq. (13) is a conservative polynomial interpolation, hence acts
as an analytical solution for the flow-pipe for t in [t j, t j+1],
since f

[k]
q ([z̃ j]) encloses the remainder of the Taylor series for

any t in [t j, t j+1] [38], [46].
Defining:

[χ](t)≡ {[z](t), ẑ(t), [v](t), [r](t), A(t)}, (16)

where ẑ(t) := mid([z](t)), the algorithm ϕQR(.) given in Table
2 is used in this paper to compute the solution set of (5) at
time t ∈ [t j, t j+1] [46]. The solution enclosure at time t is given
by [χ](t) = ϕQR([χ j], t j, t, [z̃ j]).

Algorithm 2: Algorithm ϕQR

input : [χ j], t j, t, [z̃ j]
output: [χ](t)

1 [v](t) := ẑ j +
k−1
∑

i=1
(t− t j)

if
[i]
q (ẑ j)+(t− t j)

kf
[k]
q ([z̃ j]);

2 [S](t) := I+
k−1
∑

i=1
(t− t j)

i ∂ f
[i]
q

∂ z ([z j]) ;

3 [q](t) := ([S](t)A j)[r j]+ [S](t)([v j]− ẑ j);
4 [z](t) := [v](t)+ [q](t);
5 obtain A(t) via QR-factorization of mid([S](t)A j) [56];
6 [r](t) := A(t)−1([S](t)A j)r j +(A(t)−1[S])([v j]− ẑ j);
7 ẑ(t) := mid([v](t)) ;
8 [χ](t) := {[z](t), ẑ(t), [v](t), [r](t), A(t)};

Proposition 4.2: The solution domain (14) is the Minkowski
sum1 of a parallelotope, i.e. an oriented box, and an aligned
box, abbreviated as an MSPB.

Z(t) = A(t)[r](t)⊕ [v](t). (17)

An MSPB is a particular zonotope generated by 2n line
segments (see Fig. 3):

Z(t) = c(t)⊕R(t)B2n, (18)

where, for all t, the point vector c(t)∈Rn and the point matrix
R(t) ∈ Rn×2n satisfy:

c(t) = A(t)mid([r](t))+mid([v](t)), (19)
R(t) = [A(t)dr([r](t)) | dr([v](t))] . (20)

where | denotes matrix concatenation, and dr(.) is short for
diag(rad(.)), i.e. a diagonal matrix of real numbers each
corresponding to the radius of an interval number.

1Let ξ1,ξ2⊂Rn, the Minkowski sum of ξ1 and ξ2 is: ξ1⊕ξ2 = {s1+s2|s1 ∈
ξ1,s2 ∈ ξ2}.

Fig. 3. MSPB

Proof: It is straightforward to see that for all t,

Z(t) = {A(t)r+ v |v ∈ [v](t),r ∈ [r](t)}= A(t)[r](t)⊕ [v](t).

Recall that a centered zonotope Z(R) generated by a matrix
R ∈ Rn×p can be defined as the linear image of the unit
hypercube Bp by R, Z(R) = {Rσ ,σ ∈ Bp}, or, alternately, as
the Minkowski sum of the generator segments defined by the
columns of R [67]. It is then straightforward to see that (18)
holds.

V. SET-MEMBERSHIP GUARD CROSSING

A. Event detection and localization

We now show how to compute the geometrical intersection
of a continuous flow-pipe with the guard sets2.

The issue is first to detect if the flow-pipe intersects a
guard set, then to compute when and where the intersection
occurs, in other words we need to compute the time instants
te and solution state vector z(te) such that (7) is satisfied, i.e.
γe(z(te)) = 0. Because the flow-pipe has a non-zero volume,
there is a continuum of time instants T ? when the intersection
occurs, and it occurs for state vectors gathered in the set Z ?.
Hence, we need to characterize the set of all such solutions,
i.e.

T ?×Z ? = {te× z(te) such that (te ∈ [t j, t j+1])

∧ (γe(z(te)) = 0)∧ (ż(t) = fq(z))∧ (z(t j) ∈ [z] j)} (21)

Let us assume that an event exists for te ∈ [t j, t j+1], then
the methods described in the sequel are able to detect the
existence of such event. Computing the solution set (21) is now
an analytical problem since algorithm ϕQR(t) yields for any t
in [t j, t j+1] an analytical solution for the tube of trajectories
over the time interval [t j, t j+1], hence the method described in
section III applies directly. To obtain a tight characterization
of (21), we need to partition the search space. Therefore, to
curb computational complexity and keep it polynomial time,
we further use the guaranteed relaxation introduced in [55]: we
use the algorithm Interval-Solve presented in section III
but bisect only along the single direction of the time variable
and use contractors to reduce the solution set at a given time
instant.

Let us denote [t?]l = [t?, t?]l ⊆ [t j, t j+1] a sub-interval over
which (7) is satisfied, and Z ?

l the set of state vectors for which
t exists in [t?, t?]l that satisfy (7). Solution set (21) can then
be over-approximated by

T ?×Z ? ⊆
L⋃

l=1

[t?, t?]l×Z ?
l (22)

2The same computational methods apply for the intersection with invariant
sets.
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Fig. 4. Illustration of our intersection computation algorithm

where L is the number of solution sub-boxes. Finally, our idea
is to contract the flow tube over tiny time slots to compute the
smallest solution boxes enclosing the intersection between the
tube and the guard set, as depicted in Fig. 4.

Allowing some over-approximation when computing te,
we say that an event occurs over the subinterval [t?, t?]l if
wid([t?, t?]l) is smaller than a given threshold εT , as suggested
in [46]. Now the question remains about how to compute a
tight over-approximation of Z ?

l . We solve this issue by solving
a constraint satisfaction problem as in [55]. This resolution
is repeated for l = 1, . . . ,L. Recall that the enclosure of the
solution of (5), which is an Initial Value Problem ODE, can
be computed for the small time interval [t?]l = [t?, t?]l in the
compound form (16), denoted [χ]l , using an inclusion function
for algorithm ϕQR(t), which we obtain by using an interval [t]
as input. We save the notation [χ?]l for the compound form
characterizing the tight over-approximation of Z ?

l . We have

[χ]l = {[z]l , ẑl , [v]l , [r]l , A?
l }. (23)

Let us assume that wid([t?, t?])≤ εT . Therefore

(∃z ∈ [z]l s.t. γe(z) = 0) ⇒
(∃v× r ∈ [v]l× [r]l s.t. γe(v+A?r) = 0), (24)

hence, computing the intersection over the time interval [t?]
boils down to solving the CSP

El := (Cl , [v]l× [r]l) . (25)
where Cl := (γe

(
v+A?

l r
)
= 0). (26)

Using a contractor, we can obtain a tight over-approximation
of Z ? as a compound form [χ?], i.e.

[v?]l× [r?]l = Contractor(Cl , [v]l× [r]l). (27)

Here, we use the forward-backward contractor implemented in
the HC4_Revise method of the IBEX toolbox (www.ibex-
lib.org) [65]. In fact, since the guard-set condition (7) is
naturally defined in the axis-aligned z−space and the trajectory
tube is defined as an MSPB, we need to map the solution
of (7) naturally characterized in the z−space into the MSPB
v× r−space; as implied in (24). Doing so, we inevitably
introduce over-approximation. To curb the latter, the idea is to
combine the solutions of two contractors as now commonly
done when building solvers for CSPs (see [57], pp.90). There-
fore, constraint (26) is rewritten using redundant constraints as
follows

C R
l := (γe

(
v+A?

l r
)
= 0)∧ (γe

(
z) = 0)∧ (z = v+A?

l r), (28)

whose solution is obtained via

[v?]l× [r?]l× [z?]l =Contractor(C R
l , [v]l× [r]l× [z]l). (29)

If the solution set for CSP (29) is not empty, we assume that
the event e = q→ q′ occurs at te = t? and that [χ](t−e ) = [χ?]l ,
as suggested in [46]. The discrete transition can then be com-
puted from there, using the reset function ρe. The performance
of the set computation of the reset function is addressed in the
next subsection.

B. Set-membership reset mapping

Let us consider a sub-box Z ?
l , l ∈ 1, ...,L, among those

defined in (22). After reset, the continuous transition resumes
from the set Z ?′

l = ρe(Z ?
l ). Since our continuous reachability

tool works with sets characterized as MSPBs, we need to
characterize Z ?′

l as an MSPB. The image of a zonotope by
a nonlinear mapping is not, in general, a zonotope. But using
methods described in [68] and recalled in section III-D, we
can compute a tight bounding zonotope for Z ?′.

Our method for set-membership reset mapping uses the
properties of zonotopes given in section III-D as explained
below.

Theorem 3 (Nonlinear reset of an MSPB): Given a solution
box in MSPB form Z ? = A[r]+ [v], the image Z ?′ = ρ(Z ?)
is contained in an MSPB computed as follows

Z ?′ ⊆ A′[r]′+[v]′ (30)

where

A′ = J̃(:,1 : n) ∈ Rn×n, (31)
[r]′ = Bn ⊆ Rn, (32)
[v]′ = ρe(c)+�(J̃(:,n+1 : 3n)B2n)⊆ Rn, (33)

where �(.) denotes the convex hull of a set. Matrix J̃ is defined
by

J̃ = sort(J), J = [mid([∇ρe]R) |G] ∈ Rn×3n, (34)

where sort(.) operator sorts the columns of a matrix according
to their norm, vector c is defined in (19), matrix R ∈Rn×2n in
(20), and matrix G ∈ Rn×n given by (12), with m = 2n. Here
J̃(:,1 : n) denotes the n first column vectors of matrix J̃, and
J̃(:,n+1 : 3n) the 2n last column vectors of matrix J̃.

Proof: From (18), we have Z ? = A[r]+ [v] = c⊕RB2n.
By theorem 2, we have ρe(Z ?) = ρe(c)⊕♦([∇ρe(Z ?)R]B2n),
then by theorem 1, ρe(Z ?) = ρe(c)⊕JB3n, where J is defined
by (34). After sorting column vectors of J according to their
norm, one obtains J̃. It is then straightforward to derive (30)-
(34).

VI. ENCLOSING TIGHTLY A UNION OF TUBES

As stated in the previous section, the partition conducted
within the event detection and localization phases yields many
solutions boxes which, after a set-membership reset mapping,
are the initial state subsets for continuous transitions in the
new hybrid mode. Even if our algorithm performs a fast guard
crossing at low numerical cost, the computation of all these
trajectory sub-tubes increases undesirably the computation
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time. One solution consists in merging these sub-tubes into
a single tube enclosing their union. Since our method for
continuous transitions, i.e. algorithm ϕQR(.) in algorithm 2
uses MSPBs, a form consistent with the internal representation
used by our continuous reachability algorithm, we obviously
need to compute the union of these sub-tubes in the form of
an MSPB.

The method we propose for merging the set of sub-tubes
works in three steps:
• First, it computes the vertices of the convex domain

containing the union of the MSPBs describing the sub-
tubes;

• Then, it computes a parametrized MSPB enclosing these
vertices;

• Finally, it tunes the MSPB parameters in order to optimize
the size of the resulting bounding MSPB.

These steps are described in the sequel.

A. Computing the sub-tubes vertices

Let us assume that the hybrid transition under study has
been completed and the initial domain for the continuous
transition in the new hybrid mode is characterized by the
following union of MSPB:

L⋃
j=1

Z ?′
l (35)

Each of the L MSPB solution domains, Z ?′
l , l = 1 to L,

obtained via (30), is characterized as:

Z ?′
l = {Alr+ v |v ∈ [v]l ,r ∈ [r]l}= Al [r]l +[v]l = cl⊕Z(Rl),

(36)
where Z(Rl) is the centered zonotope generated by matrix Rl ∈
Rn×2n, and where cl and Rl are defined from [v]l and [r]l as
in (19)-(20).

Definition 1: Let R∈Rn×p be a matrix and let Z(R)=RBp⊂
Rn be the centered zonotope generated by R. We denote by
Z±(R), the set of point-vectors obtained as the linear image
by R of the 2p vertices of the unit hypercube Bp:

Z±(R) = {Rσ ,σ ∈ {−1,1}p}. (37)

Proposition 6.1 (Containment property): Let C (.) (resp.
V (.)) denote the convex hull (resp. the vertices) of any
polytopic set. For all R ∈ Rn×p, we have:

V (Z(R))⊆ Z±(R), (38)
C (Z±(R)) = Z(R), (39)
p = 2n ⇒ ∃Rg ∈ Rn×p,

2card(V (Z(R)))≤ card(V (Z±(R)))≤ 2card(V (Z(Rg)))
(40)

In words, Z±(R) contains all the vertices of Z(R), Z(R) is the
convex hull of Z±(R), and Z±(R) only contains twice more
points than the true number of vertices of a MSPB (i.e. Z(Rg)
with p = 2n) in the general case (i.e. non degenerate case)
yielding equalities instead of inequalities in (40).

Proof: Properties (38)-(40) directly follow from defini-
tion 1 and the convexity of zonotopic domains. (40) results

Fig. 5. Building the point-vectors cl +Z±(Rl)

from the maximum number of vertices of a p-zonotope in Rn,
2∑

n−1
i=0

(
p−1

i

)
, which equals 2(2n−1) when applied to a MSPB

(p = 2n). By comparison, the number card(Z±(R)), (37), of
potential vertices of a MSPB in Rn is 2p = 22n, so only twice
more than the true number of vertices of a generic MSPB, the
ratio being independent on n.

The next theorem formalizes the approach which supports
our method for enclosing a set of sub-tubes.

Theorem 4: Let M be a convex set (e.g. polytope, zonotope,
MSPB, etc.). Consider the MSPB Z ?′

l in (36) and remind (19)-
(20). Let P be a set of point-vectors obtained as follows:

P =
L⋃

j=1

(
cl +Z±(Rl)

)
, (41)

then, P ⊆M ⇒
(⋃L

j=1 Z ?′
l

)
⊆M (42)

In words, any convex set M containing the point-vectors in
P also contains the union of the MSPB domains Z ?′

l for l=1
to L.

Proof: The proof of theorem 4 mainly relies on the
polytopic (thus convex) nature of the MSPB domains Z ?′

l =
Al [rl ]+ [vl ] = cl ⊕Z(Rl) where cl ∈ Rn and Rl ∈ Rn×2n. (41)
not only provides a constructive way to compute the m22n

point-vectors in P , but also ensures through (38) that P
contains the set V of all the vertices of all the MSPB domains
Z ?′

l , l = 1, . . . ,L. In addition, (39) ensures that any convex set
M satisfying P ⊆M also satisfies the containment property
Z ?′

l ⊆M for each l=1 to L.
Remark 3: Since Z±([R1,R2]) = Z±(R1)⊕ Z±(R2), the set

of point-vectors P defined in (41) can also be expressed as
P =

⋃L
l=1
(
Al [r]±l ⊕ [v]±l

)
where [r]±l and [v]±l refer to the set

of vertices of the n-dimensional axis-aligned boxes [r]l and
[v]l , respectively. For a given value of l, figure 5 illustrates how
the set of points cl +Z±(Rl) can be built from Al [r]±l ⊕ [v]±l .

B. Enclosing a point-vector cloud by a zonotope

This subsection describes our generic algorithm
cloud2zonotope (Algorithm 3) for computing the
center c ∈ Rn and the shape matrix R ∈ Rn×p of a zonotope
c⊕Z(R) enclosing a cloud X of N point-vectors defined in Rn.
For better algorithm readability, vectors are explicitly denoted
using arrows ~u in the algorithms and in this subsection.

The algorithm cloud2zonotope (algorithm 3), also il-
lustrated in Fig. 6, is mainly based on iterative compressions of
the initial cloud X formed by N point-vectors and, jointly, the
iterative building of the zonotope enclosure. After centering
the cloud (step 5) in the middle of its interval hull (step 4),
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each compression (step 9) is performed according to a vector
~g∈Rn which further defines one of the generator segments of
the resulting zonotope (step 10). At each iteration,~g is oriented
along the principal direction ~u of the current (i.e. partially
compressed) cloud (step 7). Moreover, the magnitude of ~g
is a fraction of (an approximation of) the largest projection
of the points in the (centered) cloud along ~u. The fraction
used is defined by the scalar compression ratio, denoted ratio
(ratio∈ [0,1]), and the approximation of the largest projection
relies on a very fast computation based on the interval hull
of the current cloud which corresponds to the scalar product
~u · ~rad involving only two n-dimensional vectors at step 8.

Each iteration of the while loop in cloud2zonotope
jointly performs a cloud compression, both in direction and
magnitude, as defined by generator ~g, and an expansion of the
zonotope under construction, which relies on the Minkowski
sum with the straight line segment [−1,+1]~g at step 10.
Moreover, the function computing an updated cloud X =
compress(X ,~g) from the compression of X in direction ~g,
described in Algorithms 4, is designed so as to satisfy

X ⊂ (X⊕~g[−1,+1]), (43)

where matrices X and X are each identified to a set of
N point-vectors. Note that (43) is a key point to further
ensure that the initial cloud is enclosed within the zonotope
eventually returned by algorithm cloud2zonotope. The
joint/iterative “cloud compression and zonotope expansion”
process is repeated until one of the two stopping criteria s1 or
s2 are satisfied (step 11): s1 is an integer defining the maximum
number of allowed iterations, and s2 ∈ [0,1] is a positive
real number defining a stopping condition for the iterative
compressions in the form of a fraction of the initial cloud
radius (~w assigned at step 6). After exiting from the while loop,
the interval hull of the residual cloud is computed (step 13) and
the corresponding aligned box is summed (Minkowski sum)
with the zonotope previously expanded from an initially empty
set during the while loop iterations. This results at step 14 into
a zonotope c⊕Z(R) which is guaranteed to contain all the N
point-vectors defined by X when calling cloud2zonotope.

Fig. 6 illustrates the main steps of algorithm 3
cloud2zonotope in the case of a 2-dimensional point
cloud and an MSPB output. Fig. 6.a shows that our algorithm
first centers the point-vector cloud, then compresses the cloud
along the first principal direction ~u1. Here one can see point-
vectors~z1 and~z2 projected onto axis ~u1 while considering the
bound defined by ratio. Thus, compressing the cloud boils
down to keeping only the difference~zδ

i =~zi−~zg
i . Fig. 6.b shows

the point-vector cloud after the first compression along direc-
tion ~u1. Our algorithm finds the next compression direction ~u2
as the first principal direction of the remaining cloud. In order
to obtain an MSPB as output set, the number of compression
iterations is taken as n = 2 ; Fig. 6.c shows that after n = 2
compression iterations, the residual point-vectors are enclosed
within an axis-aligned box. Fig. 6.d shows the zonotope, here
an MSPB obtained as the Minkowski sum of the axis-aligned
box and the parallelotope as defined by the generator segments
~g1 = ‖~g1‖~u1 and ~g2 = ‖~g2‖~u2.
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Fig. 6. Main steps for build the enclosing zonotope as performed by
Algorithm 3 cloud2zonotope in the case of a 2D point cloud and an
MSPB output.

C. Building the MSPB from the zonotope enclosure

Using algorithm cloud2zonotope, one can tune param-
eters ratio and si, i = 1,2 introduced in the latter section, in
order to obtain a particular zonotope with center cM and shape
matrix RM ∈Rn×2n representing the tightest MSPB enclosing
the point cloud P defined in (41). Choosing s1=n and s2=0,
algorithm cloud2zonotope yields an MSPB since there
are exactly n compression iterations, hence exactly n generator
vectors. Moreover, the remaining cloud is eventually gathered
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in an axis-aligned box. The size of the MSPB solely depends
on parameter ratio that can be tuned to optimize any size-
based criterion. The latter tuning acts as a trade-off between
the relative weight of the parallelotope and the axis-aligned
box in (17). The optimal choice for the parameter ratio is
then formally given as

ratio?
ratio∈[0,1]

= argmin µ(Z(R)) (44)

where µ(.) is the size of the zonotope. The optimal choice
can be obtained in three ways : volume minimization, segment
minimization, or P-radius minimization.

1) Volume minimization: The volume of a zonotope [69]
Z(R)⊂Rn, where R = [r1, . . . ,rp]∈Rn×p, with p≥ n, is given
by:

Vol(Z(R)) = 2n( ∑
1≤i1≤i2≤...in≤p

|det([ri1 , . . . ,rin ])|) (45)

The integers i1, . . . , in correspond to different ways of choosing
n elements amongst p. The sum (45) is thus composed of(

p
n

)
elements.

2) Segment length minimization: The segment’s length of
a zonotope Z= c⊕RBp ∈ Rn is given by the sum of squares
of the generators of the zonotope Z. Computing the sum of
squares of the generators of the zonotope Z boils down to
computing the Frobenius norm of R.

Sm(Z(R)) =
n

∑
i=1

p

∑
i=1

R2
i j = ‖R‖2

F = Tr(R>R) (46)

where Tr denotes the trace of a square matrix.
3) P-radius minimization: The P-radius [11] of a zonotope

Z= c⊕RBp ∈ Rn is defined as

Prad(Z(R)) = max
x∈Z
‖x− c‖2

P = max
x∈Z

(x− c)>P(x− c) (47)

where P = P> ≥ 0 is a symmetric and positive definite matrix.
To obtain the solution ratio? one can use an iterative algo-

rithm, possibly using derivatives obtained via finite difference.
Here, we merely evaluate the size of the MSPB for ten values
of ratio taken over a grid of values between 0 and 1, and then
merely pick up the value which minimises (44).

Summarizing, the union of L MSPB solution domains as
defined by (35) is tightly enclosed into a single MSPB of op-
timized size, and obtained with algorithm cloud2zonotope
tuned with ratio=ratio?, s1=n and s2=0.

VII. PROPERTIES AND COMPLEXITY ANALYSIS

Our hybrid reachability method alternates an interval Taylor
integration method implementing Lohner’s QR-factorisation
for the continuous expansion of the hybrid system and an
original method for guard crossing materialized by transitions.

Proposition 7.1 (Conservative hybrid reachability): The
hybrid reachability algorithm provides guaranteed outputs, i.e.
the flow-pipe generated by alternating continuous reachability
(Algorithm 2: ϕQR), flow guard intersection (Algorithm 6:
hybrid-transition) and trajectory fusion (Algorithm 5:
MSPB) is guaranteed in the sense that it encloses all the
trajectories of the hybrid system HA (1) consistent with the

Algorithm 3: Algorithm cloud2zonotope

Input : X := {~xi, i = 1 . . .N}, ratio ∈ [0,1], s1, s2
Output: ~c ∈ Rn, R ∈ Rn×p

1 Initialization: ~c = 0, R = /0, iter = 0, ~w = 0;
2 while (iter < s1)∨ (∃i ~radi > s2~wi) do
3 update iteration counter. iter := iter+1 ;
4 compute cloud center and radius.

{ ~mid, ~rad} := minbox(X) ;
5 center point-cloud around mid. X := X− ~mid ;
6 store initial radius. if iter = 1 then ~w := ~rad;
7 find first principal direction (unit vector ~u).

(U,S) := svd(X), ~u :=U(:,1) ;
8 choose generator segment. ~g := ratio|~u · ~rad| ·~u ;
9 compress cloud along ~g using ratio.

X := compress(X ,~g) ;
10 update zonotope generators. ~c :=~c+ ~mid, R := [R, ~g]
11 end while
12 enclose remaining cloud in a box.
{~mid,~rad} := minbox(X) ;

13 update zonotope. ~c :=~c+ ~mid, R := [R, diag( ~rad)] ;

Algorithm 4: Algorithm compress

1 Function X=compress(X, ~g)
2 compute compression direction. ~u =~g/‖~g‖;
3 for each point-vector ~xi in X do
4 compute coordinates along ~u. d :=~xi ·~u ;
5 compression along ~u.

d := min(‖~g‖,max(−‖~g‖,d));
6 update coordinates. ~xi =~xi−d~u ;
7 end for
8 return

Algorithm 5: Algorithm MSPB

Input : L
Output: L
initialization: P = /0 i.e. empty set of points ;
for j← 1 to Length(L ) do

pick up Z ?′
l from L (i.e. q, Al , [r]l , [v]l);

P := P ∪
(
Al [r]±l ⊕ [v]±l

)
end for
XP := matrix representation (n col.) of P ⊂ Rn ;
for ratio =: 0,0.1, . . . ,0.9,1 do
{cM ,RM } := cloud2zonotope(XP ,ratio,n,0) ;
compute the size of zonotope µ(Z(RM )) as in (45);

end for
r∗ := argmin µ(Z(RM )) ;
extract MSPB attributes of M ∗ := cM ∗ ⊕Z(RM ∗)
obtained with r∗:
A := RM ∗(:,1 : n) ;
[r] := [−1,+1]n ;
[v] := cM ∗ +diag(RM ∗(:,(n+1) : (2n)))[−1,+1]n ;
store MSPB: L := (q,A, [r], [v]) in list L ;
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Algorithm 6: Algorithm Hybrid-Transition

input : L F
j , t j+1,{ϕQR

q (), ϕ̃q()}q∈Q , {γe(),ρe()}e∈E , εT

output: L F
j+1, L

R
j+1

1 Initialization : initialize running frontier list L := L F
j ;

33 while L 6= /0 do
4 pick up L list element (q, t0, [χ0]);
5 /* Continuous transition */
6 compute continuous expansion over [t0, t j+1]→ [̃z] j;
7 update reached set list L R

j+1← (q, t0, t j+1, [̃z j]);
8 compute new solution at time t j+1→ [χ j+1];
9 solve CSP to compute [χ ′j+1] := [χ j+1]∩ inv(q);

10 if [χ j+1]
′ 6= /0 then

11 update frontier list L F
j+1← (q, t j+1, [χ j+1]

′);
12 end if
13 if Length(L F

j+1 > 2) then
14 L F

j+1 := MSPB(L F
j+1)

15 end if
16 /* Discrete transition */
17 forall the elements e← E do
18 initialize running jump list Le := {(q, t0, [χ0], t j+1)};

t1 := t j+1;
2020 while Le 6= /0 do
21 compute flow over [t0, t1]→ [̃z];
22 if e = (q,q′) exists then
23 if (γe([̃z]) 3 0) then
24 t? := t0 ; t? := t1;
25 if ((t?− t?)≤ εT ) then
26 compute flow enclosure over

[t?, t?]→ [χ];
27 [χ]? := HC4 Revise([χ]);
28 if [χ]? 6= /0 then
29 jump and update

L ← (q′, t?,ρe([χ]
?));

30 end if
31 else
32 compute solution set at t?→ [χ]1;
33 compute solution set at

t1 := (t?+ t?)/2→ [χ]2;
34 update running jump list

Le← (q, t?, [χ]1, t1);
35 update running jump list

Le← (q, t1, [χ]2, t
?);

36 end if
37 end if
38 end if
39 end while
40 end forall
41 end while

uncertainty domains of the initial state and the parameter
vector given by X0 ⊆ Rn and P⊆ Rnp , respectively.

Proof: The proof of proposition 7.1 simply derives from
the conservatism of the three algorithms involved proved
by Proposition 4.1, Theorem 3, and Theorem 4, and the
conservatism of contractors that rely on local consistency
properties [65].

Let us now provide some hints about complexity. The
Taylor series method underlying continuous reachability is of
polynomial complexity. Denoting k the order of the Taylor
series expansion, usually chosen between 10 and 20, the
work per step is O(k2) to compute Taylor coefficients. The
computational complexity of the method hence mainly derives

from the one of guard crossing, which includes two main
steps: flow guard intersection, solved in the form of a CSP,
and trajectory fusion, which is solved by the algorithm MSPB,
a specific kind of zonotope enclosure. It is admitted that
solving CSPs, either on discrete or on continuous domains, is
in theory NP-hard. However, there have been efforts to develop
solving techniques whose practical time complexity is better
than the exponential worst case [70]. These improvements rely
on technical features that are beyond the scope of this paper.

In the following, we discuss in more details the algorithm
for MSPB enclosure, which has been tailored for our use. The
MSPB algorithm merges in a single reachability set M , ex-
pressed in the form of an MSPB, the possibly many flowpipes
whose computation is initiated during the crossing of a guard.
The algorithm cloud2zonotope makes it possible to build
this MSPB (actually an n-dimensional zonotope) from a cloud
of points (here, potential vertices) which are known to belong
to the union domain to be characterized. Computing the MSPB
enclosure involves the generation of a cloud of points and n
partial singular value decompositions (SVD). The generation
of the cloud of points is O(22n), and each partial SVD
computation is O(Nn2). The cost of enumerating the N =m22n

potential vertices related to a number m of MSPBs can be eval-
uated as f lPV−Enum(n,m)≈mn22n floating-point operations. It
can then be shown that the cost of the MSPB algorithm can
be evaluated as f lMSPB(n,m)≈ m22n(40n3 +40n2 +n)+80n4

floating-point operations. The practical cost of the trajectory
fusion algorithm therefore comes from the vertex enumeration
exponential complexity.

One could have the idea to consider the true (rather than
the potential) vertices related to the m MSPBs. However, based
on the complexity of vertex enumeration algorithms (e.g. like
QuickHull [71]), it can be shown that there is a clear interest in
using potential vertices rather than true vertices enumeration:
the former method only induces twice more points for a single
generic MSPB and this greater number of points is easily
balanced by the simplicity of the related enumeration algo-
rithm, though the complexity remains of course exponential
in both cases. Though featuring an exponential complexity,
the proposed scheme relying on the enumeration of MSPB
potential vertices can still compete with other algorithms (even
polynomial ones) for problems with moderate continuous state
space dimension.

VIII. NUMERICAL EVALUATION

For the experimentation purpose of this paper, our method
for hybrid reachability has been implemented as follows.
We use the Profil/Bias C++ class for interval compu-
tation, the FABDAB++ package (www.fadbad.com) for au-
tomatic differentiation, AML++ (amlpp.sourceforge.net) and
Armadillo (arma.sourceforge.net) package for Linear al-
gebra. We use our own implementation of Lohner’s method
(Algorithm 2) for guaranteed set integration of IVP ODE.
Finally, we use the CSP solving techniques as implemented in
the IBEX C++ library (www.ibex-lib.org). Experiments were
conducted on an intel i5− 3470− 3.6GHz−16GB running
Linux.
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TABLE I
(P-radius,Sm , VOLUME) VS ratio FOR THE MASS-SPRING, FIRST SWITCH

ratio 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
P-radius 1.910 1.910 1.910 1.910 1.915 1.929 1.926 1.929 1.936 1.946 1.962

Sm× (10−3) 4.646 3.174 2.002 1.823 1.792 2.179 2.329 2.729 3.331 4.149 5.115
Volume ×(10−3) 8.574 3.417 1.104 1.961 3.122 4.974 5.511 2.445 3.239 4.745 6.577

TABLE II
(P-radius,Sm , VOLUME) VS ratio FOR THE MASS-SPRING, SECOND SWITCH

ratio 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
P-radius 0.710 0.710 0.710 0.710 0.710 0.710 0.710 0.710 0.713 0.725 0.737

Sm× (10−3) 8.641 6.116 4.094 3.781 3.950 3.653 4.048 4.769 5.899 7.403 9.122
Volume ×(10−3) 16.186 7.444 1.295 3.290 6.273 8.838 9.979 5.088 6.383 9.413 13.053

A. Case study 1 : Switched mass-spring system

Consider the switched dynamical system with two modes
q = 1, 2 and one jump transition e = 1 → 2 obtained by
introducing an artificial switching in a mass-spring system.
The switching is artificial because continuous dynamics are
the same in the two modes. The main idea is to investigate the
impact of our guard crossing and trajectory merge algorithms
by comparing the results with the original continuous system,
i.e. without switching.

The switched system is given by

flow(1) : f1(x1, x2) =
(
x2,

−k
m x1− c

m x2
)

inv(1) : ν1(x1,x2) = x1− x2 < 0
flow(2) : f2(x1, x2) = f1(x1, x2)
inv(2) : ν2(x1,x2) =−ν2(x1,x2)< 0
guard(1) : γ1(x1,x2) = x2− x1 = 0
reset(1) : ρ1(x1,x2) = (α1x1,α2x2)

(48)

where α1 = α2 = 1, k = 4, m = 2, c = 1.25. The continuous
states are described by two variables (x1,x2), where x1, x2 re-
spectively represent the position and the velocity of the mass-
spring. The initial conditions are given by x1 ∈ [1,1.1], x2 ∈
[−0.63,−0.61]. Algorithms Hybrid-Transition (Algo-
rithm 6) and ϕQR (Algorithm 2 ) were tuned as follows : The
time step is chosen constant h = 0.1; and the time interval is
bisected until a threshold εT = 0.005.

Fig. 7 gathers the reachable sets as obtained for the time
horizon [0, 5]. First the reachable set for the original contin-
uous system is shown, then the one for the switched version
without trajectory merge. Then the reachable set as obtained
with our trajectory merge algorithm using one of the several
criteria proposed in section VI-C: P-radius, with P taken
as identity matrix, volume and segments length. Tables I-II
shows the criteria obtained for the first and second switches
respectively. The optimal tuning parameter clearly depends on
the criterion, though it does not seem to change significantly
with the switching. The bottom right graph in Fig. 7 clearly
shows that the P-radius criterion yields the tightest MSPB,
but still with significant over-approximation compared to the
enclosure computed for the continuous system (i.e. without
switching). Nevertheless, the MSPB obtained with our merge
algorithm are always significantly tighter than the enclosure
obtained using naive convex interval hull of trajectory tubes.

-2

-1.5

-1

-0.5

0

0.5

1

-0.5 0 0.5 1

X
2

X1
-2

-1.5

-1

-0.5

0

0.5

1

-0.5 0 0.5 1

X
2

X1
-2

-1.5

-1

-0.5

0

0.5

1

-0.5 0 0.5 1

X
2

X1

-2

-1.5

-1

-0.5

0

0.5

1

-0.5 0 0.5 1

X
2

X1
-2

-1.5

-1

-0.5

0

0.5

1

-0.5 0 0.5 1

X
2

X1
-2

-1.5

-1

-0.5

0

0.5

1

-0.5 0 0.5 1

X
2

X1

-2

-1.5

-1

-0.5

0

0.5

1

-0.5 0 0.5 1
X
2

X1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

X
2

X1

Volume
P-radius

Segment-Min
Radius=0

Continuous
Convex Hull

Fig. 7. The frontier, i.e. the solution sets at time-grid points for the Mass-
Spring. From left to right, and top to bottom, the continuous version (CPU
0.007s), the switched version without trajectory merging (CPU 0.88s), the
switched version with trajectory merging using P-radius criterion (CPU
0.125s), using segment length criterion (CPU 0.129s), using volume criterion
(CPU 0.163s), when merging with ratio=0 (CPU 0.202s), and using naive
convex hull (CPU 0.133s). The final graph compares the MSPB solution
enclosure obtained at final time for the different experiments.

B. Case study 2 : A ball bouncing on a sinusoidal surface

We consider the uncertain model of a ball that bounces on
a sinusoidal surface (modified from [54]). It is described by
four variables (px, py,vx,vy), where (px, py) is ball position
in 2D and (vx,vy) ball velocity. Figure VIII-B provides the
hybrid automaton of the system. Model parameters are set to
g ∈ [9.8,9.85], e = 3.5 and k ∈ [0.3,0.4] (all units are S.I).
We took a constant integration time step h = 0.1 for ϕQR
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TABLE III
(P-radius, Sm , VOLUME) VS ratio FOR THE BOUNCING BALL

ratio 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
P-radius 4.26 5.19 6.15 5.87 7.37 8.01 8.59 9.83 9.76 10.16 11.07

Sm 4.26 2.10 1.56 1.33 1.58 2.03 2.56 3.25 3.98 4.86 5.95
volume × (10−3) 62.96 24.48 13.05 4.35 14.04 5.52 0.29 26.88 37.78 43.63 50.99

3

Fig. 8. Case study 2 : A ball bouncing on a sinusoidal surface. Hybrid
automaton modeling.

(Algorithm 2) and set threshold for time interval bisection to
εT = 0.005 in Hybrid-Transition (Algorithm 6). Final
time is 0.65s. We run our method with and without trajectory-
tubes merging. All results are plotted in Figures 9 and 10. They
show that our algorithm can manage two tubes of trajectories
simultaneously with non-linear guard conditions. Moreover,
we can run the model with large integration time step, which
shows the benefits of the interval Taylor method used. Table III
gathers the criteria values for the tuning parameter ratio.
Here again, the optimal value depends on the chosen criteria.
Contrary to the first case study, the tightest enclosure is
obtained for the segment length criterion.

C. Case study 3 : Sliding mode control

Here, the idea is to investigate the performance of our
hybrid reachability approach in situations where the guard in-
cludes uncertainty and remains active after reaching it. To this
purpose, we consider a very simplified sliding mode control
example for the system with state equations {ẋ1 = x2, ẋ2 = u}
with desired system output taken as x1des = yd ≡ sin(t). The
system is modeled as a hybrid system with three modes
q = 1, 2, 3, each related to the sign of s as depicted in Fig. 11,
which also shows the corresponding discrete transitions. Note
that the invariant in mode q = 2 is defined as s = 0 and
guard conditions as s > 0 or s < 0. Because our algorithms
provide guaranteed enclosures, the flow-pipe computed for
q = 2 within the invariant s = 0, i.e. a zero-width manifold,
always has a non-zero width. This eventually triggers guard

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

-6 -3 0 3 6

p
y

px

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

-6 -3 0 3 6

p
y

px

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

-6 -3 0 3 6

p
y

px

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

-6 -3 0 3 6

p
y

px

Fig. 9. The frontier, i.e. the solution sets at time-grid points in px× py-space
for the bouncing ball. From left to right, the solutions set obtained without
trajectory merging (CPU 25.8s), with trajectory merging using the P-radius
criterion (CPU 4.1s), using the segment length criterion (CPU 4.1s) and the
volume criterion (CPU 4.1s). Here, the left and right flowpipes were labelled
hence directly separated.
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Fig. 10. Capture of the left sub-tubes as captured after the first bounce (Right
sub-tubes are the exact symmetrical). Dots show the vertices of the numerous
MSPBs obtained after the jump, the unique enclosing MSPB as obtained with
each of the three criteria, along with the optimal value for ratio.

conditions, hence discrete transitions towards modes q = 1
or q = 3. Before proceeding further, let us assume that
there are some bounded time-invariant errors d1 ∈ [d1] and
d2 ∈ [d2] such that the sliding surface and the control law
are given by: s ∈ α · (x1 + [d1]− yd) + (x2 + [d2]− ẏd) and
u∈ ÿd−α ·(ẋ1+[d1]− ẏd)−ηsign(s). Hence, both the sliding
surface, i.e. the guard condition, and the closed-loop state
equations become uncertain. Now, remember that our method
naturally handles such uncertain hybrid system because the
hybrid automaton (1) already considers uncertain parameters
in either continuous flow (2), invariant (3) or guard functions
(4). All uncertain variables are eventually embedded in the
extended state vector and hybrid reachability computations
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q = 1
s < 0

q = 2
s = 0

q = 3
s > 0

s = 0

s < 0

s > 0

s = 0

Fig. 11. The hybrid automaton for the sliding mode control under study

Fig. 12. The reachable set for the sliding mode control trajectory tracking.
On the same graph, time-history of x1-variable (starts at 1), x2-variable (starts
at 0) and s (reaches 0 and stays there). Left: with no uncertainty (34s CPU).
Right: with uncertainty (97s CPU).

use equations (5-7). Here, we took a constant integration
time step h = 0.005s for ϕQR (Algorithm 2) and used no
time interval bisection in Hybrid-Transition (Algorithm
6). α = 0.01 and η = 0.5. Final time is 20s. We run our
algorithm with trajectory-tube fusion using the segment-length
criterion, and obtained the reachable set plotted in Fig. 12.
Notice system trajectories obtained without uncertainty, i.e.
[d1] = [d2] = {0}, and the ones with uncertainty taken as
[d1] = [d2] = [−0.02,0.02]. Starting with (1,0) as initial condi-
tions, the system reaches the uncertain sliding surface at time
t = 2s and remains there until simulation ends. It is clear that
our algorithm can manage situations where the guard remains
active after reaching it, and that it also characterizes efficiently
the impact of any uncertainty acting either on the flow or on
the guard condition. The thickness that appears in system state
trajectories when they reach the sliding surface is induced by
the bounded uncertainties [d1] and [d2] influencing the sliding
surface.

D. Case study 4 : Nonlinear hybrid system of high dimension

The purpose is to investigate the scalability of our trajectory
merge approach within our hybrid reachability method. We
consider the switched dynamical system with two modes q =
1, 2 and one jump transition e= 1→ 2 obtained by introducing
an artificial switching in the dynamical model of an oscillatory
network of transcriptional regulators with N genes [72]. Let
us denote ~x = (m1, p1, . . . , mi, pi, . . . , mN , pN) the continuous
state vector. The guard condition is given by the nonlinear
condition γ1(~x) = 0, with

γ1(~x) =
i=2N

∑
i=1

(xi−5)2− r2

and r = 75, and the continuous dynamics are described by the
ODE ~̇x = f (~x) in the form

i = 1, . . . ,N

{
ṁi = −mi +bpi +

α(t)
1+pn

i−1
+α0

i (t)

ṗi = κ(t)mi−µ(t)pi
(49)

TABLE IV
SCALABILITY OF THE HYBRID REACHABILITY METHOD. COMPUTATION

TIMES IN SECONDS (AVERAGE OF 10 RUNS - CASE STUDY 4).

Without Hybrid Hybrid
2N artificial switching without fusion with fusion
2 0.42 98.4 3.94
4 0.935 337 22.3
6 1.44 740 64.4

10 2.87 796 105
12 3.77 1197 130
14 4.78 1814 347
16 5.91 2076 NA
18 7.16 3460 NA
24 11.75 5113 NA

Fig. 13. The reachable set for system (49) with 2N=12. Left, time-history of
m1-variable, Right, time-history of p1-variable.

with b =−0.5, n = 2 and p0 = pN . We assume that the func-
tions α(t), κ(t), µ(t), and α0

i (t), are unknown but bounded,
and the bounds are as follows: for all t, α(t) ∈ [0.5, 1.5],
κ(t)∈ [1.9, 2.1], µ(t)∈ [1.9, 2.1] and for all i α0

i (t)∈ [25, 26].
Initial conditions are taken as: m3k+1(t0)∈ [35,40], p3k+1(t0)∈
[27,32], m3k+2(t0) ∈ [30,35], p3k+2(t0) ∈ [25,30], m3k+3(t0) ∈
[40,45], p3k+3(t0) ∈ [32,37], for k=0 to 7. Algorithm ϕQR

(Algorithm 2) was run with a constant integration time step
h = 0.01min and algorithm Hybrid-Transition (Algo-
rithm 6) was run with no time interval bisection. Final time
is 10min. The trajectory merge is done with the segment
length criterion. Fig. 13 depicts the reachable sets as obtained
with 2N = 12. Table IV gathers the computation times for
settings with 2N ranging from 2 to 24. Computations with
our fusion algorithm were successful for values of 2N up
to 14. For larger values of N, the memory size required by
the enumeration of potential vertices exceeds the available
one. Nevertheless, comparing the simulation runs with and
without merging clearly demonstrates the usefulness of our
approach since computation times in these settings have been
reduced by factor 5 for systems with continuous dimension
as large as 14. Comparing the continuous simulation and the
hybrid with trajectory merge gives an insight about the overall
cost of our method for crossing nonlinear guards. For higher
dimensions, further investigations are needed to counteract the
impact of the exponential complexity of vertices enumeration
in the fusion algorithm.

IX. CONCLUSION AND FUTURE WORKS

We have addressed hybrid reachability analysis of uncertain
nonlinear hybrid systems using interval analysis, guaranteed
set integration, interval constraint propagation and geometrical
tools based on zonotopes. Continuous transitions are addressed
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using state-of-the-art methods for guaranteed and validated
set integration. Discrete transitions use first a method for
reliable event detection and localization that is based on a
one-dimensional bisection strategy allied with zonotope-based
geometrical tools for domain computation. It then relies on
zonotope/MSPB bounding to enclose the flow-pipes obtained
after a jump, in a form consistent with our continuous
reachability approach. The bounding approach relies on a
parameter that is tuned on-the-fly. The method, evaluated on
nonlinear hybrid systems, has shown promising performance
and reasonable computation times, even under continuous state
dimensions greater than ten. Further work will focus on ways
to improve the approach’s scalability, and detect and merge
non-connected clouds of flow-pipes, and also on the possibility
to use a paving using MSPB to cover large solution sets.
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