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Abstract: The spreading of urban areas and the growth of human population worldwide raise
societal and environmental concerns. To better address these concerns, the monitoring of the acoustic
environment in urban as well as rural or wilderness areas is an important matter. Building on the
recent development of low cost hardware acoustic sensors, we propose in this paper to consider a
sensor grid approach to tackle this issue. In this kind of approach, the crucial question is the nature
of the data that are transmitted from the sensors to the processing and archival servers. To this end,
we propose an efficient audio coding scheme based on third octave band spectral representation
that allows: (1) the estimation of standard acoustic indicators; and (2) the recognition of acoustic
events at state-of-the-art performance rate. The former is useful to provide quantitative information
about the acoustic environment, while the latter is useful to gather qualitative information and build
perceptually motivated indicators using for example the emergence of a given sound source. The
coding scheme is also demonstrated to transmit spectrally encoded data that, reverted to the time
domain using state-of-the-art techniques, are not intelligible, thus protecting the privacy of citizens.

Keywords: acoustic monitoring; audio encoding

1. Introduction

The advent of low cost acoustic sensors together with the need to better monitor and comprehend
the acoustic environment of urban and wilderness areas give rise to the deployment of experimental
sensor networks such as the SONYC (htttp://wp.nyu.edu/sonyc) [1] and CENSE (htttp://cense.ifsttar.
fr) [2] projects. To do so, considering the so-called “sensor grid” approach [3,4] has several advantages.
The sensor grid approach puts the focus on: (a) a distributed system of data acquisition with a large
set of sensors; (b) the production and storage of a large dataset; and (c) its availability for intensive and
open data analysis computation.

In such approach, the number of sensor nodes shall be extended as needed without having to
change the hardware and software architecture, i.e., the approach shall be scalable. Second, the nodes
shall be energy efficient, and, ideally, autonomous, to ease the deployment of the sensor grid to the
desired topology. Third, the encoding scheme used to transmit the data from the sensor to the storage
and processing servers shall be designed with care in order to guarantee the privacy of the citizens.
At the same time, the data stored shall remain as rich as possible, while maintaining a low bitrate for
efficient transmission and storage.

In the case of urban acoustic monitoring, the data of interest typically consist of standardized
high-quality measurements of energetic indicators such as the equivalent sound level Leq in dB SPL or
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its A-weighted counterpart LAeq in dBA. However, while these indicators have proven to correlate
well with perceptual evaluations for negative impact sound environments [5], they are not sufficient to
fully describe urban sound environments [6]. Many other variables can be derived to better account
for previously implicit properties [7] including percentile values or time dynamics. Studies have been
conducted to select relevant subsets of descriptors in sound environment characterization [8–10].

In addition, considering sound sources allows better assessing the human perception of the urban
sound environment in terms of pleasantness and other perceptual indicators [11,15]. For instance, bird
song and traffic noise with the same energy are perceived very differently. Most acoustic indicators
used in current sound maps describe the global sound environment and lack information on its
composition. The recognition and the estimation of the level of contribution of sources of interest is
thus of great importance to fully model the studied acoustic environments (see for example [12–14]).
Other indicators have been found to correlate with specific sound environment content [15] but do
not achieve the level of performances of a well-designed source detection scheme in characterizing
acoustic environments. This source detection step can be operated online (on the sensors) or offline
(on the data servers), leading to different grid designs (Figure 1).

Performing the detection online (case B of Figure 1) is efficient in terms of data storage as only the
detected events are transmitted. This approach is thus currently considered in several applications
in the literature [1,16,17]. However, it requires the availability of decent computing resources on the
sensors in order to perform the detection step which as of today’s efficiency of hardware does not
allow them to be autonomous using power sources like solar panels. Furthermore, the detection is
done once and cannot be recomputed during offline posterior analyses.

Performing the detection offline has several benefits. First, the sensor task is much simpler and
can thus be implemented on low energy consumption processors. This means that the sensors can be
autonomous in terms of energy, which greatly eases the deployment of the network. Second, it allows
researchers to gather large amount of data that can be post-processed and studied further offline.
Data can be re-analyzed following newer classification schemes or using new indicators. Though,
transmitting the raw audio through the network (case A of Figure 1) has several disadvantages, in terms
of required bandwidth, storage capabilities and privacy. Thus, for transmission from the sensors to the
storage unit, the data shall be encoded in a more efficient way than lossy audio encoding standards
[18]. Indeed, the audio signal is not mandatory for the computation of the acoustic indicators and the
features needed for event recognition. In addition, as the data are transmitted using the network and
stored, one must ensure that the intelligibility of potential speech utterances is lost during the coding
process, in order to guarantee the privacy of the citizens.

The analysis of sources within a sound environment is generally linked with spectral content [19]
and high temporal resolutions while acoustic indicators focus on more scarce but highly accurate
measurements. We thus present in this paper an audio coding scheme specifically tailored for use in a
sensor grid (case C of Figure 1). The proposed method computes and encodes third-octave bands Leq

with controllable precision, enabling low bitrate transmissions while allowing both the derivation of
other acoustic indicators and the implementation of offline audio event detection schemes. We report
equivalent performance of several state-of-the-art classification models from features computed using
raw audio data and encoded data at production level rates. Finally, according to a perceptual evaluation,
the proposed coding scheme very strongly degrades the intelligibility, thus ensuring citizen privacy.

To promote reproducible research, the coder as well as the experiments needed to generate the
figures is available to the research community (https://github.com/felixgontier/cense-coder). The
remaining of the paper is organized as follows: Section 2 describes the proposed encoding scheme;
the experimental protocol designed to validate the proposed approach is described in Section 3; and
results are discussed in Section 4.

https://github.com/felixgontier/cense-coder
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Figure 1. Three alternative implementations of the sensor grid approach for the monitoring of the
acoustic environment: in (A) the raw audio is transmitted; in (B) only the detected events; and in (C) a
compressed spectral representation. Thickness of arrows indicates bandwidth and thickness of boxes
indicates the level of computation or storage required.

2. Proposed Encoding Scheme

2.1. Data Representation

The identification of sources from audio streams has been the subject of extensive research in
the past for speech data [20], music data [21], and lately environmental data, in which the current
work falls. Studied classification methods are diverse, ranging from time-dependant modeling
with hidden Markov models [22] to “bag-of-frames” approaches [23,24]. Common architectures
include learning-based classifiers such as support vector machines [25], Gaussian mixture models
[26] or neural networks [27,28]. In addition, several type of features are considered to feed those
classifiers. The most used are certainly spectral [29] or cepstral [30] representations of the signal.
Among them, Mel spectrograms and their cepstral-domain derivation, the Mel-frequency cepstrum
coefficients (MFCC), are the most widely used as of today. These representations effectively model the
human cochlear response to sounds by grouping frequency components around critical bands in a
logarithmic scale. Features can also be computed in other domains to better model signal properties.
For instance, Cai et al. [31] adds spectral features related to harmonicity and salient frequencies, and
[32] uses a matching pursuit (MP) algorithm to deduce time-domain features. Alternative data
representations such as the scattering transform [33] show good results in environmental sound
classification tasks [34]. Another promising solution is feature engineering via unsupervised learning,
which Salamon et al. [35] implements with a clustering technique. More complex systems using
multiple-domain data representation as well as unsupervised models have been found to handle
unrestricted environments such as urban acoustic scenes efficiently [36]. A more detailed review of
used methods is available in [37].

In the acoustic monitoring field, the measurement of energetic indicators is mandatory to the
development of noise maps. The third-octave bands Leq appears suitable for this work’s purpose:
in addition to being a relevant descriptor [38] for urban sound environment assessment, it allows
for the computation of most cited indicators while representing reasonably small, fixed amounts of
data to be transmitted. Interestingly, third-octave bands are closely related to MFCC as they both are
logarithmic-scaled spectral representations of the audio signal and diverge only in their motivation,
mathematical and perceptive respectively.

We therefore consider the calculation of spectral energetic indicators such as the 31 third-octave
bands within the human audition range 20 Hz–20 kHz. “Fast” measurements of third-octave bands
with an integration time of 125 ms are preferred to suit the temporal resolution needs of AED
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schemes, although “slow”, 1 s measurements are also considered to further study the effect on our
application’s constraints.

2.2. Signal Analysis

A common way to implement third-octave analysis is to first design the highest octave three
filters, and use them on progressively time-decimated versions of the input signal [39]. Antoni [40]
presents an alternative analysis method based on direct frequency weighting, which yields a lower
computational complexity as opposed to time filtering. The weights matrix design procedure complies
with both ANSI S1.1-1986 [41] and IEC 61260-1:2014 [42] standards. It also meets the partition of unity
principle over all frequency bins in the relevant range. Resulting filters for different parameter l values
are compared with Couvreur’s implementation [43] with 2nd order Butterworth time-domain filters,
as shown in Figure 2. The major difference is that gains at cutoff frequencies are fixed at the optimal
−3 dB value by design.
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Figure 2. Comparison of Couvreur’s and Antoni’s implementations of third-octave filters. Frequency-
weighting allows for arbitrary transfer functions and thus more accurate gains as standards impose.

The first step is to represent the signal in the frequency domain using a short-term Fourier
transform (STFT). The continuously sampled audio is segmented into either 125 ms or 1 s frames to
provide “fast” or “slow” acoustic measurements. The data are zero-padded to the next power of two
to improve computational efficiency. The other parameters such as windowing functions and frame
overlap are dependant on the specific constraints, and discussed in Section 3. The phase is discarded
as it is not meaningful for third-octave analysis. Similarly, negative frequency components contain
the same information as positive ones because the input signal is real. We then compute third-octave
bands from the squared spectral magnitude by matrix multiplication with the frequency weights
proposed in [40] for l = 2 (when implementing said method, we found that squaring the φl(p), l ≥ 1
intermediate function (p. 887) was the correct approach to meet cutoff frequencies requirements, and
we believe this was the author’s original intention). We include analysis for bands i from −17 to 13,
i.e., center frequencies fi ranging from 20 Hz to 20 kHz with f0 = 1 kHz. The representation is thus
composed of 31 values.
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2.3. Data Encoding

A Huffman coding scheme [44] is an efficient method to further reduce data rate while keeping the
underlying information. At this point of the processing chain, the data take the form of a spectrogram
with amplitude values represented on an arbitrary data type. It is therefore assimilable to a discrete
distribution. By defining symbols as the possible values taken by the data, a discrete probability density
function (PDF) can be expressed and estimated. The Shannon entropy then specifies the minimum
average achievable output data rate for this given distribution, or average information content. The
Huffman algorithm is an entropy coding scheme, as it uses the PDF to assign a code to each symbol so
that the average output rate is the closest to the entropy. The resulting mapping function is called a
Huffman dictionary.

The efficiency of the coding step thus directly depends on the entropy of the transmitted data.
It is defined as H = −∑

i
pilogn(pi), where pi is the probability of appearance of a given symbol i and

n is the numerical base in which the output code is represented. A lower entropy can be obtained
with two factors. First, the dictionary size, i.e., the number of symbols must be kept low. This implies
performing a quantization on the data resulting in a loss of precision. Second, the data distribution itself
is important. Entropy decreases when very few symbols have a very high probability of appearance
and is maximum for a uniform distribution.

Considering an estimated PDF for our data, as shown in Figure 3 (top-left), immediately applying
a linear quantization is clearly suboptimal, as the data mostly consist of very low values and a direct
quantization results in most of the information being lost. We therefore flatten the PDF by taking the
logarithm of the representation (top-right). This allows to better use the available range of symbols.
A linear quantization is then applied with 2q−1 − 1 output values to obtain Figure 3 (bottom-left).
Finally, we use a ∆-encoding algorithm along the time dimension to reduce redundancies between
consecutive frames. This effectively concentrates higher probabilities on symbols around zero (Figure 3
bottom-right), yielding a higher amount of symbols at 2q − 1 but nevertheless a smaller entropy.
In the example shown here, the entropy before ∆-compression is Hlog = 6.24 sh which is reduced to
H∆ = 3.54 sh.
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Figure 3. Example of estimated probability density functions of the data throughout the encoding step.
Unchanged output of the representation step (top-left), concentrated towards very low values. PDF
“flattening” effect induced by logarithm application (top-right). Here, values are mapped to the range
[0, 27 − 1](q = 8) and rounded to perform quantization (bottom-left). Output of the ∆ compression
(bottom-right), with desirable probabilities as the input to a Huffman algorithm.

Huffman encoding is then computed with either a frame-specific symbol-code dictionary or
a fixed dictionary generated using a learning dataset. A comparison of both methods is shown in
Figure 4. For most short texture frame durations, the local Huffman algorithm is found to be much
faster. In fact, the encoding computational complexity is a function of the number of dictionary
elements. A frame-specific dictionary only contains the symbols found in a given data packet, while a
fixed dictionary must contain every possible symbol as it does not depend on the present data. The
output bitrate is found to be close for both methods, as sending an optimal local dictionary balances
the suboptimality of globally generated symbol-code pairs.

The decoding process is quite straightforward, as both Huffman and ∆ compressions are lossless
and directly invertible. The entire coder scheme is summarized in Figure 5.
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Figure 4. Performance comparison of locally and globally generated Huffman dictionaries. (top) The
mean execution time ratio favors the use of frame-specific dictionaries for tested texture frame lengths.
(bottom) The mean output bitrate is close for both algorithms, showing that the necessity of sending
symbol-code pairs mostly compensates for their optimality.
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Figure 5. Overview of the encoding process.

3. Validation Protocol

A set of metrics is computed to assess the efficiency of the proposed coder scheme and to determine
the impact of the degrees of freedom given by the parameters of the proposed algorithm. Those
parameters are as follow: (1) the desired word size prior to Huffman encoding, set by quantization for
both signal representation choices; (2) the number of considered bands; and (3) the STFT parameters
including frame duration, overlap and windowing function usage. This section details experimental
protocols for the validation of bitrate, measurement error, audio event recognition and intelligibility
developped to best suit the corresponding constraints.

3.1. Efficiency

The coder’s output bitrate as well as measurement error is computed for both data representations.
This metric is composed of the spectral third-octave band analysis error and the additional loss yielded
by quantization before the encoding process.

To assess the quality of the propoposed scheme’s spectral measurement precision, we compare
it to a known reference: the Matlab ita_toolbox implementation [45]. This toolbox’s implementation
shows less than 0.1 dB error on all bands when compared to a class 1 sound level meter software on
2 s third-octave bands measurements. We study both “fast” computation with 125 ms windows and
“slow” 1 s analysis to assess the impact of time integration. Third-octave bands are computed using
the proposed method as well as the ita_toolbox in the same experimental conditions, then averaged
over time and compared to the toolbox’s measurements on longer 2 s extracts. The experiment is
run for Gaussian white noise as well as urban environmental recordings: the former allows direct
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estimation bias evaluation, while the latter provides a simulation of real operating conditions. As the
analysis frames are of short duration, poor frequency resolution and spectral leakage are expected
when performing the STFT, particularly in the lower frequencies bands. For this reason, we evaluate
the impact of windowing functions on each band measurement error in order to potentially mitigate
this loss of precision.

To provide relevant statistics, these quantities are estimated with data from the 4500 audio
recordings of the UrbanSound8k dataset [46] described in the next section and 4500 iid. Gaussian
noise sequences.

3.2. Preserving Event Recognition Performance at Low Bitrate

To ensure that the proposed scheme allows the recognition of events using state-of-the-art
methods, we consider the results achieved by several recognition systems on the UrbanSound8k
dataset [46]. It features about 9 h of urban environmental sounds recordings separated in 8732 audio
files ranging from 1 to 4 s each. The recordings are labeled in 10 classes (air conditioner, car horn,
children playing, dog bark, drilling, engine idling, gun shot, jackhammer, siren, and street music),
and distributed in 10 independent folds. A method and baseline results are also provided for the
classification task. In this study, audio files are resampled at 44.1 kHz, normalized and only the left
channel is considered for further analysis.

The aim of this experiment is two-fold: to evaluate the global loss of information induced by
the coding process, and to evaluate the adequacy of third-octave bands indicators for classification.
As studying the best performing classical models [47], deep learning approaches [27] or unsupervised
feature learning is beyond the scope of this paper, we choose to replicate the baseline models and
results proposed in [46].

The four classification models are as follow: a support vector machine with a radial basis function
kernel, a random forest classifier with 500 trees, a decision tree and a k-nearest neighbors classifier with
k = 5. Values for the SVM parameter C and RBF kernel variance σ2 are determined using a grid search.
We optionally apply a discrete cosine transform to the critical band signal representation to obtain
cepstra, known as Mel Frequency Cepstrum Coefficients or MFCC in the case of Mel spectrograms.
The 25 first coefficients are kept, and summarized along time with several statistics such as the mean,
variance, skewness, kurtosis, minimum, maximum, median, derivative mean and variance, second
order derivative mean and variance operators. The feature vector is thus comprised of 275 values
to reproduce available results and compare with the data produced by the proposed coding scheme.
Models are trained for each setup using the 10-fold cross validation method provided by the authors
of [46], that is, every combination of testing one fold on models trained with the other nine. A summary
of the considered classification process is shown in Figure 6.

Classifier
Training

Input
dataset Accuracy

Cross-validation

Validation data

Training dataDCT -
Summary

Fold
Separation

ValidationThird-octave
filterbank

Figure 6. Classification process flowchart. Here third-octave bands are obtained by reversing
the operations in Section 2.3 and cepstral coefficients are computed before training the model.
Cross-validation is achieved by independantly training and testing the models with each of the
10 combinations of a 90–10% training–validation dataset separation.

Mel spectrograms are also computed with the rastamat library [48] to assess the relative
performance of third-octave bands. STFT analysis frames are obtained by applying a Hann window
on 23.2 ms of signal with 50% (11.6 ms) overlap to allow for efficient phase recovery.
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3.3. Inintelligibility

It is important that the proposed scheme ensures a high level of recognition of acoustic events
but, as the data are transmitted over the network and potentially stored, the level of intelligibility
of speech utterances potentially captured in the decoded stream should be as low as possible. Thus,
intelligibility in decoded and reconstructed audio is also an important concern of this study.

The use of an audio recording as an evidence is considered by the forensic phonetics [49] field.
The readers shall be aware that even recorded with a good quality, such recording remains a weak
biometrical indicator [50]. However, even if the identity of the speaker cannot be asserted, one can
attempt to transcribe the spoken utterances. Thus, we believe that it is important to demonstrate that
the proposed encoding scheme do not allow such thing.

To decrease the intelligibility, several approaches can be considered. First, a speech versus non
speech detector can be implemented on the sensor. If some speech is detected, the data are not
transmitted. This approach is however prone to failure of the detector and will lead to unavailability
of data during speech time periods, which might compromise the relevance of some indicators.

A second approach is to wisely choose the frame rate. Since a phoneme is about 100 ms to 200 ms
long [51,52], a frame rate lower than 4 Hz should therefore dramatically reduce intelligibility.

Thus, the impact of the frame rate parameter of the proposed encoding scheme on intelligibility
is evaluated. To do so, a perceptual test is conducted. For the evaluation, a dataset of clean speech
utterances recorded in studio conditions is used. The dataset is composed of nine french sentences
enunciated by three male and three female speakers. The sentences have a mean duration of 2 s and
are composed of 5–12 words, averaging eight words. The 54 extracts are encoded using the proposed
approach with four analysis frame rate parameters of, respectively, 50 Hz, 16 Hz, 8 Hz and 4 Hz
leading to 216 audio excerpts being tested in total. However, as the recording conditions are the same
for all extracts the speaker identity is considered as a source of variability rather than as a necessary
factor in the test statistics. As a result, the objective is primarily to evaluate the nine sentences with
four encoding frame rates, i.e., 36 parameters.

Several subjective intelligibility metrics are standardized in the literature such as the system
proposed in [53]. However, metrics regarding the signal only (SIG) or background noise only (BAK)
which are often used to evaluate speech enhancement schemes [54], are not suitable for this test due to
the background and signal being mixed with an uncontrollable SNR by the encoding process. Given
these conditions a subjective score on the whole signal is used similarly to the OVRL score in [53].
As decoding the transmitted audio induces a framing effect unevenly distorting the input utterance,
a second metric is designed to assess the comprehension of words. For the perceptual test, 18 different
sentences evenly distributed over the four frame rate parameters are selected for each subject. For each
sentence, the participant first listens to the extract and is then asked to transcribe the utterance and to
rate the perceived intelligibility from 1 (not intelligible) to 5 (intelligible). The first metric is computed
as the ratio of correctly transcribed words and will be referred as the intelligibility ratio (IR) in this
paper. The second metric is directly the score attributed by the listener, referred as the intelligibility
score (IS).

Twelve subjects of age ranging from 17 to 60 which reported normal hearing participated to the
listening test. The test was conducted using a Matlab interface displayed with a desktop computer
and audio was played through Beyerdynamics DT 770 headphones. The output level was set by the
experimenter at the same level for all subjects. The mean duration of the test was about 8 min.

This test requires an implementation of the inverse operation of the coding process to provide the
listener with an estimate of the time-domain signal. To do so, a linearly-scaled spectrogram from the
band-focused representations is estimated. This estimation is achieved by multiplying the spectral
representation by the scaled transpose of the forward transformation matrix. A loss of resolution
increasing with frequency is induced due to the shape of the transformation, as illustrated by Figure 7.
Each white square can be interpreted as the filter applied to obtain a single third-octave band. The
filtering process will average the energy content of the signal over the corresponding band. As a result
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the energy located at a specific frequency is impossible to recover and the best inverse approximation
is to split the third-octave band’s observed energy into all the corresponding frequency bins with
the same proportions as during analysis. This leads to the phenomenon seen in Figure 7 where part
of the energy of a frequency bin in the original signal is found in all other bins of the same band
at reconstruction, in almost equal proportions. The signal phase is recovered with the Griffin–Lim
algorithm [55] if analysis overlap is used and white noise spectrogram scaling if not. The time-domain
signal is then retrieved using the overlap-add method. When using overlap to compute third-octave
bands, framing effects produced by rectangular windowing are reduced by convoluting the signal
with a Hann windowing function prior to inverse-STFT computation.

Figure 7. Third-octave bands analysis and approximate inverse transformation effects on energy
location. Here, a brighter gray indicates that part of the energy contained at the corresponding
frequency of the original signal is transferred to the reconstructed signal at the indicated frequency.
This process yields an important and heterogeneous loss in resolution, particularly at higher frequency
points.

4. Results

4.1. Coder Efficiency

The main indicator of performance is the bitrate obtained at the output of the coder. The three
varying factors studied are the data word size q, the number of bands and the effect of reducing
time-resolution by averaging analysis frames. Figure 8 shows estimations of the output bitrate for
different values of q. To match third-octave bands computation principle where a 125 ms (fast) or 1 s
(slow) analysis is standardized, Mel frames are averaged over time. Because we use the most common
parameters, namely 23.2 ms window with 50% overlap, the closest achievable rate considering simple
averaging is 7.74 frames per second. Third-octave representation on 31 bands yields an overall higher
size than their Mel equivalent, here estimated for 30 bands. It however compares with the 40-Mel
bands representation which is the most used in sound event recognition literature. This higher bitrate
is likely due to the distribution observed by the data prior to Huffman encoding.
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Figure 8. Coder output bitrate as a function of quantization for third-octave and Mel bands with
8 frames per second.

A second set of parameters influences directly the time-frequency resolution of the analysis.
By choosing a frame rate and number of bands, one can effectively control the size of the periodically
transmitted data. We evaluate the bitrate for 10 to 40 Mel bands and a frame rate from 2 to 10 per
second, with fixed q = 8. As can be expected, the bitrate for a given word size q can be approximated
as a linear function of the representation dimensions for one second of analysis. Small variations are
induced by data distributions on a per-frame level and their impact on the Huffman algorithm.

This experiment aims at an initial assessment of potential tradeoffs between bitrate and
preservation of valuable information which will be further discussed in Section 4.2.

The measurement error is now computed for third-octave bands. Results are displayed in Figure 9
for white noise extracts and in Figure 10 for environmental sounds. Only full-octave bands are shown
for the sake of visibility. When computing the slow analysis, we find that applying overlap attenuates
the error. This is not observed for fast analysis where the error is similar or higher with the use of
overlapping frames.

When performing a short time analysis, strong errors appear in low frequency bands where the
precision of the DFT is poor. The slow analysis yields better estimations as it provides a globally
better resolution and thus also reduces the impact of spectral leakage effects in this region. When
considering white noise the error is low on the whole frequency range. Its mean over the testing
samples is close to zero and its standard deviation increases in low frequencies, confirming the
above-mentioned considerations. This effectiveness does not translate well to environmental sound
analysis, most likely due to the sound level disparities absent in the former case but omnipresent
in the latter. Spectral leakage induces a correlation between close frequency components. In lower
frequencies, large differences between adjacent frequency bins can therefore cause important errors on
the third-octave bands computation. This issue is however not specific to Fourier transform-based
schemes as it is also encountered with a time domain filtering approach.
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Figure 9. Measurement error of third-octave bands over two-seconds white noise extracts, with
rectangular window and no overlap. The analysis of short frames has an effect on energy estimation at
low frequencies that is of lower importance as the frequency resolution increases.

To mitigate this phenomenon, the choice of the window function shall be studied further. For a
fast analysis with no overlap, the rectangular window seems a reasonable choice at first because of its
energy conservation qualities. While it yields the lowest error in high frequency bands, its important
spectral leakage effect makes it unprecise in lower frequency regions. Non-flat windows better account
for this issue but require assuming that the signal is stationary in a given frame. The use of overlap then
results in better estimates at the cost of an increased data size. For slow measurements, considering
the rectangular window is less harmful to band analysis due to an increased frequency resolution.

The comparison of the error achieved by the proposed scheme to that of third-octave bands
estimated by a reference time-filtering algorithm is now considered. It results in important similarities.
For fast measurements and a rectangular window (Figure 10a), a student t-test (p < 0.05) shows that
the errors are not significantly different between 125 Hz and 12 kHz bands. For the lower frequency
bands, the two methods yield different error distributions but of similar importance. Using a Hann
window function results in lower error in the low frequency range but adds a bias to the previously
accurate band measurements. Again comparing the two computation methods shows a significant
difference in the bands below 100 Hz only. A slow analysis results in statistically equivalent errors
between the two methods apart from the very low frequencies: p = 0.011 with the rectangular window
(Figure 10c), p = 0.003 at 20 Hz and p = 0.021 at 25 Hz for the Hann window and 66% overlap
(Figure 10d).

The additional error caused by the encoding steps after obtaining the desired data representation
is now studied. The only lossy operation applied is quantization, which is defined by an output word
size q in bits. However, it corresponds to the word size after ∆-compression, meaning that the data are
in fact quantized on 2q−1 values. Since these measurements are already expressed in dB, the error ε is
computed as:

ε = |xq − x|

where xq and x are the quantized and clean representations repectively. xq is given by:

xq(n) =
∆x

2q−1 − 1
round

(
(2q−1 − 1)x(n)

∆x

)
, x ∈ [0, ∆x]
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Figure 10. Measurement error of third-octave bands over two-seconds environmental sounds
recordings (US8k dataset). For most settings, the FFT-based method yields similar errors compared to
the time-domain filtering reference.

Figure 11 shows an estimation of ε as a function of q for third-octave and Mel bands. In both cases,
the mean and standard deviation seem to decrease by a factor of 2 as q increases. To better understand
this phenomenon, let us model x as a uniform distribution such as x ∼ U{0, ∆x}. While this is not
exact, it matches our objective when using a logarithm to flatten given PDFs. The error ε will follow a
uniform distribution U ∼ {0, ∆x

2×(2q−1−1)
}. Therefore, the mean and standard deviation are:

µε = ∆x
4×(2q−1−1)

σε = 1
12

∆x
2×(2q−1−1)

justifying the decaying ratio as q increases. In practice, we assume that ε = f (∆x, 1
2q−1−1

) with the
heterogeneity of the data’s PDF inducing small variations.

As ∆x is sampled for each analysis frame in our implementation, the error has the same statistics
across all bands. It is to be added to the measurement error discussed in the same section before
comparing to the values specified in the IEC 61672-1:2013 [56] standard on class 1 and 2 sound
level meters.
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Figure 11. Measurement error induced by encoding for different quantization resolutions.

4.2. Event Recognition

The same set of parameters as in bitrate evaluation is used to study the impact of their tuning
on sound event recognition performance. This experiment aims at finding ways to further reduce the
encoded data size without strongly affecting detection performance. Results of the four presented
classification methods (Section 3.2) are provided for the sake of completeness.

First, we observe the impact of quantization on classification accuracy. The models are trained on
the most complete implemented representation to replicate the results of [46], i.e., 40 Mel bands, 23.2 ms,
50% overlap analysis and no time averaging (85 frames per second). Figure 12 shows that equivalent
accuracies are obtained for all considered values of the quantization parameter q down to 5 bits. The
effect of changing the time-frequency resolution of the representation is presented in Table 1. In this
table, equivalence of performance with respect to the best performing setting (in red) is depicted with a
bold font evaluated using the following procedure. The null hypothesis that the subtraction of the two
compared distribution (the distribution of the setting we consider minus the distribution of the best
performing one) comes from a normal distribution with mean equal to zero and unknown variance
is evaluated using the paired-sample t-test at the 0.05 significance level. If the null hypothesis is not
rejected, the setting is considered as equivalent in terms of performance to the best performing one.
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Figure 12. Classification accuracy as a function of word size before encoding. The baseline plotted on
the right is computed without quantizing the representation.

Similar to baseline results, the random forest and SVM classifiers are the best performing systems
at 0.69± 0.06 and 0.68± 0.04 respectively. However, we find that given our setup, reducing the number
of analysis bands up to a given level often does not induce a severe drop of performance. The accuracy
of the decision tree classifier is a good example of this behavior, with best performances for 10 Mel
bands only and a 4% lower accuracy for 40. Other models trained with 20 to 40 Mel bands as a
representation show no significant performance difference. Time decimation can also be considered, as
the original representation can be averaged and consistently yield a good classification accuracy. The
loss of information can be considered negligible for frame-per-second values as low as 20 Hz or 10 Hz
depending on the method. Even below, the classification accuracy only drops by one to a few percents.
This means that we can effectively divide the data size by a factor of at most 10 without strongly
affecting sound event recognition performance. It also provides us with a preliminary confirmation of
the possibility for “fast”, 8 Hz third-octave bands cepstra to match MFCC performances.
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Table 1. Classification accuracy in percentage for different models: SVMs (a); Random Forests (b);
Decision Trees (c); and Nearest Neigbors (d) with respect to varying representation resolutions.
Numbers in red indicate best performance and numbers in bold indicate that no statistically significant
difference is found when comparing to the best performing setting (p < 0.05).

(a)

SVM Frames per second

2 4 (4.1) 6 (6.1) 8 (7.7) 10 (9.5) 20 (21) 85

Mel bands

10 55 ± 3 60 ± 3 61 ± 4 62 ± 3 62 ± 4 63 ± 6 65 ± 6
20 58 ± 4 62 ± 4 63 ± 4 64 ± 4 63 ± 4 65 ± 5 67 ± 6
30 60 ± 3 64 ± 4 64 ± 4 65 ± 4 65 ± 3 67 ± 4 68 ± 4
40 60 ± 3 63 ± 4 64 ± 4 64 ± 4 64 ± 4 66 ± 4 68 ± 5

(b)

RF-500 Frames per second

2 4 (4.1) 6 (6.1) 8 (7.7) 10 (9.5) 20 (21) 85

Mel bands

10 60 ± 3 62 ± 3 62 ± 3 63 ± 3 63 ± 3 65 ± 4 67 ± 5
20 61 ± 4 63 ± 3 64 ± 3 64 ± 3 64 ± 4 66 ± 6 69 ± 6
30 62 ± 3 63 ± 3 64 ± 3 64 ± 3 64 ± 4 67 ± 5 69 ± 6
40 62 ± 4 63 ± 4 63 ± 4 64 ± 4 63 ± 4 67 ± 6 68 ± 6

(c)

DT Frames per second

2 4 (4.1) 6 (6.1) 8 (7.7) 10 (9.5) 20 (21) 85

Mel bands

10 42 ± 3 46 ± 4 46 ± 2 44 ± 3 45 ± 3 46 ± 5 49 ± 3
20 43 ± 5 43 ± 3 43 ± 2 44 ± 3 45 ± 3 45 ± 5 47 ± 5
30 42 ± 4 43 ± 2 44 ± 3 45 ± 5 43 ± 3 43 ± 4 45 ± 5
40 42 ± 6 43 ± 3 43 ± 3 42 ± 3 44 ± 3 46 ± 3 46 ± 4

(d)

KNN-5 Frames per second

2 4 (4.1) 6 (6.1) 8 (7.7) 10 (9.5) 20 (21) 85

Mel bands

10 43 ± 2 51 ± 4 53 ± 4 53 ± 5 53 ± 4 54 ± 4 56 ± 3
20 44 ± 3 52 ± 4 53 ± 3 54 ± 4 54 ± 4 55 ± 4 58 ± 4
30 45 ± 4 54 ± 5 55 ± 5 55 ± 4 55 ± 4 56 ± 4 56 ± 4
40 46 ± 3 53 ± 5 55 ± 5 55 ± 4 55 ± 5 57 ± 4 57 ± 3

4.3. Third-Octave Bands as Base Descriptors

We now compare the efficiency of third-octave bands at differenciating sound sources in
urban acoustic environments to that of Mel spectrograms. Following the previous discussions,
the classification task is run on corresponding cepstrum coefficients, computed with the following
parameters: 125 ms analysis frames with rectangular windowing and no overlap are used to perform
the STFT, and 31 third-octave bands (20 Hz–20 kHz) are considered. Figure 13 displays similar results
to the 40 bands, 8 fps Mel spectrograms seen in Table 1 for all classification schemes.

To further analyze both representations advantages, the confusion matrix is a reliable tool. It aims
at providing information regarding class-by-class accuracy and misclassification rates. We thus
compute these metrics for the SVM classifier, with predictions accumulated over the ten folds in test
configuration. The analogous designs of the two descriptors is highlighted by close one-versus-one
differentiation performances, with a slightly lower accuracy for third-octave bands on average. Both
representations yield best results for the Gun shot class with 88.2% for third-octave cepstra and 86.6% for
Mel cepstra. Their poorest accuracy is on the Air conditioning class with 32.0% and 38.1% respectively.
However, a noticeable difference between them is that on the log-frequency scale the bandwidth of
Mel filters narrows as frequency increases, while third-octave are evenly distributed. The effect of this
can be seen between classes Drilling and Jackhammer. These sounds involve important low-frequency
information which can generally differentiate them, leading third-octave descriptors to perform better.
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Conversely, using Mel-based cepstra improves globally Air conditioning recognition as most of its
defining components are situated in higher frequencies.

Both descriptor are thus found to have similar representational capabilities despite minor
differences due to their respective designs.
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Figure 13. Classification accuracy with third-octave bands and varying word size.

4.4. Inintelligibility

The perceptual test (decoded speech utterances for various conditions can be listened to at
https://felixgontier.github.io/cense-coder/) then evaluates the impact of analysis frame rate on
intelligibility using the average intelligibility score (AIS) given by the subjects and the intelligibility
ratio (IR) computed as the number of correctly transcribed words versus the number of words in the
spoken utterance. Given the test conditions presented in Section 3.3 and the number of subjects, the
mean and standard deviation are computed on an average of 54 results per frame rate parameter: 12
subjects evaluating each analysis resolution 4.5 times on average.

The results of the perceptual test, visible in Figure 14, confirm the qualitative evaluation of speech
properties discussed in Section 3.3. Phonemes separation is indeed mandatory in order to have a good
intelligibility of speech. This implies an analysis frame rate significantly larger than the phonemes
rate the considered language. A limit at about 10 Hz corresponding to a frame duration of 100 ms is
observed, as the studied 8 Hz setting is found to be almost completely inintelligible as very few words
are understood correctly at this rate. We assume that the correctly identified words are a result of
coincidentally adequate frame timings, i.e., analysis frames matching the precise location of phoneme
utterances for a short duration. Similarly, framing effects induced by the proposed processing scheme
yielded errors for higher frame rates transcriptions and a globally lower perceptual intelligibility.

https://felixgontier.github.io/cense-coder/
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Figure 14. Mean and standard deviation of the Normalized Average intellibility score (AIS) given by
the subjects and the inteligibility ratio (IR) as a function of the frame rate. Inintelligibility appears at
around 10 Hz, corresponding to the average duration of a phoneme.

5. Conclusions

An audio encoding scheme has been described and motivated for use in a sensor grid approach
to tackle the problem of large scale acoustic monitoring. It has been designed to transfer data from
acoustic sensors to processing and storage servers in an efficient and effective manner. It relies on a
lossy audio coding scheme designed to preserve the privacy of the citizens while retaining the needed
amount of acoustic precision to compute standard acoustic descriptors and to allow the recognition of
events of interest at a state-of-the-art level of recognition accuracy.

It is based on a third octave spectral representation computed at an adjustable frame rate, encoded
using an Huffman encoding scheme after logarithmic compression and differential encoding.

The proposed approach has the following benefits:

• Precision: The impact of the quantization step for 8 bits codewords is found to be very small (< 0.2
dB), and thus:

– does not impact the quality of the acoustics indicators (Sections 3.1 and 4.1); and
– enables sound event recognition with the same quality than directly from the spectrogram

(Sections 3.2, 4.2 and 4.3).

• Efficiency: Using the high precision parameters, the bitrate is about 1.4 kbps and 0.4 kbps for fast
and slow modes respectively (Section 4.1).

• Privacy: At all operating modes, the reverted audio signal is found to be inintelligible according
to a perceputal test done using clean speech recorded at very low background level. Additionaly,
the sensors being typically hanged at 4 m high in a usually very noisy environment, we believe
that the intelligibility risk of the proposed approach is negligible (Sections 3.3 and 4.4).

The encoding scheme is designed to be easy to implement and to lead to an efficient data format for
storage and sharing across the research community. To encourage its use for other research projects, an
open source Matlab and Python implementations of the coder are available.

This scheme will be implemented with a large-scale sensor grid as part of the CENSE project,
where sensors are designed to be low-cost and energy efficient. The aim of the project is to create
noise maps by linking standard acoustic measurements with novel perceptually motivated metrics.
The presented coding scheme will enable a thorough study of the correlation between sound sources
and context with pleasantness as perceived by the citizens to better understand the content of urban
acoustic scenes and its perception by city dwellers.
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To do so, future work will focus on the use of such data encoder in a sensor grid approach as
part of the CENSE project where its effectiveness will be assessed in field conditions. As far as the
proposed encoding scheme is concerned, the usefulness of more sophisticated encoding paradigms
should also be studied in order to further improve bitrate efficiency, as well as the effect of multiple
channel coding and its interest in sensor grids applications.
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