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Abstract

This article evaluates purported progress

over the past years in RST discourse pars-

ing. Several studies report a relative er-

ror reduction of 24 to 51% on all met-

rics that authors attribute to the introduc-

tion of distributed representations of dis-

course units. We replicate the standard

evaluation of 9 parsers, 5 of which use

distributed representations, from 8 stud-

ies published between 2013 and 2017, us-

ing their predictions on the test set of the

RST-DT. Our main finding is that most re-

cently reported increases in RST discourse

parser performance are an artefact of dif-

ferences in implementations of the eval-

uation procedure. We evaluate all these

parsers with the standard Parseval proce-

dure to provide a more accurate picture

of the actual RST discourse parsers per-

formance in standard evaluation settings.

Under this more stringent procedure, the

gains attributable to distributed representa-

tions represent at most a 16% relative error

reduction on fully-labelled structures.

1 Introduction

While several theories of discourse structure for

text exist, discourse parsing work has largely

concentrated on Rhetorical Structure Theory

(RST) (Mann and Thompson, 1988) and the RST

Discourse Treebank (RST-DT) (Carlson et al.,

2003), which is the largest corpus of texts anno-

tated with full discourse structures. The RST-DT,

annotated in the style of RST, consists of 385 news

articles from the Penn Treebank, split into a train-

ing and test sets of 347 and 38 documents.The

standard evaluation procedure for RST discourse

parsing, RST-Parseval, proposed by Marcu (2000),

adapts the Parseval procedure for syntactic pars-

ing (Black et al., 1991). RST-Parseval computes

scores on discourse structures with no label (S

for Span) or labelled with nuclearity (N), relation

(R) or both (F for Full). The semantic nature of

discourse relations makes discourse parsing a dif-

ficult task. However, the recent introduction of

distributed representations of discourse units has

seemingly led to significant improvements, with a

claimed relative error reduction of 51% on fully

labelled structures. As part of a broader study of

methods and evaluation metrics for discourse pars-

ing, we collected predictions from nine RST dis-

course parsers and reimplemented RST-Parseval.

In section 2, we present these RST parsers and re-

port their published scores on RST-Parseval. In

section 3, we replicate their evaluation and show

that most of the heterogeneity in performance

across RST parsers arises from differences in their

evaluation procedures. In section 4, we replace

RST-Parseval with the standard Parseval proce-

dure and obtain a more accurate picture of the ac-

tual performance of RST parsers.

2 A sample of RST discourse parsers

Almost all RST discourse parsers are evaluated on

the test section of the RST-DT using manually seg-

mented Elementary Discourse Units (EDUs). We

contacted by email the main or corresponding au-

thor of each recently (2013–2017) published, text-

level RST discourse parser evaluated in this set-

ting and asked the authors to provide us with the

predictions they used in their study or a proce-

dure that would enable us to reproduce identical

or at least similar predictions. When our attempts

were unsuccessful we tried to reproduce similar

predictions from published materiel (source code,

binaries, model). We managed to obtain or re-

produce predictions for 9 parsers from 8 stud-

ies. The first parser, denoted HHN16 HILDA, is

a reimplementation (Hayashi et al., 2016) of the

classic, bottom-up, greedy HILDA parser with a

linear SVM model (Hernault et al., 2010) ; this

parser serves as a reference point to evaluate the

progress made by more recent parsers. SHV15



D is a variant of the HILDA parser with different

models (perceptron for attachment of discourse

units, logistic regression for relation labelling) and

a slightly different feature set adapted to use pre-

dicted syntactic dependency trees (Surdeanu et al.,

2015). JCN15 1S-1S is a two stage (sentence-

then document-level) CKY chart parser with Dy-

namic Conditional Random Field (DCRF) mod-

els, in its 1 sentence - 1 subtree (1S-1S) vari-

ant that builds a document-level RST tree on top

of sentence-level subtrees built for each sentence

independently (Joty et al., 2013, 2015). FH14

gCRF is a two stage (sentence- then document-

level) bottom-up, greedy parser with linear-chain

CRF models (Feng and Hirst, 2014). We use the

version of the parser available on the author’s web-

page, that lacks post-editing and contextual fea-

tures. BPS16 is a sequence-to-sequence parser,

heuristically constrained to build trees, with a hi-

erarchical neural network model (hierarchical bi-

LSTM) (Braud et al., 2016). LLC16 is a CKY

chart parser with a hierarchical neural network

model (attention-based hierarchical bi-LSTM) (Li

et al., 2016). BCS17 mono, BCS17 cross+dev

are two variants of a transition-based parser that

uses a feed-forward neural network model (Braud

et al., 2017). JE14 DPLP is a shift-reduce parser

that uses an SVM model (Ji and Eisenstein, 2014).

We use predictions provided by the author, from

an improved, unpublished version of the parser.

The first four parsers (HHN16 HILDA, SHV15

D, JCN15 1S-1S, FH14 gCRF) use, as features,

only localist representations of the input and pars-

ing state, i.e. surface-form and syntactic informa-

tion: length of discourse units (DUs), distance be-

tween DUs, n-grams of words and POS tags, rela-

tions of syntactic dominance between DUs. . . The

last five parsers (BPS16, LLC16, BCS17 mono

and cross+dev, JE14 DPLP concat) build dis-

tributed representations of DUs, complemented

with a subset of localist representations.

The authors used various implementations of

RST-Parseval, but all applied a right-heavy bi-

narization procedure to the reference RST trees:

Each node of arity greater than 2 is replaced with

a right-branching cascade of binary nodes. In the

publications, the tables of results provide a unique

score for labeled structures, corresponding to ei-

ther the R or F metric, with no explicit distinc-

tion. The F1 scores published in the literature for

the parsers in our sample are reported in Table 1,

where an en-dash (–) indicates missing scores. We

also report the scores of human agreement, com-

puted and reported by Joty (2015), over the doubly

annotated subset of the RST-DT consisting of 53

documents (48 from train, 5 from test).

parser S N R or F

HHN16 HILDA 82.6 66.6 54.2

SHV15 D – – 55.2

JCN15 1S-1S 82.6 68.3 55.8

FH14 gCRF 84.9 69.9 57.2

BPS16 83.6 69.8 55.1

LLC16 85.8 71.1 58.9

BCS17 mono 85.0 72.3 60.1

BCS17 cross+dev 85.1 73.1 61.4

JE14 DPLP concat 82.1 71.1 61.6

human 88.7 77.7 65.8

Table 1: Published F1 scores.

The parsers in the second group seem to per-

form markedly better than the parsers in the first

group, especially on the hardest subtasks of pre-

dicting (partly or fully) labelled structures (N

and R or F). Collectively, the parsers in the sec-

ond group claim absolute improvements over the

parsers in the first group by 0.9, 3.2 and 4.2 points,

corresponding to a relative error reduction of 24%

on S, 41% on N and 51% on R or F, compared

to human agreement. While discourse parsing is

a difficult, semantic task with relatively little an-

notated training data, authors attribute these sig-

nificant gains to the capacity of distributed repre-

sentations to capture latent semantic information

and generalize over a long tail of alternative sur-

face forms. As a preliminary step towards probing

these claims, we replicated the evaluation of these

parsers’ predictions.

3 Evaluation

We collected or reproduced predictions from each

parser and replicated the evaluation procedure 1.

The predictions came in various formats: brack-

eted strings as in the RST-DT, lists of span de-

scriptions, trees or lists of attachment decisions.

We wrote custom functions to load and normalize

the predictions from each parser into RST trees.

While we favor evaluating against the original,

1The source code and material are available at https:
//github.com/irit-melodi/rst-eval



non binarized reference RST trees, we conformed

in this replicative study to the de facto standard

in the RST parsing literature: We transformed the

reference RST trees into right-branching binary

trees and used these binary trees as reference in

all our evaluation procedures. We also examined

the source code from the evaluation procedures

provided by the authors to determine whether the

published scores corresponded to the R or F met-

ric. In so doing we noticed a potentially impor-

tant discrepancy in the various implementations

of the RST-Parseval procedure: the implemen-

tations used to evaluate the parsers in the first

group compute micro-averaged F1 scores, as is

standard practice in the syntactic parsing commu-

nity, whereas the implementations used to evaluate

the parsers in the second group compute macro-

averaged F1 scores across documents. The micro-

averaged F1 score is computed globally over the

predicted and reference spans from all documents

; the macro-averaged F1 score across documents is

the average of F1 scores computed independently

for each document.

We implemented both strategies and report

the corresponding scores in two separate tables.

Parsers originally evaluated with micro-averaging

scores are in the top half of each table, parsers

originally evaluated with macro-averaged scores

in the bottom half. An asterisk (*) marks parsers

for which we reproduced predictions using code

and material made available by the authors, al-

though the experimental settings are not guar-

anteed to match exactly those from the original

study. A double asterisk (**) marks a parser for

which we used predictions generated by the au-

thor using an improved, unpublished version of the

parser posterior to the original study. Lines with

no asterisk in Tables 2 to 4 correspond to parsers

whose authors sent us their original predictions.

Replicated scores expected to match scores in Ta-

ble 1 are underlined.

Table 2 contains the micro-averaged F1 scores

on each metric (S, N, R, F). As expected, parsers in

the first group obtain micro-averaged scores equal

or close to their published scores reported in Ta-

ble 1. More strikingly, the micro-averaged scores

for the parsers in the second group are much lower

than their published scores 2 and most of their

claimed advantages over the parsers in the first

2The milder decrease of the DPLP scores, especially on
S, is directly attributable to improvements in the latest, un-
published version of the parser.

parser S N R F

HHN16 HILDA 82.6 66.6 54.6 54.3

SHV15 D * 82.6 67.1 55.4 54.9

JCN15 1S-1S 82.6 68.3 55.8 55.4

FH14 gCRF * 84.3 69.4 56.9 56.2

BPS16 79.7 63.6 47.7 47.5

LLC16 82.2 66.5 51.4 50.6

BCS17 mono 81.0 67.7 55.7 55.3

BCS17 cross+dev 81.3 68.1 56.3 56.0

JE14 DPLP ** 82.0 68.2 57.8 57.6

human 88.3 77.3 65.4 64.7

Table 2: Micro-averaged F1 scores.

group has vanished. On S and N, parsers in the

second group do not improve over parsers in the

first group ; on R and F the best parser in the sec-

ond group provides an absolute improvement of

0.9 and 1.4 points. This improvement corresponds

to a relative error reduction of 11% on R and 16%

on F, much lower than the 51% claimed in the lit-

erature. 3

parser S N R F

HHN16 HILDA 85.9 72.1 60.0 59.4

SHV15 D * 85.1 71.1 59.8 59.1

JCN15 1S-1S 85.7 73.0 60.9 60.2

FH14 gCRF * 87.0 74.1 61.1 60.5

BPS16 83.6 69.8 55.4 55.1

LLC16 85.4 70.8 58.4 57.6

BCS17 mono 85.0 72.3 60.8 60.1

BCS17 cross+dev 85.1 73.1 61.6 61.4

JE14 DPLP ** 85.0 71.6 62.0 61.9

human 89.6 78.3 66.7 65.3

Table 3: Macro-averaged F1 scores.

Table 3 contains the macro-averaged F1 scores.

Parsers in the first group obtain macro-averaged

scores markedly higher than the micro-averaged

scores from Table 2. Parsers in the second group

obtain macro-averaged scores that are equal or

close to the published scores reported in Table 1,

which confirms our analysis of the source code of

their evaluation procedures. The global picture on

3 Our replicated scores for human agreement are 0.4
points lower than those published on S, N, R, possibly due
to different approaches in handling divergences in EDU seg-
mentation on the doubly annotated subset of documents.



macro-averaged scores is consistent with that on

micro-averaged scores: On S and N, parsers in the

second group do not improve over parsers the first

group and the best parser brings an absolute im-

provement of 0.9 and 1.4 points on R and F. On

each metric, the two lowest scores are obtained by

parsers from the second group.

To sum up, parsers in the first group have iden-

tical scores in Tables 1 and 2, except for slight dif-

ferences between our evaluation procedure and the

authors’, or between the predictions used in our

evaluation compared to the original study. The

second group of parsers have identical scores in

Tables 1 and 3, modulo the same factors. The (ex-

actly or nearly) matching entries between Tables 1,

2 and 3, underlined in Tables 2 and 3, are evidence

of the two averaging strategies (micro in Table 2,

macro in Table 3) used by the authors in their pub-

lications (Table 1). A comparison between Ta-

bles 2 and 3 reveals that the averaging strategy

similarly affects both groups of parsers. As a re-

sult, the performance level among recent RST dis-

course parsers is much more homogeneous than

the situation depicted in the literature. The dis-

tributed representations of DUs computed and

used in JE14 DPLP (Ji and Eisenstein, 2014) and

possibly BCS17 cross+dev (Braud et al., 2017)

plausibly capture semantic information that helps

with predicting discourse relations and structure,

but the current experimental results do not pro-

vide a similarly strong support for BPS16 (Braud

et al., 2016), LLC16 (Li et al., 2016) and BCS17

mono (Braud et al., 2017).

More generally, it is important that authors

compute and report scores that accord with stan-

dard practice, unless duly motivated. The standard

practice in syntactic parsing is to report micro-

averaged scores for overall performance, often

complemented with macro-averaged scores over

classes to gain valuable insight into the average

performance of parsers across labels, especially

infrequent ones. Early work in RST discourse

parsing follows this practice, reporting micro-

averaged scores for global performance, plus dis-

tinct scores for each relation class or macro-

averaged scores over all relation classes (Hernault

et al., 2010; Feng and Hirst, 2014). The latter

should not be confused with the scores published

for BPS16, LLC16, BCS17 (mono, cross+dev)

and JE14 DPLP, which are macro-averaged over

documents.

4 Elements for a fairer evaluation

RST-Parseval crucially relies on an encoding of

RST trees into constituency trees such that the

rhetorical relation names are placed on the chil-

dren nodes, and the nuclei of mononuclear re-

lations are conventionally labelled SPAN. RST-

Parseval resembles the original Parseval, except it

considers a larger set of nodes to collect all nu-

clearity and relation labels in this encoding: the

root node (whose label and nuclearity are fixed by

convention) is excluded and the leaves, the EDUs,

are included. On the one hand, RST-Parseval can

handle discourse units of arity greater than 2, in

particular those consisting of a nucleus indepen-

dently modified by two satellites through distinct

mononuclear relations. This avoids introducing

discourse units that were not part of the origi-

nal annotation, which a preliminary binarization

of trees would have induced. On the other hand,

RST-Parseval considers approximately twice as

many nodes as the original Parseval would on bi-

narized trees (at most 2n − 2 nodes for n EDUs,

compared to n − 1 attachments in a binary tree),

and the relation labels of most nuclei are redun-

dant with the nuclearity of a node and its sis-

ter (SPAN for a nucleus whose sisters are satel-

lites, and the same label as its sisters for a nucleus

whose sisters are nuclei). Both aspects artificially

raise the level of agreement between RST trees,

especially when using manual EDU segmentation.

However, all the parsers in our sample except

(Sagae, 2009; Heilman and Sagae, 2015) predict

binary trees over manually segmented EDUs and

evaluate them against right-heavy binarized refer-

ence trees. In this setting, Marcu’s encoding of

RST trees RST-Parseval are no longer motivated.

We can thus revert to using the standard Parseval

procedure on a representation of binary RST trees

where each internal node is a labelled attachment

decision to obtain a more accurate evaluation of

RST parser performance. Figure 1 represents (a)

an original RST tree using Marcu’s encoding, (b)

its right-heavy binarized version, (c) the tree of la-

belled attachment decisions for the right-heavy bi-

narized tree. To the best of our knowledge, we are

the first to explicitly use an evaluation procedure

for RST parsing closer to the original Parseval

for syntax, although the trees of labelled attach-

ment decisions we use directly correspond to the

trees built by many RST parsers, eg. shift-reduce

parsers. Table 4 provides the micro-averaged F1
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Figure 1: Original RST tree, right-heavy binariza-

tion and labelled attachment decisions

scores for the parsers in our sample, using Parse-

val.

Parseval is more stringent than RST-Parseval,

with the best system obtaining 46.3 on fully la-

belled structures (F). Parsers in the first group are

competitive with parsers in the second group, out-

performing them on S and to a lesser extent on N.

Parsers in the second group reduce relative error

by 8% on R and 16% on F, much lower than the

published figures in the literature.

5 Conclusion

We replicated standard evaluation procedures in

RST discourse parsing for 9 parsers and showed

that most gains reported in recent publications

are an artefact of implicit differences in evalua-

parser S N R F

HHN16 HILDA 65.1 54.6 44.7 44.1

SHV15 D * 65.3 54.2 45.1 44.2

JCN15 1S-1S 65.1 55.5 45.1 44.3

FH14 gCRF * 68.6 55.9 45.8 44.6

BPS16 59.5 47.2 34.7 34.3

LLC16 64.5 54.0 38.1 36.6

BCS17 mono 61.9 53.4 44.5 44.0

BCS17 cross+dev 62.7 54.5 45.5 45.1

JE14 DPLP ** 64.1 54.2 46.8 46.3

human 78.7 66.8 57.1 55.0

Table 4: Micro-averaged F1 scores on labelled

attachment decisions (original Parseval).

tion procedures. We also showed how to use the

standard Parseval procedure instead of Marcu’s

adaptation RST-Parseval, which artificially raises

scores. Overall, the recent gains attributable to

distributed representations represent at most a rel-

ative error reduction of 16%. Our study reveals an

urgent need for the RST discourse parsing com-

munity to re-examine and standardize their evalu-

ation procedures.
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