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Abstract

The attractor dimension is an important quantity in information theory, as it is related

to the number of effective degrees of freedom of the underlying dynamical system. By using

the link between extreme value theory and Poincaré recurrences, it is possible to compute

this quantity from time series of high-dimensional systems without embedding the data. In

general d < n, where n is the dimension of the full phase-space, as the dynamics freezes

some of the available degrees of freedom. This is equivalent to constraining trajectories on

a compact object in phase space, namely the attractor. Information theory shows that the

equality d = n holds for random systems. However, applying extreme value theory, we show
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that this result cannot be recovered and that d < n. We attribute this effect to the curse of

dimensionality, and in particular to the phenomenon of concentration of the norm observed in

high-dimensional systems. We derive a theoretical expression for d(n) for Gaussian random

vectors, and we show numerically that similar curse of dimensionality effects are found for

random systems characterized by non-Gaussian distributions. Finally, we show that the effect

of the curse of dimensionality can be quantified using the extreme value theory, thus enabling

to retrieve the degree of non-randomness of a system. We provide examples issued from

real-world climate and financial datasets.

1 Introduction

Ever-increasing computational capabilities have made large, high-dimensional datasets tractable.

In a similar way, theoretical and technological advances have overcome many of the algorithmic

limitations to inferring the statistical and dynamical properties of the systems underlying those

data Mayer-Kress (2012). The most outstanding example of such technological progress is the

widespread use of machine learning and data mining techniques since the 80s Samuel (1988). Dy-

namical system algorithms have benefited from the same progress: tasks such as the computation

of dynamical indicators (e.g. Lyapunov exponents, generalized dimensions, entropies) for large

spatio-temporal datasets are now feasible, at least from a technical point of view Schubert and

Lucarini (2015); Vannitsem and Lucarini (2016).

However, such impressive development has yet to solve the so-called curse of dimensionality 1;

on the contrary, given the large availability of high-dimensional datasets, the curse has become

ever more ubiquitous. The difficulty in analyzing high-dimensional data results from the fact

that algorithms usually designed and tested in 2 or 3 dimensions are then ported to high dimen-

sional spaces, whose geometrical properties are different and often counterintuitive Verleysen and

François (2005). The effects of the curse of dimensionality can be mitigated whenever it is possible

1For a definition of the curse of dimensionality we quote Cabestany et al. (2005) which defines it as: “the expres-
sion of all phenomena that appear with high-dimensional data, and that have most often unfortunate consequences
on the behavior and performances of learning algorithms”
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to select a subset of features, or to project the data onto a lower dimensional space (e.g. EOFs),

as usually happens in data mining problems. On the contrary, algorithms aiming at measuring

properties of the system underlying the data unfortunately depend on the phase-space topology.

This is the case of the estimation of the Lyapunov exponents, the entropy and the dimensions of

attractors in complex systems.

In this paper, we analyse the properties of an estimator of the Hausdorff dimension d. The

algorithms used to measure such a quantity were first devised in the 80s and their developers

were well-aware of the curse of dimensionality. The most widespread algorithm to estimate the

Hausdorff dimension was, at that time, based on the nearest-neighbors search Grassberger (1988)

in a space with dimension k � n, where n indicates the number of variables (or, equivalently,

the dimension of the full phase space). This technique was very successful in determining the

Hausdorff dimension of low-dimensional attractors, such as the Henon map, the Lorenz and the

Rossler flows, but it showed severe drawbacks when applied to high dimensional systems. It was a

common belief that the limitations in measuring d in a reliable way were mostly due to the choice

of k, known as embedding dimension. The key observation, unveiled by a series of studies aimed at

determining the dimension of the climate attractor Grassberger and Procaccia (1984); Nicolis and

Nicolis (1984); Grassberger (1986); Lorenz (1991), was that for k > 6, the quality of the neighbors

in phase space drops significantly, and estimates of d are flawed and trivially equal to k.

A recently developed technique, based on the application of extreme value theory (EVT) to

dynamical systems, allows to estimate d without introducing the embedding dimension. The

founding idea is that, under suitable rescaling, the recurrences around a state ζ in the phase space

are distributed according to the generalized extreme value distribution or the generalized Pareto

distribution. This technique does not measure d directly but, by sampling recurrences around ζ,

it estimates the so-called local dimension dl(ζ), namely the scaling of the hypersphere centered

around the point ζ in phase space. When a sufficient number of states ζ is considered, those

hyperspheres densely cover the attractor and, by averaging dl over ζ one obtains an estimate for
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d.

This EVT approach has been found as reliable as nearest-neighbors algorithms for low di-

mensional systems Lucarini et al. (2016), and has also been applied to high-dimensional systems.

In Faranda et al. (2017), it has been shown that for atmospheric data with n ' 1000, d ' 12

with 5 < dl(ζ) < 25 depending on ζ. In that study, the main goal was determining whether

differences between dl(ζ) were physically meaningful, and little attention was given to the actual

value of d. However, it is natural to ask how much we can trust the estimates of d provided

by the EVT technique. This question was first addressed in Buschow and Friederichs (2018).

There, the authors found that estimates of d provided in Faranda et al. (2017) were consistent

with those obtained in much longer climate model runs, but that the value of d slowly increased

with increasing length of the simulation, instead of settling on a constant value. This provided an

indication that the estimates of d provided by EVT are also affected by the curse of dimensionality.

In this paper, we investigate this problem in a systematic way, both theoretically and numeri-

cally. First, we consider the estimation of d in the case of random vectors, for which Rényi et al.

(1961) proved that d = n. Through numerical simulation, we show that the estimates d̂ obtained

using EVT are d̂ < n, and that the functional form of d̂(n) is the same among different distribu-

tions, thus providing a universal scaling. We derive an analytic expression for such scaling in the

case of Gaussian random vectors. Moreover, we estimate d for selected real dynamical systems,

showing that the scaling is preserved, even though observed values are lower than in the case of a

random vector with the same marginal distribution. Finally, we argue that our results enable us

to retrieve the degree of non-randomness of a dynamical system.

2 Theoretical framework

Recent theoretical advances in our understanding of the limiting distribution of Poincaré recur-

rences enable us to compute both mean and local (in phase space) dynamical properties of complex

systems. The key idea is that for Axiom A systems, under suitable rescaling, the probability p

of entering a hypersphere centred on a state ζ with a radius r in phase space obeys a generalized
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Pareto distribution whose parameters are linked to dynamical properties, such as dl and the Lya-

punov exponents Freitas et al. (2010); Faranda et al. (2011); Lucarini et al. (2012, 2016).

Here we recall the basic procedure to obtain such scaling laws and we refer to Lucarini et al.

(2016) for further details. Let as consider an Axiom A dynamical system ẋ = F (x) on a compact

manifold X ⊂ Rn (phase space), where x(t) = f t(xin), with x(t = 0) = xin ∈ X initial condition

and f t evolution operator, defined for all t ∈ R≥ 0. Let us define Ω as the attracting invariant

set of the dynamical system, so that µ is the associated SRB measure supported in Ω = supp(µ).

We consider distance observables that can be expressed as functions g : X → R ∪ {+∞} written

as g(dist(x(t), ζ)) ≥ 0, where ζ ∈ Ω is a reference state. In order to compute the probability p of

entering a hypersphere in phase space centred on a state ζ, we first calculate the series of distances

dist(ζ, x(t)) between the state ζ and all other states x(t) on the trajectory. We then introduce a

logarithmic weight on the time series of the distances to increase the discrimination of small values

of dist(ζ, x(t)), which correspond to large values of g(x(t)):

g(x(t)) = − log(dist(ζ, x(t))).

The probability of entering a hypersphere of radius r centred on ζ can now be expressed as

the probability p of exceeding a threshold corresponding to a high quantile gq of the distribution

of g(x(t)). In the limit of t → ∞, such probability is the exponential member of the generalized

Pareto distribution:

p = Pr(g(x(t)) > gq, ζ) ' exp(−[g(x(t))− ν(ζ)]/σ(ζ)),

whose parameters ν and σ are a function of the state ζ chosen on the attractor. Remarkably,

σ = 1/dl(ζ), where dl(ζ) is the local dimension around the state ζ. By averaging dl over a suf-

ficiently large ensemble of states ζ on the attractor, one then obtains the attractor dimension d.

The universality of the convergence law implies that the above is akin to a central limit theorem

of Poincaré recurrences.
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The step based on the computation of dist(ζ, x(t)) is the origin of the curse of dimensionality.

Problems arise due to the so-called concentration of the norm, i.e. the fact that, in sufficiently

high-dimensional spaces, the ratio between Lp norms of the nearest and farthest points from the

reference state ζ tends to 1, as stressed by Verleysen and François (2005). This reflects on the

shape of the distribution of the computed distances, and then on the functional g(x(t)). In the

following section, we will discuss how the shape of this distribution can be linked to estimates of d,

and in particular we will show that its standard deviation modulates the loss of degrees of freedom

with respect to the theoretical value d = n in the case of random vectors.

In deterministic chaotic systems, the asymptotic results (t → ∞) predict that dl(ζ) = d for

all ζs except a measure zero set, including the unstable fixed points of the dynamics. Note that,

for t finite, a broader distribution of dl is recovered, as the dynamics around unstable fixed points

affects finite, yet potentially extensive, regions of the phase space Faranda et al. (2017); Caby et al.

(2018). In Faranda et al. (2013), the case of stochastically perturbed dynamical systems has been

analyzed, showing that, with the addition of noise and in the t→∞ limit, dl(ζ) = d everywhere.

This implies that the dependence on ζ for random vectors can be dropped as any ζ is statistically

equivalent. We can therefore apply this framework to the random vectors considered in this study.

3 Asymptotic results for Gaussian random vectors

As first step, we compare estimates of d to the theoretical result provided by Rényi et al. (1961)

stating that, for n-dimensional random vectors, d = n. To this purpose, we consider random

vectors such that all finite dimensional distributions Ft1,...,ts of the recurrences are Gaussian ∀ s.

In the following, the symbol ẑ will denote the estimator for the generic quantity z, and E() will

denote statistical expectation.

Let j = 1, . . . , T denote time and i = 1, . . . , n the sampling points. Let Xj,i be T i.i.d.
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(independent and identically distributed) realizations in time of the n-dimensional random vector

(or field) and, consistently with the notation introduced above, let us denote the reference state

ζ = {ζi}ni=1.

Let us now assume that, at any time j, the vector of recurrences Zj is an n-dimensional Gaussian

random vector with zero mean and covariance matrix Σ = I. This implies that Zj,i = Xj,i − ζi

are n i.i.d. standard Gaussian random variables. The result for variables with non-zero mean and

non-unit variances follows applying standardized instead of simple Euclidean distance. We define

δ2(n) = {δ2
j (n)}Tj=1 as the T -dimensional vector of the squared Euclidean distances between each

realized field Xj,i and the reference field ζi. It is straightforward to see that δ2
j (n) has a Chi-squared

distribution with n degrees of freedom:

δ2
j (n) = ZT

j Zj =
n∑
i=1

(Xj,i − ζi)2 ' χ2(n). (1)

We now consider the functional of the Euclidean distance (L2 norm) g(n) = − log
√
δ2(n)

Freitas et al. (2010), implying that all of our results will be valid with respect to this metric.

Then, the probability density function fg of g(n) reads:

fg = fδ2(h
−1(δ2))

∣∣∣∣dδ2

dg

∣∣∣∣ =
21−n

2

Γ
(
n
2

) exp

{
−ng − 1

2
e−2g

}
, (2)

where h(δ2(n)) = −1
2

log δ2(n),
∣∣∣dδ2dg ∣∣∣ = | − 2e−2g|, and Γ(·) is the Euler’s Gamma function. Let

q be an extreme percentile, corresponding to a threshold value gq. We consider the Peaks Over

Threshold (POT) extremes in the (1 − q) right tail of the distribution, denoted Y = {Y`}m`=1,

where ` = 1, . . . ,m is the number of exceedances, shifted so that lim inf{Y } = 0, with expected

sample size m = (1 − q)T . From EVT Leadbetter et al. (2012), we know that Y ∼ Exp(λ), so

that fY (y) = λ−1e−y/λ. The mean and standard deviation of the Exponential distribution are

µY = σY = λ, and it is knownFreitas et al. (2010) that the local dimension around state ζ is given

by dl = λ−1. Notice that both µY and σY are functions of n, as will be detailed later in this section.

The unbiased maximum likelihood estimator for λ is the sample mean, λ̂ = 1
m

∑m
`=1 y` = y, so that

the local dimension can be obtained as d̂l = y−1.
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As a second step, we determine the link between λ and n. Since the cumulative distribution

function of g is not invertible, we cannot rely on the quantile function for this purpose. Instead,

we approximate λ as a function of known moments of g. From the properties of the Exponential

distribution, we know that the mean value λ corresponds to the percentile (1−e−1). On the support

of g, the mean value of the extremes is given by gλ and corresponds to the q + (1 − q)(1 − e−1)

percentile of the distribution. When applying POT to the sample, the threshold gq (and then also

gλ) can be seen as the point on the support of g located in the right tail of the distribution, at a

distance from the mean corresponding to a certain number k of standard deviations:

gλ(n) = µg(n) + k(q, n)σg(n). (3)

Therefore, we can infer the functional dependence of λ on n considering the first two moments

of g. The moment generating function of g reads: Mg(t) = E[etg] =
2−t/2Γ(n−t

2
)

Γ(n
2

)
, and the first two

moments can be obtained as E(g) = M ′
g(t = 0) and E(g2) = M ′′

g (t = 0), so that:

µg(n) = E(g) = −1

2

[
log 2 + ψ

(n
2

)]
(4)

σg(n) =
√
E(g2)− E(g)2 =

1

2

√
ψ1
(n

2

)
(5)

where apexes denote differentiation, ψ(z) = Γ′(z)/Γ(z) = d
dz

log Γ(z) is the digamma function

and ψ1(z) = d
dz
ψ(z) = d2

dz2
log Γ(z) is the trigamma function.

Plugging Equations 4 and 5 into Equation 3, we obtain an expression for E(d(n)) for Gaussian

random vectors as a function of n, up to the knowledge of k(q, n). The latter, as the expected value

of the extremes itself, could be known exactly only given the quantile function of g. However, we

can proceed heuristically in order to investigate the dependence of k on q and n. In particular,

we move from the consideration that any percentile q on a distribution has its sample counterpart

in the r-th order statistics. Thus r/T ' q, where T is the sample size. Hence, we can exploit
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results provided in Balakrishnan et al. (2003) about tight bounds for the expected value of the

r-th sample order statistics gr:T , drawn from a distribution with mean µg and standard deviation

σg. Since we are dealing with POTs in the right tail of the distribution, we consider the upper

bound, which reads gr:T ≤ µg + σg

√
r−1

T−r−1
. As T →∞, (r − 1)/(T − r − 1)→ q/(1− q), so that

we expect that, given n, k is a monotonic function of
√

(q)/(1− q). The linear relation between

the expected value of the extremes and the standard deviation σg is preserved also in the asymp-

totic case q → 1: in fact Arnold et al. (1979) proved that, for the sample maximum, gT :T ≤
√
T − 1.

In summary, for the Gaussian case, we expect to observe two empirical facts. First, that the

dimension d must scale as ψ1(n/2); second, that the scaling factor must be a monotonic function

of
√

(q)/(1− q). In the next section, we investigate numerically the robustness of these results,

and the extent to which they are valid for non-Gaussian random vectors and for datasets issued

from real-world dynamical systems.

4 Numerical Results for Random Vectors

4.1 Gaussian random vectors

In order to test the statistical robustness of the results derived in the previous section, we perform a

Monte Carlo (MC) experiment. We generate Zj ∼ N(0, 1) with topological dimension n ∈ [2, 500]

and an interval of threshold percentiles q ∈ [0.980, 0.999], partitioned with a grid step δq = 0.0005.

We fix the number of MC replicates for the extremes to m = 10000, so that the number of gen-

erated samples depends on the percentile. All the p-values and coefficients of determination R2

discussed in the following refer to ordinary least squares (OLS) estimates of the corresponding

regression equation.

In the left panel of Fig. 1, we show a comparison between estimates d̂ (black dots) and the

corresponding expected values E(d̂) derived from the combination of Eq.s 3, 4 and 5 (grey surface),

as a function of q and n. We then obtain OLS estimates k̂(q, n) from Eq. 3-5, with R2 > 0.989
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for all cases. The plot of k̂(q, n) against q for each n suggests a natural logarithmic link between

k(q, n) and
√
q/(1− q), so that we can introduce two parameters α0(n) and β0(n) and write:

k(q, n) ' α0(n) + β0(n) log
√

(q)/(1− q). (6)

In the right panel of Fig. 1, we compare observed values of k̂(q, n) (black dots) to the predictions

provided by Eq. 6 (grey surface). The accuracy of Eq. 6 is remarkably high, with R2 > 0.9982 for

every n. Therefore, we can write:

gλ(n) = µg(n) +
[
α0(n) + β0(n) log

(√
(q)/(1− q)

)]
σg, (7)

and we thus obtain an expression for the expected value of d̂ as:

E(d̂) =

{
−1

2

[
log 2 + ψ

(n
2

)]
+

1

2

[
α0(n) + β0(n) log

(√
q

1− q

)]√
ψ1
(n

2

)
− gq(n)

}−1

. (8)

Eq. 8 constitutes an upper bound for the expected dimension (interpretable also as the number

of active degrees of freedom) of any random vector with Gaussian but not i.i.d. Z. This covers

both the case of random vectors with non-diagonal covariance matrix, and of data issued from real

dynamical systems featuring nonlinear dependencies among the variables. We also observe that

the two parameters α0(n) and β0(n) are fast-decaying functions of n, and both appear to reach a

constant value for n & 100.

An inspection of the differences between computed and predicted k(n, q), shown in Fig. 2,

suggests the existence of an unexplained residual effect producing small mean absolute relative

differences (' 3 · 10−3). Since k(n, q) multiplies σg, such error has a non-negligible effect for very

large values of n, when also σg becomes large. This results in a negative bias on E(d̂) at large

values of n when using Eq. 8 instead of simply combining Eq.s 3, 4 and 5. Interestingly, we find

that the effect of n on k(q, n) can be neglected by specifying an alternative to Eq. 8 as a linear

model in [ψ1(n/2)]
− 1

2 , with an intercept depending on the threshold percentile q:
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E(d̂) ' α1(q) + β1(q)
[
ψ1
(n

2

)]− 1
2
. (9)

For all the considered percentiles in [0.980,0.999], we estimate the regression in Eq. 9, which

provides a very accurate prediction of the number of active degrees of freedom, with linear deter-

mination coefficients R2 > 0.9984 for all q (p-values < 10−23 associated to β1 for every q).

Concerning the functional dependence of β1 on q, we find that a model β1(q) = β
(0)
1 +

β
(1)
1 log

(√
(q)/(1− q)

)
results in a high goodness-of-fit (R2 = 0.996), indicating that β1 in Eq. 9 is

characterized by the same functional link to the threshold percentile as k(q, n). The intercept α(q)

lacks a physical meaning and appears to be a quadratic function of q: α1(q) = α
(0)
1 +α

(1)
1 q+α

(2)
1 q2,

even though the goodness of fit is lower (R2 = 0.887). The estimated coefficients are α
(0)
1 = −7172,

α
(1)
1 = 14583, α

(2)
1 = −7417, β

(0)
1 = 1.62, β

(1)
1 = 0.277. In Fig. 3 we display the results referred to

the estimation of Eq. 9 for all the considered q. The in-set plot highlights the lowest (red) and

the highest (green) curves representing q = 0.98 and q = 0.999, respectively; black circles mark

the corresponding observed values.

4.2 Generalization to symmetric non-Gaussian random vectors

We next consider random systems characterized by symmetric non-Gaussian distributions with

different values of the kurtosis κ, which determines the flatness of the probability density function.

The Freitas-Freitas-Todd theorem specifies that g(·) must have a global maximum at 0 Freitas

et al. (2010). There are therefore two extreme cases: i) systems with uniformly distributed δ2 in a

fixed interval, so that the global maximum is at all the points of the interval and ii) systems with

δ2 distributions characterized by a sharp central maximum, degenerating in a Dirac delta. The

results for systems with different probability density functions are displayed in Fig. 4, where we

show curves representing d̂ as a function of a set of values of n. When the maximum in zero is

sharper than for the Gaussian distribution (e.g. Student’s t distribution), the curve is lower than
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the analytic Gaussian curse of dimensionality curve. Conversely, when the maximum is flatter (e.g.

Beta distribution, with the uniform as a particular case), the curve is higher than the reference

Gaussian curve. The uniform limiting case displays the highest values, as predicted by information

theory (see Rényi et al. (1961)). In other words, flatter distributions (with very light tails) are more

efficient in exploring the phase space with respect to systems with very peaked δ2, thus being less

affected by the curse of dimensionality. To verify this claim, we devise a MC experiment testing

whether for a fixed quantile q, β1 is a function of kurtosis. We repeat the MC experiment with the

same parameters as for the Gaussian case discussed in the previous section, but fixing q = 0.98.

We explore symmetric distributions (Student’s t and symmetric Beta distributions) with different

values of the excess kurtosis κ. The results (Figure 5) suggest that there is indeed an exponential

relation between β1 and κ namely β1(κ|q) ' 2.12 + 0.58 exp(−κ) with R2 = 0.993.

5 Applications to Auto-Regressive processes, dynamical

systems and real world data

So far, we have shown that the introduction of the euclidean norm in the computation of the recur-

rences yields an underestimation of the attractor dimension for random vectors in high dimensional

phase spaces. We now show that we can still obtain important information about the dynamical

behavior of a system using the extreme value theory framework. To provide these insights we

consider different processes and datasets where the underlying dynamical systems introduces some

sort of space-time dependence among the variables.

We begin with the case of uncoupled variables with time autocorrelation. In particular, we

consider a Markovian stationary auto-regressive process x
(i)
n+1 = φx

(i)
n + η

(i)
n , with φ = 0.8 and

η
(i)
n ∼ N(0, 1) i.i.d. ∀ i. Different points i are uncoupled, so that there is no spatial (cross-

sectional) dependence. It can be seen from Fig. 4 (red curve) that the values of E(d̂) follow

the same analytic curve as the i.i.d. Gaussian random vector. This is due to the fact that time

correlation does not affect the computation of d, which is insensitive to time reshuffling because
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of the POT procedure. Indeed, by sorting the data in a different way, we will anyway have the

same sample of exceedances. This is not true when the recurrences selection is made via a block

maxima approach (see Lucarini et al. (2012) for further discussion).

We next turn to analysing the effect of spatial dependence on the estimated value of d. We

consider the Bernoulli Shift coupled map:

x
(i)
n+1 = (1− ε)f(x(i)

n ) +
ε

n

n∑
j

f(x(i 6=j)
n ) (10)

where

f(x) = 3x mod 1

, and ε is the strength of the coupling. As shown in Figure 4 (turquoise lines), by increasing ε

the dimension decreases, as more spatial degrees of freedom are progressively frozen. In the case

of a completely coupled system (ε = 0.7), the dimension is independent on n and equal to d = 1.

In other words, ε is beyond a critical value such that all the variables have the same values when

iterating the map, i.e. there is only one single degree of freedom left in the system. The estimate

d̂ is therefore correct and not affected by the curse of dimensionality. Thus, the latter appears to

depend on the real value of d, rather than on the phase space dimension n.

The above consideration paves the way for checking the degree of non-randomness of a series of

multidimensional observations. Both analytic results and evidence drawn from numerical experi-

ments that d̂ is always biased imply that an accurate estimate of the true value of d is currently

impossible. However, from our results it follows that, for a random system, the difference n−E(d̂)

quantifies the bias due to the curse of dimensionality. Moreover, and even more importantly,

the difference E(d̂)− d̂ quantifies the loss of attractor dimension, or in other words the number of

frozen degrees of freedom, due to spatial correlations and dynamics in the system, since E(d̂) is the

expected dimension for the random vector case. While this quantity is biased itself, one may argue

for a relative measure such as ∆ = (d̂−E(d̂))/E(d̂) as indicator of the degree of non-randomness
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in a dynamical system.

We verify this idea on datasets issued from finance and climate science. The details of the

22 financial time series analysed here are provided in table 1. As climate variable, we use 22

sea-level pressure (SLP) time series chosen from the roughly 10000 grid-points constituting the

NCEP/NCAR 1948-2015 reanalysis dataset Kistler et al. (2001). We choose these data since both

the SLP anomalies and the log-return of financial datasets have approximately Gaussian marginal

distributions, so that we can compare the observed curves to our previous results. For each dataset,

we extract randomly 30 sequences of 22 timeseries. The extraction determines the order in which

we add a new time series to construct different databases for 1 < n < 22. We fix the threshold

quantile to be q = 0.98.

The existence of an underlying dynamics, or of spatial/cross-sectional dependence, should re-

duce d to a smaller value with respect to the one predicted by Eq. 9, i.e. we can still use the

extreme value theory methodology to assess whether the behavior of a set of variables is compatible

with a random system. This is indeed what we observe and show in Fig. 6: when n = 1, we obtain

d = 1 for all the choices, but as soon as n > 5 the correlations in the data result in an effective

dimension d well below both the phase space dimension and the analytic result obtained for Gaus-

sian random vectors. For the financial time series, we have d ' 10 for n = 22, slightly higher than

for the SLP. We also remark that the values of d obtained by varying n in the datasets follow a sim-

ilar curve as in Eq. 9, with R2 = 0.994 for the financial dataset, and R2 = 0.9996 for the SLP data.

The finance and climate data thus have a non-random behavior and dependence among variables

which reduces the effective number of degrees of freedom to a value lower than the one predicted by

the curse of dimensionality. Such non-randomness can be quantified by the measure ∆ suggested

above. In fig. 7, we show the value of ∆ for the two time series. Besides instabilities at very small

phase space dimensions, this quantity is clearly decreasing and dependent on n. For the case of

the financial data, we can assess its magnitude for the full phase space: with n = 22, ∆ ' −0.47,

indicating almost 50% of randomness loss.

14



6 Discussion and Conclusions

We have investigated the properties and performance of an estimator of the attractor dimension,

or number of active degrees of freedom, d for dynamical and random systems with n-dimensional

phase spaces, based on extreme value theory. In particular, we determined the analytic relation-

ship between d and n, and assessed the accuracy of the estimator for high-dimensional systems, i.e.

when n is large. Even though the method does not rely on embedding, we observe a systematic

underestimation of d suggesting that our approach suffers from a similar curse of dimensionality to

embedding techniques. This effect can be explained by the phenomenon known as concentration

of the norm, which causes the ratio of Lp-norm distances of nearest and farthest neighbours from

a given point to tend to 1 as the topological space dimension becomes larger than 3.

We derive an analytic expression for expected value E(d̂) of the Hausdorff dimension induced

by the curse of dimensionality as a function of the phase space dimension n for Gaussian random

vectors and, consequently, for the bias n − E(d̂). Then, we show through numerical simulation

that this result holds also for non-Gaussian random vectors. Flatter distributions, characterized

by very light tails, yield estimated values of d larger than the one obtained for Gaussian random

vectors for all considered phase space dimensions n, while the converse holds for more peaked

distributions. This implies that the former are more efficient in exploring the phase space than the

latter, as predicted by information theory. Thus, tail heaviness of the distribution has a pivotal

impact on the quality of recurrences and therefore on the curse of dimensionality.

Additional investigation is required to establish more precisely the properties of the extreme

value theory estimator: in particular, the role of skewness should be studied in addition to the one

of kurtosis, to assess whether not only tail heaviness, but also asymmetry plays a role in freezing

degrees of freedom. Furthermore, distributions with fractal support should also be considered.

Moreover, we plan to study the performance of a modified version of the estimator, based on

the Mahalanobis distance, instead of the Euclidean norm. In fact, ours and previous results

have only shown that degrees of freedom are frozen in the general case of dependence among

15



the variables in the system. However, no indication is given about whether such dependence is

linear, i.e. arising from cross-sectional/spatial correlation, or nonlinear. The Mahalanobis norm

provides a way to compute the distance between two vectors or fields normalised with respect to

the presence of linear correlation among variables, and reduces to the Euclidean norm in case of

mutually uncorrelated random vectors when the covariance matrix is diagonal. Comparing values

of d estimated using Euclidean and Mahalanobis distances will allow not only to assess the level of

non-randomness in a covariance-stationary systems, but also the relative contribution of linear and

nonlinear dependence to the dimensionality reduction. Finally, extreme value theory is a useful

tool to derive a certain number of useful quantities in dynamical systems theory: the correlation

dimension and the Lyapunov exponents Faranda and Vaienti (2018), the generalized dimensions

Caby et al. (2018) and the synchronization of coupled lattice map Faranda et al. (2018). It will

then be interesting to evaluate the curse of dimensionality effects on those quantities.

Our findings point to an intrinsic difficulty in estimating the attractor dimension d of dynamical

systems accurately, in particular when d itself is large. Indeed, we have shown that the curse

of dimensionality is not affected directly by the dimension of the phase space n, but is rather

dependent on the real value of d. For highly coupled systems with a small number of active

degrees of freedom, we can retrieve an accurate estimate of d independently of the phase space

dimension.This suggests that the use of the extreme value theory to extract information about the

dimensionality in real datasets is justified whenever d ≤ O(10) as in the studies Faranda et al.

(2017); Messori et al. (2017); Rodrigues et al. (2018); Buschow and Friederichs (2018); Faranda

et al. (2019). Notwithstanding the curse of dimensionality, our estimator can further provide

important information about complex dynamical systems with large d and with variables having a

temporal or spatial interdependence. In fact, for any dynamical system with n-dimensional phase

space, it is possible to produce a random system with the same marginal probability distribution,

and compute the corresponding value of the estimator. Then, the difference between the result

for the random vector and for the dynamical system, (d̂ − E(d̂))/E(d̂), measures the level of

non-randomness of the system itself.
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Table 1: International codes of the financial time series used in this study (daily data for the period
01-Jan-1998 to 03-May-2017).

IEUCT01 MOVEIDX USEURSP
USDOLLR JAPAYE$ S&PCOMP
DJEURST FTSEMIB FRCAC40
DAXINDX JAPDOWA ER00(ML:OAS)

HE00(ML:OAS) C0A0(ML:OAS) H0A0(ML:OAS)
CBOEVIX BMUS02Y(RY) BMBD02Y(RY)

BMIT02Y(RY) BMFR02Y(RY) BMUK02Y(RY)
BMJP02Y(RY)

Figure 1: a) Dependence of the dimension d and b) k(n, q) on the threshold percentile q and
topological dimension n. Plots have been rotated differently for greater clarity. The grey surfaces
represent the predictions given by Eq. 8 (a)) and Eq. 6 (b)) respectively. Black dots mark the
results of Monte Carlo simulations.
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Figure 2: Prediction error on k(q, n) (black dots); the zero plane (grey surface) is shown for
reference. The error is generally small compared to the dimension estimates and mostly depends
on the considered threshold quantile.
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Figure 3: Main panel: expected values of d as a function of the phase space dimension n for
Gaussian random vectors. Curves represent values predicted using Eq. 9 for different thresholds,
ranging from q=0.98 (lower red line) to q = 0.999 (upper green line). Inset: comparison between
observed values of d (black circles) and prediction based on Eq. 6 (red line)
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Figure 4: Attractor dimension d as a function of n for random vectors with different symmetric but
non-Gaussian underlying distributions and for the Bernoulli shift map with three different values
of the coupling parameter ε. All displayed points are averages over 300 realizations for series of
length T = 106.
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Figure 5: Relationship between the scaling coefficient β1 and the kurtosis κ for all the distributions
considered in Fig. 4. Black dots correspond to OLS estimates of β1 from Eq. 9, the red line is a
negative exponential fit.

22



Figure 6: Comparison between the analytic result for Gaussian random vectors from Eq. 9 (black)
vs observed values of d for 30 random combinations of 22 daily sea level pressure (blue) and
financial (red) time series as a function of n. The error bars represent 1.96 standard deviations of
the mean among the 30 combinations.
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Figure 7: Values of the measure ∆ for the financial time series (red line) and the sea level pressure
dataset (blue line).
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