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By using the link between extreme value theory and Poincaré recurrences, we compute the attrac-
tor dimension D - namely the effective number of degrees of freedom - of systems whose dynamics
consist of n non-interacting particles with Gaussian underlying distributions. We also derive a the-
oretical expression for D in terms of finite size limits and test its validity and applicability with
numerical experiments. We find that D in a non-interacting lattice is noticeably lower than the
lattice size itself. We then estimate the attractor dimension of a collection of time-series issued from
conceptual dynamical systems, finance and climate datasets. We find that spatial correlation within
the particles reduce the attractor dimension. We also derive numerically the upper boundary for D
of non-Gaussian systems, as their dimension can exceed the Gaussian theoretical limit.

The usual approach to analyse high dimensional
complex systems is via statistical mechanics or statis-
tical approaches. Mean Field Theories [1, 2], Principal
Orthogonal Decomposition [3] or Empirical Orthogonal
Functions[4] are commonly used to recover the station-
ary states of the system, to discriminate the anomalous
configurations[5] and to study transitions between the
different metastable states [6, 7]. Among the possible
dynamical representations of a complex system, one
generally looks for the most parsimonious model [8],
namely that able to represent the switching between
metastable states in terms of the least number of degrees
of freedom, e.g. the Lorenz attractor [9] – a model of
Rayleigh-Benard convection — the Pomeau-Manneville
[10] maps – a conceptual model of turbulence intermit-
tency – and the Ising model – a prototype of phase
transitions [11]. In the context of geophysical flows,
attemps have been made to develop low-dimensional
models capturing the atmospheric dynamics [12, 13]
The limits of validity of these models have been repeat-
edly questioned [14–16] because of their simplicity: why
should a model with few degrees of freedom be able to
represent the dynamics of a complex system with a large
(sometimes infinite) number of variables? In order to
answer this question, one has to compute the minimum
number of degrees of freedom needed to describe the
dynamics. In dynamical systems, this is equivalent to

finding the dimension of the underlying attractors [17].
The attractor is a compact object which hosts all the
trajectories of a system. In the 80s, it seemed possible to
derive estimates of the attractor dimension D of complex
systems from short time series of a variable measured
at a point in space[18, 19]. It was soon realized that
this approach - termed embedding method - was not
feasible, because it required a time series whose length
is exponential in the number of degrees of freedom of
the system [20, 21]. However, data-driven approaches
for the computation of D were also beset by numerical
limitations when applied to complex systems [22, 23].
In the last decade there have been numerous theo-
retical advances in our understanding of the limiting
distribution of Poincaré recurrences, summarised in
[24]. The main finding is that, under suitable rescaling,
recurrences of a state ζi at a time i = 1, 2, ..M follow
a Gumbel distribution whose scale parameter is the
inverse of the local dimension d(ζi) [25]. Due to the
universality of the Gumbel law, this result can be likened
to a central limit theorem of Poincaré recurrences. The
attractor dimension D can be obtained by averaging
d(ζi) for several ζi belonging to the attractor. This
theoretical result has recently been applied to the
atmospheric circulation over the North Atlantic [26].
Here we generalize these findings, deriving an expression
for the expected value of the attractor dimension D
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as a function of the phase space dimension n. We
consider systems such that the anomalies with respect
to the reference field are Gaussian, spatially and serially
uncorrelated. This does not imply an uncorrelated
time dynamics in the process, but only that random
resampling of the time series is a white noise. Our results
are well-matched by numerical computations, analysis of
financial and climate data and yield a theoretical upper
bound on attractor dimension for systems with Gaussian
anomalies and arbitrary correlation structure. We also
study numerically systems with non-Gaussian anomaly
distributions. We show that the flatness of the density
function around the mean determines the behaviour of
D, with an absolute upper limit given by the Uniform
distribution. While larger than in the gaussian case, in
the uniform case, D is still smaller than n.

We now derive the theoretical stochastic limit. Let
ζi, Zj,i be fields with j = 1, . . . ,M , i.e. ζ = {ζi}ni=1 is a
n-dimensional reference sample field and Z1, Z2, ZM are
n-dimensional samples drawn from M realizations of the
field. We assume that, at any time, a perturbation of
the reference field can be expressed as Zj,i = ζi + εj,i,
so that εj,i = (Zj,i − ζi) ∼ N(µ, σ2) and independent,
and σ−1(Zj,i − ζi − µ) ∼ N(0, 1). With no loss of gen-
erality, we assume that εj,i ∼ N(0, 1), since the same
results will hold for any system with Gaussian anomalies
after standardization, even if the dynamics of each single
particle is not i.i.d. We define δ2(n) = {δ2j (n)}Mj=1 as the
M -dimensional vector of the squared Euclidean distances
between each field and the reference field

δ2j (n) =

n∑
i=1

(Zj,i − ζi)2. (1)

It is straighforward to notice that δ2j (n) =∑n
i=1(N(0, 1))2 ∼ χ2(n). We now consider the

functional of the Euclidean distance g(n) = − ln
√
δ2(n).

Then, the probability density function of g(n) reads

fg(g) = fδ2(h−1(δ2))

∣∣∣∣dδ2dg
∣∣∣∣ =

21−
n
2

Γ
(
n
2

) exp

{
−ng − 1

2
e−2g

}
,

(2)
where h(δ2(n))0− 1

2 ln δ2(n) and
∣∣∣dδ2dg ∣∣∣ = | − 2e−2g|. Let

q be an extreme quantile for g; we consider the ex-
tremes in the (1 − q) right tail of the distribuion, de-
noted Y = {Yk}mk=1, shifted so that lim inf{Y } = 0,
with expected sample size m = (1 − q)M . From Ex-
treme Value Theory [27], we know that Y ∼ Exp(λ),

so that fY (y) = λ−1e−y/λ. It is known from [28] that
the mean and standard deviation of this distribution are
µY = σY = λ and that the dimension is given by the
precision of the distribution D = λ−1. Notice that both
µY and σY are functions of n, as will be detailed later
in this section. Under such model specification, the un-
biased maximum likelihood estimator for λ is the sample
mean, λ̂ = 1

m

∑m
k=1 yk = y, so that the dimension can be

obtained as D̂ = y−1. The next step consists of finding a
link between the expected value of the extremes λ, esti-
mated by their sample mean, and the number of degrees
of freedom n of the initial Gaussian random fields. This
result can be obtained by writing the parameter of the
extreme value distribution, λ, as a function of known mo-
ments of g. In order to do so, we observe that the median
of the exponential distribution is given by µ̃Y =

√
2λ, and

then D =
√
2

µ̃Y
: this implies that the expectation of the ex-

tremes is proportional to a fixed quantile, corresponding
to the quantile 0.5 of the shifted extreme distribution and
to q+ 0.5(1− q) of the distribution of g. When applying
peaks over threshold (POT) to the sample, the threshold
quantile q corresponds to a certain sample order statis-
tics gr:M and is estimated by q′ = r/M . Therefore, it
is possible to choose r ∈ N to approximate the quantile
corresponding to λ, i.e. such that gr:M ' λ. The posi-
tion of such a quantile on the support of g changes as a
function of µg and σg in a way dictated by the quantile
function of g. Since the latter cannot be obtained in close
form for the probability density function 2, we resort to
more general considerations, based on tight bounds of
order statistics. In particular, we refer to [29], which
provides tight bounds for the expected value of the r-th
order statistics xr:M from a given distribution with mean
µX and standard deviation σX . We recall that we con-
sider shifted extremes, so that their minimum is 0 and
the effect due to µg is removed. Under such conditions,
the bound for the expected r-th order statistics reads

0 < E(gr:M ) ≤ σg
√

r − 1

M − r + 1
. (3)

In the same paper, it is shown that the upper bound on
the expectation of the sample maximum is E(gM :M ) ≤
σg
√
M − 1, which shows that a linear relation between

the sample quantile and σ holds also in the limit q → 1.

We now focus on σg, which is the relevant factor in the
equation above, given that it contains all the dependence
from n. The moment generating function of g is

Mg(t) = E[etg] =
21−n/2

Γ(n2 )

∫ +∞

−∞
exp

{
tg − ng − 1

2
e−2g

}
dg =

2−t/2Γ(n−t2 )

Γ(n2 )
. (4)
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and then the first two moments can be obtained as

E(g) = M ′g(t = 0) = −1

2

[
ln 2 + ψ

(n
2

)]
(5)

E(g2) = M ′′g (t = 0) =
1

4
(ln 2)2 +

1

2
(ln 2)ψ

(n
2

)
+

1

4
ψ
(n

2

)2
+

1

4
ψ1
(n

2

)

where ψ(z) = Γ′(z)/Γ(z) = d
dz ln Γ(z) is the digamma

function and ψr(z) = dr

dzrψ(z) = dr+1

dzr+1 ln Γ(z) is the
polygamma function of order r. It is now straightfor-
ward to obtain the standard deviation as

σg =
√
E(g2)− E(g)2 =

1

2

√
ψ1
(n

2

)
. (6)

Combining Equations 3 and 6, we obtain an expression
for the upper bound of E(λ) as a function of n. Since
D = λ−1, the upper bound for E(D) is +∞. However, it
is known [30] that the increase of the attractor dimension
with the number of degrees of freedom is bounded by n
itself, so that we can write(

σg(n)

√
r − 1

M − r + 1

)−1
≤ E(D(n)) ≤ n. (7)

Numerical experiments suggest that D(n) = n is never
observed, and that the actual attractor dimension is al-
ways a concave function of n. Eq. 7 provides tights
bounds for a general order statistics of a system of Gaus-
sian particles with noninteracting dynamics. However
we argue that, by considering extreme quantiles in the
computation of D, the two bounds should have the same
shape in other dynamical systems, constraining the ex-
pected value to be a linear function of σg. Then, the
dimension D = λ−1, will be a function of σ−1g :

E(D) ' α(M, r, q) + β(M, r, q)
[
ψ1
(n

2

)]− 1
2

. (8)

Below, we tackle this hypothesis via numerical simu-
lation. Notice that, assuming that Eq. 8 holds, E(D)
is known up to α(M, r, q) and β(M, r, q), that are
constant with respect to n, but are possibly functions
of the chosen extreme quantile. In particular, from
the expression given above for the tight bounds of
order statistics, we may expect that β(q) is function of
q/(1−q), that is the limiting version of (r−1)/(M−r+1).

We test the robustness of the intuition summarized in
Eq. 8 by performing a Monte Carlo (MC) experiment.
The outcomes are reported in Fig. 1. We consider Gaus-
sian random fields ∼ N(0, 1) with degrees of freedom
n ∈ [2, 500] and an interval of extreme quantiles q ∈
[0.980, 0.999] partitioned with a grid step δq = 0.0001.
We fix the number of MC replicates for the extremes to
m = 1000, so that the number of generated fields varies

FIG. 1: Predicted values of the dimension D from the linear
regression resulting from Eq. 8, ranging from q=0.98 (lower
red line) to q = 0.999 (upper green line). Inset: compari-
son between observed and predicted dimension using quantiles
q=0.98 (lower) and q=0.999 (upper) as thresholds. Circles:
estimated D. Red line: linear regression from Eq. 8.

with the quantile and is given by M = m(1 − q)−1. For
all the quantiles considered, we estimate the regression
in Eq. 8, which provides an accurate prediction of the di-
mension, with linear determination coefficients all larger
than 0.989. The p-values associated to the β coefficient
in Eq. 8 are all smaller than 10−23 for every n.

First of all, let us underline that α(q) lacks a physical
meaning, since it is the predicted dimension for a system
with n = 0. On the other hand, we know that D(1) = 1
and D(2) ' 2, and we can assume these, in particular the
former, as constraints derived from the observed behavior
in case of a very small number of degrees of freedom, so
that our results hold for n ≥ 3.

We investigate the functional form of both α(q) and
β(q) in the considered range of quantiles. From Figure
1, we observe that a realistic model for the intercept is
α(q) = α0 + α1q + α2q

2, while for the slope β(q) = β0 +

β1 ln
(

q
1−q

)
. The estimated coefficients are α0 = −7649,

α1 = 15561, α2 = −7918, β0 = 1.59, β1 = 0.29, while the
goodness of the two fits is R2 = 0.46 and R2 = 0.963 for
α(q) and β(q), respectively. Fits are shown in Fig. 2.

These results complete Eq. 8, so that we know the
value of E(D), for such a stochastic system, up to the val-
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FIG. 2: Observed and predicted values of α(q) = α0 + α1q +

α2q
2 (left panel) and β(q) = β0 + β1 ln

(
q

1−q

)
(right panel),

with q ranging from 0.98 to 0.999.

ues of the parameter vector (α0, α1, α2, β0, β1). Clearly
the effective number of degrees of freedom in a stochas-
tic lattice is noticeably smaller than the dimension of the
phase-space itself. We now apply the above results to
datasets issued from finance and climate. Any spatial or
cross-sectional correlation should reduce D and, as for
the stochastic case, we should get D < n. The details
of the 22 financial time series analysed here are provided
in table 1; we compute their log-return to remove non-
stationarity [31]. As climate variable, we use 22 sea-level
pressure (SLP) time series chosen from the roughly 10000
grid-points constituting the NCEP/NCAR 1948-2015 re-
analysis dataset [32]. Both the SLP and the log-return of
financial datasets have a Gaussian marginal distribution.

For each dataset we extract randomly 30 sequences of
22 time series. The extraction determines the order in
which we add a new time series to construct different
databases for 1 < n < 22. We fix the quantile to be
q = 0.98. When n = 1, we obtain D = 1 for all the
choices. As soon as n > 5, the correlations in the data
result in an effective dimension D well below both the
phase space dimension and the dimension obtained in
the stochastic case. For financial time series we have
D ' 10 for n = 22, a slightly higher dimension than the
SLP. This implies that the information contained in all
the finance datasets can be extracted by using only about
10 well-chosen time series. A similar conclusion can be
drawn about the climate data.

We now discuss the case of systems whose anomalies
do not have a Gaussian distribution, reminding that in
order for the reference field to be a point on the attrac-
tor, the anomalies should have a global maximum at zero
[25]. There are therefore two extreme cases: i) particle
systems whose anomalies are uniformly distributed in a
fixed interval so that the global maximum is at all the
points of the interval ii) particle systems with a sharp
maximum at zero. The results for different probability
density functions are displayed in Fig. 4. When the max-
imum in zero is sharper than the gaussian distribution
(anomalies distributed with t-Student distribution with
ν = 2 or ν = 4 degrees of freedom), the limiting curve
is lower than the theoretical curve for gaussian anoma-

FIG. 3: Theoretical stochastic limit for E(D) from Eq. 8
(black) vs observed D for 30 random combinations of daily
sea level pressure (SLP) and financial data. The error bars
represent one standard deviation of the mean.

lies. Conversely, when the maximum is flatter (anoma-
lies with uniform distribution or Beta distribution with
α′ = β′ = 2 re-centered in zero), the limiting curve is
higher than the reference Gaussian curve. In other words,
the most efficient way to fill up the phase space is hav-
ing a uniform distribution mass concentration and the
least optimal way is to have the mass concentrated on the
points of the attractor. In both cases, the curves main-
tain the same functional form as for the Gaussian limit.
In Figure 4 we also analyse the role of spatial correlation
in decreasing the attractor dimension. We consider the
Bernoulli Shift coupled map:

x
(i)
n+1 = (1− ε)f(x(i)n ) +

ε

n

n∑
j

f(x(i 6=j)n ) (9)

where f(x) = 3x mod 1 and ε is the strength of the
coupling. As shown in the figure, by increasing ε
the dimension decreases as spatial degrees of freedom
are progressively frozen. Moreover, for all couplings,
the upper limiting curve is higher than the Gaussian
theoretical curve but lower than that of the uniform
random anomalies. The latter is then to be interpreted
as a general a upper bound for the dimension of a
dynamical system, as no dynamics can be more efficient
in covering the phase space than the one that covers it
uniformly. We also show that, when the dynamics of
particles consist of an auto-regressive process (AR(1))
x
(i)
n+1 = φx

(i)
n +η

(i)
n , the values of D follow the theoretical

curve (φ = 0.8, η ∼ N(0, 1) i.i.d.).

Our results open the possibility to address a number of
important challenges including: i) estimating the degrees
of freedom needed to describe a purely stochastic process
as a function of the phase space dimension and ii) intro-
ducing an algorithmic procedure to measure this quan-
tity in any time-series data-set. In many fields, such as
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TABLE I: International codes of the financial time series (daily data for the period 01-Jan-1998 to 03-May-2017).
IEUCT01 MOVEIDX USEURSP USDOLLR JAPAYE$ S&PCOMP DJEURST FTSEMIB
FRCAC40 DAXINDX JAPDOWA ER00(ML:OAS) HE00(ML:OAS) C0A0(ML:OAS) H0A0(ML:OAS) CBOEVIX
BMUS02Y(RY) BMBD02Y(RY) BMIT02Y(RY) BMFR02Y(RY) BMUK02Y(RY) BMJP02Y(RY)

FIG. 4: Dimension D for systems with different underlying
anomaly distributions and for the Bernoulli shift Eq.9 with
ε = 0 (uncoupled) ε = 0.66 (transition to global coupled
behavior) ε = 0.7 (completely coupled). For each case, the
displayed point is the average among 300 realizations and for
series 106 length.

climate science, computational limitations on data pro-
cessing and storage pose a major limit to researchers [33].
The finding that, even for systems with a uniform under-
lying anomaly distribution, the number of effective de-
grees of freedom is smaller than the phase space dimen-
sion is therefore crucial. This, coupled with the ability
to inexpensively identify the effective number of degrees
of freedom of a system, effectively allows to identify re-
dundancies in the data. Our results thus have major
implications and a wide-ranging significance.
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