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By using the link between extreme value theory and Poincaré recurrences, we compute the at-
tractor dimension - namely the effective number of degrees of freedom - when the dynamics consist
of n non-interacting particles with a stochastic behavior. We derive the theoretical expression in
terms of finite size limits and test its validity and applicability with numerical experiments. We
find that the effective number of degrees of freedom in a stochastic lattice is noticeably lower than
the lattice size itself. We then estimate the attractor dimension of a collection of time-series issued
from finance and climate, and find that they are below the theoretical stochastic limit.

The usual approach to analyse high dimensional
complex systems such as turbulent flows, geophysical
flows or complex networks is via statistical mechanics
or statistical approaches. Mean Field Theories [1, 2],
Principal Orthogonal Decomposition [3] or Empirical
Orthogonal Functions[4] are commonly used to recover
the stationary states of the system. This information
is essential to understand what are the most probable
configurations of the system and, by anthisesis, to
discriminate the anomalous configurations, i.e. the
extreme events [5]. Unfortunately, all these techniques
do not capture the dynamics of the system, that is the
transitions between the different metastable states. Such
dynamics can generally be represented by a non-unique
set of differential equations that approximate the be-
havior of the system. Among the possible dynamical
representations, one generally looks for the simplest
and most parsimonious model [6], able to represent
the switching between metastable states in terms of
a small number of degrees of freedom. The most
famous example is the Lorenz attractor [7], a system
of three variables that can represent some features of
Rayleigh-Benard convection. Other examples include
the Pomeau-Manneville [8] maps, describing turbulence
intermittency, and the Ising model, which is a prototype
of phase transitions [9]. Recently, such low dimensional
attractors have been found also for laboratory flows
in highly turbulent regimes [10]. In the context of
geophysical flows, effective reductions of atmospheric

dynamics have been also proposed [11, 12]
The limits of validity of these models have been re-
peatedly questioned [13–15] because of their simplicity:
why should a model with few degrees of freedom be
able to represent the dynamics of a complex system
with a large (sometimes infinite) number of variables?
In order to answer this question, one has to compute
the minimum number of degrees of freedom needed to
describe the dynamics. In dynamical systems, this is
equivalent to finding the dimension of the underlying
attractors [16]. The attractor is a compact object which
hosts all the trajectories of a system. Its dimension is
generally smaller than the phase space dimension n.
In the 80s, it seemed possible to derive estimates of
the attractor dimension D of complex systems (such
as the atmosphere) from short time series of a variable
measured at a point in space[17, 18]. However, it was
soon realized that this approach - termed embedding
method - was not feasible, because it required a time
series whose length is exponential in the number of
degrees of freedom of the system [19, 20]. Due to this
limitation, data-driven approaches for the computation
of attractor dimension progressed for several years,
mostly pointing out the numerical limitations of the
estimates [21, 22].
In the last decade there have been numerous theoretical
advances in our understanding of the limiting distribu-
tion of Poincaré recurrences. Those are condensed in
the book [23]. The main finding is that, under suitable
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rescaling, recurrences of a state ζi at a time i = 1, 2, ..M
follow a Gumbel distribution whose scale parameter is
the inverse of the local dimension d(ζi). The power of
this result is due to the universality of the Gumbel law.
In other words [24] have discovered a sort of central
limit theorem of Poincaré recurrences. The attractor
dimension D can be obtained by averaging d(ζi) for
several ζi belonging to the attractor. The motivations
for the theoretical studies presented in this work come
from [25], where this technique has been applied to
describe the atmospheric circulation over the North
Atlantic, using daily sea level pressure fields from 1948
to 2016. The authors found that the active numbers
of degrees of freedom was two orders of magnitude
smaller than the number of grid points of the two
dimensional spatial fields. This value was robust with
respect to coarse graining of the phase space and the use
of different datasets. Similar results were obtained when
using geopotential height in a subsequent study [26].
One can ask whether such low dimensional estimates of
D are related to a slow logarithmic convergence of the
method towards the true value of D, or whether they
are instead related to a more fundamental relationship
between the dimensions of the attractor and of the
phase space. In order to investigate this problem
we compute here, theoretically and numerically, the
attractor dimension as a function of the phase space
dimension n when the dynamics is completely stochastic.
We show that the theoretical curve is well-matched by
numerical computations, and that in stochastic systems
D is smaller than n. We then compare the theoretical
stochastic curve with those obtained numerically for
climate and finance datasets and find that additional
correlation between the variables squeezes D to values

lower than those predicted for the stochastic behavior.
A theoretical stochastic limit noticeably smaller than the
system’s phase space dimension would have potentially
major implications for the optimization of computations
and data storage when analyzing large datasets, as it
would effectively provide a measure of the redundance
of the data.

Let ζi, Zj,i be random fields with j = 1, . . . ,M , i.e.
ζ = {ζi}ni=1 is a n-dimensional reference sample field and
Z1, Z2, . . . ZM are n-dimensional samples drawn from M
realizations of the field. We assume that the field at any
time is a white noise perturbation of the reference field,
i.e. Zj,i = ζi + εj,i, so that εj,i = (Zj,i − ζi) ∼ N(µ, σ2)
and independent, and σ−1(Zj,i−ζi−µ) ∼ N(0, 1). With
no loss of generality, we assume that εj,i ∼ N(0, 1), since
the same results will hold for any system Gaussian i.i.d.
anomalies, after standardization.

We define δ2(n) = {δ2j (n)}Mj=1 as the M -dimensional
vector of the squared Euclidean distances between each
field and the reference field

δ2j (n) =

n∑
i=1

(Zj,i − ζi)2. (1)

It is straighforward to notice that δ2j (n) =∑n
i=1(N(0, 1))2 ∼ χ2(n). We now consider the

functional of the Euclidean distance g(n) = − ln
√
δ2(n).

Notice that g(n) ∼ − ln
√
χ2(n) = − 1

2 lnχ2(n). We now
proceed to derive the probability distribution of g(n).
First, consider X = h(δ2(n)) = ln δ2(n) ∼ lnχ2(n), so
that

fX(x) = fδ2(h−1(x))

∣∣∣∣dδ2dX

∣∣∣∣ =
1

2
n
2 Γ(n2 )

exp

{
n

2
x− 1

2
ex
}
∼ log-χ2(n). (2)

Now, g = − 1
2X and

∣∣∣dXdg ∣∣∣ = | − 2|, leading to the expres-
sion of the density

fg(g) = 2fX(x = −2g) =
21−

n
2

Γ
(
n
2

) exp

{
−ng − 1

2
e−2g

}
.

(3)
Let q be an extreme quantile for g; we consider the
extremes in the (1 − q) right tail of the distribuion,
denoted Y = {Yk}mk=1, shifted so that lim inf{Y } = 0,
with expected sample size m = (1 − q)M . From the
Extreme Value Theory[27], we know that Y ∼ Exp(λ),
so that fY (y) = λ−1e−y/λ. It is known from [28] that
the mean and standard deviation of this distribution

are µY = σY = λ and that the dimension is given by
the precision of the distribution D = λ−1. Notice that
both µY and σY are function of n, as will be detailed
later in this section. Under such model specification, the
unbiased maximum likelihood estimator for λ the sample
mean, λ̂ = 1

m

∑m
k=1 yk = y, so that the dimension can

be obtained as D̂ = y−1.

The next required step consists of finding a link be-
tween the expected value of the extremes λ, estimated
by their sample mean, and the number of degrees of free-
dom n of the initial Gaussian random fields. This result
can be obtained writing λ as a function of µg and σg.
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In order to do so, we observe that the median of the ex-
ponential distribution is given by µ̃Y =

√
2λ, and then

D =
√
2

µ̃Y
: this implies that the expectation of the ex-

tremes is proportional to a fixed quantile, corresponding
to the quantile 0.5 of the shifted extreme distribution and
to q+ 0.5(1− q) of the distribution of g. We notice that,
when applying POTs to the sample, the threshold quan-
tile q corresponds to a certain sample order statistics gr:M
and is estimated by q′ = r/M . Therefore, it is possible to
choose r ∈ N to approximate the quantile corresponding
to λ, i.e. such that gr:M'λ. Clearly, the position of such
a quantile on the support of g changes as a function of
µg and σg; in order to understand how, we refer to [29],
which provides tight bounds for the expected value of
the order statistics xr:M from a given distribution with
mean µ and standard deviation σ. Such bounds read
µg−σg

√
M−r
r ≤ gr:M ≤ µg +σg

√
r−1

M−r−1 . However, the
effect due to µg is removed by the shifting of the extreme
sample, so that our tight bound actually reads

−σg

√
M − r
r

≤ gr:M ≤ σg
√

r − 1

M − r − 1
.

This result extends the one obtained by [30] for the upper
bound on the expectation of the sample maximum:

gM :M ≤ σg
√
M − 1,

which shows that a linear relation between the sample
quantile and σ is mantained also in the limit q → 1.
While this bound is tight in a statistical sense, the in-
ferior bound (which would be an upper bound for the
dimension) is meaningless in the physical sense, since it
can assume negative values, being formulated for a gen-
eral quantile, rather than for an extreme one. However,
the matter of interest in our case in that these bounds
imply a linear relation between the expectation of the ex-
tremes and the standard deviation of g through functions
of M, r and then of q, but constant with respect to n:

λ = α′(q) + β′(q)σg. (4)

We now focus on σg, which is the relevant factor in the
equation above, given that it contains all the dependence
from n. The moment generating function of g is

Mg(t) = E[etg] =
21−n/2

Γ(n2 )

∫ +∞

−∞
exp

{
tg − ng − 1

2
e−2g

}
dg =

2−t/2Γ(n−t2 )

Γ(n2 )
. (5)

and then the first two moments can be obtained

E(g) = M ′g(t = 0) = −1

2

[
ln 2 + ψ

(n
2

)]
(6)

E(g2) = M ′′g (t = 0) =
1

4
(ln 2)2 +

1

2
(ln 2)ψ

(n
2

)
+

1

4
ψ
(n

2

)2
+

1

4
ψ1
(n

2

)

where ψ(z) = Γ′(z)/Γ(z) = d
dz ln Γ(z) is the digamma

function and ψr(z) = dr

dzrψ(z) = dr+1

dzr+1 ln Γ(z) is the
polygamma function of order r. It is now straightfor-
ward to obtain the standard deviation as

σg =
√
E(g2)− E(g)2 =

1

2

√
ψ1
(n

2

)
. (7)

Finally, in analogy with equation 4, we argue that the
following linear relation holds for the dimension D =
λ−1,

D = α(q) + β(q)
[
ψ1
(n

2

)]− 1
2

. (8)

Thus, the dimension of the considered random system is
known up to α(q) and β(q), that are constant respect
to n, but are possibly functions of the chosen extreme
quantile. In particular, from the expression given above
for the tight bounds of order statistics, we may expect
that β(q) is function of q/(1− q), that is the continuous

version of (r−1)/(M−r−1). At our present knowledge,
these relations must be investigated empirically through
numerical simulation.

We test the robustness of the result given by Eq.
8 by performing a simple Monte Carlo (MC) exper-
iment. The outcomes are reported in Fig. 1. We
consider Gaussian random fields ∼ N(0, 1) with degrees
of freedom n ∈ [2, 500] and an interval of extreme
quantiles q ∈ [0.980, 0.999] partitioned with a grid step
δq = 0.0001. Since the distribution of the squared Eucle-
dian distance between two i.i.d. Gaussian random fields
is known exactly, we sample directly from the corre-
sponding χ2(n), rather than generating the random field.

We fix the number of MC replicates for the extremes to
m = 1000, so that the number of generated fields varies
with the quantile and is given by M = m(1 − q)−1. For
all the quantiles considered, we estimate the regression
in Eq. 8, which provides an accurate prediction of the
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FIG. 1: Predicted values of the dimension D from the linear
regression resulting from Eq. 8, ranging from q=0.98 (lower
red line) to q = 0.999 (upper green line). Inset: compari-
son between observed and predicted dimension using quantiles
q=0.98 (lower) and q=0.999 (upper) as thresholds. Circles:
estimated D. Red line: linear regression resulting from Eq.
8.

dimension, with linear determination coefficients all
larger than 0.989.

As previously mentioned, we have no prior knowledge
about α(q) and β(q), but they can be estimated in the
regression procedure. From the inspection of the plots
as a function of the quantile q, we can make a functional
hypothesis based on empirical observation. First of all,
let us underline that α(q) lacks a physical meaning,
since it is the predicted dimension for a system with
n = 0. On the other hand, we know that D(1) = 1
and D(2) ' 2, and we can assume these, in particular
the former, as constraints derived from the observed
behavior in case of a very small number of degrees of
freedom, so that our results hold for n ≥ 3.

We investigate the functional form of both α(q)
and β(q) in the considered range of quantiles. From
the plots, we observe that a realistic model for the
intercept is α(q) = α0 + α1q + α2q

2, while for the slope
β(q) = β0 + β1 ln

(
q

1−q

)
. The estimated coefficients

are α0 = −7649, α1 = 15561, α2 = −7918, β0 = 1.59,
β1 = 0.29, while the goodness of the two fits is R2 = 0.46
and R2 = 0.963 for α(q) and β(q), respectively. Fitted
values are shown in Fig. 2.

These results complete Eq. 8, so that we know the
value of d, for such a stochastic system, up to the
values of the parameter vector (α0, α1, α2, β0, β1). As
discussed above, the effective number of degrees of

FIG. 2: Observed and predicted values of α(q) = α0 + α1q +

α2q
2 (left panel) and β(q) = β0 + β1 ln

(
q

1−q

)
(right panel),

with q ranging from 0.98 to 0.999.

freedom in a stochastic lattice is noticeably smaller than
the dimension of the phase-space itself. Monte Carlo
estimation is the only way to retrieve the value of the
above parameters, so that we must interpret them as
universal constants, as it happens, for example, for the
Kolmogorov constant C0 in the theory of turbulence.

We now apply the above results to datasets issued from
finance and climate and estimate their effective dimen-
sions. Any mutual correlations between the time series
or autocorrelations should reduce the effective dimension
and, as for the stochastic case, we should get attractor
dimensions smaller than the phase space dimension. The
details of the 22 financial time series analysed here are
provided in table 1; we compute their log-return to re-
move non-stationarity (see, for example, [31]). As cli-
mate variable, we use 22 sea-level pressure (SLP) time se-
ries chosen from the roughly 10000 grid-points constitut-
ing the NCEP/NCAR 1948-2015 reanalysis dataset [32].
Both the SLP and the log-return of financial datasets
have a Gaussian marginal distribution.

For each dataset we then extract randomly 30 se-
quences of 22 time series. The sequences determine the
order in which we add a new time series to construct dif-
ferent databases for 1 < n < 22. For the computation we
fix a quantile q = 0.98. When n = 1, we obtain D = 1
for practically all the choices. As soon as n > 5, the cor-
relations in the data result in an effective dimension D
well below both the phase space dimension and the di-
mension obtained in the stochastic case. Financial time
series have a slightly higher dimension than the SLP. If
we interpret the value of D as the number of effective
degrees of freedom, for financial data with n = 22, we
have D ' 10 , i.e. the information contained in all the
finance datasets can be extracted by using only about
10 well-chosen time series. A similar conclusion can be
drawn about the climate data. This value could also be
used to determine the number of principal components
to be used when analysing a dataset or to quantify the
degree of connectivity of a network.

The lack of a feasible methodology to compute the di-
mension of the attractor of complex systems has limited
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TABLE I: International codes of the financial time series (daily data for the period 01-Jan-1998 to 03-May-2017).
IEUCT01 MOVEIDX USEURSP USDOLLR JAPAYE$ S&PCOMP DJEURST FTSEMIB
FRCAC40 DAXINDX JAPDOWA ER00(ML:OAS) HE00(ML:OAS) C0A0(ML:OAS) H0A0(ML:OAS) CBOEVIX
BMUS02Y(RY) BMBD02Y(RY) BMIT02Y(RY) BMFR02Y(RY) BMUK02Y(RY) BMJP02Y(RY)

FIG. 3: Predicted values of the dimension D from the lin-
ear regression resulting from Eq. 8 (black) vs the dimension
observed for 30 random combinations of daily sea level pres-
sure (SLP) and financial data. The error bars represent one
standard deviation of the mean.

the applicability of dynamical systems techniques to real-
world problems. Recent advances [23] have overcome
this limitation, allowing to inexpensively compute the
attractor dimension for large datasets. This opens the
possibility to address a number of important challenges
including: i) estimating the degrees of freedom needed
to describe a purely stochastic process as a function
of the phase space dimension and ii) introducing an
algorithmic procedure to measure this quantity in any
time-series data-set. As a caveat, we note that the
theoretical limit we compute should not be seen as an
upper limit for the dimension of any system within a
given phase space, as specific dynamical systems could
have a higher dimension than the purely stochastic case
considered here.

In many fields, such as climate science, computational
limitations on data processing and storage pose a major
limit to researchers [33]. The ability to inexpensively
identify the effective number of degrees of freedom of a
system, and hence any redundancies in the chosen data,
therefore has major implications. Our results thus have
a wide-ranging significance and can be fruitfully applied
to a variety of research fields.
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