
HAL Id: hal-01650183
https://hal.science/hal-01650183v1

Submitted on 28 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tableaux methods for propositional dynamic logics with
separating parallel composition

Philippe Balbiani, Joseph Boudou

To cite this version:
Philippe Balbiani, Joseph Boudou. Tableaux methods for propositional dynamic logics with separating
parallel composition. International Conference on Automated Deduction (CADE 2015), Aug 2015,
Berlin, Germany. pp.539-554. �hal-01650183�

https://hal.science/hal-01650183v1
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 19189

The contribution was presented at CADE 2015 :
https://conference.imp.fu-berlin.de/cade-25/home

To cite this version : Balbiani, Philippe and Boudou, Joseph Tableaux
methods for propositional dynamic logics with separating parallel
composition. (2015) In: International Conference on Automated Deduction
(CADE 2015), 1 August 2015 - 7 August 2015 (Berlin, Germany).

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

Tableaux Methods for Propositional Dynamic

Logics with Separating Parallel Composition

Philippe Balbiani and Joseph Boudou(B)

Institut de Recherche en Informatique de Toulouse,
CNRS — Toulouse University, Toulouse, France

joseph.boudou@irit.fr

Abstract. PRSPDL is a propositional dynamic logic with an operator
for parallel compositions of programs. We first give a complexity upper
bound for this logic. Then we focus on the class of ⊳-deterministic frames
and give tableaux methods for two fragments of PRSPDL over this class
of frames.

1 Introduction

Propositional dynamic logic (PDL) is a multi-modal logic designed to reason
about the behaviors of programs [11]. With each program α is associated a
modal operator [α], formulas [α]ϕ being read “all executions of α from the cur-
rent state lead to a state where ϕ holds”. The set of programs is structured
by some operators: the sequential composition α ; β of programs α and β cor-
responds to the composition of the accessibility relations R(α) and R(β); test
ϕ? on formula ϕ corresponds to the identity relation restricted to the states at
which ϕ holds; the iteration α∗ corresponds to the reflexive and transitive clo-
sure of R(α). PDL has been extensively studied and a great deal is known about
its complexity and proof theory [9,11,12,15,16,18]. Moreover, since PDL’s pro-
grams are abstract, variants of PDL has been devised for different fields, like
knowledge representation and linguistic.

A limitation of PDL is the lack of constructs to reason about concurrency.
Different extensions of PDL have been devised to overcome this limitation, for
instance interleaving PDL [1], PDL with intersection (IPDL) [8] and the con-
current dynamic logic [17]. PDL with storing, recovering and parallel compo-
sition (PRSPDL) [4] is another extension of PDL with a construct for parallel
composition of programs. The key difference of PRSPDL is that, for the exe-
cution of the program α ‖ β, α and β are executed in parallel on two different

substates of the initial state. Hence, α ‖ β being executable at some state does
not imply that α or β is executable at that state. Since states can be separated in
substates and merged back, PRSPDL is related to the Boolean logic of bunched
implication (BBI) [19]. Indeed, a multiplicative conjunction semantically similar

to the one found in BBI can be defined in PRSPDL. Hence PRSPDL is a modal
logics of separation like logics in [5–7], and is closely related to the process logic
MBIc [6]. The differences between PRSPDL and MBIc are the lack of sequential
compositions in MBIc making it strictly less expressive [2] and the associativity of
the separation relation making the satisfiability problem harder [14]. The combi-
nation of separation and concurrency provided by PRSPDL suggests interesting
applications. For instance, in the field of program verification, a dynamic and
concurrent logic on heaps akin to separation logics [10,20] may be envisioned.

PRSPDL has many similarities with IPDL. Like IPDL, PRSPDL lacks the
tree model property. Moreover, due to formulas of the form [α ‖ β]ϕ, there is
no sets of formulas of the language comparable to the Fischer-Ladner closure
for PDL [11] on which the filtration method could be applied. Hence, studying
PRSPDL’s computability is hard and the only result currently known about the
computability of PRSPDL is its undecidability when interpreted over the class
of separated frames [3]. This difficulties, added to the usual complications due to
the iteration construct, make the conception of a tableaux method for PRSPDL a
real challenge. We overcome all this difficulties by adapting techniques from [16]:
compound programs are allowed as edge’s labels of the constructed model and
new atomic formulas are used to identify states reachable by some programs.
The added value of our paper consists in the presence of the iteration construct
and in a new extended definition of the Fischer-Ladner closure.

In this paper, three variants of PRSPDL are studied. First, PRSPDL, for-
mally defined in Sect. 2, is proved in Sect. 3 to be faithfully translatable into
IPDL with converse. This result conveys a 2EXPTIME complexity upper bound.
Then the fragment of PRSPDL without the special programs of storing and
recovering, interpreted over the class of ⊳-deterministic frames, is considered.
A Fischer-Ladner closure for an extension of this fragment is defined in Sect. 4
and a sound and complete tableaux method is exhibited in Sect. 5. Finally, an
optimal decision procedure for the fragment of PRSPDL without storing, recov-
ering and iteration, interpreted over ⊳-deterministic frames, is given in Sect. 6,
proving this fragment to be PSPACE-complete.

2 PRSPDL

Let Π0 a countable set of atomic programs (denoted a, b) and Φ0 be a count-
able set of propositional variables (denoted p, q). The sets Π and Φ of pro-
grams and formulas are defined as follows:

α, β := a | (α ; β) | ϕ? | α∗ | (α ‖ β) | s1 | s2 | r1 | r2

ϕ := p | ⊥ | ¬ϕ | [α] ϕ

We define the abbreviations ⊤
.
= ¬⊥ and 〈α〉ϕ

.
= ¬ [α] ¬ϕ. The Boolean opera-

tors can be defined too, for instance ϕ → ψ
.
= [ϕ?] ψ. Moreover, a multiplicative

conjunction related to BBI may be defined as ϕ ✴ ψ
.
= ¬ [ϕ? ‖ ψ?] ⊥. Parenthe-

ses may be omitted for clarity, but they are taken into account when counting

occurrences of symbols. Double negations are implicitly eliminated. We write
|α| and |ϕ| for the number of occurrences of symbols in any program α and any
formula ϕ respectively. We define two fragments of PRSPDL’s language:

– L;?∗‖ is the set of PRSPDL’s formulas and programs with no occurrences of
the symbols s1, s2, r1 and r2;

– L;?‖ is the set of PRSPDL’s formulas and programs with no occurrences of
the symbols s1, s2, r1, r2 and ∗.

A frame is a tuple (W,R, ⊳) where W is a non-empty set of states, R is a
function associating a binary relation over W to each atomic program and ⊳

is a ternary relation over W . Intuitively, x R (a) y means that the program a
can be executed in state x, reaching state y. Similarly, x ⊳ (y, z) means that
x can be split into the substates y and z or equivalently that y and z can be
merged to obtain x. When the merging of states is functional, the frame is said
to be ⊳-deterministic. This is a common restriction, for instance in separation
logics [10,20]. Formally, a frame is ⊳-deterministic iff for all x, y, w1, w2 ∈ W ,
if x ⊳ (w1, w2) and y ⊳ (w1, w2) then x = y. The class of all frames is denoted
by Call and the class of ⊳-deterministic frames by C⊳-det. A model is a tuple
(W,R, ⊳, V) where (W,R, ⊳) is a frame and V is a function associating a subset
of W to each propositional variable. A model is ⊳-deterministic iff its frame
is ⊳-deterministic. The forcing relation � is defined by parallel induction along
with the extension of R to all programs:

M, x � p iff x ∈ V (p)

M, x � ⊥ never

M, x � ¬ϕ iff M, x � ϕ

M, x � [α]ϕ iff ∀z ∈ W, xR (α)z implies M, z � ϕ

xR (α ; β)y iff ∃z ∈ W, xR (α)z and zR (β)y

xR (ϕ?)y iff x = y and M, x � ϕ

xR (α∗)y iff xR (α)
∗
y

whereR (α)
∗
is the reflexive transitive closure ofR (α)

xR (α ‖ β)y iff ∃w1, w2, w3, w4 ∈ W,

x ⊳ (w1, w2) , w1R (α)w3, w2R (β)w4 and y ⊳ (w3, w4)

xR (si)y iff ∃z1, z2 ∈ W, y ⊳ (z1, z2) and x = zi

xR (ri)y iff ∃z1, z2 ∈ W, x ⊳ (z1, z2) and y = zi

A formula ϕ is satisfiable in a class C of frames iff there exists a model
M = (W,R, ⊳, V) and a state w ∈ W such that (W,R, ⊳) ∈ C and M, w � ϕ.
The satisfiability problem for a fragment L of PRSPDL over a class C of frames
is the decision problem answering whether a formula in L is satisfiable in C.

3 Complexity Upper Bound for PRSPDL

In order to illustrate the close relationship between PRSPDL and IPDL, we
provide a faithful translation from PRSPDL to PDL with intersection and

converse (ICPDL) [15]. This translation conveys an upper bound for the com-
plexity of the satisfiability problem of PRSPDL with respect to Call. Given the
same sets Π0 and Φ0 as for PRSPDL and three new atomic programs b0, b1, b2,
the language of ICPDL is defined by:

α, β := a | (α ; β) | (α ∪ β) | ϕ? | α∗ | α− | (α ∩ β) | b0 | b1 | b2

ϕ := p | ⊥ | ¬ϕ | [α] ϕ

A model for ICPDL is a tuple M = (W,R, V) where W is a non-empty set
of states, R : Π0 ∪ {b0, b1, b2} −→ P

(

W 2
)

and V : Φ0 −→ P (W). See [15]
for the definition of the forcing relation �IC. The translation function τ from
PRSPDL to ICPDL is defined by inductively replacing all subprograms of the
form α ‖ β by b0 ;

((

b1 ; τ(α) ; b−
1

)

∩
(

b2 ; τ(β) ; b−
2

))

; b−
0 , all subprograms of

the form si for i ∈ {1, 2} by b−
0 ; b−

i and all subprograms of the form ri for
i ∈ {1, 2} by b0 ; bi. Given a PRSPDL’s formula ϕ, let {a1, , an} be the
set of atomic programs occurring in ϕ. The ICPDL program π(ϕ) is defined by
π(ϕ) =

(

a1 ∪ ∪ an ∪ b0 ∪ b−
0 ∪ b1 ∪ b−

1 ∪ b2 ∪ b−
2

)∗
.

Proposition 1. A PRSPDL formulas ϕ ∈ Φ is satisfiable if and only if the

ICPDL formula τ(ϕ) ∧ [π(ϕ)] (〈b1〉⊤ ↔ 〈b2〉⊤) is satisfiable.

As a corollary, by [15]:

Corollary 1. The satisfiability problem of PRSPDL with respect to the class of

all frames is in 2EXPTIME.

4 Fischer-Ladner Closure over L;?∗‖

In this section, we consider the fragment L;?∗‖ of PRSPDL. We define the sets
Π;?∗‖ = Π ∩ L;?∗‖ and Φ;?∗‖ = Φ ∩ L;?∗‖ of programs and formulas of L;?∗‖.
In traditional tableaux methods for PDL-like logics, the formulas appearing in
a tableau all belong to a Fischer-Ladner closure [11]. In the case of PRSPDL,
due to the parallel composition construct, the Fischer-Ladner closure must be
defined in an extension of the language.

4.1 Placeholders and Marking Functions

In order to decompose formulas of the form [α ‖ β] ϕ into subformulas, paral-
lel compositions are distinguished using indices and new atomic formulas called
placeholders are added. The sets ΠPH , Φpure and ΦPH of annotated programs,
pure formulas and annotated formulas respectively, are defined by parallel induc-
tion as follows:

α, β := a | (α ; β) | ϕ? | α∗ | (α ‖i β)

ϕ := p | ⊥ | ¬ϕ | [α]ϕ

ψ := ϕ | (i, j) | ¬ψ | [α]ψ

where i ranges over N and j over {1, 2}. Moreover, for any i ∈ N, there must
be at most one occurrence of ‖i in any pure formula. The integers below the
parallel composition symbols are called indices. Formulas of the form (i, j) are
called placeholders.

To interpret annotated formulas, if placeholders were simply considered as
new propositional variables, it would be impossible to ensure that whenever
w ⊳ (x, y) and M, x � [α ‖i β] ϕ then M, x � [α] (i, 1) and M, y � [β] (i, 2).
Therefore we interpret placeholders using marking functions which assign subsets
of W to placeholders. The set of all such functions is denoted by BW . The empty

marking function m∅

W ∈ BW binds the empty set to all placeholders. The 4-ary
forcing relation �F is defined on all models M = (W,R, ⊳, V), all w ∈ W , all
m ∈ BW and all ϕ ∈ ΦPH by parallel induction along with the extension of R
to all annotated programs, in a similar way than for PRSPDL except:

M, x,m �F (i, j) iff x ∈ m(i, j)

xR (ϕ?)y iff x = y and M, x,m∅

W �F ϕ

xR (α ‖i β)y iff ∃w1, w2, w3, w4 ∈ W,

x ⊳ (w1, w2) , w1R (α)w3, w2R (β)w4 and y ⊳ (w3, w4)

There exists a forgetful epimorphism · : Φpure −→ Φ;?∗‖ associating to each
pure formula ϕ the formula ϕ obtained by removing all indices in ϕ. Thanks to
the following lemma, which can be easily proved by induction on |ϕ|, we will
consider satisfiability of pure formulas instead of satisfiability of L;?∗‖ formulas.

Lemma 1. For all ϕ0 ∈ Φpure, M, w,m∅

W �F ϕ0 iff M, w � ϕ0. Moreover, for

all m ∈ BW , M, w,m∅

W �F ϕ0 iff M, w,m �F ϕ0

4.2 Fischer-Ladner Closure

Following [11], given an annotated formulas ϕ over Π0 and Φ0, we will define
the closure FL(ϕ0) of ϕ by applying the rules in Fig. 1.

Lemma 2. The cardinality of FL(ϕ0) is linear in |ϕ|.

We will be mainly interested in closures of pure formulas. We define the set
SP(ϕ0) = {α | ∃ϕ, [α] ϕ ∈ FL(ϕ0)} of subprograms of any pure formula ϕ0.

Fig. 1. Fischer-Ladner closure calculus

Lemma 3. For any pure formula ϕ0 and any i ∈ N, there is at most one formula

of the form [α ‖i β] ϕ in FL(ϕ0).

The function Gϕ0
is defined such that for all i ∈ N, if there exists α, β ∈ ΠPH

verifying [α ‖i β] ϕ ∈ FL(ϕ0) then Gϕ0
(i) = ϕ, otherwise Gϕ0

(i) = ⊤. When the
index ϕ0 is obvious from the context, we write G instead of Gϕ0

.

5 Tableaux Method for L;?∗‖ over C⊳-det

In this section we introduce a tableaux method for pure formulas interpreted over
C⊳-det. To deal with the merging of states at the end of parallel compositions, we
borrow some ideas from [16]. Firstly, non-atomic programs are allowed as label
of edges in the built structure. Secondly, placeholders are used in order to ensure
that formulas of the form [α ‖i β]ϕ are propagated.

5.1 Rules of the Tableaux Method

Given a set W of states, a judgment about W is either:

– a judgment x : ϕ stating that x must satisfy ϕ;
– a judgment (x, y) : α stating that y can be reached from x by α;
– a judgment (x, y, z) : ∆ with ∆ ∈ {F,B}, stating that x can be decomposed

forwardly (if ∆ = F) or backwardly (if ∆ = B) into y and z.

A judgment j involves a state x iff x appears on the left of j. A structure is a
tuple S = (W,J,K) where W is a set of states, J a set of judgments about W
and K ⊆ J a subset of inactive judgments. A tableau T for a pure formula ϕ0

is an ordered, possibly infinite tree whose nodes are labeled with structures, the
root being labeled with the initial structure ({w0}, {w0 : ϕ0}, ∅) for some w0.
Successor nodes are constructed in accordance with the rules from Figs. 2, 3, 4,
5 and 6. The rules have the general form

X0

X1 | |Xℓ

C

where X0 is the set of premises, (Xk)k∈1....ℓ are the sets of conclusions, C is
the set of side conditions and ℓ > 0. The rules (�), (�‖1F), (�‖1B), (�‖0⊤)
and (�‖0⊥) are called universal. States denoted by n, n1, n2, n3 and n4 in the
conclusions must be fresh. A rule instantiation is applicable to a node η0 labeled
with S0 = (W0, J0,K0) if all the following conditions are met:

– the instantiation X0 of the set of premises is a subset of J0 \ K0,
– all side conditions’ instantiations are satisfied,
– if the rule is universal then for all k ∈ 1 ℓ, there is a judgment jk in X ′

ks
instantiation such that jk /∈ J0.

Fig. 2. Basic rules of L;?∗‖’s tableaux calculus

Fig. 3. Test rules of L;?∗‖’s tableaux calculus

Fig. 4. Sequence rules of L;?∗‖’s tableaux calculus

Fig. 5. Iteration rules of L;?∗‖’s tableaux calculus

Fig. 6. Parallel composition rules of L;?∗‖’s tableaux calculus

When applying a rule instantiation, the ℓ child nodes η1, , ηℓ of η0, labeled
with S1, ,Sℓ, are created such that Sk = (W0 ∪ Fk, J0 ∪ Xk,K0 ∪ Q) where
Fk is the set of fresh states corresponding to n, n1, n2, n3 or n4 in Xk, Xk is the
instantiation of Xk and Q = X0 except for the universal rules for which Q = ∅.

The size function in the side conditions is defined by:

size(ϕ?) = 0

size(a) = 1

size(α ; β) = size(α ‖ β) =

0 ifsize(α) = size(β) = 0

1 ifsize(α) = 1 or size(β) = 1

∗ otherwise

size(α∗) =

{

0 ifsize(α) = 0

∗ otherwise

The rules ensure that for any judgment (x, y) : α ∈ J , if size(α) = 0 then x = y
and if size(α) = 1 then x �= y. When size(α) = ∗, both cases must be considered.
For instance rule (♦∗) may be seen as the disjunction of the rules (♦1) and (♦0).
When a program α of size ∗ is considered as having size 0, it is implicitly replaced
by desiter(α). The function desiter : ΠPH −→ ΠPH substitutes each occurrence
of subprograms of the form α∗ with ⊤? The replacement is made explicit in the
right-hand side conclusion of rule (�‖0⊤) in order to enable the application of
rule (�‖0⊥) afterward. Obviously, if size(α) �= 1 then size (desiter (α)) = 0.

For judgments of the form (x, y, z) : ∆, we distinguish forward (∆ = F)
and backward (∆ = B) decompositions. The rules ensure that if (x, y, z) : ∆ ∈
J , (x′, y′, z′) : ∆′ ∈ J and y′ and z′ are reachable from y and z respectively,
then either (y, z) = (y′, z′) or ∆ = F and ∆′ = B. This property is used in
rules (�‖1F) and (�‖1B) to ensure that no new judgments about a state is added
after all successors of that state have been added (see Lemma 7 on page 12).
Rules (�‖1F) and (�‖1B) ensure that if x : [α ‖i β]ϕ ∈ J then for any state
y �= x reachable from x by α ‖i β, y : ϕ ∈ J . They make use of placeholders
and function G from Sect. 4. Similarly, rules (�‖0⊤) and (�‖0⊥) ensure that if
x : [α ‖i β]ϕ ∈ J then either x : ϕ ∈ J or x is not reachable from x by α ‖i β.
When size(α ‖i β) = ∗, since the rules (�‖1F) and (�‖0⊤) are both universal,
they could be both applied on the same judgment x : [α ‖i β]ϕ.

In a tableau, a maximal path from the root is called a branch. For any branch
B, we write WB (resp. JB) for the union of the W (resp. J) such that there exists
a node in B labeled with (W,J,K) for some J (resp. W) and K. A structure
S = (W,J,K) is inconsistent if there exists x ∈ W such that x : ⊥ ∈ J or both
x : ϕ ∈ J and x : ¬ϕ ∈ J for some ϕ ∈ ΦPH . A branch is open if its nodes
are all labeled with a consistent structure. A branch B is saturated iff for any
node η ∈ B labeled with S = (W,J,K) and any rule’s instantiation π applicable
on S, there exists a node η′ in B labeled with S ′ = (W ′, J ′,K ′) and such that
one of π′s conclusions sets is a subset of J ′. A branch B is demand-satisfied iff
for any node η ∈ B labeled with S = (W,J,K) and any judgment in J of the
form (x, y) : α∗ there is a node η′ ∈ B labeled with S ′ = (W ′, J ′,K ′) and a list
x0, , xm ∈ W ′ such that x0 = x, xm = y and for all i < m, (xi, xi+1) : α ∈ J ′.
A tableau is satisfying if it has an open saturated demand-satisfied branch. We
will prove that for any pure formula ϕ0, there exists a satisfying tableau for ϕ0

if and only if ϕ0 is satisfiable.

5.2 Soundness

We prove the soundness of the tableaux method by interpreting branches into a
satisfying model. The use of placeholders necessitates the selection of marking
functions to interpret judgments. We introduce the notion of twines to select
those marking functions. Intuitively, a twine corresponds to an equivalence class
of states by the transitive and symmetric closure of the relation obtained as the
union of the accessibility relation (by any program) and the relation linking two
states iff they are mergeable (by ⊳).

Formally, Let B be a branch from a tableau for ϕ0. The set Θ of twines of
B is defined as Θ = W 2

B ∪ {θ0} with θ0 not being a member of W 2
B. A twine

function t assigns a twine to each state in WB. The function t is constructed
from the root of B as follows:

1. If x is the unique state in the label of the root, then t(x) = θ0.
2. If x has been added by an application of a rule which did not add a judgment

of the form (z, w1, w2) : F (rules (♦1), (♦∗), (♦; 11), (♦; 1∗), (♦; ∗1), (♦; ∗∗)
and (♦∗ �=)) then t(x) = t(y), y being any state involved in the premises of
the rule instantiation. A careful analysis of the rules shows that the choice of
y does not matter, because whenever (y1, y2) : α ∈ JB then t(y1) = t(y2).

3. If x has been added by an application of a rule which did add a judgment of
the form (z, w1, w2) : F (rules (♦‖00), (♦‖0�), (♦‖ �0), (♦‖11), (♦‖1∗), (♦‖∗1)
and (♦‖ ∗ ∗)), then t(x) = (w1, w2).

The set Θ+ of active twines of B is the image of the twine function. For any
twine θ ∈ Θ+ \ {θ0} there exists a unique tuple (x,w1, w2) ∈ W 3

B such that
θ = (w1, w2) and (x,w1, w2) : F ∈ JB. In that case, we write ⊳θ for t(x).

Given a branch B with twine function t, a structure S = (W,J,K) labeling a
node in B and a model M′ = (W ′, R′,⊳′, V ′), a pair (f, g) is an interpretation of

S into M′ with respect to B if f is a function from W to W ′ and g a function from
Θ+ to BW ′ such that for all x, y, z ∈ W , x′, y′, z′ ∈ W ′, ϕ ∈ ΦPH , α ∈ ΠPH ,
∆ ∈ {F,B}, θ ∈ Θ+ \ {θ0} and i ∈ N:

x : ϕ ∈ J ⇒ M′, f(x), g (t(x)) �F ϕ (1)

(x, y) : α ∈ J ⇒ f(x)R′ (α)f(y) (2)

(x, x) : α ∈ J ⇒ f(x)R′ (desiter(α))f(x) (3)

(x, y) : α ∈ J, x �= y and size(α) = ∗ ⇒ (f(x), f(y)) /∈ R′(desiter(α)) (4)

(x, y, z) : ∆ ∈ J ⇒ f(x) ⊳′ (f(y), f(z)) (5)

x′ ⊳′ (y′, z′) ∧ y′ ∈ g(θ)(i, 1) ∧ z′ ∈ g(θ)(i, 2) ⇒ M′, x′, g(⊳θ) �F G(i) (6)

If there is such an interpretation, S is said to be interpretable in M′ with respect
to B. If the label of each node in B is interpretable in M′ with respect to B,
then B is interpretable in M′.

Obviously, interpretable branches are open and the rules preserve the inter-
pretability. By ordering the applicable rule instantiations in a queue, a strat-
egy for rule applications can be easily defined such that a saturated tableau is
obtained for all pure formulas. Then, to prove Proposition 2 below, it suffices to
prove the following lemma, which is done by selecting the interpretable branch
where the leftmost child of nodes on which rule (♦∗ �=) is applied is chosen
whenever possible.

Lemma 4. If ϕ0 is satisfiable and T is a tableau for ϕ0 in which all open

branches are saturated, then T has an open saturated demand-satisfied branch.

Proposition 2. If ϕ0 ∈ Φpure is satisfiable, there exists a tableaux for ϕ0 with

an open saturated demand-satisfied branch.

5.3 Completeness

We now consider a satisfying tableau T for ϕ0. We will construct a model satisfy-
ing ϕ0. Since T is satisfying, it has an open saturated demand-satisfied branch B.
The model M = (W,R, ⊳, V) and the marking function m are defined as follows:

W = WB

R(a) =
{

(x, y) ∈ W 2 | (x, y) : a ∈ JB

}

, ∀a ∈ Π0

⊳ =
{

(x, y, z) ∈ W 3 | ∃∆ ∈ {F,B}, (x, y, z) : ∆ ∈ JB

}

V (p) = {x ∈ W | x : p ∈ JB} , ∀p ∈ Φ0

m(i, j) = {x ∈ W | x : (i, j) ∈ JB} , ∀(i, j) ∈ N × {1, 2}

By construction of T , M is ⊳-deterministic. By induction on |ϕ| and |α|, the
following truth lemma can be proved.

Lemma 5. For all x, y ∈ W , ϕ ∈ ΦPH and α ∈ ΠPH ,

x : ϕ ∈ JB ⇒ M, x,m �F ϕ (7)

(x, y) : α ∈ JB ⇒ xR (α)y (8)

The proof of Lemma 5 necessitates various properties of function R:

– If xR (α ‖i β)y and x �= y, then there exists w1, w2, w3, w4 ∈ W such that
(x,w1, w2) : F ∈ JB, (y, w3, w4) : B ∈ JB, w1R (α)w3 and w2R (β)w4.

– For all x ∈ W , α, β ∈ ΠPH and i ∈ N, if xR (α ‖i β)x then there exists
w1, w2 ∈ W such that x ⊳ (w1, w2), w1R (α)w1 and w2R (β)w2.

– For all x ∈ W and α ∈ ΠPH , if xR (α)x then size(α) �= 1.
– For all x ∈ W and α ∈ ΠPH , if xR (α)x then xR (desiter(α))x.

Our completeness result immediately follows from Lemma 5.

Proposition 3. For any pure formula ϕ0, if there exists a satisfying tableau for

ϕ0, then ϕ0 is satisfiable.

6 Optimal Decision Procedure for L;?‖ Over C⊳-det

In this section we establish the complexity of the satisfiability problem of L;?‖

over C⊳-det. The fragment L;?‖ is the iteration-free fragment of L;?∗‖. Therefore,
we reuse the constructions from the previous sections. We write Π0,PH for the set
of iteration-free annotated programs, Φ0,PH for the set of iteration-free annotated
formulas and Φ0,pure for the set of iteration-free pure formulas. It can be easily
checked that for all ϕ0 ∈ Φ0,pure, FL(ϕ0) ⊆ Φ0,PH.

6.1 Semantic Tableaux Method

The rules of L;?‖’s tableaux calculus are the rules (�), (♦1), (♦0), (�?), (♦?),
(�;), (♦; 00), (♦; 11), (♦; 0�), (♦; �0), (�‖1F), (�‖1B), (�‖0⊤), (�‖0⊥), (♦‖00),
(♦‖0�), (♦‖ � 0) and (♦‖11) from Figs. 2, 3, 4 and 6 along with the rule (♦;D)
from Fig. 7. The rule (♦;D) is needed to ensure local saturation in the strategy
of Sect. 6.2. Using the same techniques as in Sect. 5, we can prove that for any
pure formula ϕ0 ∈ Φ0,pure, there exists a tableau for ϕ0 with an open saturated
branch if and only if ϕ0 is satisfiable.

Fig. 7. Additional rule for L;?‖’s tableaux calculus

Let FL+(ϕ0) = FL(ϕ0) ∪ {[α]⊥ |α ∈ SP(ϕ0)}. The following lemma can be
proved by induction on the length of the path from the root of the tableau to
the node η.

Lemma 6. Given any structure S = (W,J,K) labeling a node in a tableau

for ϕ0, for any judgment x : ϕ ∈ J , ϕ ∈ FL(ϕ0)[ϕ0][
+] and for any judgment

(x, y) : α ∈ J , α ∈ SP(ϕ0).

6.2 Optimal Decision Procedure

We will prove that the nondeterministic procedure Decision defined on the
next page solves the satisfiability problem of L;?‖ over C⊳-det in polynomial
space. Called with a pure formula ϕ0, this procedure constructs a branch of a
tableau for ϕ0 and returns SAT if this branch is open and saturated. In order
to reduce memory usage, the procedure ensures that after any application of an
instantiation π of the rules (♦1) and (♦‖00), no new judgments can be added
which involve only the states in π′s premises, see Lemma 7 below. A local rule is a
rule which is neither (♦1) nor (♦‖00). A structure is locally saturated iff no local
rule instantiations can be applied to it. A rule’s instantiation π is appropriate to

S and x iff π is applicable to S and either π is an instantiation of a local rule
or the instantiations of the premises involve only x.

Lemma 7. Let S = (W,J,K) be a locally saturated structure labeling a node η in

a branch of a tableau. For any descendent node η′ of η with label S ′ = (W ′, J ′,K ′)
and any judgment j ∈ J ′ involving only one state x ∈ W ′, if x ∈ W then j ∈ J .

Decision first creates the structure for the root node (line 1). Then it locally
saturates this structure without adding any new state (line 2–3). Finally it calls
the recursive Extend procedure and check whether it returns the empty struc-
ture. The empty structure is used by Extend as a marker for a closed branch.

Procedure 1. Decision

Input: A pure iteration-free formula ϕ0 ∈ Φ0,pure.
Output: SAT or UNKNOWN.
Data: A structure S = (W, J, K).

1 S ← ({w0}, {w0 : ϕ0}, ∅)
2 while there is a local rule’s instantiation π applicable to S do

3 S ← a nondeterministically chosen successor of S by π

4 S ← Extend(S, w0)
5 if W �= ∅ then return SAT
6 else return UNKNOWN

Procedure 2. Extend

Input: A locally saturated structure S = (W, J, K) and a state x ∈ W .
Output: A (possibly empty) structure Sf = (Wf , Jf , Kf).
Data: A set J0 of judgments and a structure S ′ = (W ′, J ′, K′).

7 J0 ← {j ∈ J | j involves only x}
8 S ′ ← (W, J0, K ∩ J0)

9 while there is a rule’s instantiation π appropriate to S ′ and x do

10 S ′ ← a nondeterministically chosen successor of S ′ by π

11 if S ′ is inconsistent then

12 Sf ← (∅, ∅, ∅)
13 else

14 Sf ← (W ′, J ∪ J ′, K ∪ K′)
15 foreach y ∈ W ′ \ W do

16 Sf ← Extend (Sf , y)

17 return Sf

Extend operates in two steps. Firstly, in the existential loop (lines 9–10), suc-
cessors of x are added and the structure is locally saturated. Secondly, in the
universal loop (lines 15–16), Extend is recursively called for each state created
by the existential loop. The following properties can be proved:

Lemma 8. 1. At each run of Extend, the existential loop adds a number of

new states bounded by a polynomial in |ϕ0|.
2. During a call to Decision(ϕ0), the recursion depth of the calls to Extend

is bounded by a polynomial in |ϕ0|.
3. Decision(ϕ0) returns SAT only if a saturated branch for ϕ0 has been con-

structed.

By Lemmas 2 and 6, the number of judgments added by the loop at lines 2–
3 is polynomial in |ϕ0|. Hence this loop terminates. By Lemma 8, the number
of new states added by the existential loop (lines 9–10) is polynomial in |ϕ0|.
Therefore, by Lemmas 2 and 6, the cardinality of J ′ is always bounded by a
polynomial in |ϕ0|. Hence the existential loop terminates. By Lemmas 8 and

Köning’s lemma, the execution tree of Extend is finite, hence the whole pro-
cedure terminates. Moreover, each call to Extend(S, x) needs to keep track of
the judgments involving only states in {x} ∪ (W ′ \ W) and the number of this
judgments is polynomial in |ϕ0|. Finally, by Lemma8, only a polynomial number
of such configurations have to be stored. Consequently,

Proposition 4. All executions of Decision(ϕ0) terminate and Decision can

be implemented using polynomial space.

Given a pure formula ϕ0 ∈ Φ0,pure, the set of executions of Decision(ϕ0)
corresponds to a collection Γ of tableaux for ϕ0 where each execution corre-
sponds to a branch of a tree. If ϕ0 is satisfiable, by soundness of the tableaux
method, there is an open branch in each tree of Γ . Since Decision returns
UNKOWN only when the corresponding branch is close, there is an execution
of Decision(ϕ0) returning SAT. Conversely, by Lemma8, if an execution of
Decision(ϕ0) returns SAT, the corresponding branch B is saturated. Since B is
open too, by completeness of the tableaux method, ϕ0 is satisfiable. As a result:

Proposition 5. The nondeterministic procedure Decision is a decision proce-

dure for the satisfiability problem of L;?‖ with respect to C⊳-det.

By Propositions 4 and 5 and Savitch’s Theorem, the satisfiability problem of
the fragment L;?‖ with respect to C⊳-det is in PSPACE. PSPACE-hardness is
given by the obvious embedding of the modal logic K. Hence:

Proposition 6. The satisfiability problem of the fragment L;?‖ over the class

C⊳-det is PSPACE-complete.

7 Conclusion and Future Works

We have given a complexity upper bound for the satisfiability of PRSPDL over
the class of all frames, a sound and complete tableaux method for the fragment
of PRSPDL without special programs interpreted over ⊳-deterministic frames
and an optimal decision procedure for an iteration-free fragment of PRSPDL
over ⊳-deterministic frames. Both our complexity results answer questions left
open in [2–4]. Moreover, we proved the addition of ⊳-deterministic parallel com-
position to PDL without choice and iteration does not increase its complexity.
We leave for future works to prove this interesting property for the full language.

Because of the characteristics PRSPDL shares with IPDL (for which there
is no tableaux method to date), our tableaux method has some peculiarities
borrowed from [16] (mainly compound programs as edge’s labels) which are
difficult to combine with the iteration construct. Hence, because of the rules (�∗)
and (♦∗ �=), our tableaux method for L;?∗‖ over C⊳-det does not terminate. But we
believe this tableaux method can be modified to become a decision procedure.
For instance, by adding dynamic blocking as in [13], it might be possible to
represent infinite saturated tableaux by finite unsaturated ones. A finite model

property would be helpful. The notion of twines and the Fischer-Ladner closure
introduced in this paper could be useful to prove this property.

In PDL, nondeterministic choice adds technical difficulties without changing
neither the expressive power nor the complexity of the logic. It has been omitted
in this paper for the sake of simplicity, leaving the study of PRSPDL with
nondeterministic choice for future works.

References

1. Abrahamson, K.: Modal logic of concurrent nondeterministic programs. In: Kahn,
G. (ed.) Semantics of Concurrent Computation. LNCS, vol. 70, pp. 21–33. Springer,
Heidelberg (1979)

2. Balbiani, P., Boudou, J.: Iteration-free PDL with storing, recovering and parallel
composition: a complete axiomatization, J. Logic Comput. (2015)

3. Balbiani, P., Tinchev, T.: Definability and computability for PRSPDL. In:
Advances in Modal Logic, pp. 16–33. College Publications (2014)

4. Benevides, M.R.F., de Freitas, R.P., Viana, J.P.: Propositional dynamic logic with
storing, recovering and parallel composition. ENTCS 269, 95–107 (2011)

5. Brochenin, R., Demri, S., Lozes, É.: Reasoning about sequences of memory states.
Ann. Pure Appl. Logic 161(3), 305–323 (2009)

6. Collinson, M., Pym, D.J.: Algebra and logic for resource-based systems modelling.
Math. Struct. Comput. Sci. 19(5), 959–1027 (2009)

7. Courtault, J.R., Galmiche, D.: A Modal BI logic for dynamic resource properties.
In: Artemov, S., Nerode, A. (eds.) LFCS 2013. LNCS, vol. 7734, pp. 134–148.
Springer, Heidelberg (2013)

8. Danecki, R.: Nondeterministic propositional dynamic logic with intersection is
decidable. In: Skowron, A. (ed.) Computation Theory. LNCS, vol. 208, pp. 34–
53. Springer, Heidelberg (1984)

9. De Giacomo, G., Massacci, F.: Combining deduction and model checking into
tableaux and algorithms for converse-PDL. Inf. Comput. 162(1–2), 117–137 (2000)

10. Demri, S., Deters, M.: Separation logics and modalities: a survey. J. Appl. Non-
Class. Logics 25(1), 50–99 (2015)

11. Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. J.
Comput. Syst. Sci. 18(2), 194–211 (1979)

12. Goré, R., Widmann, F.: An optimal on-the-fly tableau-based decision procedure
for PDL-satisfiability. In: Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663, pp.
437–452. Springer, Heidelberg (2009)

13. Horrocks, I., Sattler, U.: A description logic with transitive and inverse roles and
role hierarchies. J. Log. Comput. 9(3), 385–410 (1999)

14. Kurucz, Á., Németi, I., Sain, I., Simon, A.: Decidable and undecidable logics with
a binary modality. J. Logic Lang. Inf. 4(3), 191–206 (1995)

15. Lutz, C.: PDL with intersection and converse is decidable. In: Ong, L. (ed.) CSL
2005. LNCS, vol. 3634, pp. 413–427. Springer, Heidelberg (2005)

16. Massacci, F.: Decision procedures for expressive description logics with intersec-
tion, composition, converse of roles and role identity. In: IJCAI, pp. 193–198. Mor-
gan Kaufmann (2001)

17. Peleg, D.: Concurrent dynamic logic. J. ACM 34(2), 450–479 (1987)

18. Pratt, V.R.: A near-optimal method for reasoning about action. J. Comput. Syst.
Sci. 20(2), 231–254 (1980)

19. Pym, D.J.: The semantics and Proof Theory of the Logic of Bunched Implications.
Applied Logic Series, vol. 26. Kluwer Academic Publishers, Dordrecht (2002)

20. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
LICS, pp. 55–74. IEEE Computer Society (2002)

