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Abstract

We axiomatize the mono-agent logic of knowledge with public announcements and

converse public announcements. A special variant of our logic is determined by the

model of maximal ignorance wherein the agent considers all valuations of atomic

formulas possible.
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1 Introduction

Public Announcement Logic [15] models the effect of publicly observable events
on information states, [φ]+ψ standing for “after φ’s announcement, ψ is true”.
Now, suppose you want to go in the other direction, [φ]−ψ standing for “before
φ’s announcement, ψ was true”. Just as [φ]+ has a diamond-version noted
〈φ〉+, [φ]− also has a diamond-version which we note 〈φ〉−. Surely the relation
between public announcement and converse public announcement resembles
the behaviour of future and past constructs in temporal logic. Indeed, one
expects the validity of ψ → [φ]+〈φ〉−ψ and ψ → [φ]−〈φ〉+ψ. However, unlike
the announcement operation, the converse announcement operation is not de-
terministic: different states of information may lead to the same outcome state
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of information.
Dynamic epistemic logics with constructs to denote what was the case before
the executions of actions have been investigated in [1,18] where they are inter-
preted over history-based structures. See also [11,20]. In such structures, what
agents currently know are mere snapshots forming parts of a larger structure
that also contains possible prior and posterior states of information. These
states can then be accessed in some way. In [18], this access is realized with
the history-based structures of [14]. An actual state is accompanied by a list
of prior actions: going back in the past means removing the last event from
that history. This changed perspective then makes it possible to check what
was true before now. In [16,17], this history-based approach has also been gen-
eralized to cover non-public events.
In dynamic epistemic logics, fresh atomic formulas can be used to store the
values of formulas. This is useful, as the denotation of atomic formulas is con-
stant throughout action execution but the denotation of formulas is not. This
feature is used in the satisfiability preserving transformations demonstrating
complexity arguments in dynamic epistemic logic [12]. It is used as well for the
purpose of keeping denotations constant, for instance in [8] where the authors
model the announcement “I knew that you know the number pair” in the Sum-
and-Product riddle. Similarly, this technique is used to model “Do not turn
on the light if you have turned it on already in the past” in the “One hundred
prisoners and a light bulb” riddle [6].
As discussed above, the converse announcement operation is not deterministic
and has similarities with quantification: in a given model, a converse announce-
ment can be interpreted as one of the multifarious expansions of that model
satisfying φ. About quantification, two analogues come to mind: Arbitrary
Public Announcement Logic [2] and Refinement Modal Logic [4]. In Arbitrary
Public Announcement Logic, !+φ stands for “φ is true after any arbitrary
announcement”. This quantifies over all modally definable restrictions of the
actual information state whereas in converse announcements we quantify over
all expansions containing the actual information state. In Refinement Modal
Logic, !+φ means that φ is true in any structure that is a modal refinement
of the actual information state.
A less likely place to look for reasoning about the past is in the setting of Subset
Space Logic [5,13]. Apart from the epistemic modalities ✷ and ✸, which behave
like S5-modalities, we now also have the so-called effort modalities !+ and "+,
which behave like S4-modalities. A typical schema in Subset Space Logic is
"+

✷φ which stands for “after some effort, the agent knows that φ”. This logic
is interpreted on models consisting of a domain plus a set of “enabled” subsets
of the domain. A formula is true after some effort if there is an enabled subset
of the current set that satisfies it. In Subset Space Logics, converse !− and
"− effort modalities were also investigated [9]. In Subset Space Logics with
converse, we can now formalize statements like “before some effort, the agent
knew that φ” by "−

✷φ.
An appealing semantics for converse announcement of φ is that of truth in all



models of which the current model is the φ restriction. We did not manage
to axiomatize that logic. Instead, we chose a setting similar to that of Subset
Space Logic with converse: given a state-subset pair in a model, a formula ψ

is true before announcement of φ if ψ is true for all state-subset pairs in that
model whose subset component contains the corresponding component in the
given pair. This semantics comes at the price of losing some validities of the
previous semantics, such as ✷p → 〈p〉−✸¬p. However, we can recover some of
our desiderata in the largest subset space model: the model consisting of all
valuations and all subsets of that. One possible logic of “before announcement”
is then the special case of the theory of that model.
The section-by-section breakdown of the paper is as follows. In Sections 2
and 3, we present the syntax and the semantics of a mono-agent logic of knowl-
edge with public announcements and converse public announcements. The aim
of Section 4 is to demonstrate that the constructs [·]+ and [·]− cannot be elim-
inated from our language. In Section 5, we compare our mono-agent logic to
subset space logic. In Section 6, we give an axiomatization and in Sections 7
and 8, we prove its completeness. The purpose of Section 9 is to analyse public
announcements and converse public announcements in the largest subset space
model. Easy proofs have been omitted whereas some others can be found in
the Annex.

2 Syntax

Let V AR be a countable set of atomic formulas (with typical members p, q,
etc). The formulas are inductively defined as follows:

• φ,ψ ::= p | ⊥ | ¬φ | (φ ∨ ψ) | ✷φ | [φ]+ψ | [φ]−ψ.

We define the other Boolean constructs as usual. The formulas ✸φ, 〈φ〉+ψ
and 〈φ〉−ψ are obtained as the following abbreviations: ✸φ is ¬✷¬φ, 〈φ〉+ψ is
¬[φ]+¬ψ and 〈φ〉−ψ is ¬[φ]−¬ψ. For the collection of boxes, we propose the
following readings:

• ✷φ: “the agent considers it necessary according to her knowledge that φ”,

• [φ]+ψ: “every execution of the announcement φ that comes from the present
situation leads to a situation bearing ψ”,

• [φ]−ψ: “every execution of the announcement φ that leads to the present
situation comes from a situation bearing ψ”.

For the collection of diamonds, we propose the following readings:

• ✸φ: “the agent considers it possible according to her knowledge that φ”,

• 〈φ〉+ψ: “some execution of the announcement φ coming from the present
situation leads to a situation bearing ψ”,

• 〈φ〉−ψ: “some execution of the announcement φ leading to the present situ-
ation comes from a situation bearing ψ”.

The key point to note about the constructs [·]+ and [·]− is that they allow to
make modalities out of formulas. Our language can be used to reason about the



knowledge of some agent after and before announcements are executed. Let φ0

and φ1 respectively denote the formulas ¬φ and φ. We adopt the usual rules for
omission of the parentheses. Let (p1, p2, . . .) be a non-repeating enumeration
of V AR. Let k ∈ N. A k-formula is a formula whose atomic formulas form a
sublist of (p1, . . . , pk). A k-world is a formula of the form pa1

1 ∧ . . .∧ pak

k where
a1, . . . , ak ∈ {0, 1} and a k-step is a non-empty set of k-worlds. Obviously,

there exist exactly 2k k-worlds and there exist exactly 22
k

− 1 k-steps. A pair
(α, A) consisting of a k-world α and a k-step A such that α ∈ A is called a
k-tip. For all sets Γ of formulas, let

• ✷Γ = {φ : ✷φ ∈ Γ},

• [φ]+Γ = {ψ : [φ]+ψ ∈ Γ},

• [φ]−Γ = {ψ : [φ]−ψ ∈ Γ}.

The degree of a formula φ, in symbols deg(φ), is inductively defined as follows:

• deg(p) = 3,

• deg(⊥) = 3,

• deg(¬φ) = deg(φ),

• deg(φ∨ψ) = max{deg(φ), deg(ψ)},

• deg(✷φ) = deg(φ),

• deg([φ]+ψ) = deg(φ) + deg(ψ),

• deg([φ]−ψ) = deg(φ) + deg(ψ).

Let the size of a formula φ, in symbols size(φ), be the number of occurrences
of symbols it contains. For all finite sets Γ of formulas and for all formulas ψ,
the formulas

∨
Γ, ∇Γ and ∇ψΓ are defined by the following abbreviations:

•
∨
Γ ::=

∨
{φ : φ ∈ Γ},

• ∇Γ ::= ✷
∨

Γ ∧
∧
{✸φ : φ ∈ Γ},

• ∇ψΓ ::= ψ ∧✷(ψ →
∨
Γ) ∧

∧
{✸(ψ ∧ φ) : φ ∈ Γ}.

3 Semantics

A model is a triple of the form M = (W,X, V ) where W is a non-empty set
(with typical members x, y, etc), X is a non-empty set of non-empty subsets
of W (with typical members S, T , etc) and V is a function associating to each
p ∈ V AR a subset V (p) of W . Elements of W will be called worlds. Each of
them is an epistemic alternative to the real world: due to her lack of knowledge,
the agent is not able to distinguish between the real world and its epistemic
alternatives. Elements of X will be called steps. Each of them contains the
real world together with its epistemic alternatives at some moment of their
history. We shall say that a world-step pair (x, S) is a tip iff x ∈ S. Each tip
determines the real world and the current restriction of the model containing
the real world together with its epistemic alternatives. To flesh this out a little,
the universal relation in the step component of tips should be interpreted as a
contemporaneity relation between moments. As for the function V , it assigns to
all atomic formulas, the set of all M-worlds in which it holds. It will be called



valuation of M. The satisfiability of a formula φ in a model M = (W,X, V )
at tip (x, S), in symbols M, (x, S) |= φ, is inductively defined as follows:

• M, (x, S) |= p iff x ∈ V (p),

• M, (x, S) *|= ⊥,

• M, (x, S) |= ¬φ iff M, (x, S) *|= φ,

• M, (x, S) |= φ ∨ ψ iff M, (x, S) |= φ or M, (x, S) |= ψ,

• M, (x, S) |= ✷φ iff for all y ∈ S, M, (y, S) |= φ,

• M, (x, S) |= [φ]+ψ iff for all T ∈ X, if x ∈ T and T = {z ∈ S :
M, (z, S) |= φ} then M, (x, T ) |= ψ,

• M, (x, S) |= [φ]−ψ iff for all T ∈ X, if x ∈ T and S = {z ∈ T :
M, (z, T ) |= φ} then M, (x, T ) |= ψ.

Let us reflect upon these truth conditions. First, the satisfiability of an atomic
formula does not depend on the step components of tips: it only depends on
their world components. This indicates that the concept of validity that we
will define at the end of this section will give rise to a non-normal set of valid
formulas. Second, the Boolean constructs are classically interpreted. Third,
the ✷ construct behaves like a universal modality in the step component of
tips. This makes it similar to the epistemic construct in subset space logic.
Fourth, the [·]+ construct behaves like an announcement modality: if a tip
satisfies φ then [φ]+ further restricts the model to those epistemic alternatives
in the step component of the tip satisfying φ. As a result, the announcement
modality [·]+ is always deterministic. The reader may have understood from
the definition that a true announcement is executable in a tip iff the above-
mentioned restriction of the model is itself a step. With the concept of freedom
that we will define at the end of this section, we will concentrate on the class
of all models in which true announcements are always executable. Fifth, the
[·]− construct behaves like the converse of the announcement modality [·]+.
Seeing that the above-mentioned restriction of the model to those epistemic
alternatives in the step components of differents tips satisfying an announced
formula may produce the same result, there is no reason to expect the [·]−

construct to be deterministic. In any case, obviously,

• M, (x, S) |= ✸φ iff there exists y ∈ S such that M, (y, S) |= φ,

• M, (x, S) |= 〈φ〉+ψ iff there exists T ∈ X such that x ∈ T , T = {z ∈ S :
M, (z, S) |= φ} and M, (x, T ) |= ψ,

• M, (x, S) |= 〈φ〉−ψ iff there exists T ∈ X such that x ∈ T , S = {z ∈
T : M, (z, T ) |= φ} and M, (x, T ) |= ψ.

Let RM
✷

be the binary relation between tips such that (x, S) RM
✷

(y, T ) iff
S = T . Obviously, RM

✷
is an equivalence relation between tips such that:

M, (x, S) |= ✷φ iff for all tips (y, T ), if (x, S) RM
✷

(y, T ) then M, (y, T ) |=
φ. Let RM

[φ]+ and RM

[φ]− be the binary relations between tips such that

(i) (x, S) RM

[φ]+ (y, T ) iff x = y and T = {z ∈ S : M, (z, S) |= φ} and



(ii) (x, S) RM

[φ]− (y, T ) iff x = y and S = {z ∈ T : M, (z, T ) |= φ}. Ob-

viously, RM

[φ]+ and RM

[φ]− are mutually converse relations between tips such

that: (i) M, (x, S) |= [φ]+ψ iff for all tips (y, T ), if (x, S) RM

[φ]+ (y, T ) then

M, (y, T ) |= φ, (ii) M, (x, S) |= [φ]−ψ iff for all tips (y, T ), if (x, S) RM

[φ]− (y, T )

then M, (y, T ) |= φ. Moreover, the binary relation RM

[φ]+ is always de-

terministic. Remark that RM

[⊤]+ and RM

[⊤]− are equal to the identity rela-

tion between tips. Let ≡M be the transitive closure of
⋃
{RM

[φ]+ : φ is a

formula} ∪
⋃
{RM

[φ]− : φ is a formula}. Obviously, ≡M is an equivalence rela-

tion between tips. Let ≡M
✷

be the transitive closure of RM
✷
∪ ≡M. Obviously,

≡M
✷

is an equivalence relation between tips. Moreover, ≡M
✷

is coarser than
RM

✷
and ≡M. We shall say that a formula φ is globally true in a model M,

in symbols M |= φ, if φ is satisfied at all tips in M. There are two ways for
the announcement of φ to fail in a model M = (W,X, V ) at tip (x, S). One
is for φ to be false at (x, S) (which matches the traditional semantics of an-
nouncements). The other is for the set of worlds in S for which φ is true not
to be in X. A model M = (W,X, V ) is said to be free if for all formulas φ

and for all tips (x, S), if M, (x, S) |= φ then there exists T ∈ X such that
x ∈ T and T = {z ∈ S : M, (z, S) |= φ}. Obviously, in free models,
true announcements are executable. Moreover, any model M = (W,X, V ) in
which X is closed under non-empty subsets is free. However, note that, in a
free model M = (W,X, V ), X is not necessarily closed under subsets.

Lemma 3.1 Let M be a model. M is free iff for all formulas φ, M |= φ →
〈φ〉+⊤.

A formula φ is said to be valid, in symbols |= φ, if φ is globally true in all
free models. In Sections 6–8, we will give a complete axiomatization of the set
of all valid formulas. In the meantime, it is well worth noting some interesting
properties.

Lemma 3.2 The following formulas are valid:

• [φ]+p ↔ (φ → p),

• [φ]+⊥ ↔ ¬φ,

• [φ]+¬ψ ↔ (φ → ¬[φ]+ψ),

• [φ]+(ψ ∨ χ) ↔ [φ]+ψ ∨ [φ]+χ,

• [φ]+#ψ ↔ (φ → #[φ]+ψ).

Lemma 3.3 Let φ be a formula. If φ is {[·]+, [·]−}-free then |= φ iff φ ∈ S5.

Lemma 3.4 Let φ be a formula. If φ is [·]−-free then |= φ iff φ ∈ PAL.

4 Expressivity

We tackle the problem of the definability of [·]+ and [·]− in the class of all free
models.

Proposition 4.1 (i) [·]+ cannot be eliminated from the language in the class

of all free models.



(ii) [·]− cannot be eliminated from the language in the class of all free models.

Proof. (1) Suppose [·]+ can be eliminated from the language in the class
of all free models. Hence, there exists a formula φ(p, q) in ✷ and [·]−

such that (∗) for all free models M = (W,X, V ) and for all tips (x, S),
M, (x, S) |= 〈p〉+〈q〉−✸(p ∧ ¬q) iff M, (x, S) |= φ(p, q). Let M = (W,X, V )
and M′ = (W ′, X ′, V ′) be the models such that W = W ′ = {x, y, z}, X =
{{x}, {y}, {z}, {x, y}, {y, z}}, X ′ = {{x}, {y}, {z}, {x, y}}, V (p) = V ′(p) =
{y, z} and V (q) = V ′(q) = {y}. Obviously, M and M′ are free. Moreover,
M, (y, {x, y}) |= 〈p〉+〈q〉−✸(p ∧ ¬q) and M′, (y, {x, y}) *|= 〈p〉+〈q〉−✸(p ∧ ¬q).
By (∗), M, (y, {x, y}) |= φ(p, q) and M′, (y, {x, y}) *|= φ(p, q). Nevertheless,
a proof by induction, based on the function size(·) defined in Section 2,
would lead to the conclusion that for all formulas ψ(p, q) in ✷ and [·]−,
M, (y, {x, y}) |= ψ(p, q) iff M′, (y, {x, y}) |= ψ(p, q).
(2) Suppose [·]− can be eliminated from the language in the class of all free
models. Hence, there exists a formula φ(p, q) in ✷ and [·]+ such that (∗) for
all free models M = (W,X, V ) and for all tips (x, S), M, (x, S) |= 〈p〉−✸q

iff M, (x, S) |= φ(p, q). Let M = (W,X, V ) and M′ = (W ′, X ′, V ′) be the
models such that W = W ′ = {x, y}, X = {{x}, {y}, {x, y}}, X ′ = {{x}, {y}},
V (p) = V ′(p) = {x} and V (q) = V ′(q) = {y}. Obviously, M and M′ are
free. Moreover, M, (x, {x}) |= 〈p〉−✸q and M′, (x, {x}) *|= 〈p〉−✸q. By (∗),
M, (x, {x}) |= φ(p, q) and M′, (x, {x}) *|= φ(p, q). Nevertheless, a proof by
induction, based on the function size(·) defined in Section 2, would lead to the
conclusion that for all formulas ψ(p, q) in ✷ and [·]+, M, (x, {x}) |= ψ(p, q) iff
M′, (x, {x}) |= ψ(p, q). ✷

Proposition 4.1 implies that the constructs [·]+ and [·]− cannot be elimi-
nated from our language.

5 Relationships with subset space logic

Let the language be extended with the constructs !+ and !− with diamond-
versions "+ and "− and let the truth-conditions of formulas !+φ and !−φ in
model M = (W,X, V ) at tip (x, S) be defined as follows:

• M, (x, S) |= !+φ iff for all T ∈ X, if x ∈ T and T ⊆ S thenM, (x, T ) |= φ,

• M, (x, S) |= !−ψ iff for all T ∈ X, if x ∈ T and S ⊆ T thenM, (x, T ) |= φ.

Obviously, !+ is the so-called effort modality of Subset Space Logic [5,13] and
!− is the converse effort modality introduced by Heinemann [9].

Proposition 5.1 !+ and !− cannot be both eliminated from the language in

the class of all models.

Proof. Suppose !+ and !− can be both eliminated from the language in
the class of all models. Hence, there exists a formula φ(p, q) in ✷, [·]+ and
[·]− such that (∗) for all models M = (W,X, V ) and for all tips (x, S),
M, (x, S) |= "−

✸(p ∧ "+"−
✸q) iff M, (x, S) |= φ(p, q). Let M = (W,X, V )

and M′ = (W ′, X ′, V ′) be the models such that W = W ′ = {x, y, z, t}, X =



{{x}, {z}, {z, t}, {x, y, z}}, X ′ = {{x}, {z, t}, {x, y, z}}, V (p) = V ′(p) = {y, z}
and V (q) = V ′(q) = {t}. Obviously, M, (x, {x}) |= "−

✸(p ∧ "+"−
✸q)

and M′, (x, {x}) *|= "−
✸(p ∧ "+"−

✸q). By (∗), M, (x, {x}) |= φ(p, q) and
M′, (x, {x}) *|= φ(p, q). Nevertheless, a proof by induction, based on the func-
tion size(·) defined in Section 2, would lead to the conclusion that for all formu-
las ψ(p, q) in ✷, [·]+ and [·]−, M, (x, {x}) |= ψ(p, q) iff M′, (x, {x}) |= ψ(p, q).✷

Proposition 5.1 implies that the constructs !+ and !− of subset space
logics cannot be both defined in our language.

6 Axiomatization

Let PAL± be the least set of formulas containing the following axioms and
closed under the following inference rules:

(A1) all instances of CPL,

(A2) ✷(φ → ψ) → (✷φ → ✷ψ),

(A3) ✷φ → φ,

(A4) ✸φ → ✷✸φ,

(A5) ✷φ → ✷✷φ,

(A6) [φ]+(ψ → χ) → ([φ]+ψ → [φ]+χ),

(A7) [φ]−(ψ → χ) → ([φ]−ψ → [φ]−χ),

(A8) ψ → [φ]+〈φ〉−ψ,

(A9) ψ → [φ]−〈φ〉+ψ,

(A10) 〈φ〉+ψ → [φ]+ψ,

(A11) ¬φ → [φ]+⊥,

(A12) [φ]+⊥ → ¬φ,

(A13) [⊤]+φ → φ,

(A14) p → [φ]+p,

(A15) ¬p → [φ]+¬p,

(A16) 〈φ〉+✷ψ → ✷[φ]+ψ,

(A17) ✷[φ]+ψ → [φ]+✷ψ,

(R1)
φ, φ→ψ

ψ
,

(R2)
φ
✷φ

,

(R3)
ψ

[φ]+ψ
,

(R4)
ψ

[φ]−ψ
.

We briefly explain the importance of the above axioms and inference rules:

• (A1) and (R1) are all we need to prove Lindenbaum Lemma,

• (A2) and (R2) are all we need to prove the ✸-Lemma,

• (A3)–(A5) are all we need to prove that ✷ gives rise to an equivalence relation
between maximal consistent sets of formulas,

• (A6), (A7), (R3) and (R4) are all we need to prove the 〈φ〉±-Lemma,

• (A8) and (A9) are all we need to prove that [φ]+ and [φ]− give rise to mutually
converse relations between maximal consistent sets of formulas,

• (A10) means that announcements are deterministic,

• (A11) and (A12) mean that announcements are executable iff they are true,

• (A13) means, together with (A10), that announcing ⊤ has no effect at all,

• (A14) and (A15) mean that announcements have no effect on the valuation,

• (A16) and (A17) relate what becomes known after an announcement to what
was known before it.



As the reader can see, (A7)–(A9) are the only axioms explicitly concerning the
[·]− construct. About axioms (A10)–(A17), seeing that, apparently, they are
less innocent than axioms (A7)–(A9), from now on, we will indicate their use.

Lemma 6.1 The following formulas are in PAL±:

• φ ∧ [φ]+ψ → 〈φ〉+ψ,

• p → [φ]−p,

• [φ]+p → (φ → p),

• [φ]+¬ψ → (φ → ¬[φ]+ψ),

• [φ]+(ψ ∨ χ) → [φ]+ψ ∨ [φ]+χ.

Proposition 6.2 (Soundness) Let φ be a formula. If φ ∈ PAL± then |= φ.

Proof. It suffices to verify that axioms (A1)–(A17) are valid and inference rules
(R1)–(R4) are validity-preserving. ✷

7 Canonical model

A set Γ of formulas is said to be consistent iff for all n ∈ N and for all
φ1, . . . ,φn ∈ Γ, ¬(φ1 ∧ . . . ∧ φn) *∈ PAL±. We shall say that a set Γ of
formulas is maximal iff for all formulas φ, φ ∈ Γ or ¬φ ∈ Γ. Let Uc be the
set of all maximal consistent sets of formulas (with typical members Γ, ∆, etc).

Lemma 7.1 (Lindenbaum Lemma) Let Γ be a set of formulas. If Γ is

consistent then there exists a maximal consistent set ∆ of formulas such that

Γ ⊆ ∆.

Let R✷ be the binary relation on Uc such that Γ R✷ ∆ iff ✷Γ ⊆ ∆.

Lemma 7.2 (✸-Lemma) Let φ be a formula. Let Γ ∈ Uc. If ✸φ ∈ Γ then

there exists ∆ ∈ Uc such that Γ R✷ ∆ and φ ∈ ∆.

Lemma 7.3 R✷ is an equivalence relation on Uc.

For all formulas φ, let R[φ]+ and R[φ]− be the binary relations on Uc such
that (i) Γ R[φ]+ ∆ iff [φ]+Γ ⊆ ∆ and (ii) Γ R[φ]− ∆ iff [φ]−Γ ⊆ ∆.

Lemma 7.4 (〈φ〉±-Lemma) Let φ be a formula. Let Γ ∈ Uc.

• If 〈φ〉+ψ ∈ Γ then there exists ∆ ∈ Uc such that Γ R[φ]+ ∆ and ψ ∈ ∆,

• if 〈φ〉−ψ ∈ Γ then there exists ∆ ∈ Uc such that Γ R[φ]− ∆ and ψ ∈ ∆.

Lemma 7.5 Let φ be a formula. R[φ]+ and R[φ]− are mutually converse on

Uc.

Lemma 7.6 Let φ be a formula. Let Γ,∆ ∈ Uc. If Γ R[φ]+ ∆ then φ ∈ Γ

and [φ]+Γ = ∆.

Lemma 7.7 R[⊤]+ and R[⊤]− are equal to the identity relation on Uc.

Let ≡ be the transitive closure of
⋃
{R[φ]+ : φ is a formula}∪

⋃
{R[φ]− : φ

is a formula}.

Lemma 7.8 ≡ is an equivalence relation on Uc.



The equivalence class of Γ ∈ Uc modulo ≡ will be simply noted |Γ|. Let
≡✷ be the transitive closure of R✷∪ ≡.

Lemma 7.9 ≡✷ is an equivalence relation on Uc. Moreover, ≡✷ is coarser

than R✷ and ≡.

Proposition 7.10 Let Γ,∆,Λ,Θ ∈ Uc. Let φ be a formula. If ✷Γ ⊆ ∆,

[φ]+Γ ⊆ Λ and [φ]+∆ ⊆ Θ then ✷Λ ⊆ Θ.

Proof. Suppose ✷Γ ⊆ ∆, [φ]+Γ ⊆ Λ and [φ]+∆ ⊆ Θ. Suppose ✷Λ *⊆ Θ.
Let ψ be a formula such that ψ ∈ ✷Λ and ψ *∈ Θ. Hence, ✷ψ ∈ Λ.
Since [φ]+Γ ⊆ Λ, therefore 〈φ〉+✷ψ ∈ Γ. Using (A16), ✷[φ]

+ψ ∈ Γ. Since
✷Γ ⊆ ∆, therefore [φ]+ψ ∈ ∆. Since [φ]+∆ ⊆ Θ, therefore ψ ∈ Θ: a
contradiction. Thus, ✷Λ ⊆ Θ. ✷

Proposition 7.11 Let Γ,∆,Λ ∈ Uc. Let φ be a formula. If [φ]+Γ ⊆ ∆ and

✷∆ ⊆ Λ then there exists Θ ∈ Uc such that ✷Γ ⊆ Θ and [φ]+Θ ⊆ Λ.

Proof. Suppose [φ]+Γ ⊆ ∆ and ✷∆ ⊆ Λ. Suppose ✷Γ∪{〈φ〉+ϕ′ : ϕ′ ∈ Λ}
is not consistent. Consequently, there exist ϕ1, . . . ,ϕm ∈ ✷Γ and there exist
ϕ′
1, . . . ,ϕ

′
n ∈ Λ such that ¬(ϕ1∧ . . .∧ϕm∧〈φ〉+ϕ′

1∧ . . .∧〈φ〉+ϕ′
n) ∈ PAL±.

Hence, ϕ1 ∧ . . . ∧ ϕm → [φ]+¬(ϕ′
1 ∧ . . . ∧ ϕ′

n) ∈ PAL±. Thus, ✷(ϕ1 ∧ . . . ∧
ϕm) → ✷[φ]+¬(ϕ′

1 ∧ . . . ∧ ϕ′
n) ∈ PAL±. Since ϕ1, . . . ,ϕm ∈ ✷Γ, therefore

✷(ϕ1∧. . .∧ϕm) ∈ Γ. Since ✷(ϕ1∧. . .∧ϕm) → ✷[φ]+¬(ϕ′
1∧. . .∧ϕ

′
n) ∈ PAL±,

therefore ✷[φ]+¬(ϕ′
1∧ . . .∧ϕ′

n) ∈ Γ. Using (A17), [φ]
+
✷¬(ϕ′

1∧ . . .∧ϕ′
n) ∈ Γ.

Since [φ]+Γ ⊆ ∆, therefore ✷¬(ϕ′
1 ∧ . . . ∧ ϕ′

n) ∈ ∆. Since ✷∆ ⊆ Λ,
therefore ¬(ϕ′

1 ∧ . . . ∧ ϕ′
n) ∈ Λ. Consequently, ϕ′

1 *∈ Λ or . . . or ϕ′
n *∈ Λ: a

contradiction. Hence, ✷Γ ∪ {〈φ〉+ϕ′ : ϕ′ ∈ Λ} is consistent. Let Θ ∈ Uc be
such that ✷Γ ∪ {〈φ〉+ϕ′ : ϕ′ ∈ Λ} ⊆ Θ. Thus, ✷Γ ⊆ Θ and [φ]+Θ ⊆ Λ.✷

For all Γ0 ∈ Uc, let MΓ0
= (WΓ0

, XΓ0
, VΓ0

) be the model such that
WΓ0

= {|Γ| : Γ0 ≡✷ Γ}, XΓ0
= {S✷(Γ) : Γ0 ≡✷ Γ} where S✷(Γ) =

{|∆| : Γ R✷ ∆} and VΓ0
(p) = {|Γ| : Γ0 ≡✷ Γ and p ∈ Γ}. For all

Γ0 ∈ Uc, MΓ0
will be called Γ0-canonical model. Each maximal consistent

set of formulas equivalent with Γ0 modulo ≡✷ should be seen as a moment
in the history of a world. If two of them are different but equivalent modulo
≡, this means that they correspond to different moments in the history of the
same world. For this reason, MΓ0

-worlds are equivalence classes modulo ≡
of maximal consistent sets of formulas equivalent with Γ0 modulo ≡✷. As for
MΓ0

-steps, each of them is determined by a moment in the history of a world
and consists of the set of all MΓ0

-worlds that are equivalent with this moment
modulo R✷. The thing is that one should understand R✷ as an equivalence
relation of contemporaneity between moments. Concerning theMΓ0

-valuation,
as expected, it associates to each atomic formula the set of all MΓ0

-worlds that
contain a moment containing the atomic formula.

8 Truth Lemma

For an arbitrary Γ0 ∈ Uc, let P be the set of all formulas φ such that for all
Γ,∆ ∈ Uc, if Γ0 ≡✷ Γ, Γ0 ≡✷ ∆ and |Γ| ∈ S✷(∆) then the 3 following



conditions C1–C3 are equivalent:

(C1) MΓ0
, (|Γ|, S✷(∆)) |= φ,

(C2) there exists Λ ∈ Uc such that Γ ≡ Λ, ∆ R✷ Λ and φ ∈ Λ,

(C3) for all Λ′ ∈ Uc, if Γ ≡ Λ′ and ∆ R✷ Λ′ then φ ∈ Λ′.

Proposition 8.1 Let ψ ∈ P . Let ∆ ∈ Uc. Let T = {|Π| ∈ S✷(∆) :
MΓ0

, (|Π|, S✷(∆)) |= ψ}. Let Σ,Λ ∈ Uc. If ∆ R✷ Σ, ψ ∈ Σ and [ψ]+Σ = Λ

then T = S✷(Λ).

Proof. Suppose ∆ R✷ Σ, ψ ∈ Σ and [ψ]+Σ = Λ. Let Π ∈ Uc.
Suppose |Π| ∈ T . Hence, |Π| ∈ S✷(∆) and MΓ0

, (|Π|, S✷(∆)) |= ψ. Let
Π′ ∈ Uc be such that Π ≡ Π′, ∆ R✷ Π′ and ψ ∈ Π′. Such Π′ ∈ Uc

exists because ψ ∈ P . Suppose ✷Λ *⊆ [ψ]+Π′. Let ϕ be a formula such that
ϕ ∈ ✷Λ and ϕ *∈ [ψ]+Π′. Thus, ✷ϕ ∈ Λ and [ψ]+ϕ *∈ Π′. Since [ψ]+Σ = Λ,
therefore ✷ϕ ∈ [ψ]+Σ. Consequently, [ψ]+✷ϕ ∈ Σ. By Lemma 6.1, since
ψ ∈ Σ, therefore 〈ψ〉+✷ϕ ∈ Σ. Using (A16), ✷[ψ]

+ϕ ∈ Σ. Since ∆ R✷ Σ

and ∆ R✷ Π′, therefore Σ R✷ Π′. Since ✷[ψ]+ϕ ∈ Σ, therefore [ψ]+ϕ ∈ Π′:
a contradiction. Hence, ✷Λ ⊆ [ψ]+Π′. Thus, Λ R✷ [ψ]+Π′. Since Π ≡ Π′,
therefore Π ≡ [ψ]+Π′. Since Λ R✷ [ψ]+Π′, therefore |Π| ∈ S✷(Λ).
Suppose |Π| ∈ S✷(Λ). Let Π′ ∈ Uc be such that Π ≡ Π′ and Λ R✷ Π′.
By Proposition 7.11, since [ψ]+Σ = Λ, let Θ′ ∈ Uc be such that Σ R✷ Θ′

and Θ′ R[ψ]+ Π′. Since ∆ R✷ Σ, therefore ∆ R✷ Θ′. Since Π ≡ Π′ and
Θ′ R[ψ]+ Π′, therefore Π ≡ Θ′. Since ∆ R✷ Θ′, therefore |Π| ∈ S✷(∆). By
Lemma 7.6, since Θ′ R[ψ]+ Π′, therefore ψ ∈ Θ′. Since Π ≡ Θ′, ∆ R✷ Θ′

and ψ ∈ P , therefore MΓ0
, (|Π|, S✷(∆)) |= ψ. Consequently, |Π| ∈ T . ✷

Proposition 8.2 (Truth Lemma) For all formulas φ, φ ∈ P .

Proof. The proof is done by induction, based on the function size(·) defined in
Section 2. Let φ be a formula such that for all formulas ψ, if size(ψ) < size(φ)
then ψ ∈ P . We demonstrate φ ∈ P . Let Γ,∆ ∈ Uc be such that Γ0 ≡✷ Γ,
Γ0 ≡✷ ∆ and |Γ| ∈ S✷(∆). We demonstrate the 3 above conditions C1–C3

are equivalent. Let Θ ∈ Uc be such that Γ ≡ Θ and ∆ R✷ Θ. We have to
consider the following 7 cases: φ = p, φ = ⊥, φ = ¬ψ, φ = ψ ∨ χ, φ = ✷ψ,
φ = [ψ]+χ and φ = [ψ]−χ. For the sake of brevity, we only present the most
difficult of them, the case φ = [ψ]−χ. The cases φ = ✷ψ and φ = [ψ]+χ are
presented in the Annex.
Case φ = [ψ]−χ. Since size(ψ) < size(φ) and size(χ) < size(φ), therefore
ψ ∈ P and χ ∈ P .
(C1 ⇒ C2). Suppose MΓ0

, (|Γ|, S✷(∆)) |= [ψ]−χ. Suppose [ψ]−χ *∈ Θ. By
Lemma 7.4, let Λ ∈ Uc be such that Θ R[ψ]− Λ and χ *∈ Λ. By Lemma 7.6,
ψ ∈ Λ and [ψ]+Λ = Θ. Since Γ ≡ Θ and Θ R[ψ]− Λ, therefore Γ ≡ Λ. Let
T = {|Π| ∈ S✷(Λ) : MΓ0

, (|Π|, S✷(Λ)) |= ψ}. By Proposition 8.1, since ψ ∈
Λ and [ψ]+Λ = Θ, therefore T = S✷(Θ). Since ∆ R✷ Θ, therefore T = S✷(∆).
Since Γ ≡ Λ, therefore |Γ| ∈ S✷(Λ). Since MΓ0

, (|Γ|, S✷(∆)) |= [ψ]−χ and
T = S✷(∆), therefore MΓ0

, (|Γ|, S✷(Λ)) |= χ. Since Γ ≡ Λ and χ ∈ P ,
therefore χ ∈ Λ: a contradiction. Thus, [ψ]−χ ∈ Θ.



(C2 ⇒ C3). Suppose Λ ∈ Uc is such that Γ ≡ Λ, ∆ R✷ Λ and [ψ]−χ ∈ Λ.
Let Λ′ ∈ Uc be such that Γ ≡ Λ′ and ∆ R✷ Λ′. Suppose [ψ]−χ *∈ Λ′.
By Lemma 7.4, let Λ′′ ∈ Uc be such that Λ′ R[ψ]− Λ′′ and χ *∈ Λ′′. By
Lemma 7.6, ψ ∈ Λ′′ and [ψ]+Λ′′ = Λ′. Since ∆ R✷ Λ and ∆ R✷ Λ′, therefore
Λ′ R✷ Λ. Since Λ′′ R[ψ]+ Λ′, therefore by Proposition 7.11, let Λ′′′ ∈ Uc be
such that Λ′′ R✷ Λ′′′ and Λ′′′ R[ψ]+ Λ. Since [ψ]−χ ∈ Λ, therefore χ ∈ Λ′′′.
Since Γ ≡ Λ, Γ ≡ Λ′, Λ′ R[ψ]− Λ′′ and Λ′′′ R[ψ]+ Λ, therefore Λ′′′ ≡ Λ′′.
Since Λ′′ R✷ Λ′′′, χ ∈ Λ′′′ and χ ∈ P , therefore χ ∈ Λ′′: a contradiction.
Hence, [ψ]−χ ∈ Λ′.
(C3 ⇒ C1). Suppose for all Λ

′ ∈ Uc, if Γ ≡ Λ′ and∆ R✷ Λ′ then [ψ]−χ ∈ Λ′.
Suppose MΓ0

, (|Γ|, S✷(∆)) *|= [ψ]−χ. Hence, there exists T ∈ XΓ0
such that

|Γ| ∈ T , S✷(∆) = {|Π| ∈ T : MΓ0
, (|Π|, T |= ψ} and MΓ0

, (|Γ|, T ) *|= χ. Let
∆′ ∈ Uc be such that Γ0 ≡✷ ∆′ and T = S✷(∆

′). Since Γ ≡ Θ, ∆ R✷ Θ

and for all Λ′ ∈ Uc, if Γ ≡ Λ′ and ∆ R✷ Λ′ then [ψ]−χ ∈ Λ′, therefore
[ψ]−χ ∈ Θ. Since |Γ| ∈ T , S✷(∆) = {|Π| ∈ T : MΓ0

, (|Π|, T |= ψ},
MΓ0

, (|Γ|, T ) *|= χ and T = S✷(∆
′), therefore |Γ| ∈ S✷(∆

′), S✷(∆) = {|Π| ∈
S✷(∆

′) : MΓ0
, (|Π|, S✷(∆

′) |= ψ} and MΓ0
, (|Γ|, S✷(∆

′)) *|= χ. Let Θ′ ∈ Uc

be such that Γ ≡ Θ′, ∆′ R✷ Θ′ and χ *∈ Θ′. Such Θ′ ∈ Uc exists
because χ ∈ P . Since |Γ| ∈ S✷(∆) and S✷(∆) = {|Π| ∈ S✷(∆

′) :
MΓ0

, (|Π|, S✷(∆
′) |= ψ}, therefore MΓ0

, (|Γ|, S✷(∆
′) |= ψ. Since Γ ≡ Θ′,

∆′ R✷ Θ′ and ψ ∈ P , therefore ψ ∈ Θ′. Let R
ψ
✷(∆

′) be the set of all
Π′ ∈ R✷(∆

′) such that ψ ∈ Π′. Since ∆′ R✷ Θ′ and ψ ∈ Θ′, therefore

Θ′ ∈ R
ψ
✷(∆

′). Since Γ ≡ Θ and Γ ≡ Θ′, therefore Θ ≡ Θ′. Let Tri be the
set of all triples of the form (d,m,ϕ) where d ∈ N, m ∈ N and ϕ is a formula.
Let Q be the set of all (d,m,ϕ) ∈ Tri such that for all formulas ϕ1, . . . ,ϕm,
if (deg(ϕ1) · . . . · deg(ϕm)) + deg(ϕ) ≤ d then for all s1, . . . , sm ∈ {+,−}, for

all Π′ ∈ R
ψ
✷(∆

′) and for all Π ∈ R✷(∆), if Π′ ≡ Π then the 2 following
conditions hold:

(D1) for all Π′
1, . . . ,Π

′
m ∈ Uc, if [ψ]+Π′ R[ϕ1]s1 Π′

1, Π′
1 R[ϕ2]s2 Π′

2, . . .,
Π′

m−1 R[ϕm]sm Π′
m then there exist Π1, . . . ,Πm ∈ Uc such that Π R[ϕ1]s1 Π1,

Π1 R[ϕ2]s2 Π2, . . ., Πm−1 R[ϕm]sm Πm and if ϕ ∈ Π′
m then ϕ ∈ Πm,

(D2) for all Π1, . . . ,Πm ∈ Uc, if Π R[ϕ1]s1 Π1, Π1 R[ϕ2]s2 Π2, . . .,
Πm−1 R[ϕm]sm Πm then there exist Π′

1, . . . ,Π
′
m ∈ Uc such that

[ψ]+Π′ R[ϕ1]s1 Π′
1, Π

′
1 R[ϕ2]s2 Π′

2, . . ., Π
′
m−1 R[ϕm]sm Π′

m and if ϕ ∈ Πm

then ϕ ∈ Π′
m.

In the above definition, we use the product deg(ϕ1) · . . . ·deg(ϕm) of the degrees
of the formulas ϕ1, . . . ,ϕm. Since m may be equal to 0, we will consider that
in this case, such product is equal to 2. The following claims illustrate the
interest to consider the set Tri and its subset Q.

Claim (a):

(i) For all Π′ ∈ R
ψ
✷(∆

′), there exists Π ∈ R✷(∆) such that Π′ ≡ Π,

(ii) for all Π ∈ R✷(∆), there exists Π′ ∈ R
ψ
✷(∆

′) such that Π′ ≡ Π.



Claim (b): If Q = Tri then [ψ]+Θ′ ⊆ Θ.

Claim (c): Q = Tri.

Claim (a) clearly shows the tight relationships between R
ψ
✷(∆

′) and R✷(∆). It
is only used in the proof of Claim (c). Now, by Claims (b) and (c), [ψ]+Θ′ ⊆ Θ.
Hence, [ψ]−Θ ⊆ Θ′. Since [ψ]−χ ∈ Θ, therefore χ ∈ Θ′: a contradiction.✷

Lemma 8.3 For all Γ0 ∈ Uc, MΓ0
is free.

Proposition 8.4 (Completeness) Let φ be a formula. If |= φ then φ ∈
PAL±.

Proof. Suppose |= φ and φ *∈ PAL±. Let Γ0 ∈ Uc be such that φ *∈ Γ0.
By Proposition 8.2, MΓ0

, (|Γ0|, S✷(Γ0)) *|= φ. Moreover, by Lemma 8.3, MΓ0

is free. Thus, *|= φ: a contradiction. ✷

9 Maximal ignorance

The model of maximal ignorance is the triple M0 = (W0, X0, V0) where W0 =

2V AR, X0 = 22
V AR

\ {∅} and V0 is the function associating to each p ∈ V AR

the subset V0(p) of W0 defined as follows: x ∈ V0(p) iff p ∈ x. In M0, each
subset x of V AR represents an epistemic alternative for the real world and each
non-empty set S of subsets of V AR contains the real world together with its
epistemic alternatives at some moment of their history. Moreover, each world-
step pair (x, S) such that x ∈ S determines the real world x and the current
restriction of the model containing the real world together with its epistemic
alternatives.

Lemma 9.1 M0 is free.

From now on in this section, we will say that a formula φ is 0-valid, in
symbols |=0 φ, if φ is globally true in M0. In this section, we investigate the
set of all 0-valid formulas. This set is of special interest as we recover some
of the original intuitions for the logic of “what is true before an announce-
ment”, for example the validity of the formula ✷p → 〈p〉−✸¬p mentioned in
the introduction.

Proposition 9.2 Let φ be a formula. If φ is {[·]+, [·]−}-free then |=0 φ iff

φ ∈ S5.

Proof. By [10, Pages 29 and 30]. ✷

Let k ∈ N.

Lemma 9.3 Let A and B be k-steps. If A ⊆ B then the formulas ∇B →
[
∨

A]+∇A and ∇A → 〈
∨

A〉−∇B are 0-valid.

Proposition 9.4 Let φ be a k-formula. If φ is {[·]+, [·]−}-free then there exists

a family {(α1, A1), . . . , (αm, Am)} of k-tips such that |=0 φ ↔
∨
{αi ∧ ∇Ai :

1 ≤ i ≤ m}.



For all M0-worlds x, let fk(x) be the unique k-world V -agreeing with x.
For all M0-steps S, let Fk(S) = {fk(x) : x ∈ S} be the unique k-step
consisting of all k-worlds V -agreeing with an M0-world in S. Obviously, for
all M0-tips (x, S), the pair (fk(x), Fk(S)) is a k-tip. Moreover, fk(x) is a finite
conjunction of literals over p1, . . . , pk and Fk(S) is a non-empty finite set of
finite conjunctions of literals over p1, . . . , pk.

Lemma 9.5 For all M0-tips (x, S) and for all k-tips (α, A), M0, (x, S) |=
α ∧∇A iff fk(x) = α and Fk(S) = A.

Lemma 9.6 For all k-formulas φ and for all M0-tips (x, S), (y, T ), if fk(x) =
fk(y) and Fk(S) = Fk(T ) then M0, (x, S) |= φ iff M0, (y, T ) |= φ.

Proposition 9.7 Let φ be a k-formula. The formula φ ↔
∨
{fk(x)∧∇Fk(S) :

x ∈ W0 & S ∈ X0 & x ∈ S & M0, (x, S) |= φ} is 0-valid.

Proof. Let (y, T ) be an M0-tip.
Suppose M0, (y, T ) |= φ. By Lemma 9.5, M0, (y, T ) |= fk(y) ∧∇Fk(T ). Since
M0, (y, T ) |= φ, therefore M0, (y, T ) |=

∨
{fk(x) ∧ ∇Fk(S) : x ∈ W0 & S ∈

X0 & x ∈ S & M0, (x, S) |= φ}.
Suppose M0, (y, T ) |=

∨
{fk(x) ∧ ∇Fk(S) : x ∈ W0 & S ∈ X0 & x ∈

S & M0, (x, S) |= φ}. Let x ∈ W0 and S ∈ X0 be such that x ∈ S,
M0, (x, S) |= φ and M0, (y, T ) |= fk(x) ∧ ∇Fk(S). Hence, by Lemma 9.5,
fk(y) = fk(x) and Fk(T ) = Fk(S). Since M0, (x, S) |= φ, therefore by
Lemma 9.6, M0, (y, T ) |= φ. ✷

Proposition 9.8 Let φ be a k-formula. There exists a {[·]+, [·]−}-free formula

ψ such that |=0 φ ↔ ψ.

Proof. By Proposition 9.7. ✷

Proposition 9.8 says that the constructs [·]+ and [·]− can be eliminated from
the language as far as 0-validity is concerned. It does not say how, though.
To be able to say how, it suffices to be able to determine in particular which
{[·]+, [·]−}-free formulas are 0-equivalent to 〈φ〉+ψ and 〈φ〉−ψ when the formu-
las φ and ψ are already {[·]+, [·]−}-free.

Proposition 9.9 Let {(α1, A1), . . . , (αm, Am)} be a family of k-tips and (β, B)
be a k-tip. Let φ =

∨
{αi ∧ ∇Ai : 1 ≤ i ≤ m} and ψ = β ∧ ∇B. If

Bφ = {αi : 1 ≤ i ≤ m & Ai = B} then the formulas 〈φ〉+ψ ↔ β ∧ ∇φB and

〈φ〉−ψ ↔ β ∧∇Bφ are 0-valid.

By Propositions 9.4 and 9.9, one can easily design a procedure computing for
any given input formula a 0-equivalent {[·]+, [·]−}-free formula. For instance,
the formula 〈p〉−⊤ is 0-equivalent to the {[·]+, [·]−}-free formula ✷p.

10 Conclusion

There are several ways to continue this research.
Firstly, there are computability issues. Within the context of the model of
maximal ignorance, using the fact that for each k ∈ N, there exist exactly



2k k-worlds and there exist exactly 22
k

− 1 k-steps, one readily sees that the
validity problem is decidable, although its exact complexity is still unknown.
Within the context of the class of all free models, the computability of the
validity problem is still open. Other computability issues are related to the
problem consisting of given a formula φ, either to determine if there exists a
formula ψ such that 〈ψ〉+φ is valid, or to determine if there exists a formula ψ

such that 〈ψ〉−φ is valid.
Secondly, there are multi-agent issues. There exist already many multi-agent
variants of subset space logic. Within the context of our logic of knowledge
with public announcements and converse public announcements, we did not
manage to find its acceptable multi-agent variant.
Thirdly, there are introspection issues. In our setting, the agent is both pos-
itively and negatively introspective. Suppose the agent is non negatively in-
trospective. This implies that we have to get rid of axiom (A4). But this
also implies that the binary relation R✷ defined in Section 7 is no more an
equivalence relation on Uc. And we did not manage to completely axiomatize
the corresponding logic of knowledge with public announcements and converse
public announcements. Remark that subset space logics of a merely positively
introspective agent do not seem to exist.
Fourthly, there is the issue of the extension with the constructs !+ and !− con-
sidered in Section 5 and corresponding to the effort modality of Subset Space
Logic [5,13] and the converse effort modality introduced by Heinemann [9].
This extension is of great interest as, in our setting, !+ is like an arbitrary
announcement modality [2], and thus !− an “arbitrary before the announce-
ment” modality. How to completely axiomatize this extension is still open.
Fifthly, there are characterization issues. For example, the characterization of
the set of all pairs (φ,ψ) of formulas such that [φ]+ψ is valid and the charac-
terization of the set of all pairs (φ,ψ) of formulas such that [φ]−ψ is valid.
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Annex

Proof of Proposition 8.2: Case φ = ✷ψ. Since size(ψ) < size(φ), therefore
ψ ∈ P .
(C1 ⇒ C2). Suppose MΓ0

, (|Γ|, S✷(∆)) |= ✷ψ. Suppose ✷ψ *∈ Θ. By
Lemma 7.2, let Λ ∈ Uc be such that Θ R✷ Λ and ψ *∈ Λ. Since ∆ R✷ Θ,
therefore ∆ R✷ Λ. Hence, |Λ| ∈ S✷(∆). Since MΓ0

, (|Γ|, S✷(∆)) |= ✷ψ,
therefore MΓ0

, (|Λ|, S✷(∆)) |= ψ. Since ψ ∈ P and ∆ R✷ Λ, therefore
ψ ∈ Λ: a contradiction. Thus, ✷ψ ∈ Θ.
(C2 ⇒ C3). Suppose Λ ∈ Uc is such that Γ ≡ Λ, ∆ R✷ Λ and ✷ψ ∈ Λ.
Let Λ′ ∈ Uc be such that Γ ≡ Λ′ and ∆ R✷ Λ′. Suppose ✷ψ *∈ Λ′. By
Lemma 7.2, let Π ∈ Uc be such that Λ′ R✷ Π and ψ *∈ Π. Since ∆ R✷ Λ and
∆ R✷ Λ′, therefore Λ R✷ Π. Since ✷ψ ∈ Λ, therefore ψ ∈ Π: a contradiction.
Hence, ✷ψ ∈ Λ′.
(C3 ⇒ C1). Suppose for all Λ

′ ∈ Uc, if Γ ≡ Λ′ and ∆ R✷ Λ′ then ✷ψ ∈ Λ′.
Since Γ ≡ Θ and ∆ R✷ Θ, therefore ✷ψ ∈ Θ. Suppose MΓ0

, (|Γ|, S✷(∆)) *|=
✷ψ. Let |Λ| ∈ S✷(∆) be such that MΓ0

, (|Λ|, S✷(∆)) *|= ψ. Let Π ∈ Uc

be such that Λ ≡ Π, ∆ R✷ Π and ψ *∈ Π. Such Π ∈ Uc exists because



ψ ∈ P . Since ∆ R✷ Θ, therefore Θ R✷ Π. Since ✷ψ ∈ Θ, therefore ψ ∈ Π:
a contradiction. Hence, MΓ0

, (|Γ|, S✷(∆)) |= ✷ψ.

Proof of Proposition 8.2: Case φ = [ψ]+χ. Since size(ψ) < size(φ) and
size(χ) < size(φ), therefore ψ ∈ P and χ ∈ P .
(C1 ⇒ C2). Suppose MΓ0

, (|Γ|, S✷(∆)) |= [ψ]+χ. Suppose [ψ]+χ *∈ Θ. By
Lemma 7.4, let Λ ∈ Uc be such that Θ R[ψ]+ Λ and χ *∈ Λ. By Lemma 7.6,
ψ ∈ Θ and [ψ]+Θ = Λ. Let T = {|Π| ∈ S✷(∆) : MΓ0

, (|Π|, S✷(∆)) |= ψ}.
By Proposition 8.1, since ∆ R✷ Θ, ψ ∈ Θ and [ψ]+Θ = Λ, therefore T =
S✷(Λ). Hence, T ∈ XΓ0

. Since Γ ≡ Θ, ∆ R✷ Θ, ψ ∈ Θ and ψ ∈ P ,
therefore MΓ0

, (|Γ|, S✷(∆)) |= ψ. Thus, |Γ| ∈ T . Since MΓ0
, (|Γ|, S✷(∆)) |=

[ψ]+χ, thereforeMΓ0
, (|Γ|, S✷(Λ)) |= χ. Since Γ ≡ Θ and Θ R[ψ]+ Λ, therefore

Γ ≡ Λ. Since MΓ0
, (|Γ|, S✷(Λ)) |= χ and χ ∈ P , therefore χ ∈ Λ: a

contradiction. Consequently, [ψ]+χ ∈ Θ.
(C2 ⇒ C3). Suppose Λ ∈ Uc is such that Γ ≡ Λ, ∆ R✷ Λ and [ψ]+χ ∈ Λ.
Let Λ′ ∈ Uc be such that Γ ≡ Λ′ and ∆ R✷ Λ′. Suppose [ψ]+χ *∈ Λ′.
By Lemma 7.4, let Λ′′ ∈ Uc be such that Λ′ R[ψ]+ Λ′′ and χ *∈ Λ′′. By
Lemma 7.6, ψ ∈ Λ′ and [ψ]+Λ′ = Λ′′. Since Γ ≡ Λ′, ∆ R✷ Λ′, ψ ∈ P ,
Γ ≡ Λ and ∆ R✷ Λ, therefore ψ ∈ Λ. By Lemma 6.1, since [ψ]+χ ∈ Λ,
therefore 〈ψ〉+χ ∈ Λ. By Lemma 7.4, let Λ′′′ ∈ Uc be such that Λ R[ψ]+ Λ′′′

and χ ∈ Λ′′′. By Lemma 7.6, [ψ]+Λ = Λ′′′. Since ∆ R✷ Λ and ∆ R✷ Λ′,
therefore Λ R✷ Λ′. By Proposition 7.10, since [ψ]+Λ = Λ′′′ and [ψ]+Λ′ = Λ′′,
therefore Λ′′′ R✷ Λ′′. Since Γ ≡ Λ and [ψ]+Λ = Λ′′′, therefore Γ ≡ Λ′′′.
Since Γ ≡ Λ′ and [ψ]+Λ′ = Λ′′, therefore Γ ≡ Λ′′. Since Γ ≡ Λ′′′,
χ ∈ Λ′′′, χ ∈ P and Λ′′′ R✷ Λ′′, therefore χ ∈ Λ′′: a contradiction. Hence,
[ψ]+χ ∈ Λ′.
(C3 ⇒ C1). Suppose for all Λ

′ ∈ Uc, if Γ ≡ Λ′ and∆ R✷ Λ′ then [ψ]+χ ∈ Λ′.
Suppose MΓ0

, (|Γ|, S✷(∆)) *|= [ψ]+χ. Hence, there exists T ∈ XΓ0
such that

|Γ| ∈ T , T = {|Π| ∈ S✷(∆) : MΓ0
, (|Π|, S✷(∆)) |= ψ} and MΓ0

, (|Γ|, T ) *|=
χ. Thus, MΓ0

, (|Γ|, S✷(∆)) |= ψ. Since Γ ≡ Θ, ∆ R✷ Θ, ψ ∈ P and for all
Λ′ ∈ Uc, if Γ ≡ Λ′ and ∆ R✷ Λ′ then [ψ]+χ ∈ Λ′, therefore ψ ∈ Θ and
[ψ]+χ ∈ Θ. By Lemma 6.1, 〈ψ〉+χ ∈ Θ. By Lemma 7.4, let Λ ∈ Uc be such
that Θ R[ψ]+ Λ and χ ∈ Λ. By Lemma 7.6, [ψ]+Θ = Λ. By Proposition 8.1,
since ∆ R✷ Θ and ψ ∈ Θ, therefore T = S✷(Λ). Since MΓ0

, (|Γ|, T ) *|= χ,
therefore MΓ0

, (|Γ|, S✷(Λ)) *|= χ. Since Γ ≡ Θ and Θ R[ψ]+ Λ, therefore
Γ ≡ Λ. Since MΓ0

, (|Γ|, S✷(Λ)) *|= χ and χ ∈ P , therefore χ *∈ Λ: a
contradiction. Consequently, MΓ0

, (|Γ|, S✷(∆)) |= [ψ]+χ.

Proof of Claim (a): (i) Let Π′ ∈ R
ψ
✷(∆

′). Hence, Π′ ∈ R✷(∆
′) and

ψ ∈ Π′. Since ψ ∈ P , therefore MΓ0
, (|Π′|, S✷(∆

′) |= ψ. Since S✷(∆) =
{|Π| ∈ S✷(∆

′) : MΓ0
, (|Π|, S✷(∆

′) |= ψ}, therefore |Π′| ∈ S✷(∆). Let
Π ∈ Uc be such that Π′ ≡ Π and ∆ R✷ Π . Thus, Π ∈ R✷(∆) and
Π′ ≡ Π.
(ii) Let Π ∈ R✷(∆). Since S✷(∆) = {|Π| ∈ S✷(∆

′) : MΓ0
, (|Π|, S✷(∆

′) |=
ψ}, therefore |Π| ∈ S✷(∆

′) and MΓ0
, (|Π|, S✷(∆

′) |= ψ. Let Π′ ∈ Uc be such
that Π ≡ Π′, ∆′ R✷ Π′ and ψ ∈ Π′. Such Π′ ∈ Uc exists because ψ ∈ P .



Hence, Π′ ∈ R
ψ
✷(∆

′) and Π′ ≡ Π.

Proof of Claim (b): Suppose Q = Tri and [ψ]+Θ′ *⊆ Θ. Hence, there exists
a formula ϕ such that ϕ ∈ [ψ]+Θ′ and ϕ *∈ Θ. Since Q = Tri, therefore

(deg(ϕ) + 1, 0,ϕ) ∈ Q. By condition (D1), since Θ′ ∈ R
ψ
✷(∆

′), Θ ∈ R✷(∆)
and Θ′ ≡ Θ, therefore if ϕ ∈ [ψ]+Θ′ then ϕ ∈ Θ. Since ϕ ∈ [ψ]+Θ′,
therefore ϕ ∈ Θ: a contradiction.

Proof of Claim (c): The proof is done by induction on (d,m,ϕ), using the
well-founded partial order ≪ on Tri defined as follows:

• (d,m,ϕ) ≪ (d′,m′,ϕ′) iff one of the 3 following conditions holds:
(i) d < d′,
(ii) d = d′ and m < m′,
(iii) d = d′, m = m′ and size(ϕ) < size(ϕ′).

Let (d,m,ϕ) ∈ Tri be such that for all (d′,m′,ϕ′) ∈ Tri, if (d′,m′,ϕ′) ≪
(d,m,ϕ) then (d′,m′,ϕ′) ∈ Q. We demonstrate (d,m,ϕ) ∈ Q. Let
ϕ1, . . . ,ϕm be formulas such that (deg(ϕ1) · . . . · deg(ϕm)) + deg(ϕ) ≤ d,

s1, . . . , sm ∈ {+,−}, Π′ ∈ R
ψ
✷(∆

′) and Π ∈ R✷(∆) be such that
Π′ ≡ Π. We demonstrate the 2 above conditions D1 and D2. Since
(deg(ϕ1) · . . . · deg(ϕm)) + deg(ϕ) ≤ d, therefore d ≥ 4. We consider the
following 2 cases.
Case m = 0.
(D1). Suppose ϕ ∈ [ψ]+Π′. We demonstrate ϕ ∈ Π.
Subcase ϕ = p. Since p ∈ [ψ]+Π′, therefore [ψ]+p ∈ Π′. By Lemma 6.1,
ψ → p ∈ Π′. Since ψ ∈ Π′, therefore p ∈ Π′. Since Π′ ≡ Π, therefore
using (A14) and Lemma 6.1, p ∈ Π.
Subcase ϕ = ⊥. Since ⊥ ∈ [ψ]+Π′, therefore [ψ]+⊥ ∈ Π′. Hence, using
(A12), ψ *∈ Π′: a contradiction.
Subcase ϕ = ¬ϕ′. Since ¬ϕ′ ∈ [ψ]+Π′, therefore [ψ]+¬ϕ′ ∈ Π′. By
Lemma 6.1, ψ → ¬[ψ]+ϕ′ ∈ Π′. Since ψ ∈ Π′, therefore ¬[ψ]+ϕ′ ∈ Π′.
Hence, [ψ]+ϕ′ *∈ Π′. Thus, ϕ′ *∈ [ψ]+Π′. Obviously, (d, 0,ϕ′) ≪ (d, 0,¬ϕ′).
Consequently, (d, 0,ϕ′) ∈ Q. Since ϕ′ *∈ [ψ]+Π′, therefore ϕ′ *∈ Π. Hence,
¬ϕ′ ∈ Π.
Subcase ϕ = ϕ′∨ϕ′′. Since ϕ′∨ϕ′′ ∈ [ψ]+Π′, therefore [ψ]+(ϕ′∨ϕ′′) ∈ Π′.
By Lemma 6.1, [ψ]+ϕ′ ∈ Π′ or [ψ]+ϕ′′ ∈ Π′. Obviously, (d, 0,ϕ′) ≪
(d, 0,ϕ′ ∨ ϕ′′) and (d, 0,ϕ′′) ≪ (d, 0,ϕ′ ∨ ϕ′′). Consequently, (d, 0,ϕ′) ∈ Q

and (d, 0,ϕ′′) ∈ Q. Since [ψ]+ϕ′ ∈ Π′ or [ψ]+ϕ′′ ∈ Π′, therefore ϕ′ ∈ Π

or ϕ′′ ∈ Π. Hence, ϕ′ ∨ ϕ′′ ∈ Π.
Subcase ϕ = ✷ϕ′. Since ✷ϕ′ ∈ [ψ]+Π′, therefore [ψ]+✷ϕ′ ∈ Π′. Suppose
✷ϕ′ *∈ Π. By Lemma 7.2, let Π1 ∈ Uc be such that Π R✷ Π1 and ϕ′ *∈ Π1.
Since Π ∈ R✷(∆), therefore Π1 ∈ R✷(∆). By item (ii) of Claim (a), let

Π′
1 ∈ R

ψ
✷(∆

′) be such that Π′
1 ≡ Π1. Obviously, (d, 0,ϕ′) ≪ (d, 0,✷ϕ′).

Consequently, (d, 0,ϕ′) ∈ Q. Since ϕ′ *∈ Π1, therefore ϕ′ *∈ [ψ]+Π′
1.

Hence, [ψ]+ϕ′ *∈ Π′
1. Since Π′ ∈ R

ψ
✷(∆

′) and Π′
1 ∈ R

ψ
✷(∆

′), therefore
✷[ψ]+ϕ′ *∈ Π′. Thus, using (A16), 〈ψ〉

+
✷ϕ′ *∈ Π′. Since ψ ∈ Π′, therefore



by Lemma 6.1, [ψ]+✷ϕ′ *∈ Π′: a contradiction.
Subcase ϕ = [ϕ′]sϕ′′. Since [ϕ′]sϕ′′ ∈ [ψ]+Π′, therefore [ψ]+[ϕ′]sϕ′′ ∈ Π′.
Suppose [ϕ′]sϕ′′ *∈ Π. By Lemma 7.4, let Π1 ∈ Uc be such that Π R[ϕ′]s Π1

and ϕ′′ *∈ Π1. Hence, ¬ϕ′′ ∈ Π1. Obviously, (d−1, 1,¬ϕ′′) ≪ (d, 0, [ϕ′]sϕ′′).
Consequently, (d − 1, 1,¬ϕ′′) ∈ Q. Since 2 + deg([ϕ′]sϕ′′) ≤ d, therefore
deg(ϕ′) + deg(¬ϕ′′) ≤ d − 1. Since (d − 1, 1,¬ϕ′′) ∈ Q, Π R[ϕ′]s Π1

and ¬ϕ′′ ∈ Π1, therefore let Π′
1 ∈ Uc be such that [ψ]+Π′ R[ϕ′]s Π′

1 and
¬ϕ′′ ∈ Π′

1. Thus, 〈ϕ′〉s¬ϕ′′ ∈ [ψ]+Π′. Consequently, [ψ]+〈ϕ′〉s¬ϕ′′ ∈ Π′.
Since [ψ]+[ϕ′]sϕ′′ ∈ Π′, therefore [ψ]+⊥ ∈ Π′. Hence, using (A12), ψ *∈ Π′.

Thus, Π′ *∈ R
ψ
✷(∆

′): a contradiction.
(D2). Suppose ϕ ∈ Π. We demonstrate ϕ ∈ [ψ]+Π′.
Subcase ϕ = p. Since p ∈ Π and Π′ ≡ Π, therefore [ψ]+p ∈ Π′. Hence,
p ∈ [ψ]+Π′.
Subcase ϕ = ⊥. Obviously, ⊥ *∈ Π.
Subcase ϕ = ¬ϕ′. Since ¬ϕ′ ∈ Π, therefore ϕ′ *∈ Π. Since (d, 0,ϕ′) ≪
(d, 0,¬ϕ′), therefore (d, 0,ϕ′) ∈ Q. Since ϕ′ *∈ Π, therefore ϕ′ *∈ [ψ]+Π′.
Hence, [ψ]+ϕ′ *∈ Π′. Thus, 〈ψ〉+¬ϕ′ ∈ Π′. Consequently, using (A10),
[ψ]+¬ϕ′ ∈ Π′.
Subcase ϕ = ϕ′ ∨ ϕ′′. Since ϕ′ ∨ ϕ′′ ∈ Π, therefore ϕ′ ∈ Π or ϕ′′ ∈ Π.
Without loss of generality, suppose ϕ′ ∈ Π. Since (d, 0,ϕ′) ≪ (d, 0,ϕ′ ∨ϕ′′),
therefore (d, 0,ϕ′) ∈ Q. Since ϕ′ ∈ Π, therefore ϕ′ ∈ [ψ]+Π′. Hence,
[ψ]+ϕ′ ∈ Π′. Thus, [ψ]+(ϕ′ ∨ ϕ′′) ∈ Π′. Consequently, ϕ′ ∨ ϕ′′ ∈ [ψ]+Π′.
Subcase ϕ = ✷ϕ′. Suppose ✷ϕ′ *∈ [ψ]+Π′. Hence, [ψ]+✷ϕ′ *∈ Π′. Thus,
using (A17), ✷[ψ]+ϕ′ *∈ Π′. By Lemma 7.2, let Π′

1 ∈ Uc be such that
Π′ R✷ Π′

1 and [ψ]+ϕ′ *∈ Π′
1. Consequently, ϕ′ *∈ [ψ]+Π′

1 and using (A11),

ψ ∈ Π′
1. Since Π′ ∈ R✷(∆

′) and Π′ R✷ Π′
1, therefore Π′

1 ∈ R
ψ
✷(∆

′). By
item (i) of Claim (a), let Π1 ∈ R✷(∆) be such that Π′

1 ≡ Π1. Obviously,
(d, 0,ϕ′) ≪ (d, 0,✷ϕ′). Consequently, (d, 0,ϕ′) ∈ Q. Since ϕ′ *∈ [ψ]+Π′

1,
therefore ϕ′ *∈ Π1. Since Π ∈ R✷(∆) and Π1 ∈ R✷(∆), therefore Π R✷ Π1.
Since ϕ′ *∈ Π1, therefore ✷ϕ′ *∈ Π: a contradiction.
Subcase ϕ = [ϕ′]sϕ′′. Suppose [ϕ′]sϕ′′ *∈ [ψ]+Π′. By Lemma 7.4, let
Π′

1 ∈ Uc be such that [ψ]+Π′ R[ϕ′]s Π′
1 and ϕ′′ *∈ Π′

1. Hence, ¬ϕ′′ ∈ Π′
1.

Obviously, (d−1, 1,¬ϕ′′) ≪ (d, 0, [ϕ′]sϕ′′). Consequently, (d−1, 1,¬ϕ′′) ∈ Q.
Since 2 + deg([ϕ′]sϕ′′) ≤ d, therefore deg(ϕ′) + deg(¬ϕ′′) ≤ d − 1. Since
(d− 1, 1,¬ϕ′′) ∈ Q, [ψ]+Π′ R[ϕ′]s Π′

1 and ¬ϕ′′ ∈ Π′
1, therefore let Π1 ∈ Uc

be such that Π R[ϕ′]s Π1 and ¬ϕ′′ ∈ Π1. Thus, [ϕ
′]sϕ′′ *∈ Π: a contradiction.

Case m ≥ 1.
(D1). Let Π′

1, . . . ,Π
′
m ∈ Uc be such that [ψ]+Π′ R[ϕ1]s1 Π′

1, Π
′
1 R[ϕ2]s2 Π′

2,
. . ., Π′

m−1 R[ϕm]sm Π′
m. If ϕ ∈ Π′

m then let ϕ′ = ϕ else let ϕ′ =
¬ϕ. Obviously, deg(ϕ′) = deg(ϕ) and 〈ϕm〉smϕ′ ∈ Π′

m−1. Moreover,
(d,m − 1, 〈ϕm〉smϕ′) ≪ (d,m,ϕ). Hence, (d,m − 1, 〈ϕm〉smϕ′) ∈ Q. Since
(deg(ϕ1) · . . . · deg(ϕm−1)) + deg(〈ϕm〉smϕ′) = (deg(ϕ1) · . . . · deg(ϕm−1)) +
deg(ϕm) + deg(ϕ′), (deg(ϕ1) · . . . · deg(ϕm)) + deg(ϕ) ≤ d and deg(ϕ′) =
deg(ϕ), therefore (deg(ϕ1) · . . . · deg(ϕm−1)) + deg(〈ϕm〉smϕ′) ≤ d. Since
[ψ]+Π′ R[ϕ1]s1 Π′

1, Π
′
1 R[ϕ2]s2 Π′

2, . . ., Π
′
m−2 R[ϕm−1]

sm−1 Π′
m−1, 〈ϕm〉smϕ′ ∈



Π′
m−1 and (d,m − 1, 〈ϕm〉smϕ′) ∈ Q, therefore let Π1, . . . ,Πm−1 ∈ Uc

be such that Π R[ϕ1]s1 Π1, Π1 R[ϕ2]s2 Π2, . . ., Πm−2 R[ϕm−1]
sm−1 Πm−1 and

〈ϕm〉smϕ′ ∈ Πm−1. Thus, let Πm ∈ Uc be such that Πm−1 R[ϕm]sm Πm

and ϕ′ ∈ Πm. Consequently, Π1, . . . ,Πm ∈ Uc are such that Π R[ϕ1]s1 Π1,
Π1 R[ϕ2]s2 Π2, . . ., Πm−1 R[ϕm]sm Πm and if ϕ ∈ Π′

m then ϕ ∈ Πm.
(D2). Let Π1, . . . ,Πm ∈ Uc be such that Π R[ϕ1]s1 Π1, Π1 R[ϕ2]s2 Π2,
. . ., Πm−1 R[ϕm]sm Πm. If ϕ ∈ Πm then let ϕ′ = ϕ else let ϕ′ =
¬ϕ. Obviously, deg(ϕ′) = deg(ϕ) and 〈ϕm〉smϕ′ ∈ Πm−1. Moreover,
(d,m − 1, 〈ϕm〉smϕ′) ≪ (d,m,ϕ). Hence, (d,m − 1, 〈ϕm〉smϕ′) ∈ Q. Since
(deg(ϕ1) · . . . · deg(ϕm−1)) + deg(〈ϕm〉smϕ′) = (deg(ϕ1) · . . . · deg(ϕm−1)) +
deg(ϕm)+deg(ϕ′), (deg(ϕ1) · . . . ·deg(ϕm))+deg(ϕ) ≤ d and deg(ϕ′) = deg(ϕ),
therefore (deg(ϕ1) · . . . ·deg(ϕm−1))+deg(〈ϕm〉smϕ′) ≤ d. Since Π R[ϕ1]s1 Π1,
Π1 R[ϕ2]s2 Π2, . . ., Πm−2 R[ϕm−1]

sm−1 Πm−1, 〈ϕm〉smϕ′ ∈ Πm−1 and
(d,m − 1, 〈ϕm〉smϕ′) ∈ Q, therefore let Π′

1, . . . ,Π
′
m−1 ∈ Uc be such

that [ψ]+Π′ R[ϕ1]s1 Π′
1, Π′

1 R[ϕ2]s2 Π′
2, . . ., Π′

m−2 R[ϕm−1]
sm−1 Π′

m−1 and
〈ϕm〉smϕ′ ∈ Π′

m−1. Thus, let Π
′
m ∈ Uc be such that Π′

m−1 R[ϕm]sm Π′
m and

ϕ′ ∈ Π′
m. Consequently, Π′

1, . . . ,Π
′
m ∈ Uc are such that [ψ]+Π′ R[ϕ1]s1 Π′

1,
Π′

1 R[ϕ2]s2 Π′
2, . . ., Π

′
m−1 R[ϕm]sm Π′

m and if ϕ ∈ Πm then ϕ ∈ Π′
m.

Proof of Lemma 8.3: Let Γ0 ∈ Uc. Using (A12), by Proposition 8.2, for all
formulas φ, MΓ0

|= φ → 〈φ〉+⊤. By Lemma 3.1, MΓ0
is free.


