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Public announcement logic (P AL) is a logic for reasoning about the dynamic of knowledge in a multi-agent system in which public announcements are made. Syntactically, public announcements are modal formulas. Semantically, they correspond to restrictions of models. In [10], Ma et al. use the standard toolkit of duality theory in modal logic to define an algebraic semantics for a combination of IP L and P AL into intuitionistic public announcement logic (IP AL). In this paper, grounding our approach on relational semantics rather than on algebraic semantics, we give a sound and complete axiomatization of IP AL and we consider a complete sequent calculus for the associated membership problem.

Introduction

Public announcement logic (P AL) is a logic for reasoning about the dynamic of knowledge in a multi-agent system [START_REF] Plaza | Logics of public communications[END_REF]. Syntactically, public announcements are modal formulas. Semantically, they correspond to restrictions of models. There exist multifarious variants of P AL: P AL with arbitrary public announcements [START_REF] Balbiani | Knowable' as 'known after an announcement[END_REF], P AL with common knowledge [START_REF] Van Ditmarsch | Dynamic Epistemic Logic[END_REF], etc. In all these variants, the construct (• → •) is the one of classical propositional logic. In [START_REF] Ma | Algebraic semantics and model completeness for intuitionistic public announcement logic[END_REF], Ma et al. introduce a variant of P AL in which this construct is the one of intuitionistic propositional logic (IP L). By using the standard toolkit of duality theory in modal logic, they define an algebraic semantics for a combination of IP L and P AL into intuitionistic public announcement logic (IP AL). In this paper, grounding our approach on relational semantics rather than on algebraic semantics, we provide supplementary results about IP AL. Firstly, we give a sound and complete axiomatization of IP AL and we prove its completeness. Secondly, we study the features that, according to Simpson [START_REF] Simpson | The Proof Theory and Semantics of Intuitionistic Modal Logic[END_REF], might be expected of any intuitionistic modal logic and we examine whether IP AL possesses them. Thirdly, we propose an alternative semantics for IP AL, dealing with stacks of annoucements, following the approach developed in [START_REF] Balbiani | A sequent calculus with labels for P AL[END_REF] for P AL, and then we derive from this semantics a new sequent calculus for IP AL that is sound and complete. Fourthly, we define a translation of IP AL's formulas into formulas of a multimodal logic in which the construct (• → •) is the one of classical propositional logic.

Syntax and semantics

Let V AR be a countable set of atomic formulas called variables (denoted p, q, etc). The set of all formulas is inductively defined as follows:

• φ ::= p | ⊥ | (φ ∨ ψ) | (φ ∧ ψ) | (φ → ψ) | φ | ✸φ | [φ]ψ | φ ψ. ⊥, (• ∨ •), (• ∧ •) and (• → •)
are the ordinary constructs of IP L, • ("it is necessary that . . .") and ✸• ("it is possible that . . .") are the alethic constructs of modal logic and [•]• ("if . . . then, after announcing it, . . .") and • • (". . . and, after announcing it, . . .") are the announcement constructs of P AL. The IP L constructs ¬• and (• ↔ •) are defined as usual.

• ¬φ ::= (φ → ⊥),

• (φ ↔ ψ) ::= ((φ → ψ) ∧ (ψ → φ)).

We adopt the standard rules for omission of the parentheses. Note that, following the line of reasoning suggested by [START_REF] Simpson | The Proof Theory and Semantics of Intuitionistic Modal Logic[END_REF]Chapter 3], we have added the new alethic constructs • and ✸• and the new announcement constructs [•]• and • • to the ordinary language of IP L. As proved in Section 7 (see Propositions 7.4 and 7.5), the constructs • and ✸• are independent in IP AL but [•]• and • • are interdefinable. For all formulas φ, let φ * be the formula obtained by recursively eliminating the alethic constructs and the announcement constructs occurring in φ. For all sets x of formulas, let x = {φ: φ ∈ x} and ✸x = {✸φ: φ ∈ x}. Let the size of a formula φ (denoted size(φ)) be the number of occurrences of symbols φ contains. The size of a finite sequence (φ 1 , . . . , φ n ) of formulas (denoted size(φ 1 , . . . , φ n )) is the nonnegative integer defined as follows:

• size(φ 1 , . . . , φ n ) = size(φ 1 ) + . . . + size(φ n ) + n.

By ǫ, we will denote the empty sequence of formulas. Obviously, size(ǫ) = 0. A frame is a tuple of the form F = (W, ≤, R) where W is a nonempty set (denoted x, y, etc), ≤ is a partial order on W and R is a binary relation on W . The frame F = (W, ≤, R) is said to be standard if

• R -1 • ≤ ⊆ ≤ •R -1 , • R• ≤ ⊆ ≤ •R. A valuation on a frame F = (W, ≤, R) is a function V : V AR → 2 W . The valuation V on the frame F = (W, ≤, R) is said to be upward closed if • for all p ∈ V AR and for all x ∈ W , if x ∈ V (p) then for all y ∈ W , if x ≤ y then y ∈ V (p).
A model is a tuple of the form M = (W, ≤, R, V ) where F = (W, ≤, R) is a frame and V is a valuation on F. We shall say that the model

M = (W, ≤, R, V ) is standard if the frame F = (W, ≤, R) is standard. The model M = (W, ≤, R, V
) is said to be upward closed if the valuation V on the frame F = (W, ≤, R) is upward closed. The satisfiability relation between a model M = (W, ≤, R, V ), an element x ∈ W and a formula φ (denoted M, x |= φ) is inductively defined as follows:

• M, x |= p iff x ∈ V (p), • M, x |= ⊥, • M, x |= φ ∨ ψ iff either M, x |= φ, or M, x |= ψ, • M, x |= φ ∧ ψ iff M, x |= φ and M, x |= ψ, • M, x |= φ → ψ iff for all y ∈ W , if x ≤ y and M, y |= φ then M, y |= ψ, • M, x |= φ iff for all y, z ∈ W , if x ≤ y and yRz then M, z |= φ,
• M, x |= ✸φ iff there exists y ∈ W such that xRy and M, y |= φ,

• M, x |= [φ]ψ iff for all y ∈ W , if x ≤ y and M, y |= φ then M |φ , y |= ψ, • M, x |= φ ψ iff M, x |= φ and M |φ , x |= ψ.
In the above definition,

M |φ = (W |φ , ≤ |φ , R |φ , V |φ ) is the model such that W |φ = {x ∈ W : M, x |= φ}, ≤ |φ =≤ ∩(W |φ × W |φ ), R |φ = R ∩ (W |φ × W |φ )
and for all p ∈ V AR, V |φ (p) = V (p) ∩ W |φ . Notice that the clauses concerning the modal constructs 

M = (W, ≤, R, V ), • M, x |= ¬φ iff for all y ∈ W , if x ≤ y then M, y |= φ, • M, x |= φ ↔ ψ iff for all y ∈ W , if x ≤ y then M, y |= φ iff M, y |= ψ.
Note that if M is upward closed then M |φ is upward closed too. The next lemma states that the set of elements satisfying a formula in an upward closed standard model is upward closed too.

Lemma 2.1 Let φ be a formula. For all upward closed standard models M = (W, ≤, R, V ) and for all x ∈ W , if M, x |= φ then M |φ is upward closed standard and for all y ∈ W , if x ≤ y then M, y |= φ.

A formula φ is said to be globally satisfied in a model

M = (W, ≤, R, V ) (denoted M |= φ) if for all x ∈ W , M, x |= φ.
The following Lemma will be used in Section 7. There are several reasons for being interested in upward closed standard models. Following the usual paradigm for IP L saying that facts should persist in a model as we ascend its partial order, the fact that xRy in a model M = (W, ≤, R, V ) should persist too. Hence, the condition of being standard. Similarly, the fact that x ∈ V (p) in a model M = (W, ≤, R, V ) should persist too. Thus, the condition of being upward closed.

Validities

We shall say that a formula φ is ucs-valid (denoted |= ucs φ) if for all upward closed standard models M, M |= φ. Proposition 3.1 The following formulas are ucs-valid and the following inference rules are ucs-validity preserving:

A1 All instances of IP L, A2 (φ → ψ) → ( φ → ψ), A3 (φ → ψ) → (✸φ → ✸ψ), A4 (✸φ → ψ) → (φ → ψ), A5 ✸(φ ∨ ψ) → (✸φ ∨ ✸ψ), A6 ¬✸⊥, A7 [φ]p ↔ (φ → p), A8 [φ]⊥ ↔ ¬φ, A9 [φ](ψ ∨χ) ↔ (φ → ([φ]ψ ∨[φ]χ)), A10 [φ](ψ ∧ χ) ↔ ([φ]ψ ∧ [φ]χ), A11 [φ](ψ → χ) ↔ ([φ]ψ → [φ]χ), A12 [φ] ψ ↔ (φ → [φ]ψ), A13 [φ]✸ψ ↔ (φ → ✸ φ ψ), A14 φ ψ ↔ (φ ∧ [φ]ψ), R1 from φ and φ → ψ infer ψ, R2 from φ infer φ, R3 from φ ↔ ψ infer [χ]φ ↔ [χ]ψ.
Proof. When restricted to announcement-free formulas, the formulas A1-A6 and the inference rules R1 and R2 have been used by Fischer Servi [START_REF] Servi | Axiomatizations for some intuitionistic modal logics[END_REF] and Simpson [START_REF] Simpson | The Proof Theory and Semantics of Intuitionistic Modal Logic[END_REF]Chapter 3] who have considered the intuitionistic analogue IK of modal logic K. The formulas A7, A8, A10, A12 and A13 have been used by Ma et al. [START_REF] Ma | Algebraic semantics and model completeness for intuitionistic public announcement logic[END_REF] as reduction axioms. Hence, leaving to the reader the proof of the proposition for the formulas A9 and A11 and the inference rule R3, we only prove the proposition for the formula A14. The following formulas are ucs-valid and the following inference rule is ucs-validity preserving:

Suppose |= ucs φ ψ ↔ (φ ∧ [φ]ψ). Let M = (W, ≤, R, V ) be an upward closed standard model and x ∈ W be such that M, x |= φ ψ ↔ (φ ∧ [φ]ψ). Hence, either M, x |= φ ψ → (φ ∧ [φ]ψ), or M, x |= (φ ∧ [φ]ψ) → φ ψ.
A15 [φ](ψ → χ) → ([φ]ψ → [φ]χ), A16 [φ](ψ → χ) → ( φ ψ → φ χ), A17 ( φ ψ → [φ]χ) → [φ](ψ → χ), A18 φ (ψ ∨ χ) → ( φ ψ ∨ φ χ), R4 from φ infer [ψ]φ.
Proof. Left to the reader. ✷ Proposition 3.3 The following formulas are ucs-valid:

A19 [φ]⊤ ↔ ⊤, A20 φ ⊥ ↔ ⊥, A21 φ ⊤ ↔ φ, A22 [φ](ψ∨χ) ↔ (φ → φ ψ∨ φ χ), A23 φ (ψ ∨ χ) ↔ φ ψ ∨ φ χ, A24 [φ](ψ → χ) ↔ ( φ ψ → φ χ), A25 φ (ψ → χ) ↔ φ ∧ ( φ ψ → φ χ), A26 φ ✸ψ ↔ φ ∧ ✸ φ ψ, A27 φ p ↔ φ ∧ p, A28 φ (ψ ∧ χ) ↔ φ ψ ∧ φ χ, A29 φ ✷ψ ↔ φ ∧ ✷[φ]ψ.
Proof. Left to the reader. ✷

Note that the set of all ucs-valid formulas is not closed under the inference rule of uniform substitution. For example, the formula [p]p is ucs-valid but its instance [q ∧ ✸¬q](q ∧ ✸¬q) is not globally satisfied in the upward closed standard model M = (W, ≤, R, V ) where W = {x, y}, ≤= {(x, x), (y, y)}, R = {(x, y)} and V (q) = {x}. Hence, we should be very careful when applying to IP AL tools and techniques designed for normal modal logic.

Axiomatization/completeness

Let IP AL be the least set of formulas containing the formulas A1-A14 and closed under the inference rules R1-R3. The soundness of IP AL relative to its relational semantics is straightforward, seeing that Proposition 4.1 (Soundness) Let φ be a formula. If φ ∈ IP AL then |= ucs φ.

Proof. By Proposition 3.1. ✷

Without using the standard toolkit of duality theory in modal logic and the results in [START_REF] Ma | Algebraic semantics and model completeness for intuitionistic public announcement logic[END_REF], the completeness of IP AL relative to its relational semantics is more difficult to establish than its soundness and we defer proving that IP AL is complete with respect to the class of all upward closed standard models till the end of this section. A useful result is the following Proposition 4.2 Let φ be a formula and ψ be an announcement-free formula such that φ ↔ ψ ∈ IP AL. Let χ be an announcement-free formula. There exists an announcement-free formula θ such that [φ]χ ↔ θ ∈ IP AL. Moreover, if ψ and χ are -free (respectively, ✸-free) then θ is -free (respectively, ✸free).

Proof. Let F OR be the set of all announcement-free formulas χ such that there exists an announcement-free formula θ such that [φ]χ ↔ θ ∈ IP AL and, moreover, if ψ and χ are -free (respectively, ✸-free) then θ is -free (respectively, ✸-free). Proposition 4.2 says that for all announcement-free formulas χ, χ ∈ F OR. We will demonstrate it by an induction on χ based on the function size(•) defined in Section 2. Let χ be an announcement-free formula such that for all announcement-free formulas µ, if size(µ) < size(χ) then µ ∈ F OR. We demonstrate χ ∈ F OR. We only consider the case χ = ✸µ. Note that size(µ) < size(χ). Hence, µ ∈ F OR. Let θ be an announcement-free formula such that

[φ]µ ↔ θ ∈ IP AL. By A13, [φ]✸µ ↔ (φ → ✸ φ µ) ∈ IP AL. Since φ ↔ ψ ∈ IP AL, therefore [φ]✸µ ↔ (ψ → ✸ φ µ) ∈ IP AL. By A14, φ µ ↔ (φ ∧ [φ]µ) ∈ IP AL. Since φ ↔ ψ ∈ IP AL and [φ]µ ↔ θ ∈ IP AL, therefore φ µ ↔ (ψ ∧ θ) ∈ IP AL. Thus, ✸ φ µ ↔ ✸(ψ ∧ θ) ∈ IP AL. Since [φ]✸µ ↔ (ψ → ✸ φ µ) ∈ IP AL, therefore [φ]✸µ ↔ (ψ → ✸(ψ∧θ)) ∈ IP AL.✷
From Proposition 4.2, it follows that Proposition 4.3 For all formulas φ, there exists an announcement-free formula ψ such that φ ↔ ψ ∈ IP AL. Moreover, if φ is -free (respectively, ✸-free) then ψ is -free (respectively, ✸-free).

Proof. Let F OR be the set of all formulas φ such that there exists an announcement-free formula ψ such that φ ↔ ψ ∈ IP AL and, moreover, if φ is -free (respectively, ✸-free) then ψ is -free (respectively, ✸-free). Proposition 4.3 says that for all formulas φ, φ ∈ F OR. We will demonstrate it by an induction on φ based on the function size(•) defined in Section 2. Let φ be a formula such that for all announcement-free formulas ψ, if size(ψ) < size(φ) then ψ ∈ F OR. We demonstrate φ ∈ F OR. We only consider the case φ = [ψ]χ. Note that size(ψ) < size(φ) and size(χ) < size(φ). Hence, ψ ∈ F OR and χ ∈ F OR. Let θ be an announcement-free formula such that ψ ↔ θ ∈ IP AL and µ be an announcement-free formula such that χ ↔ µ ∈ IP AL. By R3,

[ψ]χ ↔ [ψ]µ ∈ IP AL. Let ν be an announcement-free formula such that [ψ]µ ↔ ν ∈ IP AL. Such ν exists by Proposition 4.2 because ψ ↔ θ ∈ IP AL. Since [ψ]χ ↔ [ψ]µ ∈ IP AL, therefore [ψ]χ ↔ ν ∈ IP AL.
✷ Now, we are ready for the proof of the completeness of IP AL relative to its relational semantics. 

Canonical model

Let L be an extension of IP AL, i.e. L is a set of formulas containing the formulas A1-A14 and closed under the inference rules R1-R3. For all sets x, y of formulas, y is said to be an L-consequence of x (denoted x ⊢ L y) if there exists nonnegative integers m, n and there exists formulas φ 1 , . . . , φ m , ψ 1 , . . . ,

ψ n such that φ 1 , . . . , φ m ∈ x, ψ 1 , . . . , ψ n ∈ y and φ 1 ∧ . . . ∧ φ m → ψ 1 ∨ . . . ψ n ∈ L.
In this definition, if m = 0 then we will consider that φ 1 ∧ . . . ∧ φ m is equal to ⊤ and if n = 0 then we will consider that ψ 1 ∨ . . . ψ n is equal to ⊥. In the sequel, we will always assume that ∅ ⊢ L ∅, i.e. we will always assume that ⊤ → ⊥ ∈ L.

We shall say that a set x of formulas is L-prime if the following conditions hold:

• for all formulas φ, if x ⊢ L {φ} then φ ∈ x,

• x ⊢ L {⊥},
• for all formulas φ, ψ, if φ ∨ ψ ∈ x then either φ ∈ x, or ψ ∈ x.

Lemma 5.1 (Prime Lemma) For all sets x, y of formulas, if x ⊢ L y then there exists an L-prime set x ′ of formulas such that x ⊆ x ′ and x ′ ⊢ L y.

Since ∅ ⊢ L ∅, therefore the set of all L-prime sets of formulas is nonempty. L's Canonical Model is the tuple Lemma 5.3 (Restricted Truth Lemma) Let φ be an announcement-free formula. For all L-prime sets x of formulas, the following conditions are equivalent:

M c = (W c , ≤ c , R c , V c )
(i) M c , x |= φ, (ii) φ ∈ x.
Lemma 5.4 (Truth Lemma) Let φ be a formula. For all L-prime sets x of formulas, the following conditions are equivalent:

(i) M c , x |= φ, (ii) φ ∈ x.
In Section 7, we will consider an extension of IP AL that contains all formulas of the form φ ∨ ¬φ. Proposition 5.5 Let L be an extension of IP AL that contains all formulas of the form φ ∨ ¬φ. For all L-primes sets x, y of formulas, if x ⊆ y then x = y.

Proof. Let x, y be L-primes sets of formulas. Suppose x ⊆ y and x = y. Hence, y ⊆ x. Let ψ be a formula such that ψ ∈ y and ψ ∈ x. Since L is an extension of IP AL that contains all formulas of the form φ ∨ ¬φ, therefore ψ ∨ ¬ψ ∈ x. Thus, either ψ ∈ x, or ¬ψ ∈ x. Since ψ ∈ x, therefore ¬ψ ∈ x. Since x ⊆ y, therefore ¬ψ ∈ y. Since ψ ∈ y, therefore y ⊢ L {⊥}: a contradiction. Consequently, if x ⊆ y then x = y. ✷

Relationship with Ma et al. [10]

A formula φ is said to be a-valid (denoted |= a φ) if for all algebraic models Let IP AL ′ be the least set of formulas containing the formulas A1-A8, A10, A13 and A19-A29 and closed under the inference rules R1 and R2. The deducibility relation between a finite set X of variables and a formula φ (denoted X ⊲ φ) is inductively defined as follows:

M = (A, 0 A , 1 A , + A , × A , ⇒ A , l A , m A , V ) (called Fischer Servi models in [10]), | φ | M = 1 A . Proposition 
• X ⊲ p iff p ∈ X, • X ⊲⊥, • X ⊲φ∨ψ iff either X ⊲φ, or X ⊲ψ, • X ⊲ φ ∧ ψ iff X ⊲ φ and X ⊲ ψ, • X ⊲φ → ψ iff if X ⊲φ then X ⊲ψ, • X ⊲ φ iff X ⊲ φ, • X ⊲ ✸φ iff X ⊲ φ, • X ⊲ [φ]ψ iff if X ⊲ φ then X ⊲ ψ * , • X ⊲ φ ψ iff X ⊲ φ and X ⊲ ψ * .
Note that the axioms and the inference rules considered in [10, Section 4.1] do not explicitly contain the inference rule R3. Hence, they are those of IP AL ′ . We believe that this absence of the inference rule R3 is only a careless mistake, seeing that Lemma 6.3 Let X be a finite set of variables and φ be a formula. If φ ∈ IP AL ′ then X ⊲ φ. Lemma 6.4 Let X be a finite set of variables. If p ∈ X, q ∈ X and r ∈ X then X ⊲ p q r and X ⊲ p q r. Proposition 6.5 (i) p q r → p q r ∈ IP AL.

(ii) p q r → p q r ∈ IP AL ′ .

Proof. (i) It suffices to use the completeness of IP AL (Proposition 4.4) and the fact that p q r → p q r is ucs-valid. (ii) By Lemmas 6.3 and 6.4.

✷

In [START_REF] Simpson | The Proof Theory and Semantics of Intuitionistic Modal Logic[END_REF], Simpson discusses what it means to combine IP L and modal logic into intuitionistic modal logic (IM L) and isolates features that might be expected of an IM L. In the following proposition, we examine whether IP AL complains with Simpson's requirements. (ii) IP AL contains all instances of IP L.

(iii) IP AL is closed under modus ponens.

(iv) The addition of the formulas of the form φ ∨ ¬φ to IP AL yields P AL.

(v) If φ ∨ ψ ∈ IP AL then either φ ∈ IP AL, or ψ ∈ IP AL.
Proof. (i) Let φ be a modality-free formula. 

ψ. Let M 1 = (W 1 , ≤ 1 , R 1 , V 1 ) be an upward closed standard model such that M 1 |= φ and M 2 = (W 2 , ≤ 2 , R 2 , V 2 )
be an upward closed standard model such that M 2 |= ψ. Let x be a new element and M = (W, ≤, R, V ) be the model where (ii) For all announcement-free formulas φ, if |= ucs φ then φ ∈ IK.

W = W 1 ∪ W 2 ∪ {x}, ≤=≤ 1 ∪ ≤ 2 ∪({x} × W 1 ) ∪ ({x} × W 2 ), R = R 1 ∪ R 2 and for all p ∈ V AR, V (p) = V 1 (p) ∪ V 2 (p).
(iii) There exists no •-free announcement-free formula φ such that p ↔ φ ∈ IK.

(iv) There exists no ✸•-free announcement-free formula φ such that ✸p ↔ φ ∈ IK.

From the soundness/completeness of IP AL (Propositions 4.1 and 4.4) and IK (Items 1 and 2 of Proposition 7.2), we obtain the following Proposition 7.3 IP AL is conservative over IK.

The following propositions characterize a main difference between, on one hand, the modal constructs • and ✸• and, on the other hand, [•]• and • •. 

An alternative semantics

A proof-theoretical analysis of P AL has been proposed in [START_REF] Maffezioli | A Gentzen-style analysis of public announcement logic[END_REF] in terms of a sequent calculus following the approach of [START_REF] Negri | Proof analysis in modal logic[END_REF]. Unfortunately, this sequent calculus is not complete as it cannot prove the valid formula [p ∧ p]q ↔ [p]q. For details, see [START_REF] Balbiani | A sequent calculus with labels for P AL[END_REF] where an alternative semantics for P AL and a sequent calculus with labels that were based on a specific management of a stack of annoucements have been proposed. A similar alternative semantics for IP AL can be proposed too. Its definition necessitates the satisfiability relation between a model M = (W, ≤, R, V ), an element x ∈ W , a finite sequence ϕ = (φ 1 , . . . , φ n ) of formulas and a formula φ (denoted M, x, (ϕ) φ) inductively defined as follows:

• M, x, ǫ p iff x ∈ V (p),
• M, x, (ϕ, φ n+1 ) p iff M, x, (ϕ) φ n+1 and M, x, (ϕ) p,

• M, x, (ϕ) ⊥,

• M, x, (ϕ) φ ∨ ψ iff either M, x, (ϕ) φ, or M, x, (ϕ) ψ,

• M, x, (ϕ) φ ∧ ψ iff M, x, (ϕ) φ and M, x, (ϕ) ψ,

• M, x, ǫ φ → ψ iff for all y ∈ W , if x ≤ y and M, y, ǫ φ then M, y, ǫ ψ,

• M, x, (ϕ, φ n+1 ) φ → ψ iff for all y ∈ W , if x ≤ y, M, y, (ϕ) φ n+1 and M, y, (ϕ, φ n+1 ) φ then M, y, (ϕ, φ n+1 ) ψ,
• M, x, ǫ φ iff for all y, z ∈ W , if x ≤ y and yRz then M, z, ǫ φ,

• M, x, (ϕ, φ n+1 ) φ iff for all y, z ∈ W , if x ≤ y, yRz, M, y, (ϕ) φ n+1 and M, z, (ϕ) φ n+1 then M, z, (ϕ, φ n+1 ) φ,

• M, x, ǫ ✸φ iff there exists y ∈ W such that xRy and M, y, ǫ φ,

• M, x, (ϕ, φ n+1 ) ✸φ iff there exists y ∈ W such that xRy, M, y, (ϕ) φ n+1 and M, y, (ϕ, φ n+1 ) φ,

• M, x, ǫ [φ]ψ iff for all y ∈ W , if x ≤ y and M, y, ǫ φ then M, y, (φ) ψ,

• M, x, (ϕ, φ n+1 ) [φ]ψ iff for all y ∈ W , if x ≤ y, M, y, (ϕ) φ n+1 and M, y, (ϕ, φ n+1 ) φ then M, y, (ϕ, φ n+1 , φ) ψ,

• M, x, (ϕ) φ ψ iff M, x, (ϕ) φ and M, x, (ϕ, φ) ψ.

The reader may easily verify that the above definition of M, x, (ϕ) φ is correct decreasing on size(ϕ, φ). A similar stack-based semantics has been proposed by Balbiani et al. [START_REF] Balbiani | A sequent calculus with labels for P AL[END_REF] within the context of P AL. The main difference with the semantics proposed by [START_REF] Maffezioli | A Gentzen-style analysis of public announcement logic[END_REF] lies in our interpretation of -based formulas.

Lemma 8.1 Let (φ 1 , . . . , φ n ) be a sequence of formulas and φ be a formula. For all models M = (W, ≤, R, V ) and for all x ∈ W , the following conditions are equivalent:

(i) M, x |= [φ 1 ] . . . [φ n ]φ, (ii) if M, x, ǫ φ 1 , . . . , M, x, (φ 1 , . . . , φ n-1 ) φ n then M, x, (φ 1 , . . . , φ n ) φ.

A labelled sequent calculus

Now, we present a sequent calculus for IP AL that is derived from the stackbased semantics given in the previous section. We propose a labelled calculus in which labels are defined for capturing the semantics inside the sequent calculus. This approach based on labels is a uniform approach for designing calculi in various logics like modal or intuitionistic logics [START_REF] Negri | Proof analysis in modal logic[END_REF][START_REF] Simpson | The Proof Theory and Semantics of Intuitionistic Modal Logic[END_REF] from Kripke-style semantics. We want to emphasize that starting from our stack-based semantics is central here because the similar semantics proposed for P AL allowed us to propose a new labelled calculus for P AL that corrected the deficiency about completeness of an existing labelled sequent calculus [START_REF] Maffezioli | A Gentzen-style analysis of public announcement logic[END_REF]. Therefore we propose a sound and complete calculus with sequents that are with multiconclusions, and with distinguished rules for dealing with empty and non-empty stacks of announcements. Let V ar be a countable set of variables (denoted x, y, etc). The sequents are pairs of finite sets of expressions either of the form x(ϕ) : φ read "state x satisfies φ with respect to the sequence (ϕ)", or of the form xRy read "state x is related to state y by means of R". The sequent Γ ⊢ ∆ means that the conjunction of the expressions in Γ implies the disjunction of the expressions in ∆. Provability is defined as usual: formula φ is provable iff the sequent ⊢ x(ǫ) : φ is derivable from the inference rules of the calculus presented in Figures 1 and2. Let M = (W, R, V ) be a model and f : V ar → W . Sequents are pairs of finite sets of expressions either of the form x(φ 1 , . . . , φ n ) : φ, or of the form xRy. We define the property "M and f satisfy the expression exp" (denoted M, f exp) as follows: We say that a sequent Γ ⊢ ∆ is valid iff for all models M = (W, R, V ) and for all f : V ar → W , if M and f satisfy every expression in Γ, then M and f satisfy some expression in ∆. In Nomura et al. [START_REF] Nomura | A labelled sequent calculus for intuitionistic public announcement logic[END_REF], a labelled sequent calculus has been recently given for IP AL. It is basically the same as the one for P AL [START_REF] Nomura | Revising a sequent calculus for public announcement logic[END_REF] but with, in some rules, restrictions on labelled expressions on the right-hand side of sequents. As this calculus does not use an announcement stack discipline and has such restrictions, it cannot be directly and easily compared with our new calculus. In future work, we will try to compare them with respect, for instance, to proofsearch issues and also to explore possible translations between these calculi. By Gödel's Translation, any formula of the IP L's language can be translated into a formula of the S4's language such that the resulting translation is in S4 iff the translated formula is in IP L. See [START_REF] Chagrov | Modal Logic[END_REF]Chapter 3] for details. Within the context of IP AL, the translation of a formula φ (denoted τ (φ)) is the formula inductively defined as follows:

x(ǫ) : p, Γ ⊢ ∆, x(ǫ) : p ax x(ǫ) : ⊥, Γ ⊢ ∆ L⊥ x(ϕ) : φ, x(ϕ) : p, Γ ⊢ ∆ x(ϕ, φ) : p, Γ ⊢ ∆ Lp Γ ⊢ ∆, x(ϕ) : φ Γ ⊢ ∆, x(ϕ) : p Γ ⊢ ∆, x(ϕ, φ) : p Rp x(ϕ) : φ, x(ϕ) : ψ, Γ ⊢ ∆ x(ϕ) : φ ∧ ψ, Γ ⊢ ∆ L∧ Γ ⊢ ∆, x(ϕ) : φ Γ ⊢ ∆, x(ϕ) : ψ Γ ⊢ ∆, x(ϕ) : φ ∧ ψ R∧ x(ϕ) : φ, Γ ⊢ ∆ x(ϕ) : ψ, Γ ⊢ ∆ x(ϕ) : φ ∨ ψ, Γ ⊢ ∆ L∨ Γ ⊢ ∆, x(ϕ) : φ Γ ⊢ ∆, x(ϕ) : φ ∨ ψ R∨ 1 Γ ⊢ ∆, x(ϕ) : ψ Γ ⊢ ∆, x(ϕ) : φ ∨ ψ R∨ 2 x ≤ y, Γ ⊢ y(ǫ) : φ x ≤ y, Γ, y(ǫ) : ψ ⊢ ∆ x(ǫ) : φ → ψ, Γ ⊢ ∆ L→ ǫ Γ, x ≤ y, y(ǫ) : φ ⊢ ∆, y(ǫ) : ψ Γ ⊢ ∆, x(ǫ) : φ → ψ R→ ǫ Γ, x ≤ y, y(ϕ) : φn+1, ⊢ y(ϕ, φn+1) : φ Γ, x ≤ y, y(ϕ, φn+1) : ψ ⊢ ∆ Γ, x(ϕ, φn+1) : φ → ψ ⊢ ∆ L→ ϕ Γ, x ≤ y, y(ϕ) : φn+1, y(ϕ, φn+1) : φ ⊢ ∆, y(ϕ, φn+1) : ψ Γ ⊢ ∆, x(ϕ, φn+1) : φ → ψ R→ ϕ
• M, f x(φ 1 , . . . , φ n ) : φ iff M, f (x), (φ 1 , . . . , φ n ) φ, • M, f xRy iff f (x)Rf (y). x(ǫ) : φ, x ≤ y, yRz, z(ǫ) : φ, Γ ⊢ ∆ x(ǫ) : φ, x ≤ y, yRz, Γ ⊢ ∆ L ǫ x ≤ y, yRz, Γ ⊢ ∆, z(ǫ) : φ Γ ⊢ ∆, x(ǫ) : φ R ǫ x(ϕ, φn+1) : ψ, x ≤ y, yRz, z(ϕ, φn+1) : φ, Γ ⊢ ∆ x(ϕ, φn+1) : ψ, x ≤ y, yRz, z(ϕ) : φn+1, Γ ⊢ ∆ L ϕ x ≤ y, yRz, z(ϕ) : φn+1, Γ ⊢ ∆, z(ϕ, φn+1) : φ Γ ⊢ ∆, x(ϕ, φn+1) : φ R ϕ y(ǫ) : φ, xRy, Γ ⊢ ∆ x(ǫ) : ✸φ, Γ ⊢ ∆ L✸ ǫ Γ ⊢ ∆, y(ǫ) : φ, xRy Γ ⊢ ∆, x(ǫ) : ✸φ R✸ ǫ y(ϕ) : φ, xRy, y(ϕ, φn+1) : φ, Γ ⊢ ∆ x(ϕ, φn+1) : ✸φ, Γ ⊢ ∆ L✸ ϕ Γ ⊢ ∆, y(ϕ) : φn+1, xRy, y(ϕ, φn+1) : φ Γ ⊢ ∆, x(ϕ, φn+1) : ✸φ R✸ ϕ Γ, x ≤ y ⊢ ∆, y(ǫ) : φ y(φ) : ψ, Γ ⊢ ∆ x(ǫ) : [φ]ψ, Γ ⊢ ∆ L[] ǫ Γ, x ≤ y, y(ǫ) : φ ⊢ ∆, y(φ) : ψ Γ ⊢ ∆, x(ǫ) : [φ]ψ R[] ǫ x ≤ y, y(ϕ) : φn+1, Γ ⊢ ∆, y(ϕ, φn+1) : φ y(ϕ, φn+1) : ψ, Γ ⊢ ∆ x(ϕ, φn+1) : [φ]ψ, Γ ⊢ ∆ L[] ϕ x ≤ y, y(ϕ) : φn+1, y(ϕ, φn+1) : φ, Γ ⊢ ∆, y(ϕ, φn+1, φ) : ψ Γ ⊢ ∆, x(ϕ, φn+1) : [φ]ψ R[] ϕ Γ, x(ϕ) : φ, x(ϕ, φ) : ψ ⊢ ∆ Γ, x(ϕ) : φ ψ, ⊢ ∆ L<> Γ, ⊢ ∆, x(ϕ) : φ Γ, ⊢ ∆, x(ϕ, φ) : ψ Γ, ⊢ x(ϕ) : φ ψ R<>
• τ (p) = p, • τ (⊥) = ⊥, • τ (φ ∨ ψ) = τ (φ) ∨ τ (ψ), • τ (φ ∧ ψ) = τ (φ) ∧ τ (ψ), • τ (φ → ψ) = (τ (φ) → τ (ψ)), • τ ( φ) = τ (φ),
• τ (✸φ) = ✸τ (φ),

• τ ([φ]ψ) = [τ (φ)]τ (ψ), • τ ( φ ψ) = τ (φ) τ (ψ).
The resulting translations belong to the S4P AL's language, i.e. the set of all formulas inductively defined as follows:

• φ ::= p | ⊥ | ¬φ | (φ ∨ ψ) | φ | φ | [φ]ψ.
In the S4P AL's language, the Boolean constructs (• ∧ •) and (• → •), the modal constructs • and ✸• and the announcement construct • • are defined as usual. Moreover, the standard rules for omission of the parentheses are adopted. The formulas of the S4P AL's language are interpreted in models, their ≤ binary relations being used to interpret -based formulas and their R binary relations being used to interpret -based formulas. More precisely, the satisfiability relation between a model M = (W, ≤, R, V ), an element x ∈ W and a formula φ in the S4P AL's language (denoted M, x |= φ) is inductively defined as follows:

• M, x |= p iff x ∈ V (p), • M, x |= ⊥, • M, x |= φ ∨ ψ iff either M, x |= φ, or M, x |= ψ, • M, x |= φ iff for all y ∈ W , if x ≤ y then M, y |= φ, • M, x |= φ iff for all y ∈ W , if xRy then M, y |= φ, • M, x |= [φ]ψ iff if M, x |= φ then M |φ , x |= ψ.
In the above definition,

M |φ = (W |φ , ≤ |φ , R |φ , V |φ ) is the model such that W |φ = {x ∈ W : M, x |= φ}, ≤ |φ =≤ ∩(W |φ × W |φ ), R |φ = R ∩ (W |φ × W |φ ) and for all p ∈ V AR, V |φ (p) = V (p) ∩ W |φ . Note that if M is upward closed then M |φ
is upward closed too. However, there exists a standard model M = (W, R, V ), there exists x ∈ W and there exists an announcement formula φ in the S4P AL's language such that M, x |= φ and M |φ is not standard. For example, in the standard model M = (W, ≤, R, V ) where W = {x, y, z, t, u}, ≤= {(x, x), (x, t), (y, y), (y, z), (z, z), (t, t), (u, u)}, R = {(x, y), (t, z), (t, u)} and

V (p) = {y, z}, we have M, x |= p, M, y |= p, M, z |= p, M, t |= p and M, u |= p. Hence, M | p = (W | p , ≤ | p , R | p , V | p ) where W | p =
{x, y, z, u}, ≤ | p = {(x, x), (y, y), (y, z), (z, z), (u, u)}, R | p = {(x, y)} and V | p (p) = {y, z} is not standard. Nevertheless, this never happens when the announcement formula φ is the resulting translation of a formula in the IP AL's language.

Lemma 10.1 Let φ be a formula in the IP AL's language. For all standard models M = (W, ≤, R, V ) and for all x ∈ W , if M, x |= τ (φ) then M |τ (φ) is standard and for all y ∈ W , if x ≤ y then M, y |= τ (φ).

Lemma 10.2 Let φ be a formula in the IP AL's language. The formula τ (φ) → τ (φ) is s-valid.

A formula φ in the S4P AL's language is said to be globally satisfied in a model M = (W, ≤, R, V ) (denoted M |= φ) if for all x ∈ W , M, x |= φ. We shall say that a formula φ in the S4P AL's language is s-valid (denoted |= s φ) if for all standard models M, M |= φ.

Lemma 10.3 Let φ be a formula in the IP AL's language. For all upward closed standard models M = (W, ≤, R, V ) and for all x ∈ W , the following conditions are equivalent: Obviously, for all formulas φ in the IP AL's language, size(τ (φ)) ≤ 2 × size(φ). Nevertheless, seeing that the complexity of the membership problem in the set of all s-valid formulas in S4P AL's language is unknown, Proposition 10.4 does not give us any upper bound on the complexity of the membership problem in the set of all ucs-valid formulas in IP AL's language.

(i) M, x |= φ, (ii) M, x |= τ (φ).

Conclusion

In this paper, firstly, we have given a sound and complete axiomatization of IP AL and we have proved its completeness. Secondly, we have studied the features that might be expected of any intuitionistic modal logic and we have examined whether IP AL possesses them. Thirdly, we have proposed an alternative semantics for IP AL and we have designed a new sequent calculus for IP AL that is sound and complete. Fourthly, we have defined a translation of IP AL's formulas into formulas of a multimodal logic in which the construct (• → •) is the one of classical propositional logic. Much remains to be done: computability of the membership problem in the set of all ucs-valid formulas in IP AL's language; multi-agent variants with or without positive introspection, negative introspection, common knowledge, distributed knowledge, etc; extension of our framework to intermediate logics.

Annex

Proof of Lemma 2.1: Let F OR be the set of all formulas φ such that for all upward closed standard models M = (W, ≤, R, V ) and for all x ∈ W , if M, x |= φ then M |φ is upward closed standard and for all y ∈ W , if x ≤ y then M, y |= φ. Lemma 2.1 says that for all formulas φ, φ ∈ F OR.

We will demonstrate it by an induction on φ based on the function size(•) defined in Section 2. Let φ be a formula such that for all formulas ψ, if size(ψ) < size(φ) then ψ ∈ F OR. We demonstrate φ ∈ F OR. We only consider the case φ = ✸ψ. Note that size(ψ) < size(φ). Hence, ψ ∈ F OR. Let M = (W, ≤, R, V ) be an upward closed standard model and x ∈ W be such that M, x |= ✸ψ. 

Lemma 2 . 2

 22 Let φ be a formula. Let M = (W, ≤, R, V ) be a model such that ≤ is the identity relation on W . If φ ∈ P AL then M |= φ.

  In the former case, let y ∈ W be such that x ≤ y, M, y |= φ ψ and M, y |= φ ∧ [φ]ψ. Thus, M, y |= φ, M |φ , y |= ψ and M, y |= [φ]ψ. Let z ∈ W be such that y ≤ z, M, z |= φ and M |φ , z |= ψ. Since M, y |= φ, therefore y ≤ |φ z. Since M |φ , y |= ψ, therefore by Lemma 2.1, M |φ , z |= ψ: a contradiction. In the latter case, let y ∈ W be such that x ≤ y, M, y |= φ ∧ [φ]ψ and M, y |= φ ψ. Consequently, M, y |= φ, M, y |= [φ]ψ and M |φ , y |= ψ. Hence, M |φ , y |= ψ: a contradiction. Thus, |= ucs φ ψ ↔ (φ ∧ [φ]ψ). ✷ Proposition 3.2

Proposition 4 . 4 (

 44 Completeness) Let φ be a formula. If |= ucs φ then φ ∈ IP AL. Proof. Suppose |= ucs φ and φ ∈ IP AL. Let ψ be an announcement-free formula such that φ ↔ ψ ∈ IP AL. Such formula exists by Proposition 4.3. Since φ ∈ IP AL, therefore ψ ∈ IP AL. By the Canonical Model Construction described in [17, Chapter 3], |= ucs ψ. Since φ ↔ ψ ∈ IP AL, therefore by Proposition 4.1, |= ucs φ ↔ ψ. Since |= ucs ψ, therefore |= ucs φ: a contradiction. Hence, if |= ucs φ then φ ∈ IP AL. ✷ In the definition of IP AL, we did not use the formulas A15-A29 and the inference rule R4 considered in Propositions 3.2 and 3.3. Why not? The reason is that neither the formulas A15-A29 nor the inference rule R4 are used in the proof of Propositions 4.2 and 4.3. Moreover, Proposition 4.5 The formulas A15-A29 are in IP AL and the inference rule R4 is admissible in IP AL. Proof. By Propositions 3.2, 3.3, 4.1 and 4.4.✷

  where W c is the set of all L-prime sets of formulas, ≤ c is the partial order on W c defined by x ≤ c y iff x ⊆ y, R c is the binary relation on W c defined by xR c y iff x ⊆ y and ✸y ⊆ x and V c : V AR → 2 Wc is the function defined by x ∈ V c (p) iff p ∈ x. Lemma 5.2 The model M c is upward closed standard.

Proposition 7 . 1

 71 (i) IP AL is conservative over IP L.

Proposition 7 . 4

 74 (i) There exists no •-free formula φ such that p ↔ φ ∈ IP AL. (ii) There exists no ✸•-free formula φ such that ✸p ↔ φ ∈ IP AL. Proof. (i) By Proposition 4.3, Item 3 of Proposition 7.2 and Proposition 7.3. (ii) By Proposition 4.3, Item 4 of Proposition 7.2 and Proposition 7.3. ✷ Proposition 7.5(i) [φ]ψ ↔ (φ → φ ψ) ∈ IP AL. (ii) φ ψ ↔ (φ ∧ [φ]ψ) ∈ IP AL. Proof. (i) Suppose [φ]ψ ↔ (φ → φ ψ) ∈ IP AL. By Proposition 4.4, |= ucs [φ]ψ ↔ (φ → φ ψ). Let M = (W, ≤, R, V ) be an upward closed standard model and x ∈ W be such that M, x |= [φ]ψ ↔ (φ → φ ψ). Hence, either M, x |= [φ]ψ → (φ → φ ψ), or M, x |= (φ → φ ψ) → [φ]ψ.In the former case, let y ∈ W be such that x ≤ y, M, y |= [φ]ψ and M, y |= φ → φ ψ. Let z ∈ W be such that y ≤ z, M, z |= φ and M, z |= φ ψ. Thus, M |φ , z |= ψ. Since y ≤ z and M, z |= φ, therefore M, y |= [φ]ψ: a contradiction. In the latter case, let y ∈ W be such that x ≤ y, M, y |= φ → φ ψ and M, y |= [φ]ψ. Let z ∈ W be such that y ≤ z, M, z |= φ and M |φ , z |= ψ. Consequently, M, z |= φ ψ. Since y ≤ z and M, z |= φ, therefore M, y |= φ → φ ψ: a contradiction. Hence, [φ]ψ ↔ (φ → φ ψ) ∈ IP AL. (ii) By definition, φ ψ ↔ (φ ∧ [φ]ψ) ∈ IP AL. ✷

Fig. 1 .

 1 Fig. 1. Inference rules for IPAL -intuitionistic rules.

Fig. 2 .

 2 Fig. 2. Inference rules for IPAL -modal rules.

Proposition 10 . 4

 104 Let φ be a formula in the IP AL's language. The following conditions are equivalent: (i) |= ucs φ, (ii) |= s τ (φ). Proof. (i)⇒(ii): By Proposition 4.4, it suffices to demonstrate that the resulting translations of the formulas A1-A14 are s-valid and that the resulting translations of the inference rules (R1)-(R3) are s-validity preserving. (ii)⇒(i): By Lemma 10.3. ✷

  z and z ≤ |✸ψ t, therefore yRz and z ≤ t. Let u ∈ W be such that y ≤ u and uRt. Such u exists because M is standard. Since y ∈ W |✸ψ , therefore M, y |= ✸ψ. Hence, there exists v ∈ W such that yRv and M, v |= ψ. Let w ∈ W be such that uRw and v ≤ w. Such w exists because M is standard and y ≤ u. Since M is upward closed standard, ψ ∈ F OR and M, v |= ψ, therefore M, w |= ψ. Since uRw, therefore M, u |= ✸ψ. Thus, u ∈ W |✸ψ . Since y, t ∈ W |✸ψ , y ≤ u and uRt, therefore y ≤ |✸ψ u and uR |✸ψ t. Let y ∈ W be such that x ≤ y. We demonstrate M, y |= ✸ψ. Since M, x |= ✸ψ, therefore there exists z ∈ W such that xRz and M, z |= ψ. Let t ∈ W be such that yRt and z ≤ t. Such t exists because M is standard and x ≤ y. Since M is upward closed standard, ψ ∈ F OR and M, z |= ψ, therefore M, t |= ψ. Since yRt, therefore M, y |= ✸ψ. Proof of Lemma 2.2: Suppose φ ∈ P AL. Hence, φ is globally P ALsatisfied in M. Since ≤ is the identity relation on W , therefore one can demonstrate by an induction on ψ based on the function size(•) defined in Section 2, that for all formulas ψ and for all x ∈ W , M, x |= ψ iff ψ is P AL-satisfied at x in M. Since φ is globally P AL-satisfied in M, therefore M |= φ. Proof of Lemma 5.1: The proof is similar to the proof in [17, Chapter 3]. Proof of Lemma 5.2: The proof is similar to the proof in [17, Chapter 3]. Proof of Lemma 5.3: The proof is similar to the proof in [17, Chapter 3].

  6.1 Let φ be a formula. If |= ucs φ then |= a φ. Proof. Suppose |= ucs φ and |= a φ. By Proposition 4.4, φ ∈ IP AL. Since the formulas considered in Proposition 3.1 are a-valid and the inference rules considered in Proposition 3.1 are a-validity preserving, therefore |= a φ: a contradiction.

✷ Proposition 6.2 Let φ be a formula. If |= a φ then |= ucs φ.

Proof. Suppose |= a φ and |= ucs φ. By

[START_REF] Ma | Algebraic semantics and model completeness for intuitionistic public announcement logic[END_REF]

, φ is derivable from the axioms and the inference rules considered in [10, Section 4.1]. Obviously, these axioms are standard-valid and these inference rules are standard-validity preserving. Hence, |= ucs φ: a contradiction. ✷

  The reader may easily verify that M is upward closed standard. Moreover, M 1 and M 2 are generated submodel of M. A result similar to Proposition 2.6 in[START_REF] Blackburn | Modal Logic[END_REF] would lead to the conclusion that the global satisfiability relation is invariant under generated submodels. Since M 1 |= φ and M 2 |= ψ, therefore M |= φ and M |= ψ. Since |= ucs φ ∨ ψ, therefore M, x |= φ ∨ ψ. Hence, either M, x |= φ, or M, x |= ψ. In the former case, let y ∈ W 1 be arbitrary. Thus, x ≤ y. Since M, x |= φ, therefore by Lemma 2.1, M, y |= φ. Consequently, M 1 , y |= φ. Since y was arbitrary, therefore M 1 |= φ: a contradiction. In the latter case, let y ∈ W 2 be arbitrary. Hence, x ≤ y. Since M, x |= ψ, therefore by Lemma 2.1, M, y |= ψ. Thus, M 2 , y |= ψ. Since y was arbitrary, therefore M 2 |= ψ: a contradiction. Consequently, if φ ∨ ψ ∈ IP AL then either φ ∈ IP AL, or ψ ∈ IP AL.✷ For all announcement-free formulas φ, if φ ∈ IK then |= ucs φ.

	In [17, Chapter 3], Simpson proves the following
	Proposition 7.2 (i)

  Proposition 9.1 Let φ be a formula. If φ is provable then φ is ucs-valid. Let φ be a formula. If φ is ucs-valid then φ is provable.

	Proof. It suffices to demonstrate that the inference rules considered in Fig-
	ures 1 and 2 are validity preserving.	✷
	Proposition 9.2 Proof. By Proposition 4.4, it suffices to demonstrate that the formulas con-
	sidered in Proposition 3.1 are provable and the inference rules considered in
	Proposition 3.1 are provability preserving.	✷

  Let y, z, t ∈ W |✸ψ be such that y ≤ |✸ψ z and yR |✸ψ t. We demonstrate there exists u ∈ W |✸ψ such that zR |✸ψ u and t ≤ |✸ψ u. Since y ≤ |✸ψ z and yR |✸ψ t, therefore y ≤ z and yRt. Let u ∈ W be such that zRu and t ≤ u. Such u exists because M is standard. Since t ∈ W |✸ψ , therefore M, t |= ✸ψ. Hence, there exists v ∈ W such that tRv and M, v |= ψ. Let w ∈ W be such that uRw and v ≤ w. Such w exists because M is standard and t ≤ u. Since M is upward closed standard, ψ ∈ F OR and M, v |= ψ, therefore M, w |= ψ. Since uRw, therefore M, u |= ✸ψ. Thus, u ∈ W |✸ψ . Since z, t ∈ W |✸ψ , zRu and t ≤ u, therefore zR |✸ψ u and t ≤ |✸ψ u. Let y, z, t ∈ W |✸ψ be such that yR |✸ψ z and z ≤ |✸ψ t. We demonstrate there exists u ∈ W |✸ψ such that y ≤ |✸ψ u and uR |✸ψ t. Since yR |✸ψ
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Proof of Lemma 5.4: By Proposition 4.3, let ψ be an announcementfree formula such that φ ↔ ψ ∈ IP AL. Hence, the following conditions are equivalent: (i) M c , x |= φ, (ii) M c , x |= ψ, (iii) ψ ∈ x, (iv) φ ∈ x. The equivalence between (i) and (ii) follows from Proposition 4.1, Lemma 5.2 and the fact that φ ↔ ψ ∈ IP AL. The equivalence between (ii) and (iii) follows from Lemma 5.3. The equivalence between (iii) and (iv) follows from the fact that L is an extension of IP AL and φ ↔ ψ ∈ IP AL.

Proof of Lemma 6.3: It suffices to demonstrate that the formulas A1-A14 are X-deducible and that the inference rules (R1) and (R2) are X-deducibility preserving.

Proof of Lemma 8.1: Let F OR + be the set of all nonempty sequences (φ 1 , . . . , φ n , φ) of formulas such that for all models M = (W, ≤, R, V ) and for all

Lemma 8.1 says that for all nonempty sequences (φ 1 , . . . , φ n , φ) of formulas (φ 1 , . . . , φ n , φ) ∈ F OR + . We will demonstrate it by an induction on (φ 1 , . . . , φ n , φ) based on the function size(•) defined in Section 2. Let (φ 1 , . . . , φ n , φ) be a nonempty sequence of formulas such that for all nonempty sequences (φ

We demonstrate (φ 1 , . . . , φ n , φ) ∈ F OR + . We only consider the case φ = ✸ψ. Note that for all i = 1 . . . n, size(φ 1 , . . . , φ i-1 , φ i ) < size(φ 1 , . . . , φ n , φ). Moreover, size(φ 1 , . . . , φ n , ψ) < size(φ 1 , . . . , φ n , φ). Hence, for all i = 1 . . . n, (φ 1 , . . . , φ i-1 , φ i ) ∈ F OR + . Moreover, (φ 1 , . . . , φ n , ψ) ∈ F OR + . Let M = (W, ≤, R, V ) be a model and let x ∈ W . Leaving the case n = 0 to the reader, we assume that n

Suppose M, x, ǫ φ 1 , . . . , M, x, (φ 1 , . . . , φ n-1 ) φ n . Since for all i = 1 . . . n, (φ 1 , . . . , 

Proof of Lemma 10.2: Let F OR be the set of all formulas φ in the IP AL's language such that the formula τ (φ) → τ (φ) is s-valid. Lemma 10.2 says that for all formulas φ in the IP AL's language, φ ∈ F OR. We will demonstrate it by an induction on φ based on the function size(•) defined in Section 2. Let φ be a formula such that for all formulas ψ, if size(ψ) < size(φ) then ψ ∈ F OR.

We demonstrate φ ∈ F OR. We only consider the case φ = ψ χ. Note that size(ψ) < size(φ) and size(χ) < size(φ). Hence, ψ ∈ F OR and χ ∈ F OR. Thus, the formulas τ (ψ) → τ (ψ) and τ (χ) → τ (χ) are s-valid. Let us consider the following formulas:

τ (ψ) τ (χ). The s-validity of the formula (i)→(ii) follows from the definition of the satisfiability of formulas in the S4P AL's language. The s-validity of the formula (ii)→(iii) follows from the s-validity of the formulas τ (ψ) → τ (ψ) and τ (χ) → τ (χ). The s-validity of the formulas (iii)→(iv), (iv)→(v), (v)→(vi) and (vi)→(vii) follows from the definition of the satisfiability of formulas in the S4P AL's language.

Proof of Lemma 10.3: Let F OR be the set of all formulas φ in the IP AL's language such that for all upward closed standard models M = (W, ≤, R, V ) and for all x ∈ W , M, x |= φ iff M, x |= τ (φ). Lemma 10.3 says that for all formulas φ in the IP AL's language, φ ∈ F OR. We will demonstrate it by an induction on φ based on the function size(•) defined in Section 2. Let φ be a formula such that for all formulas ψ, if size(ψ) < size(φ) then ψ ∈ F OR. We demonstrate φ ∈ F OR. We only consider the case φ = ψ χ. Note that size(ψ) < size(φ) and size(χ) < size(φ).