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Alt1 is the least modal logic containing the formula ✸x → ✷x. It is determined by the class of all deterministic frames. The unification problem in Alt1 is to determine, given a formula φ(x1, . . . , xα), whether there exists formulas ψ1, . . . , ψα such that φ(ψ1, . . . , ψα) is in Alt1. In this paper, we show that the unification problem in Alt1 is in P SP ACE. We also show that there exists an Alt1-unifiable formula that has no minimal complete set of unifiers. Finally, we study sub-Boolean variants of the unification problem in Alt1.

Introduction

Modal logics are essential to the design of logical systems that capture elements of reasoning about knowledge, time, etc. There exists variants of these logics with one or several modalities, with or without the universal modality, etc. The logical problems addressed in their setting usually concern their axiomatizability, their decidability, etc. Other desirable properties which one should establish whenever possible concern, for example, the admissibility problem and the unifiability problem. About admissibility, an inference rule φ1,...,φn ψ is admissible in a modal logic L if for all instances

φ ′ 1 ,...,φ ′ n ψ ′
of the inference rule, if φ ′ 1 , . . . , φ ′ n are in L then ψ ′ is in L too [START_REF] Rybakov | Admissibility of Logical Inference Rules[END_REF]. About unifiability, a formula φ is unifiable in a modal logic L if there exists an instance φ ′ of the formula such that φ ′ is in L [START_REF] Dzik | Unification Types in Logic[END_REF]. When a modal logic L is axiomatically presented, its admissible inference rules can be added to its axiomatical presentation without changing the set of its theorems. As a result, in order to improve the efficiency of automated theorem provers for modal logics, methods for deciding the admissibility of inference rules can be used [START_REF] Babenyshev | A tableau method for checking rule admissibility in S4[END_REF]. The unifiability problem is easily reducible to the admissibility problem, seeing that the formula φ is unifiable in L iff the inference rule φ ⊥ is non-admissible in L. In some cases, when L's unification type is finitary, the admissibility problem is reducible to the unifiability problem. Therefore, in order to improve the efficiency of automated theorem provers for modal logics, methods for deciding the unifiability of formulas can be used as well. Results about unification have been already obtained in many modal logics. Rybakov [START_REF] Rybakov | A criterion for admissibility of rules in the model system S4 and the intuitionistic logic[END_REF] demonstrated that unification in S4 is decidable. Wolter and Zakharyaschev [START_REF] Wolter | )) |= ψ(x). The reasons for these equivalences to hold are the following: the equivalence between (1) and (2) follows from the definition of |=, the equivalence between (2) and (3) follows from the fact that φ ∈ AF F and the equivalence between (3) and (4) follows from Lemma 5.2. Proof of Lemma 5.5: By definitions of ≡ k and f k and Lemma 5.3. Proof of Lemma 5.8: By Lemma 5.5 and Proposition 5.7. Proof of Lemma 7.2: Suppose k ≤ l. Let υ be the substitution defined by υ(x) = x ∧ ✷ k ⊥. The reader may easily verify that |= υ(σ l (x)) ↔ σ k (x). Hence, σ l σ k . Proof of Lemma 7.3: Suppose k < l and σ k σ l . Let υ be a substitution such that σ k • υ ≃ σ l . Hence, |= υ(σ k (x)) ↔ σ l (x)[END_REF] showed that unification is undecidable for K4 or K extended with the universal modality. The notion of projectivity has been introduced by Ghilardi [START_REF] Ghilardi | Best solving modal equations[END_REF] to determine the unification type, finitary, of S4 and K4. Jeȓábek [START_REF] Jeȓábek | Blending margins: the modal logic K has nullary unification type[END_REF] established the unification type, nullary, of K. Within the context of description logics, checking subsumption of concepts is not sufficient and new inference capabilities are required. One of them, unification of concept terms, has been introduced by Baader and Narendran [START_REF] Baader | Unification of concept terms in description logics[END_REF] for FL 0 . Baader and Küsters [START_REF] Baader | Unification in a description logic with transitive closure of roles[END_REF] established the EXP T IM E-completeness of unification in FL reg whereas Baader and Morawska [START_REF] Baader | Unification in the description logic EL[END_REF] established the N P T IM E-completeness of unification in EL. Much remains to be done, seeing that the computability of unifiability and the unification types are unknown in multifarious modal logics. In this paper, we consider the unification problem in Alt 1 . Its sectionby-section breakdown is organized as follows. Section 2 defines the syntax, Section 3 introduces the semantics and Section 4 presents unification. In Section 5, useful Lemmas are proved. They are used in Section 6 to prove the soundness/completeness of a nondeterministic algorithm solving unification in polynomial space. In Section 7, it is shown that there exists a unifiable formula that has no minimal complete set of unifiers. In Section 8, we study sub-Boolean variants of unification.

Syntax

Let AF be a countable set of atomic formulas (denoted x, y, etc). The set F of all formulas (denoted φ, ψ, etc) is inductively defined as follows:

• φ ::= x | ⊥ | ¬φ | (φ ∨ ψ) | ✷φ.
We define the other Boolean constructs as usual. The formula ✸φ is obtained as an abbreviation:

• ✸φ ::= ¬✷¬φ. The modal connective ✷ k is inductively defined as follows for each k ∈ N:

• ✷ 0 φ ::= φ, • ✷ k+1 φ ::= ✷✷ k φ.
The modal connective ✷ <k is inductively defined as follows for each k ∈ N:

• ✷ <0 φ ::= ⊤, • ✷ <k+1 φ ::= ✷ <k φ ∧ ✷ k φ.
We adopt the standard rules for omission of the parentheses. Let deg(φ) denote the degree of a formula φ and var(φ) its atom-set. We shall say that a formula φ is atom-free iff var(φ) = ∅. Let AF F be the set of all atom-free formulas.

In the sequel, we use φ(x 1 , . . . , x α ) to denote a formula whose atomic formulas form a subset of {x 1 , . . . , x α }. A substitution is a function σ associating to each variable x a formula σ(x). We shall say that a substitution σ is closed if for all variables x, σ(x) ∈ AF F . For all formulas φ(x 1 , . . . , x α ), let σ(φ(x 1 , . . . , x α )) be φ(σ(x 1 ), . . . , σ(x α )). The composition σ • τ of the substitutions σ and τ associates to each atomic formula x the formula τ (σ(x)). Remark that for all substitutions σ, τ , if τ is closed then σ • τ is closed.

Semantics

Our modal language receives a relational semantics and a tuple semantics.

Relational semantics

A frame is a relational structure of the form F = (W, R) where W is a nonempty set of states (with typical members denoted s, t, etc) and R is a binary relation on W . A model based on a frame F = (W, R) is a relational structure of the form M = (W, R, V ) where V is a function associating to each variable x a set V (x) of states. We inductively define the truth of a formula φ in a model M at state s, in symbols M, s |= φ, as follows:

• M, s |= x iff s ∈ V (x), • M, s |= ⊥, • Ms |= ¬φ iff M, s |= φ, • M, s |= φ ∨ ψ iff either M, s |= φ, or M, s |= ψ, • M, s |= ✷φ iff for all states t ∈ W , if sRt then M, t |= φ. Obviously, • M, s |= ✸φ iff there exists a state t ∈ W such that sRt and M, t |= φ, • M, s |= ✷ k φ iff for all states t ∈ W , if sR k t then M, t |= φ, • M, s |= ✷ <k φ iff for all states t ∈ W and for all i ∈ N, if sR i t and i < k then M, t |= φ.
Let C be a class of frames. We shall say that a formula φ is C-valid, in symbols C |= φ, if for all frames F = (W, R) in C, for all models M = (W, R, V ) based on F and for all states s ∈ W , M, s |= φ.

Tuple semantics

For all n ∈ N, an n-valuation is an (n + 1)-tuple (U 0 , . . . , U n ) of subsets of AF . We inductively define the truth of a formula φ in an n-valuation (U 0 , . . . , U n ), in symbols (U 0 , . . . , U n ) |= φ, as follows:

• (U 0 , . . . , U n ) |= x iff x ∈ U n , • (U 0 , . . . , U n ) |= ⊥, • (U 0 , . . . , U n ) |= ¬φ iff (U 0 , . . . , U n ) |= φ, • (U 0 , . . . , U n ) |= φ ∨ ψ iff either (U 0 , . . . , U n ) |= φ, or (U 0 , . . . , U n ) |= ψ, • (U 0 , . . . , U n ) |= ✷φ iff if n ≥ 1 then (U 0 , . . . , U n-1 ) |= φ.
Obviously,

• (U 0 , . . . , U n ) |= ✸φ iff n ≥ 1 and (U 0 , . . . , U n-1 ) |= φ, • (U 0 , . . . , U n ) |= ✷ k φ iff if n ≥ k then (U 0 , . . . , U n-k ) |= φ, • (U 0 , . . . , U n ) |= ✷ <k φ iff for all i ∈ N, if n ≥ i and i < k then (U 0 , . . . , U n-i ) |= φ.
We shall say that a formula φ is n-tuple-valid, in symbols |= n φ, iff for all n-valuations (U 0 , . . . , U n ), (U 0 , . . . , U n ) |= φ.

Correspondence between the two semantics

In this paper, we will be only interested in the class C det of all deterministic frames, i.e. frames F = (W, R) such that for all states s, t, u ∈ W , if sRt and sRu then t = u.

Proposition 3.1 Let φ be a formula. The following conditions are equivalent:

(i) C det |= φ.
(ii) For all n ∈ N, |= n φ.

When the conditions from Proposition 3.1 hold, we shall simply say that φ is valid, in symbols |= φ.

Unification

We shall say that a formula φ(x 1 , . . . , x α ) is unifiable iff there exists ψ 1 , . . . , ψ α ∈ F such that |= φ(ψ 1 , . . . , ψ α ). In that case, the substitution σ defined by σ(x 1 ) = ψ 1 , . . ., σ(x α ) = ψ α is called unifier of φ. For instance, the formula φ = ✷x ∨ ✷y is unifiable. The substitution σ defined by σ(x) = z and σ(y) = ¬z is a unifier of φ. Remark that if a formula possesses a unifier then it possesses a closed unifier. This follows from the fact that for all unifiers σ of a formula φ and for all closed substitutions τ , σ • τ is a closed unifier of φ. The unification problem is the decision problem defined as follows:

• given a formula φ(x 1 , . . . , x α ), determine whether φ(x 1 , . . . , x α ) is unifiable. We shall say that a substitution σ is equivalent to a substitution τ , in symbols σ ≃ τ , if for all variables x, |= σ(x) ↔ τ (x). We shall say that a substitution σ is more general than a substitution τ , in symbols σ τ , if there exists a substitution υ such that σ • υ ≃ τ . We shall say that a set Σ of unifiers of a unifiable formula φ is complete if for all unifiers σ of φ, there exists a unifier τ of φ in Σ such that τ σ. An important question is the following: when a formula is unifiable, has it a minimal complete set of unifiers? When the answer is "yes", how large is this set? We shall say that a unifiable formula

• φ is unitary if there exists a minimal complete set of unifiers of φ with cardinality 1,

• φ is finitary if there exists a finite minimal complete set of unifiers of φ but there exists no with cardinality 1,

• φ is infinitary if there exists an infinite minimal complete set of unifiers of φ but there exists no finite one,

• φ is nullary if there exists no minimal complete set of unifiers of φ.

For instance, the formula x is unitary: the substitution σ defined by σ(x) = ⊤ constitutes a minimal complete set of unifiers of it. We do not know whether there exists finitary, or infinitary formulas. We will show in Section 7 that the formula x → ✷x is nullary.

Unification problem: lemmas

Let ψ(x) be an arbitrary formula with at most one atomic formula.

Lemma 5.1 For all k ∈ N, the following conditions are equivalent:

(i) ψ(x) is unifiable;
(ii) there exists φ ∈ AF F such that |= ψ(φ);

(iii) there exists φ ∈ AF F such that |= ✷ k ⊥ → ψ(φ) and |= ✸ k ⊤ → ψ(φ).

Remark that Lemma 5.1 still holds when one considers a formula ψ(x 1 , . . . , x α ) with more than one atomic formula. In this case, simply replace the "there exists φ . . ." by "there exists φ 1 , . . . , φ α . . .". Concerning the remainder of this Section and Section 6, the same remark is on as well. Hence, without loss of generality, we will always consider in the remainder of this Section and in Section 6 that ψ is a formula with at most one atomic formula. In this case, for all n ∈ N, an n-valuation is comparable to an (n + 1)-tuple of bits. Let k ∈ N be such that deg(ψ(x)) ≤ k. For all φ ∈ AF F and for all n ∈ N, if k ≤ n then let V k (φ, n, i) = "if |= n-k+i φ then 1 else 0" for each i ∈ N such that i ≤ k. Lemma 5.2 For all φ ∈ AF F and for all n ∈ N, if k ≤ n then the following conditions are equivalent:

(i) |= n ψ(φ); (ii) (V k (φ, n, 0), . . . , V k (φ, n, k)) |= ψ(x).
Lemma 5.3 For all φ ∈ AF F , the following conditions are equivalent:

(i) |= ✸ k ⊤ → ψ(φ); (ii) for all n ∈ N, if k ≤ n then (V k (φ, n, 0), . . . , V k (φ, n, k)) |= ψ(x).

For all φ ∈ AF F and for all

n ∈ N, if k ≤ n then let V k (φ, n) = (V k (φ, n, 0), . . . , V k (φ, n, k)). For all φ ∈ AF F , let f k (φ) = {V k (φ, n): n ∈ N is such that k ≤ n}.
The atom-free formulas φ ′ and φ ′′ are said to be kequivalent, in symbols

φ ′ ≡ k φ ′′ , iff f k (φ ′ ) = f k (φ ′′ ).

Proposition 5.4 ≡ k is an equivalence relation on AF F possessing finitely many equivalence classes.

Proof. By definitions of ≡ k and f k , knowing that for all φ ∈ AF F , f k (φ) is a nonempty set of (k + 1)-tuples of bits. ✷ Lemma 5.5 For all φ ′ , φ ′′ ∈ AF F , if φ ′ ≡ k φ ′′ then the following conditions are equivalent:

(i) |= ✸ k ⊤ → ψ(φ ′ ); (ii) |= ✸ k ⊤ → ψ(φ ′′ ).
For all φ ∈ AF F and for all n ∈ N, let

a k (φ, n) = V k (φ, n • (k + 1) + k). For all φ ∈ AF F , let g k (φ) = {(a k (φ, n), a k (φ, n + 1)): n ∈ N}.
We shall say that the atom-free formulas φ ′ and φ ′′ are k-congruent, in symbols φ ′ ∼ =k φ ′′ , iff g k (φ ′ ) = g k (φ ′′ ).

Proposition 5.6 ∼ =k is an equivalence relation on AF F possessing finitely many equivalence classes.

Proof. By definitions of ∼ =k and g k , knowing that for all φ ∈ AF F , g k (φ) is a nonempty set of pairs of (k + 1)-tuples of bits.

✷ Proposition 5.7 For all φ ′ , φ ′′ ∈ AF F , if φ ′ ∼ =k φ ′′ then φ ′ ≡ k φ ′′ . Proof. Let φ ′ , φ ′′ ∈ AF F . Suppose φ ′ ∼ =k φ ′′ and φ ′ ≡ k φ ′′ . Hence, g k (φ ′ ) = g k (φ ′′ ) and f k (φ ′ ) = f k (φ ′′
). Thus, either there exists n ′ ∈ N such that k ≤ n ′ and V k (φ ′ , n ′ ) ∈ f k (φ ′′ ), or there exists n ′′ ∈ N such that k ≤ n ′′ and V k (φ ′′ , n ′′ ) ∈ f k (φ ′ ). Without loss of generality, assume there exists

n ′ ∈ N such that k ≤ n ′ and V k (φ ′ , n ′ ) ∈ f k (φ ′′ ). By the division algorithm, let m, l ∈ N be such that n ′ = m • (k + 1) + l and l < k + 1. Case m = 0. Since k ≤ n ′ , n ′ = m • (k + 1) + l and l < k + 1, therefore n ′ = k. Hence, V k (φ ′ , n ′ ) = a k (φ ′ , 0). Since g k (φ ′ ) = g k (φ ′′ ), therefore let n ′′ ∈ N be such that (a k (φ ′ , 0), a k (φ ′ , 1)) = (a k (φ ′′ , n ′′ ), a k (φ ′′ , n ′′ + 1)). Since V k (φ ′ , n ′ ) = a k (φ ′ , 0), therefore V k (φ ′ , n ′ ) = V k (φ ′′ , n ′′ • (k + 1) + k). Case m = 0. Since g k (φ ′ ) = g k (φ ′′ ), therefore let n ′′ ∈ N be such that (a k (φ ′ , m -1), a k (φ ′ , m)) = (a k (φ ′′ , n ′′ ), a k (φ ′′ , n ′′ + 1)). Hence, V k (φ ′ , (m - 1) • (k + 1) + k, i) = V k (φ ′′ , n ′′ • (k + 1) + k, i) and V k (φ ′ , m • (k + 1) + k, i) = V k (φ ′′ , (n ′′ + 1) • (k + 1) + k, i) for each i ∈ N such that i ≤ k. Since either n ′ = m • (k + 1) + l and i ≤ k -(l + 1) and V k (φ ′ , m • (k + 1) + l, i) = V k (φ ′ , (m -1) • (k + 1) + k, i + (l + 1)), or k -l ≤ i and V k (φ ′ , m • (k + 1) + l, i) = V k (φ ′ , m • (k + 1) + k, i -(k -l)) for each i ∈ N such that i ≤ k, therefore either i ≤ k -(l + 1) and V k (φ ′ , n ′ , i) = V k (φ ′′ , n ′′ • (k + 1) + k, i + (l + 1)), or k -l ≤ i and V k (φ ′ , n ′ , i) = V k (φ ′′ , (n ′′ + 1) • (k + 1) + k, i -(k -l)) for each i ∈ N such that i ≤ k. Thus, V k (φ ′ , n ′ , i) = V k (φ ′′ , (n ′′ + 1) • (k + 1) + l, i) for each i ∈ N such that i ≤ k. Consequently, V k (φ ′ , n ′ ) = V k (φ ′′ , (n ′′ + 1) • (k + 1) + l). In both cases, V k (φ ′ , n ′ ) ∈ f k (φ ′′ ): a contradiction. ✷ Lemma 5.
8 For all φ ′ , φ ′′ ∈ AF F , if φ ′ ∼ =k φ ′′ then the following conditions are equivalent:

(i) |= ✸ k ⊤ → ψ(φ ′ ); (ii) |= ✸ k ⊤ → ψ(φ ′′ ).
We shall say that a nonempty set B of pairs of (k + 1)-tuples of bits is modally definable iff there exists φ ∈ AF F such that B = g k (φ). For all nonempty sets B of pairs of (k + 1)-tuples of bits, let ⊲ B be the domino relation on B defined as follows:

• (b ′ 1 , b ′′ 1 ) ⊲ B (b ′ 2 , b ′′ 2 ) iff b ′′ 1 = b ′ 2 .
We shall say that a path in the directed graph (B, ⊲ B ) is weakly Hamiltonian iff it visits each vertex at least once. Let 1 k+1 be the (k + 1)-tuple of 1 and 0 k+1 be the (k + 1)-tuple of 0. Proposition 5.9 For all nonempty sets B of pairs of (k + 1)-tuples of bits, the following conditions are equivalent:

(i) B is modally definable;

(ii) the directed graph (B, ⊲ B ) contains a weakly Hamiltonian path either ending with (1 k+1 , 1 k+1 ), or ending with (0 k+1 , 0 k+1 ).

Proof. Let B be a nonempty set of pairs of (k + 1)-tuples of bits. ) is a weakly Hamiltonian path either ending with (1 k+1 , 1 k+1 ), or ending with (0 k+1 , 0 k+1 ). Let (β 0 , . . . , β s•(k+1)+k ) be the sequence of bits determined by the sequence (b ′ 0 , , . . . , b ′ s ) of (k + 1)-tuples of bits.

Case (b ′ s , b ′′ s ) = (1 k+1 , 1 k+1 ). Let φ = {✸ i ✷⊥: i ∈ N is such that i < s • (k + 1) and β i = 1} ∨ ✸ s•(k+1) ⊤. Case (b ′ s , b ′′ s ) = (0 k+1 , 0 k+1 ). Let φ = {✸ i ✷⊥: i ∈ N is such that i < s • (k + 1) and β i = 1}.
In both cases, the reader may easily verify that for all n ∈ N, if n ≤ s then

V k (φ, n • (k + 1) + k, i) = β n•(k+1)+i for each i ∈ N such that i ≤ k. Hence, for all n ∈ N, if n ≤ s then V k (φ, n • (k + 1) + k) = b ′ n . Thus, for all n ∈ N, if n ≤ s then (a k (φ, n), a k (φ, n + 1)) = (b ′ n , b ′′ n ). Hence, B = g k (φ). Only if. Suppose B is modally definable. Let φ ∈ AF F be such that B = g k (φ). Let n 0 ∈ N be such that either for all n ∈ N, if n 0 ≤ n then a k (φ, n) = 1 k+1 , or for all n ∈ N, if n 0 ≤ n then a k (φ, n) = 0 k+1 .
Thus, ((a k (φ, 0), a k (φ, 1)), . . . , (a k (φ, n 0 ), a k (φ, n 0 + 1))) is a weakly Hamiltonian path either ending with (1 k+1 , 1 k+1 ), or ending with (0 k+1 , 0 k+1 ). ✷

Unification problem: algorithm

As in Section 5, let ψ(x) be an arbitrary formula with at most one atomic formula and k ∈ N be such that deg(ψ(x)) ≤ k. We shall say that an infinite sequence (β 0 , β 1 , . . .) of bits respects ψ(x) iff the following conditions hold:

• for all i ∈ N, if i ≤ k then (β 0 , . . . , β i ) |= ψ(x),

• for all i ∈ N, (β i+1 , . . . , β i+k+1 ) |= ψ(x).

Using the above results, ψ(x) is unifiable iff there exists a modally definable set B of pairs of (k + 1)-tuples of bits from which, by means of its domino relation, an infinite sequence of bits respecting ψ(x) and either ending with 1s, or ending with 0s can be constructed. Hence, in order to determine whether ψ(x) is unifiable, it suffices to consider the following procedure: The function M C(•) takes as input a tuple (b(i), . . . , b(i + j)) of bits and a formula ψ(x) and returns the Boolean value

• M C(b(i), . . . , b(i + j), ψ(x)) = "if (b(i), . . . , b(i + j)) |= ψ(x) then ⊤ else ⊥".
It can be implemented as a deterministic Turing machine working in polynomial time. The procedure U N I(•) takes as input a formula ψ(x) and accepts it iff, when k = deg(ψ(x)), there exists a modally definable set B of pairs of (k + 1)-tuples of bits from which, by means of its domino relation, an infinite sequence of bits respecting ψ(x) and either ending with 1s, or ending with 0s can be constructed. By Proposition 5.9, the procedure U N I(•) accepts its It can be implemented as a deterministic Turing machine working in polynomial time. The procedure U N ISET (•) takes as input a finite set of pairs of thin minimalist normal formulas and accepts it iff it is unifiable. It can be implemented as a nondeterministic Turing machine working in polynomial space. Hence, the unification problem is in N P SP ACE. Since N P SP ACE = P SP ACE, therefore Proposition 8.21 The unification problem is in P SP ACE.

Still, we do not know whether the unification problem is P SP ACE-hard.

Conclusion

Much remains to be done. For example, there is the related admissibility problem: given an inference rule ψ1(x1,...,xn),...,ψ k (x1,...,xn) χ(x1,...,xn)

, determine whether for all formulas φ 1 , . . . , φ n , if |= ψ 1 (φ 1 , . . . , φ n ), . . ., |= ψ k (φ 1 , . . . , φ n ) then |= χ(φ 1 , . . . , φ n ). One may also consider the unification problem when the ordinary modal language is extended by a set AP of parameters (denoted p, q, etc). In this case, the unification problem is to determine, given a formula ψ(p 1 , . . . , p α , x 1 , . . . , x β ), whether there exists formulas φ 1 , . . . , φ β such that |= ψ(p 1 , . . . , p α , φ 1 , . . . , φ β ). For each k ≥ 2, one may also consider the unification problem in Alt k , the least normal logic containing the formula ✸(x 1 ∧¬x 2 ∧. . .∧ ¬x k-1 ∧¬x k )∧. . .∧✸(¬x 1 ∧¬x 2 ∧. . .∧¬x k-1 ∧x k ) → ✷(x 1 ∨x 2 ∨. . .∨x k-1 ∨x k ).

Its decidability is open. Finally, what becomes of these problems when the ordinary modal language is extended by the master modality, the universal modality or the difference modality?

  If. Suppose the directed graph (B, ⊲ B ) contains a weakly Hamiltonian path either ending with (1 k+1 , 1 k+1 ), or ending with (0 k+1 , 0 k+1 ). Let s ∈ N and (b ′ 0 , b ′′ 0 ), . . . , (b ′ s , b ′′ s ) ∈ B be such that ((b ′ 0 , b ′′ 0 ), . . . , (b ′ s , b ′′ s )

  procedure U N I(ψ(x)) begin k := deg(ψ(x)) guess a tuple (b(0), . . . , b(k)) of bits of size k + 1 bool := ⊤ i := 0 while bool ∧ i ≤ k do begin bool := M C(b(0), . . . , b(i), ψ(x)) i := i + 1 end if ¬bool then reject while (b(0), . . . , b(k)) = 0 k+1 ∧ (b(0), . . . , b(k)) = 1 k+1 do begin guess a tuple (b(k + 1), . . . , b(2k + 1)) of bits of size k + 1 bool := ⊤ i := 0 while bool ∧ i ≤ k do begin bool := M C(b(i + 1), . . . , b(i + k + 1), ψ(x)) i := i + 1 end if ¬bool then reject (b(0), . . . , b(k)) := (b(k + 1), . . . , b(2k + 1)) end accept end
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• BC(S) ="if neither S contains pairs of the form (✸φ, ⊤), nor S contains pairs of the form (⊤, ✸ψ) then ⊤ else ⊥ ′′ .
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input ψ(x) iff ψ(x) is unifiable. It can be implemented as a nondeterministic Turing machine working in polynomial space. Hence, the unification problem is in N P SP ACE. Since N P SP ACE = P SP ACE, therefore Proposition 6.1 The unification problem is in P SP ACE.

Still, we do not know whether the unification problem is P SP ACE-hard.

Unification type

Following the line of reasoning suggested by Jeȓábek [START_REF] Jeȓábek | Blending margins: the modal logic K has nullary unification type[END_REF], we consider the formula φ(x) = x → ✷x. We also consider the substitution σ ⊤ defined by σ ⊤ (x) = ⊤ and for all k ∈ N, the substitution σ k defined by σ k (x) = ✷ <k x ∧ ✷ k ⊥. Lemma 7.1 • σ ⊤ is a unifier of φ(x),

• for all k ∈ N, σ k is a unifier of φ(x). Lemma 7.2 Let k, l ∈ N. If k ≤ l then σ l σ k .

Proposition 7.4 Let σ be a substitution. The following conditions are equivalent:

(ii) σ ⊤ σ.

(iii) |= σ(x).

Proof. (i⇒ii) By definition of ≃ and . (ii⇒iii) Suppose σ ⊤ σ. Let τ be a substitution such that σ ⊤ • τ ≃ σ. Thus, |= τ (σ ⊤ (x)) ↔ σ(x). Hence, |= ⊤ ↔ σ(x). Consequently, |= σ(x). (iii⇒i) Suppose |= σ(x). Hence, |= ⊤ ↔ σ(x). Thus, |= σ(σ ⊤ (x)) ↔ σ(x). Consequently, σ ⊤ • σ ≃ σ. ✷ Proposition 7.5 Let σ be a unifier of φ(x) and k ∈ N. The following conditions are equivalent:

Let σ be a unifier of φ(x) and k ∈ N be such that deg(σ(x)) ≤ k. One of the following conditions holds:

. By Lemma 7.1 and Propositions 7.4-7.6, Σ is a complete set of unifiers of φ(x). Suppose there exists a minimal complete set of unifiers of φ(x). Let Γ be a minimal complete set of unifiers of φ(x). Let γ ∈ Γ be such that γ σ 0 . Since Σ is a complete set of unifiers of φ(x), therefore let σ ∈ Σ be such that σ γ. Now, we consider the following 2 cases. Case σ = σ ⊤ . Since γ σ 0 , therefore σ σ 0 . Let υ be a substitution such that σ • υ ≃ σ 0 . Hence, |= υ(σ(x)) ↔ σ 0 (x). Thus, |= ⊤ ↔ ⊥: a contradiction. Case σ = σ k for some k ∈ N. By Lemma 7.3, σ σ k+1 . Let γ ′ ∈ Γ be such that γ ′ σ k+1 . By Lemma 7.2, since σ γ, therefore γ ′ γ. Since Γ is a minimal complete set of unifiers of φ(x), therefore γ ′ = γ. Since γ ′ σ k+1 and σ γ, therefore σ σ k+1 : a contradiction. ✷

Sub-Boolean variants

In this section, we study sub-Boolean variants of the unification problem.

{✷, ⊤, ∧}-fragment

In the {✷, ⊤, ∧}-fragment, formulas are defined as follows:

Then υ σ and υ τ . Lemma 8.2 Let φ be a formula and σ, τ, υ be substitutions. If for all variables

The ✷-integer-set of a variable x with respect to a formula φ, in symbols is ✷ (x, φ), is inductively defined as follows:

Let φ be an arbitrary formula.

Lemma 8.4 Let σ be a substitution and x be a variable. If |= σ(φ) ↔ x then there exists a variable y such that 0 ∈ is ✷ (y, φ) and |= σ(y) ↔ x. Lemma 8.5 Let σ be a substitution, i ≥ 0 and x, y be variables.

In the {✷, ⊤, ∧}-fragment, unification problems are finite sets of pairs of formulas. We shall say that a finite set S = {(φ 1 , ψ 1 ), . . . , (φ n , ψ n )} of pairs of formulas is unifiable iff there exists a substitution σ such that |= σ(φ 1 ) ↔ σ(ψ 1 ), . . ., |= σ(φ n ) ↔ σ(ψ n ). In that case, σ is called a unifier of S. Of course, now, substitutions are functions associating to each variable a formula in the {✷, ⊤, ∧}-fragment. Obviously, if a finite set of pairs of formulas possesses a unifier then it possesses a closed unifier. Moreover, by Lemma 8.3, every atom-free formula is equivalent to ⊤. As a result, Proposition 8.6 Every finite set of pairs of formulas possesses a unifier.

The simplicity of unification problems in the {✷, ⊤, ∧}-fragment does not entail that every finite set of pairs of formulas possesses a minimal complete set of unifiers. Following the line of reasoning suggested by Baader [START_REF] Baader | Unification in commutative theories[END_REF], we consider the formulas φ(x, y, z) = ✷x ∧ ✷y and ψ(x, y, z) = y ∧ ✷✷z. We also consider for all k ∈ N, the substitution σ k defined by σ k (x) = t k , σ k (y) = ✷✷ <k+1 t k and σ k (z) = ✷ k t k . We will assume that for all k, l ∈ N, k = l, the variables t k and t l are distinct. Lemma 8.7 For all k ∈ N, σ k is a unifier of {(φ(x, y, z), ψ(x, y, z))}.

For all k ∈ N, we consider

• the substitution γ k inductively defined as follows:

•

Proposition 8.11 Let σ be a unifier of {(φ(x, y, z), ψ(x, y, z))} and k ∈ N. If σ σ k then there exists a variable u such that k ∈ is ✷ (u, σ(z)).

Proof. Suppose σ σ k . Let τ be a substitution such that σ

Proof of the Claim:

By the above Claim, let i ≥ 1 be such that i

. ✷ Lemma 8.12 Let σ be substitution. If σ is a unifier of {(φ(x, y, z), ψ(x, y, z))} then σ γ k for at most finitely many k ∈ N.

Proposition 8.13 There exists no minimal complete set of unifiers of {(φ(x, y, z), ψ(x, y, z))}.

Proof. Let ∆ be a minimal complete set of unifiers of {(φ(x, y, z), ψ(x, y, z))}.

Let δ ∈ ∆ be such that δ σ 0 . Hence, δ γ 0 . By Lemmas 8.10 and 8.12, let k ∈ N be such that δ γ k and δ γ k+1 . Without loss of generality, we can assume that var(δ(x)) ∩ var(γ k+1 (x)) = ∅, var(δ(y)) ∩ var(γ k+1 (y)) = ∅ and var(δ(z)) ∩ var(γ k+1 (z)) = ∅. Let ǫ be the substitution defined by ǫ(x) = δ(x)∧γ k+1 (x), ǫ(y) = δ(y)∧γ k+1 (y) and ǫ(z) = δ(z)∧γ k+1 (z). By Lemmas 8.1, 8.2 and 8.8, ǫ is a unifier of {(φ(x, y, z), ψ(x, y, z))}, ǫ δ and ǫ γ k+1 . Since ∆ is a minimal complete set of unifiers of {(φ(x, y, z), ψ(x, y, z))}, therefore let δ ′ ∈ ∆ be such that δ ′ ǫ. Since ǫ δ, therefore δ ′ δ. Since ∆ is a minimal complete set of unifiers of {(φ(x, y, z), ψ(x, y, z))}, therefore δ ′ = δ. Since ǫ γ k+1 and δ ′ ǫ, therefore δ γ k+1 : a contradiction. ✷

{✸, ⊤, ∧}-fragment

In the {✸, ⊤, ∧}-fragment, formulas are defined as follows:

The ✸-integer-set of a variable x with respect to a formula φ, in symbols is ✸ (x, φ), is inductively defined as has been defined the ✷-integer-set of x with respect to φ. Let φ be an arbitrary formula.

As before, if a finite set of pairs of formulas possesses a unifier then it possesses a closed unifier. Unlike the {✷, ⊤, ∧}-fragment, there exists nonunifiable finite sets of pairs of formulas. The truth is that many atom-free formulas are not equivalent to ⊤. Nevertheless, by Lemma 8.14, for all atomfree formulas φ, φ is equivalent to ✸ deg(φ) ⊤. Lemma 8.15 Let φ be a formula. For all closed substitutions σ, |= σ(φ)

Lemma 8.16 Let S be a finite set of pairs of formulas. Let φ, ψ, φ ′ , ψ ′ be formulas such that deg(φ

Let the normal formulas be defined as follows:

For example, the formula ✸x ∧ ✸y is not normal and the formula y ∧ ✸✸z is normal. In the above definition of normal formulas, we use the conjunction (x 1 ∧ . . . ∧ x α ) of the variables x 1 , . . . , x α . In such a situation, we will always consider that α ≥ 1. We shall say that a formula φ is minimalist if for all x ∈ AF , x occurs at most once in φ. For instance, the formula

Lemma 8.17 Let φ be a formula. There exists a normal formula φ ′ such that |= φ ↔ φ ′ . Moreover, if φ is minimalist then φ ′ is minimalist too. Finally, φ ′ can be easily computed from φ in polynomial time.

For example, the non-normal formula ✸x ∧ ✸y is equivalent to the normal formula ✸(x ∧ y) and the non-normal formula y ∧ ✸⊤ ∧ ✸✸z is equivalent to the normal formula y ∧ ✸✸z. Lemma 8.18 Let S be a finite set of pairs of formulas. There exists a finite set S ′ of pairs of minimalist normal formulas such that S possesses a unifier iff S ′ possesses a unifier. Moreover, S ′ can be easily computed from S in polynomial time.

Let the thin formulas be defined as follows:

For example, the formula ✸x ∧ ✸y is not thin and the formula y ∧ ✸✸z is thin. Remark that for all formulas φ, if φ is thin then φ is normal.

Proposition 8.19 Let S be a finite set of pairs of minimalist normal formulas with variables x 1 , . . . , x α . Let be a total order on 1, . . . , α. Let S ′ be a finite set of pairs of thin minimalist formulas obtained from S and by replacing each conjunct of the form (x β1 ∧ . . . ∧ x βn ) in S by x β where β = max {β 1 , . . . , β n }. Suppose S ′ possesses a closed unifier σ such that

Then σ is also a unifier of S.

Proof. Let (x β1 ∧. . .∧x βn ) be a conjunct in S and β = max {β 1 , . . . , is called a thin -subset of S. Using the above results, a given finite set S of pairs of minimalist normal formulas with variables x 1 , . . . , x α is unifiable iff there exists a total order on 1, . . . , α and a thin -subset of S possessing a unifier. Now, in order to determine whether a given finite set S of pairs of thin minimalist normal formulas is unifiable, it suffices to consider the following procedure: