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Abstract. Boolean Region Connection Calculus is a formalism for rea-
soning about the topological relations between regions. In this paper,
we provide computability results about unifiability in Boolean Region
Connection Calculus and prove that elementary unification is finitary.
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1 Introduction

The Region Connection Calculus (RCC) is a formalism for reasoning about the
topological relations between regions [19]. With RCCS, a variant of RC'C' based
on 8 atomic relations [6,17], knowledge is represented by means of a conjunc-
tion of disjunctions of atomic relations between variables representing regions.
Given such a formula, the main task is to know whether it is consistent—an N P-
complete problem [20,21]. Consisting of a combination of RCC8 with Boolean
reasoning, BRCCS is a variant of RCCS8 in which regions are represented by
Boolean terms [24]. With BRCC8, showing the consistency of formulas is N P-
complete in arbitrary topological spaces and PSPAC E-complete in Euclidean
spaces [14-16,24]. BRCC8 and its multifarious variants have attracted consid-
erable interest both for their practical applications in spatial reasoning [6,20)]
and for the mathematical problems they give rise to [3-5,7-9,14-16,23,24].

We are interested in supporting a new inference capability: unifia-
bility of formulas. The wunifiability problem consists, given a finite set
{(p1(z1, -y zn), V1(T1, oy 20))s e ooy (Pm(T1,y ooy Tn)s Y (21, - ., @) } Of pairs
of formulas, in determining whether there exists Boolean terms aq,...,a, such
that p1(a1,...,a,) < Y1(a1,...,an), -« pm(ar, ..., an) < Ym(ay,...,a,) are
valid. To explain our motivation for considering unifiability, consider a finite set
of pairs of BRC'C8-formulas representing desired properties about some regions.
This set may contain non-equivalent formulas that can be made equivalent by



applying to them appropriate substitutions. And if one is able to find such appro-
priate substitutions, then one is interested to find the maximal ones. An impor-
tant question is then the following: when a set of BRCC8-formulas is unifiable,
has it a minimal complete set of unifiers? When the answer is “yes”, how large
is this set? See [1,2] where such question is addressed for description logics.

The section-by-section breakdown of the paper is as follows. In Sect. 2, we
define the syntax of BRCCS8. Section3 explains our motivation for consider-
ing unification in BRCCS8. In Sect.4, we present the semantics of BRCCS.
Section 5 introduces the basic ideas involved in unification. In Sect. 6, we embark
on the study of specific Boolean terms: monoms and polynoms. The main result
we prove there is Proposition 4. Section 7 defines equivalence relations between
tuples of terms. The main results we prove there are Propositions5 and 7. In
Sect. 8, we provide computability results about unifiability in BRCCS. Section 9
shows that unification in BRCCS is finitary. Due to lack of space, we only
consider the elementary case where the considered terms do not contain free
constant symbols.

2 Syntax

Now, it is time to meet the language we are working with. We adopt the standard
rules for omission of the parentheses.

Let VAR be a countable set of propositional variables (with typical mem-
bers denoted x, y, etc.). Let (z1,x2,...) be an enumeration of VAR without
repetitions. The terms (denoted a, b, etc.) are defined as follows:

—aux=x|0]a"|(aUb).

The other constructs for terms (for instance, 1 and N) are defined as usual. We
use the following notations for terms:

— a° for a*,
— a' for a.

Reading terms as regions, the constructs 0, * and U should be regarded as the
empty region, the complement operation and the union operation. As a result,
the constructs 1 and N should be regarded as the full region and the intersection
operation. In the sequel, we use a(z1, ..., z,) to denote a term a whose variables
form a subset of {x1, ..., z,}. For all nonnegative integers n, let TER(x1, ..., %)
be the set of all terms whose variables form a subset of {z1,...,2z,}. Let TER
be the set of all terms and TER(()) be the set of all variable-free terms.
The formulas (denoted ¢, 1, etc.) are defined as follows:

—pu=Plab) | Ll-p|(eV)

Here, a and b are terms and P is one of the following 8 binary predicates corre-
sponding to the 8 binary relations of RCCS:

— DC (“disconnected”),



— EC (“external contact”),

— PO (“partial overlap”),

— TPP (“tangential proper part”),

— TPPI (“inverse of TPP”),

— NTPP (“nontangential proper part”),
— NTPPI (“inverse of NT'PP”),

- EQ (“equal”).

The other constructs for formulas (for instance, T and A) are defined as usual.
We say that a formula ¢ is equational iff EQ is the only binary predicate pos-
sibly occurring in . In the sequel, we use ¢(x1,...,x,) to denote a formula ¢
whose variables form a subset of {z1,...,z,}. For all nonnegative integers n,
let FOR(x1,...,zy) be the set of all formulas whose variables form a subset of
{z1,...,2,}. Let FOR be the set of all formulas and FOR(()) be the set of all
variable-free formulas. An inference rule is a pair of the form % where ¢ and ¥
are formulas.

A substitution is a function 0 : VAR — T ER which moves at most finitely
many variables, i.e. there exists at most finitely many variables x such that
o(x) # x. Given a substitution o, let 6 : TERU FOR — TERU FOR be
the endomorphism such that for all variables x, 6(z) = o(x). Obviously, for all
substitutions o, 7, the function o o 7 such that for all x € VAR, (o o 7)(x) =
T(o(x)) is a substitution called the composition of the substitutions o and 7.

3 Motivation for Considering Unifiability in BRCCS8

Our motivation for considering unifiability in BRCCS8 comes from the following
three facts: BRCCS is a formalism both with theoretical merits and with practi-
cal relevance; unification in Boolean algebras has attracted considerable interest;
there is a wide variety of situations where unifiability problems in formalisms
like BRCCS arise.

BRCCS is the result of the combination of RCC8 with Boolean reasoning.
Within the context of RCCS8, formulas would just be quantifier-free first-order
formulas in a constant-free function-free language based on the 8 binary predi-
cates of RCCS. For instance, TPP(z,y) N\TPP(x,z) — TPP(y,z) VTPP(z,y).
By allowing to apply the 8 binary predicates of RC'CS8 not only to propositional
variables but also to Boolean terms, Wolter and Zakharyaschev [24] have strictly
extended their expressive capacity. For instance, in the class of all topological
spaces, the BRCCS formula FQ(x Uy, z) has no equivalent formula in a pure
RCC8-based language. As well, with this enriched language, one becomes able
by using the BRCCS formula DC(x,z*) — EQ(x,0)V EQ(x*,0) to distinguish
between connected and non-connected topological spaces.

Unification in Boolean algebras has attracted considerable interest and sev-
eral algorithms for computing solutions to Boolean equations are known, some of
them going back to Boole and Léwenheim. But the most important result is that
unification is unitary: given an equation a(z1,...,x,) = b(x1,...,x,), either it
possesses no solution, or it possesses a single most general unifier. See [2,18] for



an introduction to the unifiability problem in Boolean algebras. So, it is nat-
ural to ask whether unification in BRCCS inherits the unitariness character of
Boolean unification. In this paper, we refute this idea by proving that unification
in BRCCS is finitary.

There is a wide variety of situations where unifiability problems arise. We
will explain our motivation for considering them within the context of geo-
graphical information systems. Suppose @(p1,...,pn) is a formula representing
our knowledge about regions denoted p,...,p, in some geographical universe
and ¥ (x1,...,x,) is a formula representing a desirable property about regions
denoted x1,...,x,. It may happen that ¥(x1,...,x,) is not a logical conse-
quence of ¢(p1,...,pmn) in the considered geographical universe whereas some of
its instances are. Hence, one may wonder whether there are n-tuples (aq,...,ay)
of terms for which the property represented by #(x1,...,x,) becomes a logical
consequence of ¢(p1, ..., py) in the considered geographical universe. And if one
is able to decide such question, then one may be interested to obtain n-tuples
(b1,...,by) as general as possible. Central to unification theory are the questions
of the computability of unifiability and the unification type. Within the context
of BRC(CS8, these questions will be addressed in Sects. 8 and 9.

4 Semantics

The best way to understand the meaning of the binary predicates is by inter-
preting terms and formulas in topological spaces [14-16,24]. More precisely, in
a topological space (X, 7), if Int,(-) denotes its interior operation then to each
binary predicate P, one usually associates a binary relation P(*>7) on the set of
all regular closed subsets of X:

~ DCX (A, B) if ANB =0,

~ ECY7T(A B)iff AN B # 0 and Int.(A) N Int.(B) =0,

— POYXT)(A, B) iff Int,(A) N Int.(B) # 0, Int,(A) € B and Int.(B) € A,
~ TPPX7)(A,B)if AC B, AZ Int,(B) and B Z A,

~ TPPIXT)(A,B)iff BC A, B¢ Int.(A) and A € B,

~ NTPPXT)(A,B)iff AC Int,(B) and B € A,

~ NTPPIX7)(A,B)iff B C Int,(A) and A B,

- EQWY (A, B) iff A= B.

~—

This topological semantics is considered in [14-16,24]. Obviously, these relations
are jointly exhaustive and pairwise disjoint on the set of all nonempty regular
closed subsets of X. We say that a topological space (X, 7) is indiscrete iff 7 =
{0, X}. We say that a topological space (X, 7) is connected iff for all A,B € T,
either ANB #(,or AUB # X.

A relational perspective is suggested by Galton [11] who introduces the notion
of adjacency space. Galton’s spaces are frames (W, R) where W is a nonempty
set of cells and R is an adjacency relation between cells. Galton defines regions
to be sets of cells. He also defines two regions A and B to be connected iff some
cell in A is adjacent to some cell in B. This definition relates Galton’s adjacency



spaces to the relational semantics of modal logic which makes it possible to use
methods from modal logic for studying region-based theories of space. The truth
is that the above-mentioned topological semantics and the relational perspective
suggested by Galton are equivalent [23].

In this paper, we adopt a relational perspective by interpreting terms and
formulas in frames. A frame is a structure of the form (W, R) where W is a
nonempty set (with typical members denoted s, ¢, etc.) and R is a reflexive and
symmetric relation on W. A frame (W, R) is indiscrete ifft R =W x W. A frame
(W, R) is connected iff RT = W x W where R denotes the transitive closure
of R. Let (W, R) be a frame. We associate to each binary predicate P a binary
relation P("-7) on 2W as follows:

- D(J<WR>( B)iff RN (A x B) =0,

- EC WR)(A B)iff RN(Ax B)# 0 and AN B = 0,

~ POWER(A B)if ANB#0, AZ Band B ¢ A,

~ TPPW:R(A B)if AC B, RN(Ax (W\B))# (0 and B Z A,
~ TPPIW:R(A B)iff BC A, RN (B x (W\A)) # 0 and A Z B,
~ NTPPW-R)(A B)iff RN (Ax (W\B))=0and B € A,

~ NTPPIW:-R(A B)iff RN (B x (W\A)) =0 and A Z B,

~ EQWRI(A B)iff A= B.

This relational semantics is considered in [3-5,23]. Obviously, these binary rela-
tions are jointly exhaustive and pairwise disjoint on 2"\{0}, i.e. for all non-
empty subsets A, B of W, there exists exactly one binary predicate P such that
PW:R)(A B). The truth is that for all binary predicates P and for all subsets
A, B of W, if either A =, or B = () then PW:B)(A, B) iff either P = DC, or
P=NTPP and B# (), or P= NTPPI and A # (), or P = EQ and A = B.

A waluation on W is a map V associating with every variable x a subset V()
of W. Given a valuation )V on W, we define

o ]:}(.',C) = V(IE),

- V(O)=0, _

- V(") =W\V(a), _

— V(aUb) =V(a) UV(D)

Thus, every term is interpreted as a subset of W. A valuation V on W is balanced
iff for all terms a, either V(a) = (), or V(a) = W, or V(a) is infinite and coinfinite.

A model on (W, R) is a structure M = (W, R, V) where V is a valuation on
W. The satisfiability of a formula ¢ in M (in symbols M | ¢) is defined as
follows:

~ M E P(a,b) iff POVE)(D(a), D(b),

- ML,

- M E g iff M o,

~ M E oV iff either M =, or M =9

A formula ¢ is wvalid in (W, R) iff for all valuations V on W, (W,R,V) = ¢.
A formula ¢ is satisfiable in (W, R) iff there exists a valuation V on W such



that (W, R,V) = ¢. Let C be a class of frames. We say that a formula ¢ is
C-valid iff for all frames (W, R) in C, ¢ is valid in (W, R). We say that a formula
¢ is C-satisfiable iff there exists a frame (W, R) in C such that ¢ is satisfiable
in (W, R). The C -satisfiability problem consists in determining whether a given
formula is C-satisfiable. We say that C agrees with unions iff for all disjoint frames
(W, R), (W', R") in C, there exists a frame (W R") in C such that WUW’ = W".
Note that if C contains frames of arbitrary cardinality then C agrees with unions.
We say that C is determined iff there exists a set of formulas such that C is the
class of all frames validating each formula in that set. We say that C is balanced ift
for all formulas ¢, if ¢ is C-satisfiable then there exists a countable frame (W, R)
in C and there exists a balanced valuation V on W such that (W, R, V) = .

As illustrative examples of classes of frames, let C,;; denote the class of all
frames, C;,,q denote the class of all indiscrete frames and C.,,, denote the class of
all connected frames. The topological counterparts of these classes are the class
of all topological spaces, the class of all indiscrete spaces and the class of all
connected spaces. The following formulas are C,;;-valid:

— DC(xz,z) — EQ(x,0),
- DC(x,y) — DC(y,x).

In an indiscrete frame (W, R), any two points are R-related. Hence, for all subsets
A, Bof W, if DCW-B) (A, B) then either EQW-R) (A, ), or EQW) (B, (). Thus,
the following formula is C;,,4-valid:

— DC(z,y) — EQ(x,0) V EQ(y,0).

In a connected frame (W,R), any two points are RT-related. Hence, for
all subsets A of W, if DOW:B) (A W\A) then either EQMW:)(A,0), or
EQM-R)(W\ A, ). Thus, the following formula is Cy,-valid:

- DC(z,x*) — EQ(x,0) Vv EQ(x*,0).
Proposition 1. Cy, Cing and C.., agree with unions.

Proof. By the definition of what it means for classes of frames to agree with
unions.

Proposition 2. Cyj;, Cing and C.o, are determined.

Proof. 1t suffices to note that C,y is determined by 0, C;,.q is determined by
{DC(z,y) — EQ(z,0) V EQ(y,0)} and Ccop is determined by {DC(z,z*) —
EQ(z,0) v EQ(x*,0)}.

Proposition 3. Cyj;, Cing and C.., are balanced.

Proof. By Proposition 2 and [5, Theorem 4.1], Cyy1, Cing and Ceop, admit filtration.
Now, consider an arbitrary finite frame (W, R). We define the countable frame
(W', R") as follows:

- W' =W xZ,



— for all (Sai)a (t7j) S Wl? (S,Z)R/(t,j) iff sR.

Obviously, if (W, R) is indiscrete (respectively, connected) then (W', R’) is indis-
crete (respectively, connected) too. Moreover, according to [4, Definition 3.1],
(W, R) is a bounded morphic image of (W', R"). Thus, by [4, Proposition 3.1],
for all formulas ¢, if ¢ is satisfiable in (W, R) then there exists a balanced valu-
ation V' on (W', R") such that (W', R", V') = ¢. Since (W, R) was arbitrary and
Cail, Cing and Ce.o,, admit filtration, therefore C,y;, Cing and C.,, are balanced.

As for the satisfiability problem, it is known to be N P-complete in C,;; and Cipng
and PSPAC E-complete in C.op, [5,14-16,24].

5 Unifiability

Let C be a class of frames.

We say that a substitution o is C-equivalent to a substitution 7 (in symbols
o ~c¢ 7) iff for all variables =, EQ(o(z),7(x)) is C-valid. We say that a substi-
tution o is more C-general than a substitution 7 (in symbols o =<¢ 7) iff there
exists a substitution v such that o ov ~¢ 7.

We say that a finite set {(©1,%1),...,(pn,¥n)} of pairs of formulas is
C -unifiable iff there exists a substitution o such that a(p1) < a(¥1), ...,
d(on) <> a(1y,) are C-valid. As a consequence of the classical interpretation of
the constructs for formulas, this is equivalent to a((p1 <> V1) A .. A(@n < Pn))
is C-valid. This means that we can restrict our attention to a simpler kind of
unifiability problems consisting of exactly one formula. We say that a formula
@ is C -unifiable iff there exists a substitution o such that a(p) is C-valid. In
that case, we say that o is a C-unifier of . For instance, EQ(0,z) V EQ(1,x)
is unifiable in C,y;, Cing and Ceon. As we will prove it with Proposition 15, its
unifiers are the substitutions ¢ such that considered as a formula in Classical
Propositional Logic (CPL), o(x) is either equivalent to 0, or equivalent to 1. The
elementary C -unifiability problem consists in determining whether a given for-
mula is C-unifiable. See [1,2,12,13] for an introduction to the unifiability problem
in modal and description logics.

We say that a set of C-unifiers of a formula ¢ is complete iff for all C-unifiers
o of ¢, there exists a C-unifier 7 of ¢ in that set such that 7 <¢ o. As we will
prove it with Proposition 15, the substitutions oy and oy such that o¢(x) = 0,
o1(z) = 1 and for all variables y, if x # y then o¢(y) = y and 01 (y) = y constitute
a complete set of C-unifiers of EQ(0,z) V EQ(1,x). An important question is:
when a formula is C-unifiable, has it a minimal complete set of C-unifiers? When
the answer is “yes”, how large is this set?

We say that a C-unifiable formula ¢ is C-nullary iff there exists no minimal
complete set of C-unifiers of . We say that a C-unifiable formula ¢ is C-infinitary
iff there exists a minimal complete set of C-unifiers of ¢ but there exists no finite
one. We say that a C-unifiable formula ¢ is C-finitary iff there exists a finite min-
imal complete set of C-unifiers of ¢ but there exists no with cardinality 1. We
say that a C-unifiable formula ¢ is C -unitary iff there exists a minimal complete



set of C-unifiers of ¢ with cardinality 1. We say that elementary unification in C
is nullary iff there exists a C-nullary formula. We say that elementary unification
in C is infinitary iff every C-unifiable formula is either C-infinitary, or C-finitary,
or C-unitary and there exists a C-infinitary formula. We say that elementary
unification in C is finitary iff every C-unifiable formula is either C-finitary, or
C-unitary and there exists a C-finitary formula. We say that elementary unifi-
cation in C is unitary iff every C-unifiable formula is C-unitary. See [10] for an
introduction to the unification types in logics.

An axiomatic system for C consists of axioms and rules. Its theorems are all
formulas which can be derived from the axioms by means of the rules. See [5,23]
for systems of axioms and rules characterizing validity with respect to different
classes of frames. In order to make stronger an axiomatic system for C, we can
add new axioms and new rules to it. Concerning new axioms, they should always
consist of C-valid formulas. About new rules, they should always consist of rules

that preserve C-validity. We say that an inference rule £ is C-admissible iff for

all substitutions o, if o(y) is C-valid then o (1)) is C-valid. The elementary C-
admissibility problem consists in determining whether a given inference rule is
C-admissible. See [22] for an introduction to the admissibility problem in logics.

6 Monoms and Polynoms

Before we provide, in Sect. 8, computability results about unifiability and admis-
sibility in BRCCS and prove, in Sect. 9, that elementary unification is finitary,
we introduce the notions of monom and polynom (this section) and define some
equivalence relations (next section).

Let k,n be nonnegative integer and f : {0,1}¥ — {0,1}" be a function.
An n-monom is a term of the form

2. nal

where (f1,...,0,) € {0,1}". Considering the terms xfl, ..., TP as literals
in CPL, n-monoms are just conjunctions of literals. Considering a term a in
TER(x1,...,xy) as a formula in CPL, let mon(n,a) be the set of all n-monoms

22" N ... NP such that a is a tautological consequence of z* N ... Nz, An
n -polynom is a term of the form

~ @ ngfeyu. (@@ nL L nabe)

where m is a nonnegative integer and (Si1,...,081n)---5 (Bmis .-, Bmn) €
{0,1}". Considering the terms zy** N...Nxlw . x?ml N...NaPm» as conjunc-
tions of literals in C' PL, n-polynoms are just disjunctive normal forms. Note that
for all terms a in TER(x1,...,x,), | Jmon(n,a) is an n-polynom. For all positive
integers 4, if i < n then let 7; : {0,1}"™ — {0, 1} be the function such that for

all (B1,...,0n) € {0,1}", m(B1,...,8n) = Bi- For all (By,...,8,) € {0,1}", we
define

— fﬁl(ﬁl,...,ﬁn) = {(Oél,...,Oék) € {0,1}k : f(Oél,...,Oék) = (ﬁl,,ﬁn)}



Obviously, for all (B1,...,3,) € {0,1}", f=Y(B1,...,Bs) C {0,1}*. For all posi-
tive integers i, if ¢ < n then we define:

— Ay ={(a1,...,ap) €{0,1}* . mi(f(as,...,ax)) =1},
= nonalr s (ag, .., op) € A}

Obviously, for all positive integers i, if i« < n then A; C {0,1}* and ¢; is a
k-polynom. Note that A; and ¢; depend on f too. Lemma 1 is a consequence of
the definition of mon(n,a).

Lemma 1. Let a(zq,...,z,) € TER(x1,...,x,). Considered as formulas in
CPL, the terms a and | Jmon(n,a) are equivalent.

Proposition 4. For all (B1,...,0,) € {0,1}", considered as formulas in CPL,
the terms [ J{a$* N...0z* : (a1,...,a5) € fH By, Ba)} and P N...N e
are equivalent.

Proof. Let (B1,...,0,) € {0,1}". It suffices to show that considered as formulas
in CPL, for all 0y, ...,0; € {0,1}, if z1 is interpreted by 01, ..., xx is interpreted
by 0 then U{z{* N...Nz* : (a,...,ak) € f~H(B1,...,0n)} is equivalent to 1
iff ¢ N...Nc is equivalent to 1. Let 6y, ...,0, € {0,1}. Let o1 be interpreted
by 64, ..., x; be interpreted by 6.

Suppose [J{z{* N...Nz* : (aq,...,ax) € f7H(B1,...,0n)} is equivalent
to 1. Hence, (01,...,0;) € f~1(B1,...,Bx). Thus, f(01,...,0k) = (B1,...,0n).
For the sake of the contradiction, suppose cf ''N...NcP is equivalent to 0.
Let i be a positive integer such that ¢ < n and cf ‘ is equivalent to 0. Since
either 3; = 0, or B; = 1, therefore we have to consider two cases. In the for-
mer case, #; = 0 and therefore J{z{* N...Na7" : (aq,...,ap) € A;} is
equivalent to 1. Consequently, (01,...,0,) € A;. Hence, m;(f(61,...,0r)) = 1.
Since f(0y1,...,0r) = (B1,...,0n), therefore 5; = 1: a contradiction. In the
latter case, 5; = 1 and therefore (J{z{" N...Na" : (a1,...,00) € A;} is
equivalent to 0. Thus, (61,...,0r) ¢ A;. Hence, m;(f(01,...,0;)) = 0. Since
f(01,...,0k) = (B1,...,0n), therefore 3; = 0: a contradiction.

Suppose c? 'M...Nc% is equivalent to 1. Let ¢ be an arbitrary positive integer
such that ¢ < n. Since c’f 'N...NcP is equivalent to 1, therefore ¢;" is equivalent
to 1. Since either 3; = 0, or 3; = 1, therefore we have to consider two cases. In the

former case, 3; = 0 and therefore ¢; is equivalent to 0. Hence, (61,...,0;) & A;.
Thus, m;(f(61,...,0r)) = 0. Since ; = 0, therefore m;(f(61,...,0;)) = 5;. In the
latter case, 3; = 1 and therefore ¢; is equivalent to 1. Consequently, (01, ...,0x) €

A;. Hence, m;(f(61,...,0;)) = 1. Since ; = 1, therefore m;(f(61,...,0;)) =
B;. In both cases, m;(f(01,...,0,)) = [;. Since ¢ was arbitrary, therefore
f(ela SRR ek') = (ﬁla S 7/87L> Th‘U.S, (915 s 79k) € f_l(ﬁh s 7671) Consequently,
Uzt neoonal™ s (aay...,ak) € f7H(B1, ..., Ba)} is equivalent to 1.



7 Some Equivalence Relations

Let k,n be nonnegative integers and C be a class of frames.
Given (ay,...,a,) € TER(x1,...,x;)", we define on {0, 1}* the equivalence

relation Nl(€a1 ay) B8 follows:
- (a1,...,0) leal ay (@, ..o o) iff for all positive integers i, if ¢ < n, then

NNt € mon(k, ;) iff 27 N Nk € mon(k, a;).

Lemma 2 is a consequence of its definition.

Lemma 2. For all (ay,...,a,) € TER(z1,...,2x)", leal,...,an) has at most 2"
equivalence classes on {0,1}*.

Let f {0,1}* — {0,1}" be a function such that for all
(a1,...,ak), (..., a}) € {0,1}F if f(ay,...,ar) = f(a),...,a}) then
(g,...,ax) ngal’m,an) (af,..., o). By means of the function f, we define
the n-tuple (b, ...,b,) of n-polynoms as follows:

— b =U{a" n.onale s 20 natt € mon(k,a;) and f(aq, ..., qx) =
( 17"'7ﬁn)}-

We say that (by,...,b,) is the n-tuple of n-polynoms properly obtained from the
given n-tuple (as,...,a,) in TER(z1,...,xx)" with respect to (k,n). Lemma 3
is a consequence of its definition.

Lemma 3. Let (ay,...,ay) be an n-tuple in TER(x1,...,x)" and (by,...,by)
be an n-tuple of n-polynoms. Let W be a nonempty set. If (by,...,by) is properly
obtained from (a1, ...,an) with respect to (k,n) then for all valuationsV on W,
there exists a valuation V' on W such that for all positive integers i, if i < n,
then V(a;) = V'(b;) and for all valuations V on W, there exists a valuation V'
on W such that for all positive integers i, if i < n, then V(b;) = V'(a;).

For all (B1,...,8,) € {0,1}™, let f~Y(B1,...,Bs) be as in Sect. 6. For all positive
integers i, if © < n then let A; and ¢; be as in Sect. 6. Let v be the substitution
such that

— for all positive integers ¢, if i < n then v(z;) = ¢;,
— for all variables y, if y € {x1,...,2z,} then v(y) = y.

Proposition 5. For all positive integers ¢, if i < n then considered as formulas
in CPL, the terms a; and ©(b;) are equivalent.

Proof. Let ¢ be a positive integer such that ¢ < n. Considered as formulas in
CPL, the following terms are equivalent:

0(b;).
Nn.ond s oz nonatt € mon(k,a;) and f(a,... o) =

U{er

1. ;
2.
(617 s 7671)}



3. UGS N nat s (e ah) € FN B Bt et nalt €
mon({ﬁ,ai) andlf(ozl, o ag) = (01, 0n)}

4. U{zinenzt s (of, . ah) € FH By Ba)y SN Nt € mon(k, a;)
and f(ar, .. o) = (Brr- s Bu))-

5. U{zi  noonalt s a0 nay® € mon(k,a;) and f(of,...,q)) =
flag, ... o)}

6. Jmon(k,a;).

7. Qj.

The equivalence between 1 and 2 is a consequence of the definition of v; the
equivalence between 2 and 3 is a consequence of Proposition 4; the equivalences
between 3, 4 and 5 are consequences of simple set-theoretic properties; the

equivalence between 5 and 6 is a consequence of the definition of Nl(fal )
and the fact that for all (aq,...,ax), (o], ..., a}) € {0, 1}*, if fay,...,ax) =
flad, ..., ) then (o, ..., ax) NI(Cal,...,an) (o, ...,a)); the equivalence between

6 and 7 is a consequence of Lemma 1.

We define on FOR(x1,...,x,) the equivalence relation =} as follows:

— @ =¢ ¢ iff ¢ «— 1 is C-valid.

Proposition 6. =} has finitely many equivalence classes on FOR(x1,...,xy,).

Proof. Each formula ¢ in FOR(z1,...,x,) is a combination of formulas of the
form P(a,b) where a and b are terms in TER(x1,...,x,) and P is one of the 8

binary predicates of RCCS. Hence, =¢ has finitely many equivalence classes on
FOR(Q?l, ceey .CUn)

Let A,, be the set of all n-tuples of terms. Note that n-tuples of terms in A,, may

contain occurrences of variables outside {x1,...,z,}. Given a model (W, R, V)
on a frame in C and (aq,...,a,) € 4,, let @EZ’?’? ) be the set of all equational

formulas p(x1,...,2,) in FOR(x1,...,x,) such that (W, R, V) = plar,...,an).

Consider a complete list of representatives for each equivalence class on @EZR? )

(W,R,V)
(a1,...,an
We define on A4,, the equivalence relation = as follows:

modulo = and let ¢ )(:cl, ..., &y) be their conjunction.

— (a1,...,an) =5 (b1,...,by,) iff for all formulas p(z1,...,2,) in FOR(zq,...,
Tn), plai,...,ay) is C-valid iff ¢(by,...,b,) is C-valid.

Now, we define on A,, the equivalence relation ~¢ as follows:

— (a1,...,an) =g (b1,...,by,) iff for all equational formulas p(z1,...,z,) in
FOR(x1,...,x,), p(ay,...,a,) is C-valid iff p(by,...,b,) is C-valid.

Obviously, =¢ is finer than ~p. Lemma4 is a consequence of Proposition 6;
Lemma 5 is a consequence of Lemma 4; Lemma 6 is a consequence of the defini-
tion of ~¢ and Lemma 3; Lemma 7 is a consequence of Lemma 6; Lemma 8 is a

(WRV) (01 ).

(a1y..yan)

consequence of the definition of ¢



Lemma 4. = has finitely many equivalence classes on A,,.
Lemma 5. ~¢ has finitely many equivalence classes on A,,.

Lemma 6. Let (a1,...,ay) be an n-tuple in TER(x1,...,xx)" and (by,...,by)
be an n-tuple of n-polynoms. If (b1, ..., by,) is properly obtained from (ay, ..., ay,)
with respect to (k,n) then (a1,...,an) =g (b1,...,by).

Lemma 7. TER(x1,...,z,)" constitutes a complete set of representatives for
each equivalence class on A modulo ~.

Lemma 8. Let (W,R,V) be a model on a frame in C and (a1,...,a,) € Ay,.
(W, R, V) ol V) (ay, ... an).

(al 77777 An

Proposition 7. If C is balanced then for all (ai,...,a,), (b1,...,b,) € Ay, if
(a1,...,an) = (b1,...,by) then (a1,...,a,) =¢ (b1,...,by).

Proof. Suppose C is balanced. Let (aq,...,a,),(b1,...,b,) € A, be such that
(@1,...,apn) ¢ (b1,...,by) and (ai,...,an) 2¢ (b1,...,b,). Let o(z1,...,2,)
be a formula in FOR(:Cl,...,a:n) such that ¢(aq,...,a,) is C-valid not-
iff @(by,...,b,) is C-valid. Without loss of generality, let us assume that
o(ay,...,a,) is C-valid and ¢(by,...,b,) is not C-valid. Since C is balanced,
therefore let (W, R,V) be a balanced model on a countable frame in C such

that (W, R, V) § @(b1, ..., b,). By Lemmas8, (W, R,V) = o™ (b1, ... by).

P (b
Hence, —wg ?’\b)i)(bl, ..., by) is not C-valid. Since (ai,...,an) =¢ (b1,...,by),
therefore ﬂgoéb ?’V))(al, ...,0y) is not C-valid. Since C is balanced, therefore

let (W’,R',V") be a balanced model on a countable frame in C such that
(W',R)V) E QOEZ‘:RV) (ai,...,a,). Now, consider (fi,...,08,) € {0,1}™.

.....

If VO n...Nnbl) = 0§ then (W,R,V) &= EQUY N ... N b2, 0). Thus,
oY), ( 21, 2) — EQ@” n...Nn P 0) is C-valid. Since (W', R',V') k=
gpg‘;’.}?’\;i)(al, ....ay), therefore (W', R, V') | EQ(a” N ... N aP",0). Conse-

quently, V' (a/f N ...NaP) = . Similarly, the reader may easily verify that if
VO AL nbk) =W then V'(a?' N...NaP) = W and if VBT 0. Nbo) is
infinite and coinfinite then )V’ (af 'N...Na2") is infinite and coinfinite. In all cases,
there exists a bijection g¢g,, . g,) from VTN, .0b8n) to V(aP N, . .Nal). Let g
be the union of all g(g,,... g,) when (81, ..., 8,) describes {0, 1}". The reader may
easily verify that g is a bijection from W to W’ such that for all u € W and for all

(Br-..,08n) €{0,1}", uw e VO N...Ab8) iff g(u) € V' (af .Na). Let R}
be the binary relation on W' defined by u'Rjv" iff gt )Rg 1(1) ). Obv10usly,
g is an isomorphism from (W, R) to (W', R}). Since p(ay,...,a,) is C-valid,

therefore (W', R}, V') = ¢(ay,...,ay). Hence, (W, R,V) = (b1, ...,b,): a con-
tradiction.



8 Computability of Unifiability

Let C be a class of frames. Lemma 9 is a consequence of the definitions in Sect. 4.

Lemma 9

1. For alla € TER(D), either EQ(a,0) is C-valid, or EQ(a, 1) is C-valid. More-
over, the formula in {EQ(a,0), EQ(a,1)} that is C-valid can be computed in
linear time.

2. For all a,b € TER((), either DC(a,b) is C-valid, or EQ(a,b) is C-valid.
Moreover, the formula in {DC(a,b), EQ(a,b)} that is C-valid can be computed
in linear time.

Lemma 10 is a consequence of the definition of unifiability.

Lemma 10. For all formulas ¢(x1,...,z,), ¢ is C-unifiable iff there exists
ai,...,a, € TER(D) such that p(ay,...,ay) is C-valid.

Proposition 8. The elementary C-unifiability problem is in NP.

Proof. By Lemmas 9 and 10, for all formulas ¢(x1,...,z,), ¢(z1,...,2,) is C-
unifiable iff there exists aq,...,a, € {0,1} such that ¢(ai,...,a,) is C-valid.
Obviously, this can be decided in polynomial time.

Proposition 9. Let a(zy,...,x,) be a term. EQ(a(xy,...,xy), 1) is C-unifiable
iff considered as a formula in CPL, a(x1,...,x,) is satisfiable.

Proof. Suppose considered as a formula in CPL, a(zy,...,x,) is satisfiable.
Let by,...,b, in {0,1} be such that a(by,...,b,) is a tautology. Hence,
EQ(a(by,...,by),1) is C-valid. Thus, EQ(a(z1,...,x,),1) is C-unifiable.

Suppose EQ(a(x1,...,x,),1) is C-unifiable. By Lemmas9 and 10, let
b1,...,b, in {0,1} be such that EQ(a(by,...,b,),1) is C-valid. Consequently,
a(by,...,by,) is a tautology. Hence, considered as a formula in CPL, a(x1,...,x,)
is satisfiable.

Proposition 10. The elementary C-unifiability problem is N P-hard.

Proof. By Proposition9 and the N P-hardness of the satisfiability problem of
formulas in CPL.

It follows from Propositions 8 and 10 that

Proposition 11. The elementary unifiability problem in Cquyy, Cing and Ceoyn 1S
N P-complete.

In other respect,

Proposition 12. Let A be a complexity class. If C is balanced and the C-
satisfiability problem is in A then the elementary C-admissibility problem is in
coNEX P4,



Proof. Suppose C is balanced and the C-satisfiability problem is in A. By

Lemma 7 and Proposition7, for all inference rules igii;z;, igi’izg is

not C-admissible iff there exists (b1,...,b,) € TER(zq,...,x,)" such that
—(b1,...,b,) is not C-satisfiable and —)(by, ..., b,) is C-satisfiable. Obviously,
this can be decided in exponential time with oracle in A.

Since the satisfiability problem in C4; and C;,4 is in NP and the satisfiability
problem in C.,, is in PSPACE, it follows from Propositions 3 and 12 that

Proposition 13. The elementary admissibility problem in Cuy and Cing is
in coNEXPNT and the elementary admissibility problem in Ceon is in
coNEX PPSPACE

Still, we do not know whether the elementary C-admissibility problem is in
coNEX P. We conjecture that in Cqj;, Cing and Ceop, it is coN E X P-complete

9 Unification Type

Let C be a class of frames.

Proposition 14. If C agrees with unions then EQ(0,x) V EQ(1,x) is not
C-unitary.

Proof. Suppose C agrees with unions and EQ(0,z) V EQ(1, x) is C-unitary. Let
oo and o1 be substitutions such that og(z) = 0 and o1(x) = 1. Obviously, o
and oy are C-unifiers of EQ(0,z) V EQ(1,z). Since FQ(0,z) V EQ(1,x) is C-
unitary, therefore let 7 be a C-unifier of EQ(0,z) V EQ(1,x) such that 7 <¢ o9
and 7 <¢ o01. Let u,v be substitutions such that 7 oy ~¢ 0p and 7o v ~¢ 0.
Hence, EQ(fu(7(x)),0) is C-valid and EQ(v(7(x)),1) is C-valid. Thus, neither
EQ(0,7(x)) is C-valid, nor EQ(1,7(x)) is C-valid. Let (W, R) and (W', R") be
disjoint frames in C, V be a valuation on W and V'’ be a valuation on W’ such that
neither V(7(z)) = (), nor V/(7(x)) = W’. Since C agrees with unions, therefore
let (W”,R") be a frame in C such that W UW’ = W". Let V" be the valuation
on W such that for all variables z, V'(z) = V(z) U V'(z). Obviously, for all
terms a, V" (a) = V(a) U V'(a). Since neither V(7(z)) = (), nor V'(7(x)) = W,
therefore neither V" (7(z)) = 0, nor V”(r(z)) = W”. Consequently, 7 is not a
C-unifier of £Q(0,z) V EQ(1,x): a contradiction.

Proposition 15. If C agrees with unions then the substitutions og and o1 such
that og(z) = 0, o1(x) = 1 and for all variables y, if © # y then oo(y) = y
and 01(y) = y constitute a complete set of C-unifiers of EQ(0,z)V EQ(1,x).
Moreover, EQ(0,z) VvV EQ(1,x) is C-finitary.

Proof. Suppose C agrees with unions. Hence, by Proposition 14, EQ(0,x) V
EQ(1,z) is not C-unitary. Obviously, op and o; are C-unifiers of EQ(0,z) V
EQ(1,z). Let T be an arbitrary C-unifier of EQ(0,z) V EQ(1, x) such that nei-
ther oy =<¢ 7, nor o1 <¢ 7. Thus, neither EQ(0, 7(z)) is C-valid, nor EQ(1, 7(x))



is C-valid. Following the same line of reasoning as in the proof of Proposition 14,
we conclude 7 is not a C-unifier of EFQ(0,x) V FQ(1,x): a contradiction. Since
7 was arbitrary, therefore oy and o7 constitute a complete set of C-unifiers of
EQ(0,z)VEQ(1,x). Consequently, EQ(0,z)V EQ(1,x) is either C-unitary, or C-
finitary. Since EQ(0,z)V EQ(1, x) is not C-unitary, therefore EQ(0,z)VEQ(1,x)
is C-finitary.

Proposition 16. IfC is balanced then elementary unification in C is either fini-
tary, or unitary. Moreover, if C agrees with unions then elementary unification
in C s finitary.

Proof. Suppose C is balanced. Let ¢(z1,...,x,) be an arbitrary C-unifiable for-
mula. Let o be an arbitrary substitution such that () is C-valid. Without loss
of generality, we can assume that for all variables y, if y € {z1,...,2,} then
o(y) = y. Let k be a nonnegative integer and (ay,...,a,) € TER(x1,...,z)"
be such that for all positive integers i, if ¢ < n then o(x;) = a;. Since 5(y) is
C-valid, therefore p(ay, ..., a,) is C-valid. Let N]fal,...,an)’ f:{0,1}* — {0,1}"
and (b1,...,b,) be as in Sect.7. By Lemma6, (ai,...,a,) ~¢ (b1,...,by).
Since C is balanced, therefore by Proposition7, (ai,...,an) =¢ (b1,...,by).
Let 7 be the substitution such that for all positive integers i, if ¢ < n then
T(x;) = b; and for all variables y, if y & {x1,...,2,} then 7(y) = y. Note
that (7(z1),...,7(zy)) € TER(x1,...,x,)". Moreover, since p(ay,...,a,) is C-
valid and (a1,...,a,) =¢ (b1,...,by), therefore p(b1,...,b,) is C-valid. Hence,
7 is a C-unifier of ¢. For all positive integers i, if ¢ < n then let A; and ¢; be
as in Sect. 6. Let v be as in Sect. 7. By Proposition 5, for all positive integers
i, if i < n then considered as formulas in CPL, the terms a; and ©(b;) are
equivalent. Thus, for all positive integers i, if i < n then EQ(0(7(x;)),0(x;))
is C-valid. Consequently, 7 o v ~¢ 0. Hence, 7 <¢ 0. Since o was arbitrary
and (7(x1),...,7(xy)) € TER(x1,...,z,)", therefore ¢ is either C-finitary, or
C-unitary. Since ¢ was arbitrary, therefore elementary unification in C is either
finitary, or unitary. Now, suppose C agrees with unions. By Proposition 15, ele-
mentary unification in C is not unitary. Since elementary unification in C is either
finitary, or unitary, therefore elementary unification in C is finitary.

It follows from the above discussion that elementary unification in Cg;;, Cing and
Ceon is finitary.

10 Conclusion

Much remains to be done. For example, what becomes of the computability of
unifiability and admissibility when the language is extended by the connect-
edness predicate considered in [14,16]7 What becomes of the unification type?
And when the language is interpreted in different Euclidean spaces as in [15,16]7
In other respect, it remains to see how decision procedures for unifiability and
admissibility can be used to improve the performance of algorithms that han-
dle the satisfiability problem. Finally, one may as well consider these questions



when the language is extended by a set of propositional constants (denoted p,
q, etc.). In this case: (i) the unifiability problem is to determine, given a for-
mula p(p1,...,Pm,T1,--.,Ty), whether there exists terms aq, ..., a, such that

©(P1y- -+ Pm, a1, -, a,) is valid; (ii) the admissibility problem is to determine,

P(P1yeesDim yT15eeeyT)
1b(pl7-~-7p?n7xl7---7:1377,),
O(P1y- -+ Pm, a1, - - -, an) is valid then ¢(p1,...,Pm,a1,...,a,) is valid. We con-

jecture that in Cyy;, Cipng and Ce,p, unification with constants is N E X P-complete
but still finitary.

given an inference rule whether for all terms aq,...,a,, if
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