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Boolean Region Connection Calculus is a formalism for reasoning about the topological relations between regions. In this paper, we provide computability results about unifiability in Boolean Region Connection Calculus and prove that elementary unification is finitary.

Introduction

The Region Connection Calculus (RCC) is a formalism for reasoning about the topological relations between regions [START_REF] Randell | A spatial logic based on regions and connection[END_REF]. With RCC8, a variant of RCC based on 8 atomic relations [START_REF] Cohn | Qualitative spatial representation and reasoning[END_REF][START_REF] Li | Region connection calculus: its model and composition table[END_REF], knowledge is represented by means of a conjunction of disjunctions of atomic relations between variables representing regions. Given such a formula, the main task is to know whether it is consistent-an N Pcomplete problem [START_REF] Renz | Qualitative Spatial Reasoning with Topological Information[END_REF][START_REF] Renz | On the complexity of qualitative spatial reasoning: a maximal tractable fragment of the region connection calculus[END_REF]. Consisting of a combination of RCC8 with Boolean reasoning, BRCC8 is a variant of RCC8 in which regions are represented by Boolean terms [START_REF] Wolter | Spatio-temporal representation and reasoning based on RCC-8[END_REF]. With BRCC8, showing the consistency of formulas is N Pcomplete in arbitrary topological spaces and P SP ACE-complete in Euclidean spaces [START_REF] Kontchakov | Spatial logics with connectedness predicates[END_REF][START_REF] Kontchakov | Interpreting topological logics over Euclidean spaces[END_REF][START_REF] Kontchakov | Topological logics with connectedness over Euclidean spaces[END_REF][START_REF] Wolter | Spatio-temporal representation and reasoning based on RCC-8[END_REF]. BRCC8 and its multifarious variants have attracted considerable interest both for their practical applications in spatial reasoning [START_REF] Cohn | Qualitative spatial representation and reasoning[END_REF][START_REF] Renz | Qualitative Spatial Reasoning with Topological Information[END_REF] and for the mathematical problems they give rise to [3-5, 7-9, 14-16,23,24].

We are interested in supporting a new inference capability: unifiability of formulas. The unifiability problem consists, given a finite set {(ϕ 1 (x 1 , . . . , x n ), ψ 1 (x 1 , . . . , x n )), . . . , (ϕ m (x 1 , . . . , x n ), ψ m (x 1 , . . . , x n ))} of pairs of formulas, in determining whether there exists Boolean terms a 1 , . . . , a n such that ϕ 1 (a 1 , . . . , a n ) ↔ ψ 1 (a 1 , . . . , a n ), . . ., ϕ m (a 1 , . . . , a n ) ↔ ψ m (a 1 , . . . , a n ) are valid. To explain our motivation for considering unifiability, consider a finite set of pairs of BRCC8-formulas representing desired properties about some regions. This set may contain non-equivalent formulas that can be made equivalent by applying to them appropriate substitutions. And if one is able to find such appropriate substitutions, then one is interested to find the maximal ones. An important question is then the following: when a set of BRCC8-formulas is unifiable, has it a minimal complete set of unifiers? When the answer is "yes", how large is this set? See [START_REF] Baader | Extending unification in EL towards general TBoxes[END_REF][START_REF] Baader | Unification in modal and description logics[END_REF] where such question is addressed for description logics.

The section-by-section breakdown of the paper is as follows. In Sect. 2, we define the syntax of BRCC8. Section 3 explains our motivation for considering unification in BRCC8. In Sect. 4, we present the semantics of BRCC8. Section 5 introduces the basic ideas involved in unification. In Sect. [START_REF] Cohn | Qualitative spatial representation and reasoning[END_REF], we embark on the study of specific Boolean terms: monoms and polynoms. The main result we prove there is Proposition 4. Section 7 defines equivalence relations between tuples of terms. The main results we prove there are Propositions 5 and 7. In Sect. 8, we provide computability results about unifiability in BRCC8. Section 9 shows that unification in BRCC8 is finitary. Due to lack of space, we only consider the elementary case where the considered terms do not contain free constant symbols.

Syntax

Now, it is time to meet the language we are working with. We adopt the standard rules for omission of the parentheses.

Let V AR be a countable set of propositional variables (with typical members denoted x, y, etc.). Let (x 1 , x 2 , . . .) be an enumeration of V AR without repetitions. The terms (denoted a, b, etc.) are defined as follows:

a ::

= x | 0 | a ⋆ | (a ∪ b).
The other constructs for terms (for instance, 1 and ∩) are defined as usual. We use the following notations for terms:

a 0 for a ⋆ , a 1 for a.

Reading terms as regions, the constructs 0, ⋆ and ∪ should be regarded as the empty region, the complement operation and the union operation. As a result, the constructs 1 and ∩ should be regarded as the full region and the intersection operation. In the sequel, we use a(x 1 , . . . , x n ) to denote a term a whose variables form a subset of {x 1 , . . . , x n }. For all nonnegative integers n, let T ER(x 1 , . . . , x n ) be the set of all terms whose variables form a subset of {x 1 , . . . , x n }. Let T ER be the set of all terms and T ER(∅) be the set of all variable-free terms.

The formulas (denoted ϕ, ψ, etc.) are defined as follows:

-

ϕ :: = P (a, b) | ⊥ | ¬ϕ | (ϕ ∨ ψ).
Here, a and b are terms and P is one of the following 8 binary predicates corresponding to the 8 binary relations of RCC8:

-DC ("disconnected"), -EC ("external contact"), -P O ("partial overlap"), -T P P ("tangential proper part"), -T P P I ("inverse of T P P "), -N T P P ("nontangential proper part"), -N T P P I ("inverse of N T P P "), -EQ ("equal").

The other constructs for formulas (for instance, ⊤ and ∧) are defined as usual.

We say that a formula ϕ is equational iff EQ is the only binary predicate possibly occurring in ϕ. In the sequel, we use ϕ(x 1 , . . . , x n ) to denote a formula ϕ whose variables form a subset of {x 1 , . . . , x n }. For all nonnegative integers n, let F OR(x 1 , . . . , x n ) be the set of all formulas whose variables form a subset of {x 1 , . . . , x n }. Let F OR be the set of all formulas and F OR(∅) be the set of all variable-free formulas. An inference rule is a pair of the form ϕ ψ where ϕ and ψ are formulas.

A substitution is a function σ : V AR -→ T ER which moves at most finitely many variables, i.e. there exists at most finitely many variables x such that σ(x) = x. Given a substitution σ, let σ : T ER ∪ F OR -→ T ER ∪ F OR be the endomorphism such that for all variables x, σ(x) = σ(x). Obviously, for all substitutions σ, τ , the function σ • τ such that for all x ∈ V AR, (σ • τ )(x) = τ (σ(x)) is a substitution called the composition of the substitutions σ and τ .

Motivation for Considering Unifiability in BRCC8

Our motivation for considering unifiability in BRCC8 comes from the following three facts: BRCC8 is a formalism both with theoretical merits and with practical relevance; unification in Boolean algebras has attracted considerable interest; there is a wide variety of situations where unifiability problems in formalisms like BRCC8 arise.

BRCC8 is the result of the combination of RCC8 with Boolean reasoning. Within the context of RCC8, formulas would just be quantifier-free first-order formulas in a constant-free function-free language based on the 8 binary predicates of RCC8. For instance, T P P (x, y) ∧ T P P (x, z) → T P P (y, z) ∨ T P P (z, y). By allowing to apply the 8 binary predicates of RCC8 not only to propositional variables but also to Boolean terms, Wolter and Zakharyaschev [START_REF] Wolter | Spatio-temporal representation and reasoning based on RCC-8[END_REF] have strictly extended their expressive capacity. For instance, in the class of all topological spaces, the BRCC8 formula EQ(x ∪ y, z) has no equivalent formula in a pure RCC8-based language. As well, with this enriched language, one becomes able by using the BRCC8 formula DC(x, x ⋆ ) → EQ(x, 0) ∨ EQ(x ⋆ , 0) to distinguish between connected and non-connected topological spaces.

Unification in Boolean algebras has attracted considerable interest and several algorithms for computing solutions to Boolean equations are known, some of them going back to Boole and Löwenheim. But the most important result is that unification is unitary: given an equation a(x 1 , . . . , x n ) = b(x 1 , . . . , x n ), either it possesses no solution, or it possesses a single most general unifier. See [START_REF] Baader | Unification in modal and description logics[END_REF][START_REF] Martin | Boolean unification -the story so far[END_REF] for an introduction to the unifiability problem in Boolean algebras. So, it is natural to ask whether unification in BRCC8 inherits the unitariness character of Boolean unification. In this paper, we refute this idea by proving that unification in BRCC8 is finitary.

There is a wide variety of situations where unifiability problems arise. We will explain our motivation for considering them within the context of geographical information systems. Suppose ϕ(p 1 , . . . , p m ) is a formula representing our knowledge about regions denoted p 1 , . . . , p m in some geographical universe and ψ(x 1 , . . . , x n ) is a formula representing a desirable property about regions denoted x 1 , . . . , x n . It may happen that ψ(x 1 , . . . , x n ) is not a logical consequence of ϕ(p 1 , . . . , p m ) in the considered geographical universe whereas some of its instances are. Hence, one may wonder whether there are n-tuples (a 1 , . . . , a n ) of terms for which the property represented by ψ(x 1 , . . . , x n ) becomes a logical consequence of ϕ(p 1 , . . . , p m ) in the considered geographical universe. And if one is able to decide such question, then one may be interested to obtain n-tuples (b 1 , . . . , b n ) as general as possible. Central to unification theory are the questions of the computability of unifiability and the unification type. Within the context of BRCC8, these questions will be addressed in Sects. 8 and 9.

Semantics

The best way to understand the meaning of the binary predicates is by interpreting terms and formulas in topological spaces [START_REF] Kontchakov | Spatial logics with connectedness predicates[END_REF][START_REF] Kontchakov | Interpreting topological logics over Euclidean spaces[END_REF][START_REF] Kontchakov | Topological logics with connectedness over Euclidean spaces[END_REF][START_REF] Wolter | Spatio-temporal representation and reasoning based on RCC-8[END_REF]. More precisely, in a topological space (X, τ ), if Int τ (•) denotes its interior operation then to each binary predicate P , one usually associates a binary relation P (X,τ ) on the set of all regular closed subsets of X:

-DC (X,τ ) (A, B) iff A ∩ B = ∅, -EC (X,τ ) (A, B) iff A ∩ B = ∅ and Int τ (A) ∩ Int τ (B) = ∅, -P O (X,τ ) (A, B) iff Int τ (A) ∩ Int τ (B) = ∅, Int τ (A) ⊆ B and Int τ (B) ⊆ A, -T P P (X,τ ) (A, B) iff A ⊆ B, A ⊆ Int τ (B) and B ⊆ A, -T P P I (X,τ ) (A, B) iff B ⊆ A, B ⊆ Int τ (A) and A ⊆ B, -N T P P (X,τ ) (A, B) iff A ⊆ Int τ (B) and B ⊆ A, -N T P P I (X,τ ) (A, B) iff B ⊆ Int τ (A) and A ⊆ B, -EQ (X,τ ) (A, B) iff A = B.
This topological semantics is considered in [START_REF] Kontchakov | Spatial logics with connectedness predicates[END_REF][START_REF] Kontchakov | Interpreting topological logics over Euclidean spaces[END_REF][START_REF] Kontchakov | Topological logics with connectedness over Euclidean spaces[END_REF][START_REF] Wolter | Spatio-temporal representation and reasoning based on RCC-8[END_REF]. Obviously, these relations are jointly exhaustive and pairwise disjoint on the set of all nonempty regular closed subsets of X. We say that a topological space (X, τ ) is indiscrete iff τ = {∅, X}. We say that a topological space (X, τ ) is connected iff for all A, B ∈ τ , either

A ∩ B = ∅, or A ∪ B = X.
A relational perspective is suggested by Galton [START_REF] Galton | Qualitative Spatial Change[END_REF] who introduces the notion of adjacency space. Galton's spaces are frames (W, R) where W is a nonempty set of cells and R is an adjacency relation between cells. Galton defines regions to be sets of cells. He also defines two regions A and B to be connected iff some cell in A is adjacent to some cell in B. This definition relates Galton's adjacency spaces to the relational semantics of modal logic which makes it possible to use methods from modal logic for studying region-based theories of space. The truth is that the above-mentioned topological semantics and the relational perspective suggested by Galton are equivalent [START_REF] Vakarelov | Region-based theory of space: algebras of regions, representation theory, and logics[END_REF].

In this paper, we adopt a relational perspective by interpreting terms and formulas in frames. A frame is a structure of the form (W, R) where W is a nonempty set (with typical members denoted s, t, etc.) and R is a reflexive and symmetric relation on

W . A frame (W, R) is indiscrete iff R = W × W . A frame (W, R) is connected iff R + = W × W where R + denotes the transitive closure of R. Let (W,
R) be a frame. We associate to each binary predicate P a binary relation P (W,R) on 2 W as follows:

-

DC (W,R) (A, B) iff R ∩ (A × B) = ∅, -EC (W,R) (A, B) iff R ∩ (A × B) = ∅ and A ∩ B = ∅, -P O (W,R) (A, B) iff A ∩ B = ∅, A ⊆ B and B ⊆ A, -T P P (W,R) (A, B) iff A ⊆ B, R ∩ (A × (W \B)) = ∅ and B ⊆ A, -T P P I (W,R) (A, B) iff B ⊆ A, R ∩ (B × (W \A)) = ∅ and A ⊆ B, -N T P P (W,R) (A, B) iff R ∩ (A × (W \B)) = ∅ and B ⊆ A, -N T P P I (W,R) (A, B) iff R ∩ (B × (W \A)) = ∅ and A ⊆ B, -EQ (W,R) (A, B) iff A = B.
This relational semantics is considered in [START_REF] Balbiani | Boolean logics with relations[END_REF][START_REF] Balbiani | Definability and canonicity for Boolean logic with a binary relation[END_REF][START_REF] Balbiani | Modal logics for region-based theories of space[END_REF][START_REF] Vakarelov | Region-based theory of space: algebras of regions, representation theory, and logics[END_REF]. Obviously, these binary relations are jointly exhaustive and pairwise disjoint on 2 W \{∅}, i.e. for all nonempty subsets A, B of W , there exists exactly one binary predicate P such that P (W,R) (A, B). The truth is that for all binary predicates P and for all subsets A, B of W , if either A = ∅, or B = ∅ then P (W,R) (A, B) iff either P = DC, or P = N T P P and B = ∅, or P = N T P P I and A = ∅, or P = EQ and A = B.

A valuation on W is a map V associating with every variable x a subset V(x) of W . Given a valuation V on W , we define

-V(x) = V(x), -V(0) = ∅, -V(a ⋆ ) = W \ V(a), -V(a ∪ b) = V(a) ∪ V(b).
Thus, every term is interpreted as a subset of

W . A valuation V on W is balanced iff for all terms a, either V(a) = ∅, or V(a) = W , or V(a) is infinite and coinfinite. A model on (W, R) is a structure M = (W, R, V) where V is a valuation on W . The satisfiability of a formula ϕ in M (in symbols M |= ϕ) is defined as follows: -M |= P (a, b) iff P (W,R) ( V(a), V(b)), -M |= ⊥, -M |= ¬ϕ iff M |= ϕ, -M |= ϕ ∨ ψ iff either M |= ϕ, or M |= ψ. A formula ϕ is valid in (W, R) iff for all valuations V on W , (W, R, V) |= ϕ. A formula ϕ is satisfiable in (W, R) iff there exists a valuation V on W such that (W, R, V) |= ϕ.
Let C be a class of frames. We say that a formula ϕ is C-valid iff for all frames (W, R) in C, ϕ is valid in (W, R). We say that a formula ϕ is C-satisfiable iff there exists a frame (W, R) in C such that ϕ is satisfiable in (W, R). The C -satisfiability problem consists in determining whether a given formula is C-satisfiable. We say that C agrees with unions iff for all disjoint frames (W, R), (W ′ , R ′ ) in C, there exists a frame (W ′′ , R ′′ ) in C such that W ∪W ′ = W ′′ . Note that if C contains frames of arbitrary cardinality then C agrees with unions. We say that C is determined iff there exists a set of formulas such that C is the class of all frames validating each formula in that set. We say that C is balanced iff for all formulas ϕ, if ϕ is C-satisfiable then there exists a countable frame (W, R) in C and there exists a balanced valuation V on W such that (W, R, V ) |= ϕ.

As illustrative examples of classes of frames, let C all denote the class of all frames, C ind denote the class of all indiscrete frames and C con denote the class of all connected frames. The topological counterparts of these classes are the class of all topological spaces, the class of all indiscrete spaces and the class of all connected spaces. The following formulas are C all -valid:

-DC(x, x) → EQ(x, 0), -DC(x, y) → DC(y, x).

In an indiscrete frame (W, R), any two points are R-related. Hence, for all subsets A, B of W , if DC (W,R) (A, B) then either EQ (W,R) (A, ∅), or EQ (W,R) (B, ∅). Thus, the following formula is C ind -valid:

-DC(x, y) → EQ(x, 0) ∨ EQ(y, 0). In a connected frame (W, R), any two points are R + -related. Hence, for all subsets A of W , if DC (W,R) (A, W \A) then either EQ (W,R) (A, ∅), or EQ (W,R) (W \A, ∅). Thus, the following formula is C con -valid:

-DC(x, x ⋆ ) → EQ(x, 0) ∨ EQ(x ⋆ , 0). Proof. It suffices to note that C all is determined by ∅, C ind is determined by {DC(x, y) → EQ(x, 0) ∨ EQ(y, 0)} and C con is determined by {DC(x, x ⋆ ) → EQ(x, 0) ∨ EQ(x ⋆ , 0)}. Proposition 3. C all , C ind and C con are balanced.

Proof. By Proposition 2 and [5, Theorem 4.1], C all , C ind and C con admit filtration. Now, consider an arbitrary finite frame (W, R). We define the countable frame (W ′ , R ′ ) as follows:

-

W ′ = W × Z, -for all (s, i), (t, j) ∈ W ′ , (s, i)R ′ (t, j) iff sRt.
Obviously, if (W, R) is indiscrete (respectively, connected) then (W ′ , R ′ ) is indiscrete (respectively, connected) too. Moreover, according to [4, Definition 3.1], (W, R) is a bounded morphic image of (W ′ , R ′ ). Thus, by [4, Proposition 3.1], for all formulas ϕ, if ϕ is satisfiable in (W, R) then there exists a balanced valuation V ′ on (W ′ , R ′ ) such that (W ′ , R ′ , V ′ ) |= ϕ. Since (W, R) was arbitrary and C all , C ind and C con admit filtration, therefore C all , C ind and C con are balanced.

As for the satisfiability problem, it is known to be N P -complete in C all and C ind and P SP ACE-complete in C con [START_REF] Balbiani | Modal logics for region-based theories of space[END_REF][START_REF] Kontchakov | Spatial logics with connectedness predicates[END_REF][START_REF] Kontchakov | Interpreting topological logics over Euclidean spaces[END_REF][START_REF] Kontchakov | Topological logics with connectedness over Euclidean spaces[END_REF][START_REF] Wolter | Spatio-temporal representation and reasoning based on RCC-8[END_REF].

Unifiability

Let C be a class of frames.

We say that a substitution σ is C-equivalent to a substitution τ (in symbols σ ≃ C τ ) iff for all variables x, EQ(σ(x), τ (x)) is C-valid. We say that a substitution σ is more C-general than a substitution τ (in symbols σ C τ ) iff there exists a substitution υ such that σ • υ ≃ C τ .

We say that a finite set {(ϕ 1 , ψ 1 ), . . . , (ϕ n , ψ n )} of pairs of formulas is C -unifiable iff there exists a substitution σ such that σ(ϕ 1 ) ↔ σ(ψ 1 ), . . ., σ(ϕ n ) ↔ σ(ψ n ) are C-valid. As a consequence of the classical interpretation of the constructs for formulas, this is equivalent to σ((

ϕ 1 ↔ ψ 1 ) ∧ . . . ∧ (ϕ n ↔ ψ n )) is C-valid.
This means that we can restrict our attention to a simpler kind of unifiability problems consisting of exactly one formula. We say that a formula ϕ is C -unifiable iff there exists a substitution σ such that σ(ϕ) is C-valid. In that case, we say that σ is a C-unifier of ϕ. For instance, EQ(0, x) ∨ EQ(1, x) is unifiable in C all , C ind and C con . As we will prove it with Proposition 15, its unifiers are the substitutions σ such that considered as a formula in Classical Propositional Logic (CP L), σ(x) is either equivalent to 0, or equivalent to 1. The elementary C -unifiability problem consists in determining whether a given formula is C-unifiable. See [START_REF] Baader | Extending unification in EL towards general TBoxes[END_REF][START_REF] Baader | Unification in modal and description logics[END_REF][START_REF] Gencer | Unifiability in extensions of K4[END_REF][START_REF] Ghilardi | Best solving modal equations[END_REF] for an introduction to the unifiability problem in modal and description logics.

We say that a set of C-unifiers of a formula ϕ is complete iff for all C-unifiers σ of ϕ, there exists a C-unifier τ of ϕ in that set such that τ C σ. As we will prove it with Proposition 15, the substitutions σ 0 and σ 1 such that σ 0 (x) = 0, σ 1 (x) = 1 and for all variables y, if x = y then σ 0 (y) = y and σ 1 (y) = y constitute a complete set of C-unifiers of EQ(0, x) ∨ EQ(1, x). An important question is: when a formula is C-unifiable, has it a minimal complete set of C-unifiers? When the answer is "yes", how large is this set?

We say that a C-unifiable formula ϕ is C-nullary iff there exists no minimal complete set of C-unifiers of ϕ. We say that a C-unifiable formula ϕ is C-infinitary iff there exists a minimal complete set of C-unifiers of ϕ but there exists no finite one. We say that a C-unifiable formula ϕ is C-finitary iff there exists a finite minimal complete set of C-unifiers of ϕ but there exists no with cardinality 1. We say that a C-unifiable formula ϕ is C -unitary iff there exists a minimal complete set of C-unifiers of ϕ with cardinality 1. We say that elementary unification in C is nullary iff there exists a C-nullary formula. We say that elementary unification in C is infinitary iff every C-unifiable formula is either C-infinitary, or C-finitary, or C-unitary and there exists a C-infinitary formula. We say that elementary unification in C is finitary iff every C-unifiable formula is either C-finitary, or C-unitary and there exists a C-finitary formula. We say that elementary unification in C is unitary iff every C-unifiable formula is C-unitary. See [START_REF] Dzik | Unification Types in Logic[END_REF] for an introduction to the unification types in logics.

An axiomatic system for C consists of axioms and rules. Its theorems are all formulas which can be derived from the axioms by means of the rules. See [START_REF] Balbiani | Modal logics for region-based theories of space[END_REF][START_REF] Vakarelov | Region-based theory of space: algebras of regions, representation theory, and logics[END_REF] for systems of axioms and rules characterizing validity with respect to different classes of frames. In order to make stronger an axiomatic system for C, we can add new axioms and new rules to it. Concerning new axioms, they should always consist of C-valid formulas. About new rules, they should always consist of rules that preserve C-validity. We say that an inference rule ϕ ψ is C-admissible iff for all substitutions σ, if σ(ϕ) is C-valid then σ(ψ) is C-valid. The elementary Cadmissibility problem consists in determining whether a given inference rule is C-admissible. See [START_REF] Rybakov | Admissibility of Logical Inference Rules[END_REF] for an introduction to the admissibility problem in logics.

Monoms and Polynoms

Before we provide, in Sect. 8, computability results about unifiability and admissibility in BRCC8 and prove, in Sect. 9, that elementary unification is finitary, we introduce the notions of monom and polynom (this section) and define some equivalence relations (next section).

Let k, n be nonnegative integer and f : {0, 1} k -→ {0, 1} n be a function. An n-monom is a term of the form

-x β 1 1 ∩ . . . ∩ x β n n
where (β 1 , . . . , β n ) ∈ {0, 1} n . Considering the terms x β 1 1 , . . ., x β n n as literals in CP L, n-monoms are just conjunctions of literals. Considering a term a in T ER(x 1 , . . . , x n ) as a formula in CP L, let mon(n, a) be the set of all n-monoms

x β 1 1 ∩ . . . ∩ x β n n such that a is a tautological consequence of x β 1 1 ∩ . . . ∩ x β n n . An n -polynom is a term of the form -(x β 11 1 ∩ . . . ∩ x β 1n n ) ∪ . . . ∪ (x β m1 1 ∩ . . . ∩ x β mn n )
where m is a nonnegative integer and (β 11 , . . . , β 1n ), . . . , (β m1 , . . . , β mn ) ∈ {0, 1} n . Considering the terms

x β 11 1 ∩ . . . ∩ x β 1n n , . . ., x β m1 1 ∩ . . . ∩ x β mn n
as conjunctions of literals in CP L, n-polynoms are just disjunctive normal forms. Note that for all terms a in T ER(x 1 , . . . , x n ), mon(n, a) is an n-polynom. For all positive integers i, if i ≤ n then let π i : {0, 1} n -→ {0, 1} be the function such that for all (β 1 , . . . ,

β n ) ∈ {0, 1} n , π i (β 1 , . . . , β n ) = β i . For all (β 1 , . . . , β n ) ∈ {0, 1} n , we define -f -1 (β 1 , . . . , β n ) = {(α 1 , . . . , α k ) ∈ {0, 1} k : f (α 1 , . . . , α k ) = (β 1 , . . . , β n )}.
Obviously, for all (β 1 , . . . , β n ) ∈ {0, 1} n , f -1 (β 1 , . . . , β n ) ⊆ {0, 1} k . For all positive integers i, if i ≤ n then we define:

-∆ i = {(α 1 , . . . , α k ) ∈ {0, 1} k : π i (f (α 1 , . . . , α k )) = 1}, -c i = {x α 1 1 ∩ . . . ∩ x α k k : (α 1 , . . . , α k ) ∈ ∆ i }.
Obviously, for all positive integers i, if i ≤ n then ∆ i ⊆ {0, 1} k and c i is a k-polynom. Note that ∆ i and c i depend on f too. Lemma 1 is a consequence of the definition of mon(n, a). Lemma 1. Let a(x 1 , . . . , x n ) ∈ T ER(x 1 , . . . , x n ). Considered as formulas in CP L, the terms a and mon(n, a) are equivalent.

Proposition 4. For all (β 1 , . . . , β n ) ∈ {0, 1} n , considered as formulas in CP L, the terms

{x α 1 1 ∩ . . . ∩ x α k k : (α 1 , . . . , α k ) ∈ f -1 (β 1 , . . . , β n )} and c β 1 1 ∩ . . . ∩ c β n n are equivalent.
Proof. Let (β 1 , . . . , β n ) ∈ {0, 1} n . It suffices to show that considered as formulas in CP L, for all θ 1 , . . . ,

θ k ∈ {0, 1}, if x 1 is interpreted by θ 1 , . . ., x k is interpreted by θ k then {x α 1 1 ∩ . . . ∩ x α k k : (α 1 , . . . , α k ) ∈ f -1 (β 1 , . . . , β n )} is equivalent to 1 iff c β 1 1 ∩ . . . ∩ c β n n is equivalent to 1. Let θ 1 , . . . , θ k ∈ {0, 1}. Let x 1 be interpreted by θ 1 , . . ., x k be interpreted by θ k . Suppose {x α 1 1 ∩ . . . ∩ x α k k : (α 1 , . . . , α k ) ∈ f -1 (β 1 , . . . , β n )} is equivalent to 1. Hence, (θ 1 , . . . , θ k ) ∈ f -1 (β 1 , . . . , β n ). Thus, f (θ 1 , . . . , θ k ) = (β 1 , . . . , β n ).
For the sake of the contradiction, suppose c β 1 1 ∩ . . . ∩ c β n n is equivalent to 0. Let i be a positive integer such that i ≤ n and c β i i is equivalent to 0. Since either β i = 0, or β i = 1, therefore we have to consider two cases. In the former case, β i = 0 and therefore {x α 1 1 ∩ . . . ∩ x α k k : (α 1 , . . . , α k ) ∈ ∆ i } is equivalent to 1. Consequently, (θ 1 , . . . , θ k ) ∈ ∆ i . Hence, π i (f (θ 1 , . . . , θ k )) = 1. Since f (θ 1 , . . . , θ k ) = (β 1 , . . . , β n ), therefore β i = 1: a contradiction. In the latter case, β i = 1 and therefore {x α

1 1 ∩ . . . ∩ x α k k : (α 1 , . . . , α k ) ∈ ∆ i } is equivalent to 0. Thus, (θ 1 , . . . , θ k ) ∈ ∆ i . Hence, π i (f (θ 1 , . . . , θ k )) = 0. Since f (θ 1 , . . . , θ k ) = (β 1 , . . . , β n ), therefore β i = 0: a contradiction.
Suppose c β 1 1 ∩. . .∩c β n n is equivalent to 1. Let i be an arbitrary positive integer such that i ≤ n. Since c β 1 1 ∩ . . . ∩ c β n n is equivalent to 1, therefore c β i i is equivalent to 1. Since either β i = 0, or β i = 1, therefore we have to consider two cases. In the former case, β i = 0 and therefore c i is equivalent to 0. Hence, (θ 1 , . . . , θ k ) ∈ ∆ i . Thus, π i (f (θ 1 , . . . , θ k )) = 0. Since β i = 0, therefore π i (f (θ 1 , . . . , θ k )) = β i . In the latter case, β i = 1 and therefore c i is equivalent to 1. Consequently, (θ 1 , . . . , θ k ) ∈ ∆ i . Hence, π i (f (θ 1 , . . . , θ k )) = 1. Since

β i = 1, therefore π i (f (θ 1 , . . . , θ k )) = β i . In both cases, π i (f (θ 1 , . . . , θ k )) = β i . Since i was arbitrary, therefore f (θ 1 , . . . , θ k ) = (β 1 , . . . , β n ). Thus, (θ 1 , . . . , θ k ) ∈ f -1 (β 1 , . . . , β n ). Consequently, {x α 1 1 ∩ . . . ∩ x α k k : (α 1 , . . . , α k ) ∈ f -1 (β 1 , . . . , β n )} is equivalent to 1.
Let k, n be nonnegative integers and C be a class of frames. Given (a 1 , . . . , a n ) ∈ T ER(x 1 , . . . , x k ) n , we define on {0, 1} k the equivalence relation ∼ k (a 1 ,...,a n ) as follows:

-(α 1 , . . . , α k ) ∼ k (a 1 ,...,a n ) (α ′ 1 , . . . , α ′ k ) iff for all positive integers i, if i ≤ n, then x α 1 1 ∩ . . . ∩ x α k k ∈ mon(k, a i ) iff x α ′ 1 1 ∩ . . . ∩ x α ′ k k ∈ mon(k, a i ). Lemma 2 is a consequence of its definition. Lemma 2. For all (a 1 , . . . , a n ) ∈ T ER(x 1 , . . . , x k ) n , ∼ k (a 1 ,...,a n ) has at most 2 n equivalence classes on {0, 1} k . Let f : {0, 1} k -→ {0, 1} n be a function such that for all (α 1 , . . . , α k ), (α ′ 1 , . . . , α ′ k ) ∈ {0, 1} k , if f (α 1 , . . . , α k ) = f (α ′ 1 , . . . , α ′ k ) then (α 1 , . . . , α k ) ∼ k (a 1 ,...,a n ) (α ′ 1 , . . . , α ′ k )
. By means of the function f , we define the n-tuple (b 1 , . . . , b n ) of n-polynoms as follows:

-b i = {x β 1 1 ∩ . . . ∩ x β n n : x α 1 1 ∩ . . . ∩ x α k k ∈ mon(k, a i ) and f (α 1 , . . . , α k ) = (β 1 , . . . , β n )}.
We say that (b 1 , . . . , b n ) is the n-tuple of n-polynoms properly obtained from the given n-tuple (a 1 , . . . , a n ) in T ER(x 1 , . . . , x k ) n with respect to (k, n). Lemma 3 is a consequence of its definition. Lemma 3. Let (a 1 , . . . , a n ) be an n-tuple in T ER(x 1 , . . . , x k ) n and (b 1 , . . . , b n ) be an n-tuple of n-polynoms. Let W be a nonempty set. If (b 1 , . . . , b n ) is properly obtained from (a 1 , . . . , a n ) with respect to (k, n) then for all valuations V on W , there exists a valuation V ′ on W such that for all positive integers i, if i ≤ n, then V(a i ) = V′ (b i ) and for all valuations V on W , there exists a valuation V ′ on W such that for all positive integers i,

if i ≤ n, then V(b i ) = V′ (a i ).
For all (β 1 , . . . , β n ) ∈ {0, 1} n , let f -1 (β 1 , . . . , β n ) be as in Sect. 6. For all positive integers i, if i ≤ n then let ∆ i and c i be as in Sect. 6. Let υ be the substitution such that -for all positive integers i, if i ≤ n then υ(x i ) = c i , -for all variables y, if y ∈ {x 1 , . . . , x n } then υ(y) = y. Proposition 5. For all positive integers i, if i ≤ n then considered as formulas in CP L, the terms a i and ῡ(b i ) are equivalent.

Proof. Let i be a positive integer such that i ≤ n. Considered as formulas in CP L, the following terms are equivalent:

1. ῡ(b i ). 2. {c β 1 1 ∩ . . . ∩ c β n n : x α 1 1 ∩ . . . ∩ x α k k ∈ mon(k, a i ) and f (α 1 , . . . , α k ) = (β 1 , . . . , β n )}. 3. { {x α ′ 1 1 ∩ . . . ∩ x α ′ k k : (α ′ 1 , . . . , α ′ k ) ∈ f -1 (β 1 , . . . , β n )} : x α 1 1 ∩ . . . ∩ x α k k ∈ mon(k, a i ) and f (α 1 , . . . , α k ) = (β 1 , . . . , β n )}. 4. {x α ′ 1 1 ∩. . .∩x α ′ k k : (α ′ 1 , . . . , α ′ k ) ∈ f -1 (β 1 , . . . , β n ), x α 1 1 ∩. . .∩x α k k ∈ mon(k, a i ) and f (α 1 , . . . , α k ) = (β 1 , . . . , β n )}. 5. {x α ′ 1 1 ∩ . . . ∩ x α ′ k k : x α 1 1 ∩ . . . ∩ x α k k ∈ mon(k, a i ) and f (α ′ 1 , . . . , α ′ k ) = f (α 1 , . . . , α k )}. 6.
mon(k, a i ). 7. a i .

The equivalence between 1 and 2 is a consequence of the definition of υ; the equivalence between 2 and 3 is a consequence of Proposition 4; the equivalences between 3, 4 and 5 are consequences of simple set-theoretic properties; the equivalence between 5 and 6 is a consequence of the definition of ∼ k (a 1 ,...,a n ) and the fact that for all (α 1 , . . . , α k ), (α

′ 1 , . . . , α ′ k ) ∈ {0, 1} k , if f (α 1 , . . . , α k ) = f (α ′ 1 , . . . , α ′ k ) then (α 1 , . . . , α k ) ∼ k (a 1 ,...,a n ) (α ′ 1 , . . . , α ′ k )
; the equivalence between 6 and 7 is a consequence of Lemma 1.

We define on F OR(x 1 , . . . , x n ) the equivalence relation ≡ n C as follows:

-ϕ ≡ n C ψ iff ϕ ↔ ψ is C-valid.
Proposition 6. ≡ n C has finitely many equivalence classes on F OR(x 1 , . . . , x n ).

Proof. Each formula ϕ in F OR(x 1 , . . . , x n ) is a combination of formulas of the form P (a, b) where a and b are terms in T ER(x 1 , . . . , x n ) and P is one of the 8 binary predicates of RCC8. Hence, ≡ n C has finitely many equivalence classes on F OR(x 1 , . . . , x n ).

Let A n be the set of all n-tuples of terms. Note that n-tuples of terms in A n may contain occurrences of variables outside {x 1 , . . . , x n }. Given a model (W, R, V) on a frame in C and (a 1 , . . . , a n ) ∈ A n , let Φ (W,R,V) (a 1 ,...,a n ) be the set of all equational formulas ϕ(x 1 , . . . , x n ) in F OR(x 1 , . . . , x n ) such that (W, R, V) |= ϕ(a 1 , . . . , a n ). Consider a complete list of representatives for each equivalence class on Φ

(W,R,V) (a 1 ,...,a n ) modulo ≡ n C and let ϕ (W,R,V) (a 1 ,...,a n ) (x 1 , . . . , x n ) be their conjunction. We define on A n the equivalence relation ∼ = n C as follows: -(a 1 , . . . , a n ) ∼ = n C (b 1 , . . . , b n ) iff for all formulas ϕ(x 1 , . . . , x n ) in F OR(x 1 , . . . , x n ), ϕ(a 1 , . . . , a n ) is C-valid iff ϕ(b 1 , . . . , b n ) is C-valid.

Now, we define on

A n the equivalence relation ≃ n C as follows: -(a 1 , . . . , a n ) ≃ n C (b 1 , . . . , b n ) iff for all equational formulas ϕ(x 1 , . . . , x n ) in F OR(x 1 , . . . , x n ), ϕ(a 1 , . . . , a n ) is C-valid iff ϕ(b 1 , . . . , b n ) is C-valid. Obviously, ∼ = n C is finer than ≃ n C .
Lemma 4 is a consequence of Proposition 6; Lemma 5 is a consequence of Lemma 4; Lemma 6 is a consequence of the definition of ≃ n C and Lemma 3; Lemma 7 is a consequence of Lemma 6; Lemma 8 is a consequence of the definition of ϕ Lemma 7. T ER(x 1 , . . . , x n ) n constitutes a complete set of representatives for each equivalence class on

(W,R,V) (a 1 ,...,a n ) (x 1 , . . . , x n ).
A n modulo ≃ n C . Lemma 8. Let (W, R, V) be a model on a frame in C and (a 1 , . . . , a n ) ∈ A n . (W, R, V) |= ϕ (W,R,V) (a 1 ,...,a n ) (a 1 , . . . , a n ). Proposition 7. If C is balanced then for all (a 1 , . . . , a n ), (b 1 , . . . , b n ) ∈ A n , if (a 1 , . . . , a n ) ≃ n C (b 1 , . . . , b n ) then (a 1 , . . . , a n ) ∼ = n C (b 1 , . . . , b n ). Proof. Suppose C is balanced. Let (a 1 , . . . , a n ), (b 1 , . . . , b n ) ∈ A n be such that (a 1 , . . . , a n ) ≃ n C (b 1 , . . . , b n ) and (a 1 , . . . , a n ) ∼ = n C (b 1 , . . . , b n ). Let ϕ(x 1 , . . . , x n ) be a formula in F OR(x 1 , . . . , x n ) such that ϕ(a 1 , . . . , a n ) is C-valid not- iff ϕ(b 1 , . . . , b n ) is C-valid. Without loss of generality, let us assume that ϕ(a 1 , . . . , a n ) is C-valid and ϕ(b 1 , . . . , b n ) is not C-valid. Since C is balanced, therefore let (W, R, V) be a balanced model on a countable frame in C such that (W, R, V) |= ϕ(b 1 , . . . , b n ). By Lemma 8, (W, R, V) |= ϕ (W,R,V) (b 1 ,...,b n ) (b 1 , . . . , b n ). Hence, ¬ϕ (W,R,V) (b 1 ,...,b n ) (b 1 , . . . , b n ) is not C-valid. Since (a 1 , . . . , a n ) ≃ n C (b 1 , . . . , b n ), therefore ¬ϕ (W,R,V) (b 1 ,...,b n ) (a 1 , . . . , a n ) is not C-valid. Since C is balanced, therefore let (W ′ , R ′ , V ′ ) be a balanced model on a countable frame in C such that (W ′ , R ′ , V ′ ) |= ϕ (W,R,V) (b 1 ,...,b n ) (a 1 , . . . , a n ). Now, consider (β 1 , . . . , β n ) ∈ {0, 1} n . If V(b β 1 1 ∩ . . . ∩ b β n n ) = ∅ then (W, R, V) |= EQ(b β 1 1 ∩ . . . ∩ b β n n , 0). Thus, ϕ (W,R,V) (b 1 ,...,b n ) (x 1 , . . . , x n ) → EQ(x β 1 1 ∩ . . . ∩ x β n n , 0) is C-valid. Since (W ′ , R ′ , V ′ ) |= ϕ (W,R,V) (b 1 ,...,b n ) (a 1 , . . . , a n ), therefore (W ′ , R ′ , V ′ ) |= EQ(a β 1 1 ∩ . . . ∩ a β n n , 0). Conse- quently, V′ (a β 1 1 ∩ . . . ∩ a β n n ) = ∅.
Similarly, the reader may easily verify that if

V(b β 1 1 ∩ . . . ∩ b β n n ) = W then V′ (a β 1 1 ∩ . . . ∩ a β n n ) = W ′ and if V(b β 1 1 ∩ . . . ∩ b β n n ) is infinite and coinfinite then V′ (a β 1 1 ∩. . .∩a β n n
) is infinite and coinfinite. In all cases, there exists a bijection g (β 1 ,...,

β n ) from V(b β 1 1 ∩. . .∩b β n n ) to V′ (a β 1 1 ∩. . .∩a β n n ).
Let g be the union of all g (β 1 ,...,β n ) when (β 1 , . . . , β n ) describes {0, 1} n . The reader may easily verify that g is a bijection from W to W ′ such that for all u ∈ W and for all (β 1 , . . . ,

β n ) ∈ {0, 1} n , u ∈ V(b β 1 1 ∩ . . . ∩ b β n n ) iff g(u) ∈ V′ (a β 1 1 ∩ . . . ∩ a β n n ). Let R ′ g be the binary relation on W ′ defined by u ′ R ′ g v ′ iff g -1 (u ′ )Rg -1 (v ′ ). Obviously, g is an isomorphism from (W, R) to (W ′ , R ′ g ). Since ϕ(a 1 , . . . , a n ) is C-valid, therefore (W ′ , R ′ g , V ′ ) |= ϕ(a 1 , . . . , a n ). Hence, (W, R, V) |= ϕ(b 1 , . . . , b n ): a con- tradiction.
Let C be a class of frames. Lemma 9 is a consequence of the definitions in Sect. 4.

Lemma 9

1. For all a ∈ T ER(∅), either EQ(a, 0) is C-valid, or EQ(a, 1) is C-valid. Moreover, the formula in {EQ(a, 0), EQ(a, 1)} that is C-valid can be computed in linear time. 2. For all a, b ∈ T ER(∅), either DC(a, b) is C-valid, or EQ(a, b) is C-valid.

Moreover, the formula in {DC(a, b), EQ(a, b)} that is C-valid can be computed in linear time.

Lemma 10 is a consequence of the definition of unifiability.

Lemma 10. For all formulas ϕ(x 1 , . . . , x n ), ϕ is C-unifiable iff there exists a 1 , . . . , a n ∈ T ER(∅) such that ϕ(a 1 , . . . , a n ) is C-valid.

Proposition 8. The elementary C-unifiability problem is in N P .

Proof. By Lemmas 9 and 10, for all formulas ϕ(x 1 , . . . , x n ), ϕ(x 1 , . . . , x n ) is Cunifiable iff there exists a 1 , . . . , a n ∈ {0, 1} such that ϕ(a 1 , . . . , a n ) is C-valid.

Obviously, this can be decided in polynomial time.

Proposition 9. Let a(x 1 , . . . , x n ) be a term. EQ(a(x 1 , . . . , x n ), 1) is C-unifiable iff considered as a formula in CP L, a(x 1 , . . . , x n ) is satisfiable. Proof. Suppose C is balanced and the C-satisfiability problem is in A. By Lemma 7 and Proposition 7, for all inference rules ϕ(x 1 ,...,x n ) ψ(x 1 ,...,x n ) , ϕ(x 1 ,...,x n ) ψ(x 1 ,...,x n ) is not C-admissible iff there exists (b 1 , . . . , b n ) ∈ T ER(x 1 , . . . , x n ) n such that ¬ϕ(b 1 , . . . , b n ) is not C-satisfiable and ¬ψ(b 1 , . . . , b n ) is C-satisfiable. Obviously, this can be decided in exponential time with oracle in A.

Since the satisfiability problem in C all and C ind is in N P and the satisfiability problem in C con is in P SP ACE, it follows from Propositions 3 and 12 that Proposition 13. The elementary admissibility problem in C all and C ind is in coN EXP N P and the elementary admissibility problem in C con is in coN EXP P SP ACE .

Still, we do not know whether the elementary C-admissibility problem is in coN EXP . We conjecture that in C all , C ind and C con , it is coN EXP -complete

Unification Type

Let C be a class of frames. Proposition 14. If C agrees with unions then EQ(0, x) ∨ EQ(1, x) is not C-unitary.

Proof. Suppose C agrees with unions and EQ(0, x) ∨ EQ(1, x) is C-unitary. Let σ 0 and σ 1 be substitutions such that σ 0 (x) = 0 and σ 1 (x) = 1. Obviously, σ 0 and σ 1 are C-unifiers of EQ(0, x) ∨ EQ(1, x). Since EQ(0, x) ∨ EQ(1, x) is Cunitary, therefore let τ be a C-unifier of EQ(0, x) ∨ EQ(1, x) such that τ C σ 0 and τ C σ 1 . Let µ, ν be substitutions such that τ • µ ≃ C σ 0 and τ • ν ≃ C σ 1 . Hence, EQ(μ(τ (x)), 0) is C-valid and EQ(ν(τ (x)), 1) is C-valid. Thus, neither EQ(0, τ (x)) is C-valid, nor EQ(1, τ (x)) is C-valid. Let (W, R) and (W ′ , R ′ ) be disjoint frames in C, V be a valuation on W and V ′ be a valuation on W ′ such that neither V(τ (x)) = ∅, nor V′ (τ (x)) = W ′ . Since C agrees with unions, therefore let (W ′′ , R ′′ ) be a frame in C such that W ∪ W ′ = W ′′ . Let V ′′ be the valuation on W ′′ such that for all variables z, V ′′ (z) = V(z) ∪ V ′ (z). Obviously, for all terms a, V′′ (a) = V(a) ∪ V′ (a). Since neither V(τ (x)) = ∅, nor V′ (τ (x)) = W ′ , therefore neither V′′ (τ (x)) = ∅, nor V′′ (τ (x)) = W ′′ . Consequently, τ is not a C-unifier of EQ(0, x) ∨ EQ(1, x): a contradiction. Proposition 15. If C agrees with unions then the substitutions σ 0 and σ 1 such that σ 0 (x) = 0, σ 1 (x) = 1 and for all variables y, if x = y then σ 0 (y) = y and σ 1 (y) = y constitute a complete set of C-unifiers of EQ(0, x) ∨ EQ(1, x). Moreover, EQ(0, x) ∨ EQ(1, x) is C-finitary.

Proof. Suppose C agrees with unions. Hence, by Proposition 14, EQ(0, x) ∨ EQ(1, x) is not C-unitary. Obviously, σ 0 and σ 1 are C-unifiers of EQ(0, x) ∨ EQ(1, x). Let τ be an arbitrary C-unifier of EQ(0, x) ∨ EQ(1, x) such that neither σ 0 C τ , nor σ 1 C τ . Thus, neither EQ(0, τ (x)) is C-valid, nor EQ(1, τ (x)) is C-valid. Following the same line of reasoning as in the proof of Proposition 14, we conclude τ is not a C-unifier of EQ(0, x) ∨ EQ(1, x): a contradiction. Since τ was arbitrary, therefore σ 0 and σ 1 constitute a complete set of C-unifiers of EQ(0, x)∨EQ (1, x). Consequently, EQ(0, x)∨EQ(1, x) is either C-unitary, or Cfinitary. Since EQ(0, x)∨EQ(1, x) is not C-unitary, therefore EQ(0, x)∨EQ(1, x) is C-finitary. Proposition 16. If C is balanced then elementary unification in C is either finitary, or unitary. Moreover, if C agrees with unions then elementary unification in C is finitary.

Proof. Suppose C is balanced. Let ϕ(x 1 , . . . , x n ) be an arbitrary C-unifiable formula. Let σ be an arbitrary substitution such that σ(ϕ) is C-valid. Without loss of generality, we can assume that for all variables y, if y ∈ {x 1 , . . . , x n } then σ(y) = y. Let k be a nonnegative integer and (a 1 , . . . , a n ) ∈ T ER(x 1 , . . . , x k ) n be such that for all positive integers i, if i ≤ n then σ(x i ) = a i . Since σ(ϕ) is C-valid, therefore ϕ(a 1 , . . . , a n ) is C-valid. Let ∼ k (a 1 ,...,a n ) , f : {0, 1} k -→ {0, 1} n and (b 1 , . . . , b n ) be as in Sect. 7. By Lemma 6, (a 1 , . . . , a n ) ≃ n C (b 1 , . . . , b n ). Since C is balanced, therefore by Proposition 7, (a 1 , . . . , a n ) ∼ = n C (b 1 , . . . , b n ). Let τ be the substitution such that for all positive integers i, if i ≤ n then τ (x i ) = b i and for all variables y, if y ∈ {x 1 , . . . , x n } then τ (y) = y. Note that (τ (x 1 ), . . . , τ (x n )) ∈ T ER(x 1 , . . . , x n ) n . Moreover, since ϕ(a 1 , . . . , a n ) is Cvalid and (a 1 , . . . , a n ) ∼ = n C (b 1 , . . . , b n ), therefore ϕ(b 1 , . . . , b n ) is C-valid. Hence, τ is a C-unifier of ϕ. For all positive integers i, if i ≤ n then let ∆ i and c i be as in Sect. 6. Let υ be as in Sect. 7. By Proposition 5, for all positive integers i, if i ≤ n then considered as formulas in CP L, the terms a i and ῡ(b i ) are equivalent. Thus, for all positive integers i, if i ≤ n then EQ(ῡ(τ (x i )), σ(x i )) is C-valid. Consequently, τ • υ ≃ C σ. Hence, τ C σ. Since σ was arbitrary and (τ (x 1 ), . . . , τ (x n )) ∈ T ER(x 1 , . . . , x n ) n , therefore ϕ is either C-finitary, or C-unitary. Since ϕ was arbitrary, therefore elementary unification in C is either finitary, or unitary. Now, suppose C agrees with unions. By Proposition 15, elementary unification in C is not unitary. Since elementary unification in C is either finitary, or unitary, therefore elementary unification in C is finitary.

It follows from the above discussion that elementary unification in C all , C ind and C con is finitary.

Conclusion

Much remains to be done. For example, what becomes of the computability of unifiability and admissibility when the language is extended by the connectedness predicate considered in [START_REF] Kontchakov | Spatial logics with connectedness predicates[END_REF][START_REF] Kontchakov | Topological logics with connectedness over Euclidean spaces[END_REF]? What becomes of the unification type? And when the language is interpreted in different Euclidean spaces as in [START_REF] Kontchakov | Interpreting topological logics over Euclidean spaces[END_REF][START_REF] Kontchakov | Topological logics with connectedness over Euclidean spaces[END_REF]? In other respect, it remains to see how decision procedures for unifiability and admissibility can be used to improve the performance of algorithms that handle the satisfiability problem. Finally, one may as well consider these questions when the language is extended by a set of propositional constants (denoted p, q, etc.). In this case: (i) the unifiability problem is to determine, given a formula ϕ(p 1 , . . . , p m , x 1 , . . . , x n ), whether there exists terms a 1 , . . . , a n such that ϕ(p 1 , . . . , p m , a 1 , . . . , a n ) is valid; (ii) the admissibility problem is to determine, given an inference rule ϕ(p 1 ,...,p m ,x 1 ,...,x n ) ψ(p 1 ,...,p m ,x 1 ,...,x n ) , whether for all terms a 1 , . . . , a n , if ϕ(p 1 , . . . , p m , a 1 , . . . , a n ) is valid then ψ(p 1 , . . . , p m , a 1 , . . . , a n ) is valid. We conjecture that in C all , C ind and C con , unification with constants is N EXP -complete but still finitary.

Proposition 1 .

 1 C all , C ind and C con agree with unions.Proof. By the definition of what it means for classes of frames to agree with unions.Proposition 2. C all , C ind and C con are determined.

Lemma 4 .Lemma 6 .

 46 ∼ = n C has finitely many equivalence classes on A n . Lemma 5. ≃ n C has finitely many equivalence classes on A n . Let (a 1 , . . . , a n ) be an n-tuple in T ER(x 1 , . . . , x k ) n and (b 1 , . . . , b n ) be an n-tuple of n-polynoms. If (b 1 , . . . , b n ) is properly obtained from (a 1 , . . . , a n ) with respect to (k, n) then (a 1 , . . . , a n ) ≃ n C (b 1 , . . . , b n ).

Proof.

  Suppose considered as a formula in CP L, a(x 1 , . . . , x n ) is satisfiable. Let b 1 , . . . , b n in {0, 1} be such that a(b 1 , . . . , b n ) is a tautology. Hence, EQ(a(b 1 , . . . , b n ), 1) is C-valid. Thus, EQ(a(x 1 , . . . , x n ), 1) is C-unifiable.Suppose EQ(a(x 1 , . . . , x n ), 1) is C-unifiable. By Lemmas 9 and 10, let b 1 , . . . , b n in {0, 1} be such that EQ(a(b 1 , . . . , b n ), 1) is C-valid. Consequently, a(b 1 , . . . , b n ) is a tautology. Hence, considered as a formula in CP L, a(x 1 , . . . , x n ) is satisfiable. Proposition 10. The elementary C-unifiability problem is N P -hard. Proof. By Proposition 9 and the N P -hardness of the satisfiability problem of formulas in CP L. It follows from Propositions 8 and 10 that Proposition 11. The elementary unifiability problem in C all , C ind and C con is N P -complete. In other respect, Proposition 12. Let A be a complexity class. If C is balanced and the Csatisfiability problem is in A then the elementary C-admissibility problem is in coN EXP A .
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